core.c 179 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. *
  311. * Its all a bit involved since we cannot program an hrt while holding the
  312. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  313. * reschedule event.
  314. *
  315. * When we get rescheduled we reprogram the hrtick_timer outside of the
  316. * rq->lock.
  317. */
  318. static void hrtick_clear(struct rq *rq)
  319. {
  320. if (hrtimer_active(&rq->hrtick_timer))
  321. hrtimer_cancel(&rq->hrtick_timer);
  322. }
  323. /*
  324. * High-resolution timer tick.
  325. * Runs from hardirq context with interrupts disabled.
  326. */
  327. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  328. {
  329. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  330. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  331. raw_spin_lock(&rq->lock);
  332. update_rq_clock(rq);
  333. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  334. raw_spin_unlock(&rq->lock);
  335. return HRTIMER_NORESTART;
  336. }
  337. #ifdef CONFIG_SMP
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. hrtimer_restart(&rq->hrtick_timer);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. hrtimer_restart(timer);
  361. } else if (!rq->hrtick_csd_pending) {
  362. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * resched_task - mark a task 'to be rescheduled now'.
  425. *
  426. * On UP this means the setting of the need_resched flag, on SMP it
  427. * might also involve a cross-CPU call to trigger the scheduler on
  428. * the target CPU.
  429. */
  430. #ifdef CONFIG_SMP
  431. void resched_task(struct task_struct *p)
  432. {
  433. int cpu;
  434. assert_raw_spin_locked(&task_rq(p)->lock);
  435. if (test_tsk_need_resched(p))
  436. return;
  437. set_tsk_need_resched(p);
  438. cpu = task_cpu(p);
  439. if (cpu == smp_processor_id())
  440. return;
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_NO_HZ_COMMON
  456. /*
  457. * In the semi idle case, use the nearest busy cpu for migrating timers
  458. * from an idle cpu. This is good for power-savings.
  459. *
  460. * We don't do similar optimization for completely idle system, as
  461. * selecting an idle cpu will add more delays to the timers than intended
  462. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  463. */
  464. int get_nohz_timer_target(void)
  465. {
  466. int cpu = smp_processor_id();
  467. int i;
  468. struct sched_domain *sd;
  469. rcu_read_lock();
  470. for_each_domain(cpu, sd) {
  471. for_each_cpu(i, sched_domain_span(sd)) {
  472. if (!idle_cpu(i)) {
  473. cpu = i;
  474. goto unlock;
  475. }
  476. }
  477. }
  478. unlock:
  479. rcu_read_unlock();
  480. return cpu;
  481. }
  482. /*
  483. * When add_timer_on() enqueues a timer into the timer wheel of an
  484. * idle CPU then this timer might expire before the next timer event
  485. * which is scheduled to wake up that CPU. In case of a completely
  486. * idle system the next event might even be infinite time into the
  487. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  488. * leaves the inner idle loop so the newly added timer is taken into
  489. * account when the CPU goes back to idle and evaluates the timer
  490. * wheel for the next timer event.
  491. */
  492. static void wake_up_idle_cpu(int cpu)
  493. {
  494. struct rq *rq = cpu_rq(cpu);
  495. if (cpu == smp_processor_id())
  496. return;
  497. /*
  498. * This is safe, as this function is called with the timer
  499. * wheel base lock of (cpu) held. When the CPU is on the way
  500. * to idle and has not yet set rq->curr to idle then it will
  501. * be serialized on the timer wheel base lock and take the new
  502. * timer into account automatically.
  503. */
  504. if (rq->curr != rq->idle)
  505. return;
  506. /*
  507. * We can set TIF_RESCHED on the idle task of the other CPU
  508. * lockless. The worst case is that the other CPU runs the
  509. * idle task through an additional NOOP schedule()
  510. */
  511. set_tsk_need_resched(rq->idle);
  512. /* NEED_RESCHED must be visible before we test polling */
  513. smp_mb();
  514. if (!tsk_is_polling(rq->idle))
  515. smp_send_reschedule(cpu);
  516. }
  517. static bool wake_up_full_nohz_cpu(int cpu)
  518. {
  519. if (tick_nohz_full_cpu(cpu)) {
  520. if (cpu != smp_processor_id() ||
  521. tick_nohz_tick_stopped())
  522. smp_send_reschedule(cpu);
  523. return true;
  524. }
  525. return false;
  526. }
  527. void wake_up_nohz_cpu(int cpu)
  528. {
  529. if (!wake_up_full_nohz_cpu(cpu))
  530. wake_up_idle_cpu(cpu);
  531. }
  532. static inline bool got_nohz_idle_kick(void)
  533. {
  534. int cpu = smp_processor_id();
  535. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  536. }
  537. #else /* CONFIG_NO_HZ_COMMON */
  538. static inline bool got_nohz_idle_kick(void)
  539. {
  540. return false;
  541. }
  542. #endif /* CONFIG_NO_HZ_COMMON */
  543. #ifdef CONFIG_NO_HZ_FULL
  544. bool sched_can_stop_tick(void)
  545. {
  546. struct rq *rq;
  547. rq = this_rq();
  548. /* Make sure rq->nr_running update is visible after the IPI */
  549. smp_rmb();
  550. /* More than one running task need preemption */
  551. if (rq->nr_running > 1)
  552. return false;
  553. return true;
  554. }
  555. #endif /* CONFIG_NO_HZ_FULL */
  556. void sched_avg_update(struct rq *rq)
  557. {
  558. s64 period = sched_avg_period();
  559. while ((s64)(rq->clock - rq->age_stamp) > period) {
  560. /*
  561. * Inline assembly required to prevent the compiler
  562. * optimising this loop into a divmod call.
  563. * See __iter_div_u64_rem() for another example of this.
  564. */
  565. asm("" : "+rm" (rq->age_stamp));
  566. rq->age_stamp += period;
  567. rq->rt_avg /= 2;
  568. }
  569. }
  570. #else /* !CONFIG_SMP */
  571. void resched_task(struct task_struct *p)
  572. {
  573. assert_raw_spin_locked(&task_rq(p)->lock);
  574. set_tsk_need_resched(p);
  575. }
  576. #endif /* CONFIG_SMP */
  577. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  578. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  579. /*
  580. * Iterate task_group tree rooted at *from, calling @down when first entering a
  581. * node and @up when leaving it for the final time.
  582. *
  583. * Caller must hold rcu_lock or sufficient equivalent.
  584. */
  585. int walk_tg_tree_from(struct task_group *from,
  586. tg_visitor down, tg_visitor up, void *data)
  587. {
  588. struct task_group *parent, *child;
  589. int ret;
  590. parent = from;
  591. down:
  592. ret = (*down)(parent, data);
  593. if (ret)
  594. goto out;
  595. list_for_each_entry_rcu(child, &parent->children, siblings) {
  596. parent = child;
  597. goto down;
  598. up:
  599. continue;
  600. }
  601. ret = (*up)(parent, data);
  602. if (ret || parent == from)
  603. goto out;
  604. child = parent;
  605. parent = parent->parent;
  606. if (parent)
  607. goto up;
  608. out:
  609. return ret;
  610. }
  611. int tg_nop(struct task_group *tg, void *data)
  612. {
  613. return 0;
  614. }
  615. #endif
  616. static void set_load_weight(struct task_struct *p)
  617. {
  618. int prio = p->static_prio - MAX_RT_PRIO;
  619. struct load_weight *load = &p->se.load;
  620. /*
  621. * SCHED_IDLE tasks get minimal weight:
  622. */
  623. if (p->policy == SCHED_IDLE) {
  624. load->weight = scale_load(WEIGHT_IDLEPRIO);
  625. load->inv_weight = WMULT_IDLEPRIO;
  626. return;
  627. }
  628. load->weight = scale_load(prio_to_weight[prio]);
  629. load->inv_weight = prio_to_wmult[prio];
  630. }
  631. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  632. {
  633. update_rq_clock(rq);
  634. sched_info_queued(p);
  635. p->sched_class->enqueue_task(rq, p, flags);
  636. }
  637. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  638. {
  639. update_rq_clock(rq);
  640. sched_info_dequeued(p);
  641. p->sched_class->dequeue_task(rq, p, flags);
  642. }
  643. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  644. {
  645. if (task_contributes_to_load(p))
  646. rq->nr_uninterruptible--;
  647. enqueue_task(rq, p, flags);
  648. }
  649. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  650. {
  651. if (task_contributes_to_load(p))
  652. rq->nr_uninterruptible++;
  653. dequeue_task(rq, p, flags);
  654. }
  655. static void update_rq_clock_task(struct rq *rq, s64 delta)
  656. {
  657. /*
  658. * In theory, the compile should just see 0 here, and optimize out the call
  659. * to sched_rt_avg_update. But I don't trust it...
  660. */
  661. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  662. s64 steal = 0, irq_delta = 0;
  663. #endif
  664. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  665. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  666. /*
  667. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  668. * this case when a previous update_rq_clock() happened inside a
  669. * {soft,}irq region.
  670. *
  671. * When this happens, we stop ->clock_task and only update the
  672. * prev_irq_time stamp to account for the part that fit, so that a next
  673. * update will consume the rest. This ensures ->clock_task is
  674. * monotonic.
  675. *
  676. * It does however cause some slight miss-attribution of {soft,}irq
  677. * time, a more accurate solution would be to update the irq_time using
  678. * the current rq->clock timestamp, except that would require using
  679. * atomic ops.
  680. */
  681. if (irq_delta > delta)
  682. irq_delta = delta;
  683. rq->prev_irq_time += irq_delta;
  684. delta -= irq_delta;
  685. #endif
  686. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  687. if (static_key_false((&paravirt_steal_rq_enabled))) {
  688. u64 st;
  689. steal = paravirt_steal_clock(cpu_of(rq));
  690. steal -= rq->prev_steal_time_rq;
  691. if (unlikely(steal > delta))
  692. steal = delta;
  693. st = steal_ticks(steal);
  694. steal = st * TICK_NSEC;
  695. rq->prev_steal_time_rq += steal;
  696. delta -= steal;
  697. }
  698. #endif
  699. rq->clock_task += delta;
  700. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  701. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  702. sched_rt_avg_update(rq, irq_delta + steal);
  703. #endif
  704. }
  705. void sched_set_stop_task(int cpu, struct task_struct *stop)
  706. {
  707. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  708. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  709. if (stop) {
  710. /*
  711. * Make it appear like a SCHED_FIFO task, its something
  712. * userspace knows about and won't get confused about.
  713. *
  714. * Also, it will make PI more or less work without too
  715. * much confusion -- but then, stop work should not
  716. * rely on PI working anyway.
  717. */
  718. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  719. stop->sched_class = &stop_sched_class;
  720. }
  721. cpu_rq(cpu)->stop = stop;
  722. if (old_stop) {
  723. /*
  724. * Reset it back to a normal scheduling class so that
  725. * it can die in pieces.
  726. */
  727. old_stop->sched_class = &rt_sched_class;
  728. }
  729. }
  730. /*
  731. * __normal_prio - return the priority that is based on the static prio
  732. */
  733. static inline int __normal_prio(struct task_struct *p)
  734. {
  735. return p->static_prio;
  736. }
  737. /*
  738. * Calculate the expected normal priority: i.e. priority
  739. * without taking RT-inheritance into account. Might be
  740. * boosted by interactivity modifiers. Changes upon fork,
  741. * setprio syscalls, and whenever the interactivity
  742. * estimator recalculates.
  743. */
  744. static inline int normal_prio(struct task_struct *p)
  745. {
  746. int prio;
  747. if (task_has_rt_policy(p))
  748. prio = MAX_RT_PRIO-1 - p->rt_priority;
  749. else
  750. prio = __normal_prio(p);
  751. return prio;
  752. }
  753. /*
  754. * Calculate the current priority, i.e. the priority
  755. * taken into account by the scheduler. This value might
  756. * be boosted by RT tasks, or might be boosted by
  757. * interactivity modifiers. Will be RT if the task got
  758. * RT-boosted. If not then it returns p->normal_prio.
  759. */
  760. static int effective_prio(struct task_struct *p)
  761. {
  762. p->normal_prio = normal_prio(p);
  763. /*
  764. * If we are RT tasks or we were boosted to RT priority,
  765. * keep the priority unchanged. Otherwise, update priority
  766. * to the normal priority:
  767. */
  768. if (!rt_prio(p->prio))
  769. return p->normal_prio;
  770. return p->prio;
  771. }
  772. /**
  773. * task_curr - is this task currently executing on a CPU?
  774. * @p: the task in question.
  775. */
  776. inline int task_curr(const struct task_struct *p)
  777. {
  778. return cpu_curr(task_cpu(p)) == p;
  779. }
  780. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  781. const struct sched_class *prev_class,
  782. int oldprio)
  783. {
  784. if (prev_class != p->sched_class) {
  785. if (prev_class->switched_from)
  786. prev_class->switched_from(rq, p);
  787. p->sched_class->switched_to(rq, p);
  788. } else if (oldprio != p->prio)
  789. p->sched_class->prio_changed(rq, p, oldprio);
  790. }
  791. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  792. {
  793. const struct sched_class *class;
  794. if (p->sched_class == rq->curr->sched_class) {
  795. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  796. } else {
  797. for_each_class(class) {
  798. if (class == rq->curr->sched_class)
  799. break;
  800. if (class == p->sched_class) {
  801. resched_task(rq->curr);
  802. break;
  803. }
  804. }
  805. }
  806. /*
  807. * A queue event has occurred, and we're going to schedule. In
  808. * this case, we can save a useless back to back clock update.
  809. */
  810. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  811. rq->skip_clock_update = 1;
  812. }
  813. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  814. void register_task_migration_notifier(struct notifier_block *n)
  815. {
  816. atomic_notifier_chain_register(&task_migration_notifier, n);
  817. }
  818. #ifdef CONFIG_SMP
  819. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  820. {
  821. #ifdef CONFIG_SCHED_DEBUG
  822. /*
  823. * We should never call set_task_cpu() on a blocked task,
  824. * ttwu() will sort out the placement.
  825. */
  826. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  827. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  828. #ifdef CONFIG_LOCKDEP
  829. /*
  830. * The caller should hold either p->pi_lock or rq->lock, when changing
  831. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  832. *
  833. * sched_move_task() holds both and thus holding either pins the cgroup,
  834. * see task_group().
  835. *
  836. * Furthermore, all task_rq users should acquire both locks, see
  837. * task_rq_lock().
  838. */
  839. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  840. lockdep_is_held(&task_rq(p)->lock)));
  841. #endif
  842. #endif
  843. trace_sched_migrate_task(p, new_cpu);
  844. if (task_cpu(p) != new_cpu) {
  845. struct task_migration_notifier tmn;
  846. if (p->sched_class->migrate_task_rq)
  847. p->sched_class->migrate_task_rq(p, new_cpu);
  848. p->se.nr_migrations++;
  849. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  850. tmn.task = p;
  851. tmn.from_cpu = task_cpu(p);
  852. tmn.to_cpu = new_cpu;
  853. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  854. }
  855. __set_task_cpu(p, new_cpu);
  856. }
  857. struct migration_arg {
  858. struct task_struct *task;
  859. int dest_cpu;
  860. };
  861. static int migration_cpu_stop(void *data);
  862. /*
  863. * wait_task_inactive - wait for a thread to unschedule.
  864. *
  865. * If @match_state is nonzero, it's the @p->state value just checked and
  866. * not expected to change. If it changes, i.e. @p might have woken up,
  867. * then return zero. When we succeed in waiting for @p to be off its CPU,
  868. * we return a positive number (its total switch count). If a second call
  869. * a short while later returns the same number, the caller can be sure that
  870. * @p has remained unscheduled the whole time.
  871. *
  872. * The caller must ensure that the task *will* unschedule sometime soon,
  873. * else this function might spin for a *long* time. This function can't
  874. * be called with interrupts off, or it may introduce deadlock with
  875. * smp_call_function() if an IPI is sent by the same process we are
  876. * waiting to become inactive.
  877. */
  878. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  879. {
  880. unsigned long flags;
  881. int running, on_rq;
  882. unsigned long ncsw;
  883. struct rq *rq;
  884. for (;;) {
  885. /*
  886. * We do the initial early heuristics without holding
  887. * any task-queue locks at all. We'll only try to get
  888. * the runqueue lock when things look like they will
  889. * work out!
  890. */
  891. rq = task_rq(p);
  892. /*
  893. * If the task is actively running on another CPU
  894. * still, just relax and busy-wait without holding
  895. * any locks.
  896. *
  897. * NOTE! Since we don't hold any locks, it's not
  898. * even sure that "rq" stays as the right runqueue!
  899. * But we don't care, since "task_running()" will
  900. * return false if the runqueue has changed and p
  901. * is actually now running somewhere else!
  902. */
  903. while (task_running(rq, p)) {
  904. if (match_state && unlikely(p->state != match_state))
  905. return 0;
  906. cpu_relax();
  907. }
  908. /*
  909. * Ok, time to look more closely! We need the rq
  910. * lock now, to be *sure*. If we're wrong, we'll
  911. * just go back and repeat.
  912. */
  913. rq = task_rq_lock(p, &flags);
  914. trace_sched_wait_task(p);
  915. running = task_running(rq, p);
  916. on_rq = p->on_rq;
  917. ncsw = 0;
  918. if (!match_state || p->state == match_state)
  919. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  920. task_rq_unlock(rq, p, &flags);
  921. /*
  922. * If it changed from the expected state, bail out now.
  923. */
  924. if (unlikely(!ncsw))
  925. break;
  926. /*
  927. * Was it really running after all now that we
  928. * checked with the proper locks actually held?
  929. *
  930. * Oops. Go back and try again..
  931. */
  932. if (unlikely(running)) {
  933. cpu_relax();
  934. continue;
  935. }
  936. /*
  937. * It's not enough that it's not actively running,
  938. * it must be off the runqueue _entirely_, and not
  939. * preempted!
  940. *
  941. * So if it was still runnable (but just not actively
  942. * running right now), it's preempted, and we should
  943. * yield - it could be a while.
  944. */
  945. if (unlikely(on_rq)) {
  946. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  947. set_current_state(TASK_UNINTERRUPTIBLE);
  948. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  949. continue;
  950. }
  951. /*
  952. * Ahh, all good. It wasn't running, and it wasn't
  953. * runnable, which means that it will never become
  954. * running in the future either. We're all done!
  955. */
  956. break;
  957. }
  958. return ncsw;
  959. }
  960. /***
  961. * kick_process - kick a running thread to enter/exit the kernel
  962. * @p: the to-be-kicked thread
  963. *
  964. * Cause a process which is running on another CPU to enter
  965. * kernel-mode, without any delay. (to get signals handled.)
  966. *
  967. * NOTE: this function doesn't have to take the runqueue lock,
  968. * because all it wants to ensure is that the remote task enters
  969. * the kernel. If the IPI races and the task has been migrated
  970. * to another CPU then no harm is done and the purpose has been
  971. * achieved as well.
  972. */
  973. void kick_process(struct task_struct *p)
  974. {
  975. int cpu;
  976. preempt_disable();
  977. cpu = task_cpu(p);
  978. if ((cpu != smp_processor_id()) && task_curr(p))
  979. smp_send_reschedule(cpu);
  980. preempt_enable();
  981. }
  982. EXPORT_SYMBOL_GPL(kick_process);
  983. #endif /* CONFIG_SMP */
  984. #ifdef CONFIG_SMP
  985. /*
  986. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  987. */
  988. static int select_fallback_rq(int cpu, struct task_struct *p)
  989. {
  990. int nid = cpu_to_node(cpu);
  991. const struct cpumask *nodemask = NULL;
  992. enum { cpuset, possible, fail } state = cpuset;
  993. int dest_cpu;
  994. /*
  995. * If the node that the cpu is on has been offlined, cpu_to_node()
  996. * will return -1. There is no cpu on the node, and we should
  997. * select the cpu on the other node.
  998. */
  999. if (nid != -1) {
  1000. nodemask = cpumask_of_node(nid);
  1001. /* Look for allowed, online CPU in same node. */
  1002. for_each_cpu(dest_cpu, nodemask) {
  1003. if (!cpu_online(dest_cpu))
  1004. continue;
  1005. if (!cpu_active(dest_cpu))
  1006. continue;
  1007. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1008. return dest_cpu;
  1009. }
  1010. }
  1011. for (;;) {
  1012. /* Any allowed, online CPU? */
  1013. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1014. if (!cpu_online(dest_cpu))
  1015. continue;
  1016. if (!cpu_active(dest_cpu))
  1017. continue;
  1018. goto out;
  1019. }
  1020. switch (state) {
  1021. case cpuset:
  1022. /* No more Mr. Nice Guy. */
  1023. cpuset_cpus_allowed_fallback(p);
  1024. state = possible;
  1025. break;
  1026. case possible:
  1027. do_set_cpus_allowed(p, cpu_possible_mask);
  1028. state = fail;
  1029. break;
  1030. case fail:
  1031. BUG();
  1032. break;
  1033. }
  1034. }
  1035. out:
  1036. if (state != cpuset) {
  1037. /*
  1038. * Don't tell them about moving exiting tasks or
  1039. * kernel threads (both mm NULL), since they never
  1040. * leave kernel.
  1041. */
  1042. if (p->mm && printk_ratelimit()) {
  1043. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1044. task_pid_nr(p), p->comm, cpu);
  1045. }
  1046. }
  1047. return dest_cpu;
  1048. }
  1049. /*
  1050. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1051. */
  1052. static inline
  1053. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1054. {
  1055. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1056. /*
  1057. * In order not to call set_task_cpu() on a blocking task we need
  1058. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1059. * cpu.
  1060. *
  1061. * Since this is common to all placement strategies, this lives here.
  1062. *
  1063. * [ this allows ->select_task() to simply return task_cpu(p) and
  1064. * not worry about this generic constraint ]
  1065. */
  1066. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1067. !cpu_online(cpu)))
  1068. cpu = select_fallback_rq(task_cpu(p), p);
  1069. return cpu;
  1070. }
  1071. static void update_avg(u64 *avg, u64 sample)
  1072. {
  1073. s64 diff = sample - *avg;
  1074. *avg += diff >> 3;
  1075. }
  1076. #endif
  1077. static void
  1078. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1079. {
  1080. #ifdef CONFIG_SCHEDSTATS
  1081. struct rq *rq = this_rq();
  1082. #ifdef CONFIG_SMP
  1083. int this_cpu = smp_processor_id();
  1084. if (cpu == this_cpu) {
  1085. schedstat_inc(rq, ttwu_local);
  1086. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1087. } else {
  1088. struct sched_domain *sd;
  1089. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1090. rcu_read_lock();
  1091. for_each_domain(this_cpu, sd) {
  1092. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1093. schedstat_inc(sd, ttwu_wake_remote);
  1094. break;
  1095. }
  1096. }
  1097. rcu_read_unlock();
  1098. }
  1099. if (wake_flags & WF_MIGRATED)
  1100. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1101. #endif /* CONFIG_SMP */
  1102. schedstat_inc(rq, ttwu_count);
  1103. schedstat_inc(p, se.statistics.nr_wakeups);
  1104. if (wake_flags & WF_SYNC)
  1105. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1106. #endif /* CONFIG_SCHEDSTATS */
  1107. }
  1108. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1109. {
  1110. activate_task(rq, p, en_flags);
  1111. p->on_rq = 1;
  1112. /* if a worker is waking up, notify workqueue */
  1113. if (p->flags & PF_WQ_WORKER)
  1114. wq_worker_waking_up(p, cpu_of(rq));
  1115. }
  1116. /*
  1117. * Mark the task runnable and perform wakeup-preemption.
  1118. */
  1119. static void
  1120. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1121. {
  1122. check_preempt_curr(rq, p, wake_flags);
  1123. trace_sched_wakeup(p, true);
  1124. p->state = TASK_RUNNING;
  1125. #ifdef CONFIG_SMP
  1126. if (p->sched_class->task_woken)
  1127. p->sched_class->task_woken(rq, p);
  1128. if (rq->idle_stamp) {
  1129. u64 delta = rq->clock - rq->idle_stamp;
  1130. u64 max = 2*sysctl_sched_migration_cost;
  1131. if (delta > max)
  1132. rq->avg_idle = max;
  1133. else
  1134. update_avg(&rq->avg_idle, delta);
  1135. rq->idle_stamp = 0;
  1136. }
  1137. #endif
  1138. }
  1139. static void
  1140. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1141. {
  1142. #ifdef CONFIG_SMP
  1143. if (p->sched_contributes_to_load)
  1144. rq->nr_uninterruptible--;
  1145. #endif
  1146. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1147. ttwu_do_wakeup(rq, p, wake_flags);
  1148. }
  1149. /*
  1150. * Called in case the task @p isn't fully descheduled from its runqueue,
  1151. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1152. * since all we need to do is flip p->state to TASK_RUNNING, since
  1153. * the task is still ->on_rq.
  1154. */
  1155. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1156. {
  1157. struct rq *rq;
  1158. int ret = 0;
  1159. rq = __task_rq_lock(p);
  1160. if (p->on_rq) {
  1161. ttwu_do_wakeup(rq, p, wake_flags);
  1162. ret = 1;
  1163. }
  1164. __task_rq_unlock(rq);
  1165. return ret;
  1166. }
  1167. #ifdef CONFIG_SMP
  1168. static void sched_ttwu_pending(void)
  1169. {
  1170. struct rq *rq = this_rq();
  1171. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1172. struct task_struct *p;
  1173. raw_spin_lock(&rq->lock);
  1174. while (llist) {
  1175. p = llist_entry(llist, struct task_struct, wake_entry);
  1176. llist = llist_next(llist);
  1177. ttwu_do_activate(rq, p, 0);
  1178. }
  1179. raw_spin_unlock(&rq->lock);
  1180. }
  1181. void scheduler_ipi(void)
  1182. {
  1183. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
  1184. && !tick_nohz_full_cpu(smp_processor_id()))
  1185. return;
  1186. /*
  1187. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1188. * traditionally all their work was done from the interrupt return
  1189. * path. Now that we actually do some work, we need to make sure
  1190. * we do call them.
  1191. *
  1192. * Some archs already do call them, luckily irq_enter/exit nest
  1193. * properly.
  1194. *
  1195. * Arguably we should visit all archs and update all handlers,
  1196. * however a fair share of IPIs are still resched only so this would
  1197. * somewhat pessimize the simple resched case.
  1198. */
  1199. irq_enter();
  1200. tick_nohz_full_check();
  1201. sched_ttwu_pending();
  1202. /*
  1203. * Check if someone kicked us for doing the nohz idle load balance.
  1204. */
  1205. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1206. this_rq()->idle_balance = 1;
  1207. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1208. }
  1209. irq_exit();
  1210. }
  1211. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1212. {
  1213. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1214. smp_send_reschedule(cpu);
  1215. }
  1216. bool cpus_share_cache(int this_cpu, int that_cpu)
  1217. {
  1218. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1219. }
  1220. #endif /* CONFIG_SMP */
  1221. static void ttwu_queue(struct task_struct *p, int cpu)
  1222. {
  1223. struct rq *rq = cpu_rq(cpu);
  1224. #if defined(CONFIG_SMP)
  1225. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1226. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1227. ttwu_queue_remote(p, cpu);
  1228. return;
  1229. }
  1230. #endif
  1231. raw_spin_lock(&rq->lock);
  1232. ttwu_do_activate(rq, p, 0);
  1233. raw_spin_unlock(&rq->lock);
  1234. }
  1235. /**
  1236. * try_to_wake_up - wake up a thread
  1237. * @p: the thread to be awakened
  1238. * @state: the mask of task states that can be woken
  1239. * @wake_flags: wake modifier flags (WF_*)
  1240. *
  1241. * Put it on the run-queue if it's not already there. The "current"
  1242. * thread is always on the run-queue (except when the actual
  1243. * re-schedule is in progress), and as such you're allowed to do
  1244. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1245. * runnable without the overhead of this.
  1246. *
  1247. * Returns %true if @p was woken up, %false if it was already running
  1248. * or @state didn't match @p's state.
  1249. */
  1250. static int
  1251. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1252. {
  1253. unsigned long flags;
  1254. int cpu, success = 0;
  1255. smp_wmb();
  1256. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1257. if (!(p->state & state))
  1258. goto out;
  1259. success = 1; /* we're going to change ->state */
  1260. cpu = task_cpu(p);
  1261. if (p->on_rq && ttwu_remote(p, wake_flags))
  1262. goto stat;
  1263. #ifdef CONFIG_SMP
  1264. /*
  1265. * If the owning (remote) cpu is still in the middle of schedule() with
  1266. * this task as prev, wait until its done referencing the task.
  1267. */
  1268. while (p->on_cpu)
  1269. cpu_relax();
  1270. /*
  1271. * Pairs with the smp_wmb() in finish_lock_switch().
  1272. */
  1273. smp_rmb();
  1274. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1275. p->state = TASK_WAKING;
  1276. if (p->sched_class->task_waking)
  1277. p->sched_class->task_waking(p);
  1278. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1279. if (task_cpu(p) != cpu) {
  1280. wake_flags |= WF_MIGRATED;
  1281. set_task_cpu(p, cpu);
  1282. }
  1283. #endif /* CONFIG_SMP */
  1284. ttwu_queue(p, cpu);
  1285. stat:
  1286. ttwu_stat(p, cpu, wake_flags);
  1287. out:
  1288. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1289. return success;
  1290. }
  1291. /**
  1292. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1293. * @p: the thread to be awakened
  1294. *
  1295. * Put @p on the run-queue if it's not already there. The caller must
  1296. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1297. * the current task.
  1298. */
  1299. static void try_to_wake_up_local(struct task_struct *p)
  1300. {
  1301. struct rq *rq = task_rq(p);
  1302. if (WARN_ON_ONCE(rq != this_rq()) ||
  1303. WARN_ON_ONCE(p == current))
  1304. return;
  1305. lockdep_assert_held(&rq->lock);
  1306. if (!raw_spin_trylock(&p->pi_lock)) {
  1307. raw_spin_unlock(&rq->lock);
  1308. raw_spin_lock(&p->pi_lock);
  1309. raw_spin_lock(&rq->lock);
  1310. }
  1311. if (!(p->state & TASK_NORMAL))
  1312. goto out;
  1313. if (!p->on_rq)
  1314. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1315. ttwu_do_wakeup(rq, p, 0);
  1316. ttwu_stat(p, smp_processor_id(), 0);
  1317. out:
  1318. raw_spin_unlock(&p->pi_lock);
  1319. }
  1320. /**
  1321. * wake_up_process - Wake up a specific process
  1322. * @p: The process to be woken up.
  1323. *
  1324. * Attempt to wake up the nominated process and move it to the set of runnable
  1325. * processes. Returns 1 if the process was woken up, 0 if it was already
  1326. * running.
  1327. *
  1328. * It may be assumed that this function implies a write memory barrier before
  1329. * changing the task state if and only if any tasks are woken up.
  1330. */
  1331. int wake_up_process(struct task_struct *p)
  1332. {
  1333. WARN_ON(task_is_stopped_or_traced(p));
  1334. return try_to_wake_up(p, TASK_NORMAL, 0);
  1335. }
  1336. EXPORT_SYMBOL(wake_up_process);
  1337. int wake_up_state(struct task_struct *p, unsigned int state)
  1338. {
  1339. return try_to_wake_up(p, state, 0);
  1340. }
  1341. /*
  1342. * Perform scheduler related setup for a newly forked process p.
  1343. * p is forked by current.
  1344. *
  1345. * __sched_fork() is basic setup used by init_idle() too:
  1346. */
  1347. static void __sched_fork(struct task_struct *p)
  1348. {
  1349. p->on_rq = 0;
  1350. p->se.on_rq = 0;
  1351. p->se.exec_start = 0;
  1352. p->se.sum_exec_runtime = 0;
  1353. p->se.prev_sum_exec_runtime = 0;
  1354. p->se.nr_migrations = 0;
  1355. p->se.vruntime = 0;
  1356. INIT_LIST_HEAD(&p->se.group_node);
  1357. /*
  1358. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  1359. * removed when useful for applications beyond shares distribution (e.g.
  1360. * load-balance).
  1361. */
  1362. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  1363. p->se.avg.runnable_avg_period = 0;
  1364. p->se.avg.runnable_avg_sum = 0;
  1365. #endif
  1366. #ifdef CONFIG_SCHEDSTATS
  1367. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1368. #endif
  1369. INIT_LIST_HEAD(&p->rt.run_list);
  1370. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1371. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1372. #endif
  1373. #ifdef CONFIG_NUMA_BALANCING
  1374. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1375. p->mm->numa_next_scan = jiffies;
  1376. p->mm->numa_next_reset = jiffies;
  1377. p->mm->numa_scan_seq = 0;
  1378. }
  1379. p->node_stamp = 0ULL;
  1380. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1381. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1382. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1383. p->numa_work.next = &p->numa_work;
  1384. #endif /* CONFIG_NUMA_BALANCING */
  1385. }
  1386. #ifdef CONFIG_NUMA_BALANCING
  1387. #ifdef CONFIG_SCHED_DEBUG
  1388. void set_numabalancing_state(bool enabled)
  1389. {
  1390. if (enabled)
  1391. sched_feat_set("NUMA");
  1392. else
  1393. sched_feat_set("NO_NUMA");
  1394. }
  1395. #else
  1396. __read_mostly bool numabalancing_enabled;
  1397. void set_numabalancing_state(bool enabled)
  1398. {
  1399. numabalancing_enabled = enabled;
  1400. }
  1401. #endif /* CONFIG_SCHED_DEBUG */
  1402. #endif /* CONFIG_NUMA_BALANCING */
  1403. /*
  1404. * fork()/clone()-time setup:
  1405. */
  1406. void sched_fork(struct task_struct *p)
  1407. {
  1408. unsigned long flags;
  1409. int cpu = get_cpu();
  1410. __sched_fork(p);
  1411. /*
  1412. * We mark the process as running here. This guarantees that
  1413. * nobody will actually run it, and a signal or other external
  1414. * event cannot wake it up and insert it on the runqueue either.
  1415. */
  1416. p->state = TASK_RUNNING;
  1417. /*
  1418. * Make sure we do not leak PI boosting priority to the child.
  1419. */
  1420. p->prio = current->normal_prio;
  1421. /*
  1422. * Revert to default priority/policy on fork if requested.
  1423. */
  1424. if (unlikely(p->sched_reset_on_fork)) {
  1425. if (task_has_rt_policy(p)) {
  1426. p->policy = SCHED_NORMAL;
  1427. p->static_prio = NICE_TO_PRIO(0);
  1428. p->rt_priority = 0;
  1429. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1430. p->static_prio = NICE_TO_PRIO(0);
  1431. p->prio = p->normal_prio = __normal_prio(p);
  1432. set_load_weight(p);
  1433. /*
  1434. * We don't need the reset flag anymore after the fork. It has
  1435. * fulfilled its duty:
  1436. */
  1437. p->sched_reset_on_fork = 0;
  1438. }
  1439. if (!rt_prio(p->prio))
  1440. p->sched_class = &fair_sched_class;
  1441. if (p->sched_class->task_fork)
  1442. p->sched_class->task_fork(p);
  1443. /*
  1444. * The child is not yet in the pid-hash so no cgroup attach races,
  1445. * and the cgroup is pinned to this child due to cgroup_fork()
  1446. * is ran before sched_fork().
  1447. *
  1448. * Silence PROVE_RCU.
  1449. */
  1450. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1451. set_task_cpu(p, cpu);
  1452. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1453. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1454. if (likely(sched_info_on()))
  1455. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1456. #endif
  1457. #if defined(CONFIG_SMP)
  1458. p->on_cpu = 0;
  1459. #endif
  1460. #ifdef CONFIG_PREEMPT_COUNT
  1461. /* Want to start with kernel preemption disabled. */
  1462. task_thread_info(p)->preempt_count = 1;
  1463. #endif
  1464. #ifdef CONFIG_SMP
  1465. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1466. #endif
  1467. put_cpu();
  1468. }
  1469. /*
  1470. * wake_up_new_task - wake up a newly created task for the first time.
  1471. *
  1472. * This function will do some initial scheduler statistics housekeeping
  1473. * that must be done for every newly created context, then puts the task
  1474. * on the runqueue and wakes it.
  1475. */
  1476. void wake_up_new_task(struct task_struct *p)
  1477. {
  1478. unsigned long flags;
  1479. struct rq *rq;
  1480. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1481. #ifdef CONFIG_SMP
  1482. /*
  1483. * Fork balancing, do it here and not earlier because:
  1484. * - cpus_allowed can change in the fork path
  1485. * - any previously selected cpu might disappear through hotplug
  1486. */
  1487. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1488. #endif
  1489. rq = __task_rq_lock(p);
  1490. activate_task(rq, p, 0);
  1491. p->on_rq = 1;
  1492. trace_sched_wakeup_new(p, true);
  1493. check_preempt_curr(rq, p, WF_FORK);
  1494. #ifdef CONFIG_SMP
  1495. if (p->sched_class->task_woken)
  1496. p->sched_class->task_woken(rq, p);
  1497. #endif
  1498. task_rq_unlock(rq, p, &flags);
  1499. }
  1500. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1501. /**
  1502. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1503. * @notifier: notifier struct to register
  1504. */
  1505. void preempt_notifier_register(struct preempt_notifier *notifier)
  1506. {
  1507. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1508. }
  1509. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1510. /**
  1511. * preempt_notifier_unregister - no longer interested in preemption notifications
  1512. * @notifier: notifier struct to unregister
  1513. *
  1514. * This is safe to call from within a preemption notifier.
  1515. */
  1516. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1517. {
  1518. hlist_del(&notifier->link);
  1519. }
  1520. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1521. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1522. {
  1523. struct preempt_notifier *notifier;
  1524. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1525. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1526. }
  1527. static void
  1528. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1529. struct task_struct *next)
  1530. {
  1531. struct preempt_notifier *notifier;
  1532. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1533. notifier->ops->sched_out(notifier, next);
  1534. }
  1535. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1536. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1537. {
  1538. }
  1539. static void
  1540. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1541. struct task_struct *next)
  1542. {
  1543. }
  1544. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1545. /**
  1546. * prepare_task_switch - prepare to switch tasks
  1547. * @rq: the runqueue preparing to switch
  1548. * @prev: the current task that is being switched out
  1549. * @next: the task we are going to switch to.
  1550. *
  1551. * This is called with the rq lock held and interrupts off. It must
  1552. * be paired with a subsequent finish_task_switch after the context
  1553. * switch.
  1554. *
  1555. * prepare_task_switch sets up locking and calls architecture specific
  1556. * hooks.
  1557. */
  1558. static inline void
  1559. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1560. struct task_struct *next)
  1561. {
  1562. trace_sched_switch(prev, next);
  1563. sched_info_switch(prev, next);
  1564. perf_event_task_sched_out(prev, next);
  1565. fire_sched_out_preempt_notifiers(prev, next);
  1566. prepare_lock_switch(rq, next);
  1567. prepare_arch_switch(next);
  1568. }
  1569. /**
  1570. * finish_task_switch - clean up after a task-switch
  1571. * @rq: runqueue associated with task-switch
  1572. * @prev: the thread we just switched away from.
  1573. *
  1574. * finish_task_switch must be called after the context switch, paired
  1575. * with a prepare_task_switch call before the context switch.
  1576. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1577. * and do any other architecture-specific cleanup actions.
  1578. *
  1579. * Note that we may have delayed dropping an mm in context_switch(). If
  1580. * so, we finish that here outside of the runqueue lock. (Doing it
  1581. * with the lock held can cause deadlocks; see schedule() for
  1582. * details.)
  1583. */
  1584. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1585. __releases(rq->lock)
  1586. {
  1587. struct mm_struct *mm = rq->prev_mm;
  1588. long prev_state;
  1589. rq->prev_mm = NULL;
  1590. /*
  1591. * A task struct has one reference for the use as "current".
  1592. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1593. * schedule one last time. The schedule call will never return, and
  1594. * the scheduled task must drop that reference.
  1595. * The test for TASK_DEAD must occur while the runqueue locks are
  1596. * still held, otherwise prev could be scheduled on another cpu, die
  1597. * there before we look at prev->state, and then the reference would
  1598. * be dropped twice.
  1599. * Manfred Spraul <manfred@colorfullife.com>
  1600. */
  1601. prev_state = prev->state;
  1602. vtime_task_switch(prev);
  1603. finish_arch_switch(prev);
  1604. perf_event_task_sched_in(prev, current);
  1605. finish_lock_switch(rq, prev);
  1606. finish_arch_post_lock_switch();
  1607. fire_sched_in_preempt_notifiers(current);
  1608. if (mm)
  1609. mmdrop(mm);
  1610. if (unlikely(prev_state == TASK_DEAD)) {
  1611. /*
  1612. * Remove function-return probe instances associated with this
  1613. * task and put them back on the free list.
  1614. */
  1615. kprobe_flush_task(prev);
  1616. put_task_struct(prev);
  1617. }
  1618. tick_nohz_task_switch(current);
  1619. }
  1620. #ifdef CONFIG_SMP
  1621. /* assumes rq->lock is held */
  1622. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1623. {
  1624. if (prev->sched_class->pre_schedule)
  1625. prev->sched_class->pre_schedule(rq, prev);
  1626. }
  1627. /* rq->lock is NOT held, but preemption is disabled */
  1628. static inline void post_schedule(struct rq *rq)
  1629. {
  1630. if (rq->post_schedule) {
  1631. unsigned long flags;
  1632. raw_spin_lock_irqsave(&rq->lock, flags);
  1633. if (rq->curr->sched_class->post_schedule)
  1634. rq->curr->sched_class->post_schedule(rq);
  1635. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1636. rq->post_schedule = 0;
  1637. }
  1638. }
  1639. #else
  1640. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1641. {
  1642. }
  1643. static inline void post_schedule(struct rq *rq)
  1644. {
  1645. }
  1646. #endif
  1647. /**
  1648. * schedule_tail - first thing a freshly forked thread must call.
  1649. * @prev: the thread we just switched away from.
  1650. */
  1651. asmlinkage void schedule_tail(struct task_struct *prev)
  1652. __releases(rq->lock)
  1653. {
  1654. struct rq *rq = this_rq();
  1655. finish_task_switch(rq, prev);
  1656. /*
  1657. * FIXME: do we need to worry about rq being invalidated by the
  1658. * task_switch?
  1659. */
  1660. post_schedule(rq);
  1661. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1662. /* In this case, finish_task_switch does not reenable preemption */
  1663. preempt_enable();
  1664. #endif
  1665. if (current->set_child_tid)
  1666. put_user(task_pid_vnr(current), current->set_child_tid);
  1667. }
  1668. /*
  1669. * context_switch - switch to the new MM and the new
  1670. * thread's register state.
  1671. */
  1672. static inline void
  1673. context_switch(struct rq *rq, struct task_struct *prev,
  1674. struct task_struct *next)
  1675. {
  1676. struct mm_struct *mm, *oldmm;
  1677. prepare_task_switch(rq, prev, next);
  1678. mm = next->mm;
  1679. oldmm = prev->active_mm;
  1680. /*
  1681. * For paravirt, this is coupled with an exit in switch_to to
  1682. * combine the page table reload and the switch backend into
  1683. * one hypercall.
  1684. */
  1685. arch_start_context_switch(prev);
  1686. if (!mm) {
  1687. next->active_mm = oldmm;
  1688. atomic_inc(&oldmm->mm_count);
  1689. enter_lazy_tlb(oldmm, next);
  1690. } else
  1691. switch_mm(oldmm, mm, next);
  1692. if (!prev->mm) {
  1693. prev->active_mm = NULL;
  1694. rq->prev_mm = oldmm;
  1695. }
  1696. /*
  1697. * Since the runqueue lock will be released by the next
  1698. * task (which is an invalid locking op but in the case
  1699. * of the scheduler it's an obvious special-case), so we
  1700. * do an early lockdep release here:
  1701. */
  1702. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1703. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1704. #endif
  1705. context_tracking_task_switch(prev, next);
  1706. /* Here we just switch the register state and the stack. */
  1707. switch_to(prev, next, prev);
  1708. barrier();
  1709. /*
  1710. * this_rq must be evaluated again because prev may have moved
  1711. * CPUs since it called schedule(), thus the 'rq' on its stack
  1712. * frame will be invalid.
  1713. */
  1714. finish_task_switch(this_rq(), prev);
  1715. }
  1716. /*
  1717. * nr_running and nr_context_switches:
  1718. *
  1719. * externally visible scheduler statistics: current number of runnable
  1720. * threads, total number of context switches performed since bootup.
  1721. */
  1722. unsigned long nr_running(void)
  1723. {
  1724. unsigned long i, sum = 0;
  1725. for_each_online_cpu(i)
  1726. sum += cpu_rq(i)->nr_running;
  1727. return sum;
  1728. }
  1729. unsigned long long nr_context_switches(void)
  1730. {
  1731. int i;
  1732. unsigned long long sum = 0;
  1733. for_each_possible_cpu(i)
  1734. sum += cpu_rq(i)->nr_switches;
  1735. return sum;
  1736. }
  1737. unsigned long nr_iowait(void)
  1738. {
  1739. unsigned long i, sum = 0;
  1740. for_each_possible_cpu(i)
  1741. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1742. return sum;
  1743. }
  1744. unsigned long nr_iowait_cpu(int cpu)
  1745. {
  1746. struct rq *this = cpu_rq(cpu);
  1747. return atomic_read(&this->nr_iowait);
  1748. }
  1749. #ifdef CONFIG_SMP
  1750. /*
  1751. * sched_exec - execve() is a valuable balancing opportunity, because at
  1752. * this point the task has the smallest effective memory and cache footprint.
  1753. */
  1754. void sched_exec(void)
  1755. {
  1756. struct task_struct *p = current;
  1757. unsigned long flags;
  1758. int dest_cpu;
  1759. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1760. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  1761. if (dest_cpu == smp_processor_id())
  1762. goto unlock;
  1763. if (likely(cpu_active(dest_cpu))) {
  1764. struct migration_arg arg = { p, dest_cpu };
  1765. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1766. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1767. return;
  1768. }
  1769. unlock:
  1770. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1771. }
  1772. #endif
  1773. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1774. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1775. EXPORT_PER_CPU_SYMBOL(kstat);
  1776. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1777. /*
  1778. * Return any ns on the sched_clock that have not yet been accounted in
  1779. * @p in case that task is currently running.
  1780. *
  1781. * Called with task_rq_lock() held on @rq.
  1782. */
  1783. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1784. {
  1785. u64 ns = 0;
  1786. if (task_current(rq, p)) {
  1787. update_rq_clock(rq);
  1788. ns = rq->clock_task - p->se.exec_start;
  1789. if ((s64)ns < 0)
  1790. ns = 0;
  1791. }
  1792. return ns;
  1793. }
  1794. unsigned long long task_delta_exec(struct task_struct *p)
  1795. {
  1796. unsigned long flags;
  1797. struct rq *rq;
  1798. u64 ns = 0;
  1799. rq = task_rq_lock(p, &flags);
  1800. ns = do_task_delta_exec(p, rq);
  1801. task_rq_unlock(rq, p, &flags);
  1802. return ns;
  1803. }
  1804. /*
  1805. * Return accounted runtime for the task.
  1806. * In case the task is currently running, return the runtime plus current's
  1807. * pending runtime that have not been accounted yet.
  1808. */
  1809. unsigned long long task_sched_runtime(struct task_struct *p)
  1810. {
  1811. unsigned long flags;
  1812. struct rq *rq;
  1813. u64 ns = 0;
  1814. rq = task_rq_lock(p, &flags);
  1815. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  1816. task_rq_unlock(rq, p, &flags);
  1817. return ns;
  1818. }
  1819. /*
  1820. * This function gets called by the timer code, with HZ frequency.
  1821. * We call it with interrupts disabled.
  1822. */
  1823. void scheduler_tick(void)
  1824. {
  1825. int cpu = smp_processor_id();
  1826. struct rq *rq = cpu_rq(cpu);
  1827. struct task_struct *curr = rq->curr;
  1828. sched_clock_tick();
  1829. raw_spin_lock(&rq->lock);
  1830. update_rq_clock(rq);
  1831. update_cpu_load_active(rq);
  1832. curr->sched_class->task_tick(rq, curr, 0);
  1833. raw_spin_unlock(&rq->lock);
  1834. perf_event_task_tick();
  1835. #ifdef CONFIG_SMP
  1836. rq->idle_balance = idle_cpu(cpu);
  1837. trigger_load_balance(rq, cpu);
  1838. #endif
  1839. rq_last_tick_reset(rq);
  1840. }
  1841. #ifdef CONFIG_NO_HZ_FULL
  1842. /**
  1843. * scheduler_tick_max_deferment
  1844. *
  1845. * Keep at least one tick per second when a single
  1846. * active task is running because the scheduler doesn't
  1847. * yet completely support full dynticks environment.
  1848. *
  1849. * This makes sure that uptime, CFS vruntime, load
  1850. * balancing, etc... continue to move forward, even
  1851. * with a very low granularity.
  1852. */
  1853. u64 scheduler_tick_max_deferment(void)
  1854. {
  1855. struct rq *rq = this_rq();
  1856. unsigned long next, now = ACCESS_ONCE(jiffies);
  1857. next = rq->last_sched_tick + HZ;
  1858. if (time_before_eq(next, now))
  1859. return 0;
  1860. return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
  1861. }
  1862. #endif
  1863. notrace unsigned long get_parent_ip(unsigned long addr)
  1864. {
  1865. if (in_lock_functions(addr)) {
  1866. addr = CALLER_ADDR2;
  1867. if (in_lock_functions(addr))
  1868. addr = CALLER_ADDR3;
  1869. }
  1870. return addr;
  1871. }
  1872. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  1873. defined(CONFIG_PREEMPT_TRACER))
  1874. void __kprobes add_preempt_count(int val)
  1875. {
  1876. #ifdef CONFIG_DEBUG_PREEMPT
  1877. /*
  1878. * Underflow?
  1879. */
  1880. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  1881. return;
  1882. #endif
  1883. preempt_count() += val;
  1884. #ifdef CONFIG_DEBUG_PREEMPT
  1885. /*
  1886. * Spinlock count overflowing soon?
  1887. */
  1888. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  1889. PREEMPT_MASK - 10);
  1890. #endif
  1891. if (preempt_count() == val)
  1892. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1893. }
  1894. EXPORT_SYMBOL(add_preempt_count);
  1895. void __kprobes sub_preempt_count(int val)
  1896. {
  1897. #ifdef CONFIG_DEBUG_PREEMPT
  1898. /*
  1899. * Underflow?
  1900. */
  1901. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  1902. return;
  1903. /*
  1904. * Is the spinlock portion underflowing?
  1905. */
  1906. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  1907. !(preempt_count() & PREEMPT_MASK)))
  1908. return;
  1909. #endif
  1910. if (preempt_count() == val)
  1911. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1912. preempt_count() -= val;
  1913. }
  1914. EXPORT_SYMBOL(sub_preempt_count);
  1915. #endif
  1916. /*
  1917. * Print scheduling while atomic bug:
  1918. */
  1919. static noinline void __schedule_bug(struct task_struct *prev)
  1920. {
  1921. if (oops_in_progress)
  1922. return;
  1923. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  1924. prev->comm, prev->pid, preempt_count());
  1925. debug_show_held_locks(prev);
  1926. print_modules();
  1927. if (irqs_disabled())
  1928. print_irqtrace_events(prev);
  1929. dump_stack();
  1930. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  1931. }
  1932. /*
  1933. * Various schedule()-time debugging checks and statistics:
  1934. */
  1935. static inline void schedule_debug(struct task_struct *prev)
  1936. {
  1937. /*
  1938. * Test if we are atomic. Since do_exit() needs to call into
  1939. * schedule() atomically, we ignore that path for now.
  1940. * Otherwise, whine if we are scheduling when we should not be.
  1941. */
  1942. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  1943. __schedule_bug(prev);
  1944. rcu_sleep_check();
  1945. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  1946. schedstat_inc(this_rq(), sched_count);
  1947. }
  1948. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  1949. {
  1950. if (prev->on_rq || rq->skip_clock_update < 0)
  1951. update_rq_clock(rq);
  1952. prev->sched_class->put_prev_task(rq, prev);
  1953. }
  1954. /*
  1955. * Pick up the highest-prio task:
  1956. */
  1957. static inline struct task_struct *
  1958. pick_next_task(struct rq *rq)
  1959. {
  1960. const struct sched_class *class;
  1961. struct task_struct *p;
  1962. /*
  1963. * Optimization: we know that if all tasks are in
  1964. * the fair class we can call that function directly:
  1965. */
  1966. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  1967. p = fair_sched_class.pick_next_task(rq);
  1968. if (likely(p))
  1969. return p;
  1970. }
  1971. for_each_class(class) {
  1972. p = class->pick_next_task(rq);
  1973. if (p)
  1974. return p;
  1975. }
  1976. BUG(); /* the idle class will always have a runnable task */
  1977. }
  1978. /*
  1979. * __schedule() is the main scheduler function.
  1980. *
  1981. * The main means of driving the scheduler and thus entering this function are:
  1982. *
  1983. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  1984. *
  1985. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  1986. * paths. For example, see arch/x86/entry_64.S.
  1987. *
  1988. * To drive preemption between tasks, the scheduler sets the flag in timer
  1989. * interrupt handler scheduler_tick().
  1990. *
  1991. * 3. Wakeups don't really cause entry into schedule(). They add a
  1992. * task to the run-queue and that's it.
  1993. *
  1994. * Now, if the new task added to the run-queue preempts the current
  1995. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  1996. * called on the nearest possible occasion:
  1997. *
  1998. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  1999. *
  2000. * - in syscall or exception context, at the next outmost
  2001. * preempt_enable(). (this might be as soon as the wake_up()'s
  2002. * spin_unlock()!)
  2003. *
  2004. * - in IRQ context, return from interrupt-handler to
  2005. * preemptible context
  2006. *
  2007. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2008. * then at the next:
  2009. *
  2010. * - cond_resched() call
  2011. * - explicit schedule() call
  2012. * - return from syscall or exception to user-space
  2013. * - return from interrupt-handler to user-space
  2014. */
  2015. static void __sched __schedule(void)
  2016. {
  2017. struct task_struct *prev, *next;
  2018. unsigned long *switch_count;
  2019. struct rq *rq;
  2020. int cpu;
  2021. need_resched:
  2022. preempt_disable();
  2023. cpu = smp_processor_id();
  2024. rq = cpu_rq(cpu);
  2025. rcu_note_context_switch(cpu);
  2026. prev = rq->curr;
  2027. schedule_debug(prev);
  2028. if (sched_feat(HRTICK))
  2029. hrtick_clear(rq);
  2030. raw_spin_lock_irq(&rq->lock);
  2031. switch_count = &prev->nivcsw;
  2032. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2033. if (unlikely(signal_pending_state(prev->state, prev))) {
  2034. prev->state = TASK_RUNNING;
  2035. } else {
  2036. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2037. prev->on_rq = 0;
  2038. /*
  2039. * If a worker went to sleep, notify and ask workqueue
  2040. * whether it wants to wake up a task to maintain
  2041. * concurrency.
  2042. */
  2043. if (prev->flags & PF_WQ_WORKER) {
  2044. struct task_struct *to_wakeup;
  2045. to_wakeup = wq_worker_sleeping(prev, cpu);
  2046. if (to_wakeup)
  2047. try_to_wake_up_local(to_wakeup);
  2048. }
  2049. }
  2050. switch_count = &prev->nvcsw;
  2051. }
  2052. pre_schedule(rq, prev);
  2053. if (unlikely(!rq->nr_running))
  2054. idle_balance(cpu, rq);
  2055. put_prev_task(rq, prev);
  2056. next = pick_next_task(rq);
  2057. clear_tsk_need_resched(prev);
  2058. rq->skip_clock_update = 0;
  2059. if (likely(prev != next)) {
  2060. rq->nr_switches++;
  2061. rq->curr = next;
  2062. ++*switch_count;
  2063. context_switch(rq, prev, next); /* unlocks the rq */
  2064. /*
  2065. * The context switch have flipped the stack from under us
  2066. * and restored the local variables which were saved when
  2067. * this task called schedule() in the past. prev == current
  2068. * is still correct, but it can be moved to another cpu/rq.
  2069. */
  2070. cpu = smp_processor_id();
  2071. rq = cpu_rq(cpu);
  2072. } else
  2073. raw_spin_unlock_irq(&rq->lock);
  2074. post_schedule(rq);
  2075. sched_preempt_enable_no_resched();
  2076. if (need_resched())
  2077. goto need_resched;
  2078. }
  2079. static inline void sched_submit_work(struct task_struct *tsk)
  2080. {
  2081. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2082. return;
  2083. /*
  2084. * If we are going to sleep and we have plugged IO queued,
  2085. * make sure to submit it to avoid deadlocks.
  2086. */
  2087. if (blk_needs_flush_plug(tsk))
  2088. blk_schedule_flush_plug(tsk);
  2089. }
  2090. asmlinkage void __sched schedule(void)
  2091. {
  2092. struct task_struct *tsk = current;
  2093. sched_submit_work(tsk);
  2094. __schedule();
  2095. }
  2096. EXPORT_SYMBOL(schedule);
  2097. #ifdef CONFIG_CONTEXT_TRACKING
  2098. asmlinkage void __sched schedule_user(void)
  2099. {
  2100. /*
  2101. * If we come here after a random call to set_need_resched(),
  2102. * or we have been woken up remotely but the IPI has not yet arrived,
  2103. * we haven't yet exited the RCU idle mode. Do it here manually until
  2104. * we find a better solution.
  2105. */
  2106. user_exit();
  2107. schedule();
  2108. user_enter();
  2109. }
  2110. #endif
  2111. /**
  2112. * schedule_preempt_disabled - called with preemption disabled
  2113. *
  2114. * Returns with preemption disabled. Note: preempt_count must be 1
  2115. */
  2116. void __sched schedule_preempt_disabled(void)
  2117. {
  2118. sched_preempt_enable_no_resched();
  2119. schedule();
  2120. preempt_disable();
  2121. }
  2122. #ifdef CONFIG_PREEMPT
  2123. /*
  2124. * this is the entry point to schedule() from in-kernel preemption
  2125. * off of preempt_enable. Kernel preemptions off return from interrupt
  2126. * occur there and call schedule directly.
  2127. */
  2128. asmlinkage void __sched notrace preempt_schedule(void)
  2129. {
  2130. struct thread_info *ti = current_thread_info();
  2131. /*
  2132. * If there is a non-zero preempt_count or interrupts are disabled,
  2133. * we do not want to preempt the current task. Just return..
  2134. */
  2135. if (likely(ti->preempt_count || irqs_disabled()))
  2136. return;
  2137. do {
  2138. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2139. __schedule();
  2140. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2141. /*
  2142. * Check again in case we missed a preemption opportunity
  2143. * between schedule and now.
  2144. */
  2145. barrier();
  2146. } while (need_resched());
  2147. }
  2148. EXPORT_SYMBOL(preempt_schedule);
  2149. /*
  2150. * this is the entry point to schedule() from kernel preemption
  2151. * off of irq context.
  2152. * Note, that this is called and return with irqs disabled. This will
  2153. * protect us against recursive calling from irq.
  2154. */
  2155. asmlinkage void __sched preempt_schedule_irq(void)
  2156. {
  2157. struct thread_info *ti = current_thread_info();
  2158. enum ctx_state prev_state;
  2159. /* Catch callers which need to be fixed */
  2160. BUG_ON(ti->preempt_count || !irqs_disabled());
  2161. prev_state = exception_enter();
  2162. do {
  2163. add_preempt_count(PREEMPT_ACTIVE);
  2164. local_irq_enable();
  2165. __schedule();
  2166. local_irq_disable();
  2167. sub_preempt_count(PREEMPT_ACTIVE);
  2168. /*
  2169. * Check again in case we missed a preemption opportunity
  2170. * between schedule and now.
  2171. */
  2172. barrier();
  2173. } while (need_resched());
  2174. exception_exit(prev_state);
  2175. }
  2176. #endif /* CONFIG_PREEMPT */
  2177. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2178. void *key)
  2179. {
  2180. return try_to_wake_up(curr->private, mode, wake_flags);
  2181. }
  2182. EXPORT_SYMBOL(default_wake_function);
  2183. /*
  2184. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2185. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2186. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2187. *
  2188. * There are circumstances in which we can try to wake a task which has already
  2189. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2190. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2191. */
  2192. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2193. int nr_exclusive, int wake_flags, void *key)
  2194. {
  2195. wait_queue_t *curr, *next;
  2196. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2197. unsigned flags = curr->flags;
  2198. if (curr->func(curr, mode, wake_flags, key) &&
  2199. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2200. break;
  2201. }
  2202. }
  2203. /**
  2204. * __wake_up - wake up threads blocked on a waitqueue.
  2205. * @q: the waitqueue
  2206. * @mode: which threads
  2207. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2208. * @key: is directly passed to the wakeup function
  2209. *
  2210. * It may be assumed that this function implies a write memory barrier before
  2211. * changing the task state if and only if any tasks are woken up.
  2212. */
  2213. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2214. int nr_exclusive, void *key)
  2215. {
  2216. unsigned long flags;
  2217. spin_lock_irqsave(&q->lock, flags);
  2218. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2219. spin_unlock_irqrestore(&q->lock, flags);
  2220. }
  2221. EXPORT_SYMBOL(__wake_up);
  2222. /*
  2223. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2224. */
  2225. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2226. {
  2227. __wake_up_common(q, mode, nr, 0, NULL);
  2228. }
  2229. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2230. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2231. {
  2232. __wake_up_common(q, mode, 1, 0, key);
  2233. }
  2234. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2235. /**
  2236. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2237. * @q: the waitqueue
  2238. * @mode: which threads
  2239. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2240. * @key: opaque value to be passed to wakeup targets
  2241. *
  2242. * The sync wakeup differs that the waker knows that it will schedule
  2243. * away soon, so while the target thread will be woken up, it will not
  2244. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2245. * with each other. This can prevent needless bouncing between CPUs.
  2246. *
  2247. * On UP it can prevent extra preemption.
  2248. *
  2249. * It may be assumed that this function implies a write memory barrier before
  2250. * changing the task state if and only if any tasks are woken up.
  2251. */
  2252. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2253. int nr_exclusive, void *key)
  2254. {
  2255. unsigned long flags;
  2256. int wake_flags = WF_SYNC;
  2257. if (unlikely(!q))
  2258. return;
  2259. if (unlikely(!nr_exclusive))
  2260. wake_flags = 0;
  2261. spin_lock_irqsave(&q->lock, flags);
  2262. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2263. spin_unlock_irqrestore(&q->lock, flags);
  2264. }
  2265. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2266. /*
  2267. * __wake_up_sync - see __wake_up_sync_key()
  2268. */
  2269. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2270. {
  2271. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2272. }
  2273. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2274. /**
  2275. * complete: - signals a single thread waiting on this completion
  2276. * @x: holds the state of this particular completion
  2277. *
  2278. * This will wake up a single thread waiting on this completion. Threads will be
  2279. * awakened in the same order in which they were queued.
  2280. *
  2281. * See also complete_all(), wait_for_completion() and related routines.
  2282. *
  2283. * It may be assumed that this function implies a write memory barrier before
  2284. * changing the task state if and only if any tasks are woken up.
  2285. */
  2286. void complete(struct completion *x)
  2287. {
  2288. unsigned long flags;
  2289. spin_lock_irqsave(&x->wait.lock, flags);
  2290. x->done++;
  2291. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2292. spin_unlock_irqrestore(&x->wait.lock, flags);
  2293. }
  2294. EXPORT_SYMBOL(complete);
  2295. /**
  2296. * complete_all: - signals all threads waiting on this completion
  2297. * @x: holds the state of this particular completion
  2298. *
  2299. * This will wake up all threads waiting on this particular completion event.
  2300. *
  2301. * It may be assumed that this function implies a write memory barrier before
  2302. * changing the task state if and only if any tasks are woken up.
  2303. */
  2304. void complete_all(struct completion *x)
  2305. {
  2306. unsigned long flags;
  2307. spin_lock_irqsave(&x->wait.lock, flags);
  2308. x->done += UINT_MAX/2;
  2309. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2310. spin_unlock_irqrestore(&x->wait.lock, flags);
  2311. }
  2312. EXPORT_SYMBOL(complete_all);
  2313. static inline long __sched
  2314. do_wait_for_common(struct completion *x,
  2315. long (*action)(long), long timeout, int state)
  2316. {
  2317. if (!x->done) {
  2318. DECLARE_WAITQUEUE(wait, current);
  2319. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2320. do {
  2321. if (signal_pending_state(state, current)) {
  2322. timeout = -ERESTARTSYS;
  2323. break;
  2324. }
  2325. __set_current_state(state);
  2326. spin_unlock_irq(&x->wait.lock);
  2327. timeout = action(timeout);
  2328. spin_lock_irq(&x->wait.lock);
  2329. } while (!x->done && timeout);
  2330. __remove_wait_queue(&x->wait, &wait);
  2331. if (!x->done)
  2332. return timeout;
  2333. }
  2334. x->done--;
  2335. return timeout ?: 1;
  2336. }
  2337. static inline long __sched
  2338. __wait_for_common(struct completion *x,
  2339. long (*action)(long), long timeout, int state)
  2340. {
  2341. might_sleep();
  2342. spin_lock_irq(&x->wait.lock);
  2343. timeout = do_wait_for_common(x, action, timeout, state);
  2344. spin_unlock_irq(&x->wait.lock);
  2345. return timeout;
  2346. }
  2347. static long __sched
  2348. wait_for_common(struct completion *x, long timeout, int state)
  2349. {
  2350. return __wait_for_common(x, schedule_timeout, timeout, state);
  2351. }
  2352. static long __sched
  2353. wait_for_common_io(struct completion *x, long timeout, int state)
  2354. {
  2355. return __wait_for_common(x, io_schedule_timeout, timeout, state);
  2356. }
  2357. /**
  2358. * wait_for_completion: - waits for completion of a task
  2359. * @x: holds the state of this particular completion
  2360. *
  2361. * This waits to be signaled for completion of a specific task. It is NOT
  2362. * interruptible and there is no timeout.
  2363. *
  2364. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2365. * and interrupt capability. Also see complete().
  2366. */
  2367. void __sched wait_for_completion(struct completion *x)
  2368. {
  2369. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2370. }
  2371. EXPORT_SYMBOL(wait_for_completion);
  2372. /**
  2373. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2374. * @x: holds the state of this particular completion
  2375. * @timeout: timeout value in jiffies
  2376. *
  2377. * This waits for either a completion of a specific task to be signaled or for a
  2378. * specified timeout to expire. The timeout is in jiffies. It is not
  2379. * interruptible.
  2380. *
  2381. * The return value is 0 if timed out, and positive (at least 1, or number of
  2382. * jiffies left till timeout) if completed.
  2383. */
  2384. unsigned long __sched
  2385. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2386. {
  2387. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2388. }
  2389. EXPORT_SYMBOL(wait_for_completion_timeout);
  2390. /**
  2391. * wait_for_completion_io: - waits for completion of a task
  2392. * @x: holds the state of this particular completion
  2393. *
  2394. * This waits to be signaled for completion of a specific task. It is NOT
  2395. * interruptible and there is no timeout. The caller is accounted as waiting
  2396. * for IO.
  2397. */
  2398. void __sched wait_for_completion_io(struct completion *x)
  2399. {
  2400. wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2401. }
  2402. EXPORT_SYMBOL(wait_for_completion_io);
  2403. /**
  2404. * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
  2405. * @x: holds the state of this particular completion
  2406. * @timeout: timeout value in jiffies
  2407. *
  2408. * This waits for either a completion of a specific task to be signaled or for a
  2409. * specified timeout to expire. The timeout is in jiffies. It is not
  2410. * interruptible. The caller is accounted as waiting for IO.
  2411. *
  2412. * The return value is 0 if timed out, and positive (at least 1, or number of
  2413. * jiffies left till timeout) if completed.
  2414. */
  2415. unsigned long __sched
  2416. wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
  2417. {
  2418. return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
  2419. }
  2420. EXPORT_SYMBOL(wait_for_completion_io_timeout);
  2421. /**
  2422. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2423. * @x: holds the state of this particular completion
  2424. *
  2425. * This waits for completion of a specific task to be signaled. It is
  2426. * interruptible.
  2427. *
  2428. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2429. */
  2430. int __sched wait_for_completion_interruptible(struct completion *x)
  2431. {
  2432. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2433. if (t == -ERESTARTSYS)
  2434. return t;
  2435. return 0;
  2436. }
  2437. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2438. /**
  2439. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2440. * @x: holds the state of this particular completion
  2441. * @timeout: timeout value in jiffies
  2442. *
  2443. * This waits for either a completion of a specific task to be signaled or for a
  2444. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2445. *
  2446. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2447. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2448. */
  2449. long __sched
  2450. wait_for_completion_interruptible_timeout(struct completion *x,
  2451. unsigned long timeout)
  2452. {
  2453. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2454. }
  2455. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2456. /**
  2457. * wait_for_completion_killable: - waits for completion of a task (killable)
  2458. * @x: holds the state of this particular completion
  2459. *
  2460. * This waits to be signaled for completion of a specific task. It can be
  2461. * interrupted by a kill signal.
  2462. *
  2463. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2464. */
  2465. int __sched wait_for_completion_killable(struct completion *x)
  2466. {
  2467. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2468. if (t == -ERESTARTSYS)
  2469. return t;
  2470. return 0;
  2471. }
  2472. EXPORT_SYMBOL(wait_for_completion_killable);
  2473. /**
  2474. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2475. * @x: holds the state of this particular completion
  2476. * @timeout: timeout value in jiffies
  2477. *
  2478. * This waits for either a completion of a specific task to be
  2479. * signaled or for a specified timeout to expire. It can be
  2480. * interrupted by a kill signal. The timeout is in jiffies.
  2481. *
  2482. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2483. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2484. */
  2485. long __sched
  2486. wait_for_completion_killable_timeout(struct completion *x,
  2487. unsigned long timeout)
  2488. {
  2489. return wait_for_common(x, timeout, TASK_KILLABLE);
  2490. }
  2491. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2492. /**
  2493. * try_wait_for_completion - try to decrement a completion without blocking
  2494. * @x: completion structure
  2495. *
  2496. * Returns: 0 if a decrement cannot be done without blocking
  2497. * 1 if a decrement succeeded.
  2498. *
  2499. * If a completion is being used as a counting completion,
  2500. * attempt to decrement the counter without blocking. This
  2501. * enables us to avoid waiting if the resource the completion
  2502. * is protecting is not available.
  2503. */
  2504. bool try_wait_for_completion(struct completion *x)
  2505. {
  2506. unsigned long flags;
  2507. int ret = 1;
  2508. spin_lock_irqsave(&x->wait.lock, flags);
  2509. if (!x->done)
  2510. ret = 0;
  2511. else
  2512. x->done--;
  2513. spin_unlock_irqrestore(&x->wait.lock, flags);
  2514. return ret;
  2515. }
  2516. EXPORT_SYMBOL(try_wait_for_completion);
  2517. /**
  2518. * completion_done - Test to see if a completion has any waiters
  2519. * @x: completion structure
  2520. *
  2521. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  2522. * 1 if there are no waiters.
  2523. *
  2524. */
  2525. bool completion_done(struct completion *x)
  2526. {
  2527. unsigned long flags;
  2528. int ret = 1;
  2529. spin_lock_irqsave(&x->wait.lock, flags);
  2530. if (!x->done)
  2531. ret = 0;
  2532. spin_unlock_irqrestore(&x->wait.lock, flags);
  2533. return ret;
  2534. }
  2535. EXPORT_SYMBOL(completion_done);
  2536. static long __sched
  2537. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2538. {
  2539. unsigned long flags;
  2540. wait_queue_t wait;
  2541. init_waitqueue_entry(&wait, current);
  2542. __set_current_state(state);
  2543. spin_lock_irqsave(&q->lock, flags);
  2544. __add_wait_queue(q, &wait);
  2545. spin_unlock(&q->lock);
  2546. timeout = schedule_timeout(timeout);
  2547. spin_lock_irq(&q->lock);
  2548. __remove_wait_queue(q, &wait);
  2549. spin_unlock_irqrestore(&q->lock, flags);
  2550. return timeout;
  2551. }
  2552. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2553. {
  2554. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2555. }
  2556. EXPORT_SYMBOL(interruptible_sleep_on);
  2557. long __sched
  2558. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2559. {
  2560. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2561. }
  2562. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2563. void __sched sleep_on(wait_queue_head_t *q)
  2564. {
  2565. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2566. }
  2567. EXPORT_SYMBOL(sleep_on);
  2568. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2569. {
  2570. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2571. }
  2572. EXPORT_SYMBOL(sleep_on_timeout);
  2573. #ifdef CONFIG_RT_MUTEXES
  2574. /*
  2575. * rt_mutex_setprio - set the current priority of a task
  2576. * @p: task
  2577. * @prio: prio value (kernel-internal form)
  2578. *
  2579. * This function changes the 'effective' priority of a task. It does
  2580. * not touch ->normal_prio like __setscheduler().
  2581. *
  2582. * Used by the rt_mutex code to implement priority inheritance logic.
  2583. */
  2584. void rt_mutex_setprio(struct task_struct *p, int prio)
  2585. {
  2586. int oldprio, on_rq, running;
  2587. struct rq *rq;
  2588. const struct sched_class *prev_class;
  2589. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2590. rq = __task_rq_lock(p);
  2591. /*
  2592. * Idle task boosting is a nono in general. There is one
  2593. * exception, when PREEMPT_RT and NOHZ is active:
  2594. *
  2595. * The idle task calls get_next_timer_interrupt() and holds
  2596. * the timer wheel base->lock on the CPU and another CPU wants
  2597. * to access the timer (probably to cancel it). We can safely
  2598. * ignore the boosting request, as the idle CPU runs this code
  2599. * with interrupts disabled and will complete the lock
  2600. * protected section without being interrupted. So there is no
  2601. * real need to boost.
  2602. */
  2603. if (unlikely(p == rq->idle)) {
  2604. WARN_ON(p != rq->curr);
  2605. WARN_ON(p->pi_blocked_on);
  2606. goto out_unlock;
  2607. }
  2608. trace_sched_pi_setprio(p, prio);
  2609. oldprio = p->prio;
  2610. prev_class = p->sched_class;
  2611. on_rq = p->on_rq;
  2612. running = task_current(rq, p);
  2613. if (on_rq)
  2614. dequeue_task(rq, p, 0);
  2615. if (running)
  2616. p->sched_class->put_prev_task(rq, p);
  2617. if (rt_prio(prio))
  2618. p->sched_class = &rt_sched_class;
  2619. else
  2620. p->sched_class = &fair_sched_class;
  2621. p->prio = prio;
  2622. if (running)
  2623. p->sched_class->set_curr_task(rq);
  2624. if (on_rq)
  2625. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  2626. check_class_changed(rq, p, prev_class, oldprio);
  2627. out_unlock:
  2628. __task_rq_unlock(rq);
  2629. }
  2630. #endif
  2631. void set_user_nice(struct task_struct *p, long nice)
  2632. {
  2633. int old_prio, delta, on_rq;
  2634. unsigned long flags;
  2635. struct rq *rq;
  2636. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2637. return;
  2638. /*
  2639. * We have to be careful, if called from sys_setpriority(),
  2640. * the task might be in the middle of scheduling on another CPU.
  2641. */
  2642. rq = task_rq_lock(p, &flags);
  2643. /*
  2644. * The RT priorities are set via sched_setscheduler(), but we still
  2645. * allow the 'normal' nice value to be set - but as expected
  2646. * it wont have any effect on scheduling until the task is
  2647. * SCHED_FIFO/SCHED_RR:
  2648. */
  2649. if (task_has_rt_policy(p)) {
  2650. p->static_prio = NICE_TO_PRIO(nice);
  2651. goto out_unlock;
  2652. }
  2653. on_rq = p->on_rq;
  2654. if (on_rq)
  2655. dequeue_task(rq, p, 0);
  2656. p->static_prio = NICE_TO_PRIO(nice);
  2657. set_load_weight(p);
  2658. old_prio = p->prio;
  2659. p->prio = effective_prio(p);
  2660. delta = p->prio - old_prio;
  2661. if (on_rq) {
  2662. enqueue_task(rq, p, 0);
  2663. /*
  2664. * If the task increased its priority or is running and
  2665. * lowered its priority, then reschedule its CPU:
  2666. */
  2667. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2668. resched_task(rq->curr);
  2669. }
  2670. out_unlock:
  2671. task_rq_unlock(rq, p, &flags);
  2672. }
  2673. EXPORT_SYMBOL(set_user_nice);
  2674. /*
  2675. * can_nice - check if a task can reduce its nice value
  2676. * @p: task
  2677. * @nice: nice value
  2678. */
  2679. int can_nice(const struct task_struct *p, const int nice)
  2680. {
  2681. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2682. int nice_rlim = 20 - nice;
  2683. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2684. capable(CAP_SYS_NICE));
  2685. }
  2686. #ifdef __ARCH_WANT_SYS_NICE
  2687. /*
  2688. * sys_nice - change the priority of the current process.
  2689. * @increment: priority increment
  2690. *
  2691. * sys_setpriority is a more generic, but much slower function that
  2692. * does similar things.
  2693. */
  2694. SYSCALL_DEFINE1(nice, int, increment)
  2695. {
  2696. long nice, retval;
  2697. /*
  2698. * Setpriority might change our priority at the same moment.
  2699. * We don't have to worry. Conceptually one call occurs first
  2700. * and we have a single winner.
  2701. */
  2702. if (increment < -40)
  2703. increment = -40;
  2704. if (increment > 40)
  2705. increment = 40;
  2706. nice = TASK_NICE(current) + increment;
  2707. if (nice < -20)
  2708. nice = -20;
  2709. if (nice > 19)
  2710. nice = 19;
  2711. if (increment < 0 && !can_nice(current, nice))
  2712. return -EPERM;
  2713. retval = security_task_setnice(current, nice);
  2714. if (retval)
  2715. return retval;
  2716. set_user_nice(current, nice);
  2717. return 0;
  2718. }
  2719. #endif
  2720. /**
  2721. * task_prio - return the priority value of a given task.
  2722. * @p: the task in question.
  2723. *
  2724. * This is the priority value as seen by users in /proc.
  2725. * RT tasks are offset by -200. Normal tasks are centered
  2726. * around 0, value goes from -16 to +15.
  2727. */
  2728. int task_prio(const struct task_struct *p)
  2729. {
  2730. return p->prio - MAX_RT_PRIO;
  2731. }
  2732. /**
  2733. * task_nice - return the nice value of a given task.
  2734. * @p: the task in question.
  2735. */
  2736. int task_nice(const struct task_struct *p)
  2737. {
  2738. return TASK_NICE(p);
  2739. }
  2740. EXPORT_SYMBOL(task_nice);
  2741. /**
  2742. * idle_cpu - is a given cpu idle currently?
  2743. * @cpu: the processor in question.
  2744. */
  2745. int idle_cpu(int cpu)
  2746. {
  2747. struct rq *rq = cpu_rq(cpu);
  2748. if (rq->curr != rq->idle)
  2749. return 0;
  2750. if (rq->nr_running)
  2751. return 0;
  2752. #ifdef CONFIG_SMP
  2753. if (!llist_empty(&rq->wake_list))
  2754. return 0;
  2755. #endif
  2756. return 1;
  2757. }
  2758. /**
  2759. * idle_task - return the idle task for a given cpu.
  2760. * @cpu: the processor in question.
  2761. */
  2762. struct task_struct *idle_task(int cpu)
  2763. {
  2764. return cpu_rq(cpu)->idle;
  2765. }
  2766. /**
  2767. * find_process_by_pid - find a process with a matching PID value.
  2768. * @pid: the pid in question.
  2769. */
  2770. static struct task_struct *find_process_by_pid(pid_t pid)
  2771. {
  2772. return pid ? find_task_by_vpid(pid) : current;
  2773. }
  2774. /* Actually do priority change: must hold rq lock. */
  2775. static void
  2776. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  2777. {
  2778. p->policy = policy;
  2779. p->rt_priority = prio;
  2780. p->normal_prio = normal_prio(p);
  2781. /* we are holding p->pi_lock already */
  2782. p->prio = rt_mutex_getprio(p);
  2783. if (rt_prio(p->prio))
  2784. p->sched_class = &rt_sched_class;
  2785. else
  2786. p->sched_class = &fair_sched_class;
  2787. set_load_weight(p);
  2788. }
  2789. /*
  2790. * check the target process has a UID that matches the current process's
  2791. */
  2792. static bool check_same_owner(struct task_struct *p)
  2793. {
  2794. const struct cred *cred = current_cred(), *pcred;
  2795. bool match;
  2796. rcu_read_lock();
  2797. pcred = __task_cred(p);
  2798. match = (uid_eq(cred->euid, pcred->euid) ||
  2799. uid_eq(cred->euid, pcred->uid));
  2800. rcu_read_unlock();
  2801. return match;
  2802. }
  2803. static int __sched_setscheduler(struct task_struct *p, int policy,
  2804. const struct sched_param *param, bool user)
  2805. {
  2806. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2807. unsigned long flags;
  2808. const struct sched_class *prev_class;
  2809. struct rq *rq;
  2810. int reset_on_fork;
  2811. /* may grab non-irq protected spin_locks */
  2812. BUG_ON(in_interrupt());
  2813. recheck:
  2814. /* double check policy once rq lock held */
  2815. if (policy < 0) {
  2816. reset_on_fork = p->sched_reset_on_fork;
  2817. policy = oldpolicy = p->policy;
  2818. } else {
  2819. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  2820. policy &= ~SCHED_RESET_ON_FORK;
  2821. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  2822. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2823. policy != SCHED_IDLE)
  2824. return -EINVAL;
  2825. }
  2826. /*
  2827. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2828. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2829. * SCHED_BATCH and SCHED_IDLE is 0.
  2830. */
  2831. if (param->sched_priority < 0 ||
  2832. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  2833. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  2834. return -EINVAL;
  2835. if (rt_policy(policy) != (param->sched_priority != 0))
  2836. return -EINVAL;
  2837. /*
  2838. * Allow unprivileged RT tasks to decrease priority:
  2839. */
  2840. if (user && !capable(CAP_SYS_NICE)) {
  2841. if (rt_policy(policy)) {
  2842. unsigned long rlim_rtprio =
  2843. task_rlimit(p, RLIMIT_RTPRIO);
  2844. /* can't set/change the rt policy */
  2845. if (policy != p->policy && !rlim_rtprio)
  2846. return -EPERM;
  2847. /* can't increase priority */
  2848. if (param->sched_priority > p->rt_priority &&
  2849. param->sched_priority > rlim_rtprio)
  2850. return -EPERM;
  2851. }
  2852. /*
  2853. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2854. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2855. */
  2856. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2857. if (!can_nice(p, TASK_NICE(p)))
  2858. return -EPERM;
  2859. }
  2860. /* can't change other user's priorities */
  2861. if (!check_same_owner(p))
  2862. return -EPERM;
  2863. /* Normal users shall not reset the sched_reset_on_fork flag */
  2864. if (p->sched_reset_on_fork && !reset_on_fork)
  2865. return -EPERM;
  2866. }
  2867. if (user) {
  2868. retval = security_task_setscheduler(p);
  2869. if (retval)
  2870. return retval;
  2871. }
  2872. /*
  2873. * make sure no PI-waiters arrive (or leave) while we are
  2874. * changing the priority of the task:
  2875. *
  2876. * To be able to change p->policy safely, the appropriate
  2877. * runqueue lock must be held.
  2878. */
  2879. rq = task_rq_lock(p, &flags);
  2880. /*
  2881. * Changing the policy of the stop threads its a very bad idea
  2882. */
  2883. if (p == rq->stop) {
  2884. task_rq_unlock(rq, p, &flags);
  2885. return -EINVAL;
  2886. }
  2887. /*
  2888. * If not changing anything there's no need to proceed further:
  2889. */
  2890. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  2891. param->sched_priority == p->rt_priority))) {
  2892. task_rq_unlock(rq, p, &flags);
  2893. return 0;
  2894. }
  2895. #ifdef CONFIG_RT_GROUP_SCHED
  2896. if (user) {
  2897. /*
  2898. * Do not allow realtime tasks into groups that have no runtime
  2899. * assigned.
  2900. */
  2901. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2902. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2903. !task_group_is_autogroup(task_group(p))) {
  2904. task_rq_unlock(rq, p, &flags);
  2905. return -EPERM;
  2906. }
  2907. }
  2908. #endif
  2909. /* recheck policy now with rq lock held */
  2910. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2911. policy = oldpolicy = -1;
  2912. task_rq_unlock(rq, p, &flags);
  2913. goto recheck;
  2914. }
  2915. on_rq = p->on_rq;
  2916. running = task_current(rq, p);
  2917. if (on_rq)
  2918. dequeue_task(rq, p, 0);
  2919. if (running)
  2920. p->sched_class->put_prev_task(rq, p);
  2921. p->sched_reset_on_fork = reset_on_fork;
  2922. oldprio = p->prio;
  2923. prev_class = p->sched_class;
  2924. __setscheduler(rq, p, policy, param->sched_priority);
  2925. if (running)
  2926. p->sched_class->set_curr_task(rq);
  2927. if (on_rq)
  2928. enqueue_task(rq, p, 0);
  2929. check_class_changed(rq, p, prev_class, oldprio);
  2930. task_rq_unlock(rq, p, &flags);
  2931. rt_mutex_adjust_pi(p);
  2932. return 0;
  2933. }
  2934. /**
  2935. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2936. * @p: the task in question.
  2937. * @policy: new policy.
  2938. * @param: structure containing the new RT priority.
  2939. *
  2940. * NOTE that the task may be already dead.
  2941. */
  2942. int sched_setscheduler(struct task_struct *p, int policy,
  2943. const struct sched_param *param)
  2944. {
  2945. return __sched_setscheduler(p, policy, param, true);
  2946. }
  2947. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2948. /**
  2949. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  2950. * @p: the task in question.
  2951. * @policy: new policy.
  2952. * @param: structure containing the new RT priority.
  2953. *
  2954. * Just like sched_setscheduler, only don't bother checking if the
  2955. * current context has permission. For example, this is needed in
  2956. * stop_machine(): we create temporary high priority worker threads,
  2957. * but our caller might not have that capability.
  2958. */
  2959. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  2960. const struct sched_param *param)
  2961. {
  2962. return __sched_setscheduler(p, policy, param, false);
  2963. }
  2964. static int
  2965. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  2966. {
  2967. struct sched_param lparam;
  2968. struct task_struct *p;
  2969. int retval;
  2970. if (!param || pid < 0)
  2971. return -EINVAL;
  2972. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  2973. return -EFAULT;
  2974. rcu_read_lock();
  2975. retval = -ESRCH;
  2976. p = find_process_by_pid(pid);
  2977. if (p != NULL)
  2978. retval = sched_setscheduler(p, policy, &lparam);
  2979. rcu_read_unlock();
  2980. return retval;
  2981. }
  2982. /**
  2983. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  2984. * @pid: the pid in question.
  2985. * @policy: new policy.
  2986. * @param: structure containing the new RT priority.
  2987. */
  2988. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  2989. struct sched_param __user *, param)
  2990. {
  2991. /* negative values for policy are not valid */
  2992. if (policy < 0)
  2993. return -EINVAL;
  2994. return do_sched_setscheduler(pid, policy, param);
  2995. }
  2996. /**
  2997. * sys_sched_setparam - set/change the RT priority of a thread
  2998. * @pid: the pid in question.
  2999. * @param: structure containing the new RT priority.
  3000. */
  3001. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3002. {
  3003. return do_sched_setscheduler(pid, -1, param);
  3004. }
  3005. /**
  3006. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3007. * @pid: the pid in question.
  3008. */
  3009. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3010. {
  3011. struct task_struct *p;
  3012. int retval;
  3013. if (pid < 0)
  3014. return -EINVAL;
  3015. retval = -ESRCH;
  3016. rcu_read_lock();
  3017. p = find_process_by_pid(pid);
  3018. if (p) {
  3019. retval = security_task_getscheduler(p);
  3020. if (!retval)
  3021. retval = p->policy
  3022. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3023. }
  3024. rcu_read_unlock();
  3025. return retval;
  3026. }
  3027. /**
  3028. * sys_sched_getparam - get the RT priority of a thread
  3029. * @pid: the pid in question.
  3030. * @param: structure containing the RT priority.
  3031. */
  3032. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3033. {
  3034. struct sched_param lp;
  3035. struct task_struct *p;
  3036. int retval;
  3037. if (!param || pid < 0)
  3038. return -EINVAL;
  3039. rcu_read_lock();
  3040. p = find_process_by_pid(pid);
  3041. retval = -ESRCH;
  3042. if (!p)
  3043. goto out_unlock;
  3044. retval = security_task_getscheduler(p);
  3045. if (retval)
  3046. goto out_unlock;
  3047. lp.sched_priority = p->rt_priority;
  3048. rcu_read_unlock();
  3049. /*
  3050. * This one might sleep, we cannot do it with a spinlock held ...
  3051. */
  3052. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3053. return retval;
  3054. out_unlock:
  3055. rcu_read_unlock();
  3056. return retval;
  3057. }
  3058. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3059. {
  3060. cpumask_var_t cpus_allowed, new_mask;
  3061. struct task_struct *p;
  3062. int retval;
  3063. get_online_cpus();
  3064. rcu_read_lock();
  3065. p = find_process_by_pid(pid);
  3066. if (!p) {
  3067. rcu_read_unlock();
  3068. put_online_cpus();
  3069. return -ESRCH;
  3070. }
  3071. /* Prevent p going away */
  3072. get_task_struct(p);
  3073. rcu_read_unlock();
  3074. if (p->flags & PF_NO_SETAFFINITY) {
  3075. retval = -EINVAL;
  3076. goto out_put_task;
  3077. }
  3078. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3079. retval = -ENOMEM;
  3080. goto out_put_task;
  3081. }
  3082. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3083. retval = -ENOMEM;
  3084. goto out_free_cpus_allowed;
  3085. }
  3086. retval = -EPERM;
  3087. if (!check_same_owner(p)) {
  3088. rcu_read_lock();
  3089. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3090. rcu_read_unlock();
  3091. goto out_unlock;
  3092. }
  3093. rcu_read_unlock();
  3094. }
  3095. retval = security_task_setscheduler(p);
  3096. if (retval)
  3097. goto out_unlock;
  3098. cpuset_cpus_allowed(p, cpus_allowed);
  3099. cpumask_and(new_mask, in_mask, cpus_allowed);
  3100. again:
  3101. retval = set_cpus_allowed_ptr(p, new_mask);
  3102. if (!retval) {
  3103. cpuset_cpus_allowed(p, cpus_allowed);
  3104. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3105. /*
  3106. * We must have raced with a concurrent cpuset
  3107. * update. Just reset the cpus_allowed to the
  3108. * cpuset's cpus_allowed
  3109. */
  3110. cpumask_copy(new_mask, cpus_allowed);
  3111. goto again;
  3112. }
  3113. }
  3114. out_unlock:
  3115. free_cpumask_var(new_mask);
  3116. out_free_cpus_allowed:
  3117. free_cpumask_var(cpus_allowed);
  3118. out_put_task:
  3119. put_task_struct(p);
  3120. put_online_cpus();
  3121. return retval;
  3122. }
  3123. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3124. struct cpumask *new_mask)
  3125. {
  3126. if (len < cpumask_size())
  3127. cpumask_clear(new_mask);
  3128. else if (len > cpumask_size())
  3129. len = cpumask_size();
  3130. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3131. }
  3132. /**
  3133. * sys_sched_setaffinity - set the cpu affinity of a process
  3134. * @pid: pid of the process
  3135. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3136. * @user_mask_ptr: user-space pointer to the new cpu mask
  3137. */
  3138. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3139. unsigned long __user *, user_mask_ptr)
  3140. {
  3141. cpumask_var_t new_mask;
  3142. int retval;
  3143. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3144. return -ENOMEM;
  3145. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3146. if (retval == 0)
  3147. retval = sched_setaffinity(pid, new_mask);
  3148. free_cpumask_var(new_mask);
  3149. return retval;
  3150. }
  3151. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3152. {
  3153. struct task_struct *p;
  3154. unsigned long flags;
  3155. int retval;
  3156. get_online_cpus();
  3157. rcu_read_lock();
  3158. retval = -ESRCH;
  3159. p = find_process_by_pid(pid);
  3160. if (!p)
  3161. goto out_unlock;
  3162. retval = security_task_getscheduler(p);
  3163. if (retval)
  3164. goto out_unlock;
  3165. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3166. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3167. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3168. out_unlock:
  3169. rcu_read_unlock();
  3170. put_online_cpus();
  3171. return retval;
  3172. }
  3173. /**
  3174. * sys_sched_getaffinity - get the cpu affinity of a process
  3175. * @pid: pid of the process
  3176. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3177. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3178. */
  3179. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3180. unsigned long __user *, user_mask_ptr)
  3181. {
  3182. int ret;
  3183. cpumask_var_t mask;
  3184. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3185. return -EINVAL;
  3186. if (len & (sizeof(unsigned long)-1))
  3187. return -EINVAL;
  3188. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3189. return -ENOMEM;
  3190. ret = sched_getaffinity(pid, mask);
  3191. if (ret == 0) {
  3192. size_t retlen = min_t(size_t, len, cpumask_size());
  3193. if (copy_to_user(user_mask_ptr, mask, retlen))
  3194. ret = -EFAULT;
  3195. else
  3196. ret = retlen;
  3197. }
  3198. free_cpumask_var(mask);
  3199. return ret;
  3200. }
  3201. /**
  3202. * sys_sched_yield - yield the current processor to other threads.
  3203. *
  3204. * This function yields the current CPU to other tasks. If there are no
  3205. * other threads running on this CPU then this function will return.
  3206. */
  3207. SYSCALL_DEFINE0(sched_yield)
  3208. {
  3209. struct rq *rq = this_rq_lock();
  3210. schedstat_inc(rq, yld_count);
  3211. current->sched_class->yield_task(rq);
  3212. /*
  3213. * Since we are going to call schedule() anyway, there's
  3214. * no need to preempt or enable interrupts:
  3215. */
  3216. __release(rq->lock);
  3217. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3218. do_raw_spin_unlock(&rq->lock);
  3219. sched_preempt_enable_no_resched();
  3220. schedule();
  3221. return 0;
  3222. }
  3223. static inline int should_resched(void)
  3224. {
  3225. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3226. }
  3227. static void __cond_resched(void)
  3228. {
  3229. add_preempt_count(PREEMPT_ACTIVE);
  3230. __schedule();
  3231. sub_preempt_count(PREEMPT_ACTIVE);
  3232. }
  3233. int __sched _cond_resched(void)
  3234. {
  3235. if (should_resched()) {
  3236. __cond_resched();
  3237. return 1;
  3238. }
  3239. return 0;
  3240. }
  3241. EXPORT_SYMBOL(_cond_resched);
  3242. /*
  3243. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3244. * call schedule, and on return reacquire the lock.
  3245. *
  3246. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3247. * operations here to prevent schedule() from being called twice (once via
  3248. * spin_unlock(), once by hand).
  3249. */
  3250. int __cond_resched_lock(spinlock_t *lock)
  3251. {
  3252. int resched = should_resched();
  3253. int ret = 0;
  3254. lockdep_assert_held(lock);
  3255. if (spin_needbreak(lock) || resched) {
  3256. spin_unlock(lock);
  3257. if (resched)
  3258. __cond_resched();
  3259. else
  3260. cpu_relax();
  3261. ret = 1;
  3262. spin_lock(lock);
  3263. }
  3264. return ret;
  3265. }
  3266. EXPORT_SYMBOL(__cond_resched_lock);
  3267. int __sched __cond_resched_softirq(void)
  3268. {
  3269. BUG_ON(!in_softirq());
  3270. if (should_resched()) {
  3271. local_bh_enable();
  3272. __cond_resched();
  3273. local_bh_disable();
  3274. return 1;
  3275. }
  3276. return 0;
  3277. }
  3278. EXPORT_SYMBOL(__cond_resched_softirq);
  3279. /**
  3280. * yield - yield the current processor to other threads.
  3281. *
  3282. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3283. *
  3284. * The scheduler is at all times free to pick the calling task as the most
  3285. * eligible task to run, if removing the yield() call from your code breaks
  3286. * it, its already broken.
  3287. *
  3288. * Typical broken usage is:
  3289. *
  3290. * while (!event)
  3291. * yield();
  3292. *
  3293. * where one assumes that yield() will let 'the other' process run that will
  3294. * make event true. If the current task is a SCHED_FIFO task that will never
  3295. * happen. Never use yield() as a progress guarantee!!
  3296. *
  3297. * If you want to use yield() to wait for something, use wait_event().
  3298. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3299. * If you still want to use yield(), do not!
  3300. */
  3301. void __sched yield(void)
  3302. {
  3303. set_current_state(TASK_RUNNING);
  3304. sys_sched_yield();
  3305. }
  3306. EXPORT_SYMBOL(yield);
  3307. /**
  3308. * yield_to - yield the current processor to another thread in
  3309. * your thread group, or accelerate that thread toward the
  3310. * processor it's on.
  3311. * @p: target task
  3312. * @preempt: whether task preemption is allowed or not
  3313. *
  3314. * It's the caller's job to ensure that the target task struct
  3315. * can't go away on us before we can do any checks.
  3316. *
  3317. * Returns:
  3318. * true (>0) if we indeed boosted the target task.
  3319. * false (0) if we failed to boost the target.
  3320. * -ESRCH if there's no task to yield to.
  3321. */
  3322. bool __sched yield_to(struct task_struct *p, bool preempt)
  3323. {
  3324. struct task_struct *curr = current;
  3325. struct rq *rq, *p_rq;
  3326. unsigned long flags;
  3327. int yielded = 0;
  3328. local_irq_save(flags);
  3329. rq = this_rq();
  3330. again:
  3331. p_rq = task_rq(p);
  3332. /*
  3333. * If we're the only runnable task on the rq and target rq also
  3334. * has only one task, there's absolutely no point in yielding.
  3335. */
  3336. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3337. yielded = -ESRCH;
  3338. goto out_irq;
  3339. }
  3340. double_rq_lock(rq, p_rq);
  3341. while (task_rq(p) != p_rq) {
  3342. double_rq_unlock(rq, p_rq);
  3343. goto again;
  3344. }
  3345. if (!curr->sched_class->yield_to_task)
  3346. goto out_unlock;
  3347. if (curr->sched_class != p->sched_class)
  3348. goto out_unlock;
  3349. if (task_running(p_rq, p) || p->state)
  3350. goto out_unlock;
  3351. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3352. if (yielded) {
  3353. schedstat_inc(rq, yld_count);
  3354. /*
  3355. * Make p's CPU reschedule; pick_next_entity takes care of
  3356. * fairness.
  3357. */
  3358. if (preempt && rq != p_rq)
  3359. resched_task(p_rq->curr);
  3360. }
  3361. out_unlock:
  3362. double_rq_unlock(rq, p_rq);
  3363. out_irq:
  3364. local_irq_restore(flags);
  3365. if (yielded > 0)
  3366. schedule();
  3367. return yielded;
  3368. }
  3369. EXPORT_SYMBOL_GPL(yield_to);
  3370. /*
  3371. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3372. * that process accounting knows that this is a task in IO wait state.
  3373. */
  3374. void __sched io_schedule(void)
  3375. {
  3376. struct rq *rq = raw_rq();
  3377. delayacct_blkio_start();
  3378. atomic_inc(&rq->nr_iowait);
  3379. blk_flush_plug(current);
  3380. current->in_iowait = 1;
  3381. schedule();
  3382. current->in_iowait = 0;
  3383. atomic_dec(&rq->nr_iowait);
  3384. delayacct_blkio_end();
  3385. }
  3386. EXPORT_SYMBOL(io_schedule);
  3387. long __sched io_schedule_timeout(long timeout)
  3388. {
  3389. struct rq *rq = raw_rq();
  3390. long ret;
  3391. delayacct_blkio_start();
  3392. atomic_inc(&rq->nr_iowait);
  3393. blk_flush_plug(current);
  3394. current->in_iowait = 1;
  3395. ret = schedule_timeout(timeout);
  3396. current->in_iowait = 0;
  3397. atomic_dec(&rq->nr_iowait);
  3398. delayacct_blkio_end();
  3399. return ret;
  3400. }
  3401. /**
  3402. * sys_sched_get_priority_max - return maximum RT priority.
  3403. * @policy: scheduling class.
  3404. *
  3405. * this syscall returns the maximum rt_priority that can be used
  3406. * by a given scheduling class.
  3407. */
  3408. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3409. {
  3410. int ret = -EINVAL;
  3411. switch (policy) {
  3412. case SCHED_FIFO:
  3413. case SCHED_RR:
  3414. ret = MAX_USER_RT_PRIO-1;
  3415. break;
  3416. case SCHED_NORMAL:
  3417. case SCHED_BATCH:
  3418. case SCHED_IDLE:
  3419. ret = 0;
  3420. break;
  3421. }
  3422. return ret;
  3423. }
  3424. /**
  3425. * sys_sched_get_priority_min - return minimum RT priority.
  3426. * @policy: scheduling class.
  3427. *
  3428. * this syscall returns the minimum rt_priority that can be used
  3429. * by a given scheduling class.
  3430. */
  3431. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3432. {
  3433. int ret = -EINVAL;
  3434. switch (policy) {
  3435. case SCHED_FIFO:
  3436. case SCHED_RR:
  3437. ret = 1;
  3438. break;
  3439. case SCHED_NORMAL:
  3440. case SCHED_BATCH:
  3441. case SCHED_IDLE:
  3442. ret = 0;
  3443. }
  3444. return ret;
  3445. }
  3446. /**
  3447. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3448. * @pid: pid of the process.
  3449. * @interval: userspace pointer to the timeslice value.
  3450. *
  3451. * this syscall writes the default timeslice value of a given process
  3452. * into the user-space timespec buffer. A value of '0' means infinity.
  3453. */
  3454. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3455. struct timespec __user *, interval)
  3456. {
  3457. struct task_struct *p;
  3458. unsigned int time_slice;
  3459. unsigned long flags;
  3460. struct rq *rq;
  3461. int retval;
  3462. struct timespec t;
  3463. if (pid < 0)
  3464. return -EINVAL;
  3465. retval = -ESRCH;
  3466. rcu_read_lock();
  3467. p = find_process_by_pid(pid);
  3468. if (!p)
  3469. goto out_unlock;
  3470. retval = security_task_getscheduler(p);
  3471. if (retval)
  3472. goto out_unlock;
  3473. rq = task_rq_lock(p, &flags);
  3474. time_slice = p->sched_class->get_rr_interval(rq, p);
  3475. task_rq_unlock(rq, p, &flags);
  3476. rcu_read_unlock();
  3477. jiffies_to_timespec(time_slice, &t);
  3478. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3479. return retval;
  3480. out_unlock:
  3481. rcu_read_unlock();
  3482. return retval;
  3483. }
  3484. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3485. void sched_show_task(struct task_struct *p)
  3486. {
  3487. unsigned long free = 0;
  3488. int ppid;
  3489. unsigned state;
  3490. state = p->state ? __ffs(p->state) + 1 : 0;
  3491. printk(KERN_INFO "%-15.15s %c", p->comm,
  3492. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3493. #if BITS_PER_LONG == 32
  3494. if (state == TASK_RUNNING)
  3495. printk(KERN_CONT " running ");
  3496. else
  3497. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3498. #else
  3499. if (state == TASK_RUNNING)
  3500. printk(KERN_CONT " running task ");
  3501. else
  3502. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3503. #endif
  3504. #ifdef CONFIG_DEBUG_STACK_USAGE
  3505. free = stack_not_used(p);
  3506. #endif
  3507. rcu_read_lock();
  3508. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3509. rcu_read_unlock();
  3510. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3511. task_pid_nr(p), ppid,
  3512. (unsigned long)task_thread_info(p)->flags);
  3513. print_worker_info(KERN_INFO, p);
  3514. show_stack(p, NULL);
  3515. }
  3516. void show_state_filter(unsigned long state_filter)
  3517. {
  3518. struct task_struct *g, *p;
  3519. #if BITS_PER_LONG == 32
  3520. printk(KERN_INFO
  3521. " task PC stack pid father\n");
  3522. #else
  3523. printk(KERN_INFO
  3524. " task PC stack pid father\n");
  3525. #endif
  3526. rcu_read_lock();
  3527. do_each_thread(g, p) {
  3528. /*
  3529. * reset the NMI-timeout, listing all files on a slow
  3530. * console might take a lot of time:
  3531. */
  3532. touch_nmi_watchdog();
  3533. if (!state_filter || (p->state & state_filter))
  3534. sched_show_task(p);
  3535. } while_each_thread(g, p);
  3536. touch_all_softlockup_watchdogs();
  3537. #ifdef CONFIG_SCHED_DEBUG
  3538. sysrq_sched_debug_show();
  3539. #endif
  3540. rcu_read_unlock();
  3541. /*
  3542. * Only show locks if all tasks are dumped:
  3543. */
  3544. if (!state_filter)
  3545. debug_show_all_locks();
  3546. }
  3547. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  3548. {
  3549. idle->sched_class = &idle_sched_class;
  3550. }
  3551. /**
  3552. * init_idle - set up an idle thread for a given CPU
  3553. * @idle: task in question
  3554. * @cpu: cpu the idle task belongs to
  3555. *
  3556. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3557. * flag, to make booting more robust.
  3558. */
  3559. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  3560. {
  3561. struct rq *rq = cpu_rq(cpu);
  3562. unsigned long flags;
  3563. raw_spin_lock_irqsave(&rq->lock, flags);
  3564. __sched_fork(idle);
  3565. idle->state = TASK_RUNNING;
  3566. idle->se.exec_start = sched_clock();
  3567. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3568. /*
  3569. * We're having a chicken and egg problem, even though we are
  3570. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3571. * lockdep check in task_group() will fail.
  3572. *
  3573. * Similar case to sched_fork(). / Alternatively we could
  3574. * use task_rq_lock() here and obtain the other rq->lock.
  3575. *
  3576. * Silence PROVE_RCU
  3577. */
  3578. rcu_read_lock();
  3579. __set_task_cpu(idle, cpu);
  3580. rcu_read_unlock();
  3581. rq->curr = rq->idle = idle;
  3582. #if defined(CONFIG_SMP)
  3583. idle->on_cpu = 1;
  3584. #endif
  3585. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3586. /* Set the preempt count _outside_ the spinlocks! */
  3587. task_thread_info(idle)->preempt_count = 0;
  3588. /*
  3589. * The idle tasks have their own, simple scheduling class:
  3590. */
  3591. idle->sched_class = &idle_sched_class;
  3592. ftrace_graph_init_idle_task(idle, cpu);
  3593. vtime_init_idle(idle);
  3594. #if defined(CONFIG_SMP)
  3595. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3596. #endif
  3597. }
  3598. #ifdef CONFIG_SMP
  3599. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3600. {
  3601. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3602. p->sched_class->set_cpus_allowed(p, new_mask);
  3603. cpumask_copy(&p->cpus_allowed, new_mask);
  3604. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3605. }
  3606. /*
  3607. * This is how migration works:
  3608. *
  3609. * 1) we invoke migration_cpu_stop() on the target CPU using
  3610. * stop_one_cpu().
  3611. * 2) stopper starts to run (implicitly forcing the migrated thread
  3612. * off the CPU)
  3613. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3614. * 4) if it's in the wrong runqueue then the migration thread removes
  3615. * it and puts it into the right queue.
  3616. * 5) stopper completes and stop_one_cpu() returns and the migration
  3617. * is done.
  3618. */
  3619. /*
  3620. * Change a given task's CPU affinity. Migrate the thread to a
  3621. * proper CPU and schedule it away if the CPU it's executing on
  3622. * is removed from the allowed bitmask.
  3623. *
  3624. * NOTE: the caller must have a valid reference to the task, the
  3625. * task must not exit() & deallocate itself prematurely. The
  3626. * call is not atomic; no spinlocks may be held.
  3627. */
  3628. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3629. {
  3630. unsigned long flags;
  3631. struct rq *rq;
  3632. unsigned int dest_cpu;
  3633. int ret = 0;
  3634. rq = task_rq_lock(p, &flags);
  3635. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3636. goto out;
  3637. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3638. ret = -EINVAL;
  3639. goto out;
  3640. }
  3641. do_set_cpus_allowed(p, new_mask);
  3642. /* Can the task run on the task's current CPU? If so, we're done */
  3643. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3644. goto out;
  3645. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3646. if (p->on_rq) {
  3647. struct migration_arg arg = { p, dest_cpu };
  3648. /* Need help from migration thread: drop lock and wait. */
  3649. task_rq_unlock(rq, p, &flags);
  3650. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3651. tlb_migrate_finish(p->mm);
  3652. return 0;
  3653. }
  3654. out:
  3655. task_rq_unlock(rq, p, &flags);
  3656. return ret;
  3657. }
  3658. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3659. /*
  3660. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3661. * this because either it can't run here any more (set_cpus_allowed()
  3662. * away from this CPU, or CPU going down), or because we're
  3663. * attempting to rebalance this task on exec (sched_exec).
  3664. *
  3665. * So we race with normal scheduler movements, but that's OK, as long
  3666. * as the task is no longer on this CPU.
  3667. *
  3668. * Returns non-zero if task was successfully migrated.
  3669. */
  3670. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3671. {
  3672. struct rq *rq_dest, *rq_src;
  3673. int ret = 0;
  3674. if (unlikely(!cpu_active(dest_cpu)))
  3675. return ret;
  3676. rq_src = cpu_rq(src_cpu);
  3677. rq_dest = cpu_rq(dest_cpu);
  3678. raw_spin_lock(&p->pi_lock);
  3679. double_rq_lock(rq_src, rq_dest);
  3680. /* Already moved. */
  3681. if (task_cpu(p) != src_cpu)
  3682. goto done;
  3683. /* Affinity changed (again). */
  3684. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3685. goto fail;
  3686. /*
  3687. * If we're not on a rq, the next wake-up will ensure we're
  3688. * placed properly.
  3689. */
  3690. if (p->on_rq) {
  3691. dequeue_task(rq_src, p, 0);
  3692. set_task_cpu(p, dest_cpu);
  3693. enqueue_task(rq_dest, p, 0);
  3694. check_preempt_curr(rq_dest, p, 0);
  3695. }
  3696. done:
  3697. ret = 1;
  3698. fail:
  3699. double_rq_unlock(rq_src, rq_dest);
  3700. raw_spin_unlock(&p->pi_lock);
  3701. return ret;
  3702. }
  3703. /*
  3704. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3705. * and performs thread migration by bumping thread off CPU then
  3706. * 'pushing' onto another runqueue.
  3707. */
  3708. static int migration_cpu_stop(void *data)
  3709. {
  3710. struct migration_arg *arg = data;
  3711. /*
  3712. * The original target cpu might have gone down and we might
  3713. * be on another cpu but it doesn't matter.
  3714. */
  3715. local_irq_disable();
  3716. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3717. local_irq_enable();
  3718. return 0;
  3719. }
  3720. #ifdef CONFIG_HOTPLUG_CPU
  3721. /*
  3722. * Ensures that the idle task is using init_mm right before its cpu goes
  3723. * offline.
  3724. */
  3725. void idle_task_exit(void)
  3726. {
  3727. struct mm_struct *mm = current->active_mm;
  3728. BUG_ON(cpu_online(smp_processor_id()));
  3729. if (mm != &init_mm)
  3730. switch_mm(mm, &init_mm, current);
  3731. mmdrop(mm);
  3732. }
  3733. /*
  3734. * Since this CPU is going 'away' for a while, fold any nr_active delta
  3735. * we might have. Assumes we're called after migrate_tasks() so that the
  3736. * nr_active count is stable.
  3737. *
  3738. * Also see the comment "Global load-average calculations".
  3739. */
  3740. static void calc_load_migrate(struct rq *rq)
  3741. {
  3742. long delta = calc_load_fold_active(rq);
  3743. if (delta)
  3744. atomic_long_add(delta, &calc_load_tasks);
  3745. }
  3746. /*
  3747. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  3748. * try_to_wake_up()->select_task_rq().
  3749. *
  3750. * Called with rq->lock held even though we'er in stop_machine() and
  3751. * there's no concurrency possible, we hold the required locks anyway
  3752. * because of lock validation efforts.
  3753. */
  3754. static void migrate_tasks(unsigned int dead_cpu)
  3755. {
  3756. struct rq *rq = cpu_rq(dead_cpu);
  3757. struct task_struct *next, *stop = rq->stop;
  3758. int dest_cpu;
  3759. /*
  3760. * Fudge the rq selection such that the below task selection loop
  3761. * doesn't get stuck on the currently eligible stop task.
  3762. *
  3763. * We're currently inside stop_machine() and the rq is either stuck
  3764. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  3765. * either way we should never end up calling schedule() until we're
  3766. * done here.
  3767. */
  3768. rq->stop = NULL;
  3769. /*
  3770. * put_prev_task() and pick_next_task() sched
  3771. * class method both need to have an up-to-date
  3772. * value of rq->clock[_task]
  3773. */
  3774. update_rq_clock(rq);
  3775. for ( ; ; ) {
  3776. /*
  3777. * There's this thread running, bail when that's the only
  3778. * remaining thread.
  3779. */
  3780. if (rq->nr_running == 1)
  3781. break;
  3782. next = pick_next_task(rq);
  3783. BUG_ON(!next);
  3784. next->sched_class->put_prev_task(rq, next);
  3785. /* Find suitable destination for @next, with force if needed. */
  3786. dest_cpu = select_fallback_rq(dead_cpu, next);
  3787. raw_spin_unlock(&rq->lock);
  3788. __migrate_task(next, dead_cpu, dest_cpu);
  3789. raw_spin_lock(&rq->lock);
  3790. }
  3791. rq->stop = stop;
  3792. }
  3793. #endif /* CONFIG_HOTPLUG_CPU */
  3794. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  3795. static struct ctl_table sd_ctl_dir[] = {
  3796. {
  3797. .procname = "sched_domain",
  3798. .mode = 0555,
  3799. },
  3800. {}
  3801. };
  3802. static struct ctl_table sd_ctl_root[] = {
  3803. {
  3804. .procname = "kernel",
  3805. .mode = 0555,
  3806. .child = sd_ctl_dir,
  3807. },
  3808. {}
  3809. };
  3810. static struct ctl_table *sd_alloc_ctl_entry(int n)
  3811. {
  3812. struct ctl_table *entry =
  3813. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  3814. return entry;
  3815. }
  3816. static void sd_free_ctl_entry(struct ctl_table **tablep)
  3817. {
  3818. struct ctl_table *entry;
  3819. /*
  3820. * In the intermediate directories, both the child directory and
  3821. * procname are dynamically allocated and could fail but the mode
  3822. * will always be set. In the lowest directory the names are
  3823. * static strings and all have proc handlers.
  3824. */
  3825. for (entry = *tablep; entry->mode; entry++) {
  3826. if (entry->child)
  3827. sd_free_ctl_entry(&entry->child);
  3828. if (entry->proc_handler == NULL)
  3829. kfree(entry->procname);
  3830. }
  3831. kfree(*tablep);
  3832. *tablep = NULL;
  3833. }
  3834. static int min_load_idx = 0;
  3835. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  3836. static void
  3837. set_table_entry(struct ctl_table *entry,
  3838. const char *procname, void *data, int maxlen,
  3839. umode_t mode, proc_handler *proc_handler,
  3840. bool load_idx)
  3841. {
  3842. entry->procname = procname;
  3843. entry->data = data;
  3844. entry->maxlen = maxlen;
  3845. entry->mode = mode;
  3846. entry->proc_handler = proc_handler;
  3847. if (load_idx) {
  3848. entry->extra1 = &min_load_idx;
  3849. entry->extra2 = &max_load_idx;
  3850. }
  3851. }
  3852. static struct ctl_table *
  3853. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  3854. {
  3855. struct ctl_table *table = sd_alloc_ctl_entry(13);
  3856. if (table == NULL)
  3857. return NULL;
  3858. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  3859. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3860. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  3861. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3862. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  3863. sizeof(int), 0644, proc_dointvec_minmax, true);
  3864. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  3865. sizeof(int), 0644, proc_dointvec_minmax, true);
  3866. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  3867. sizeof(int), 0644, proc_dointvec_minmax, true);
  3868. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  3869. sizeof(int), 0644, proc_dointvec_minmax, true);
  3870. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  3871. sizeof(int), 0644, proc_dointvec_minmax, true);
  3872. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  3873. sizeof(int), 0644, proc_dointvec_minmax, false);
  3874. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  3875. sizeof(int), 0644, proc_dointvec_minmax, false);
  3876. set_table_entry(&table[9], "cache_nice_tries",
  3877. &sd->cache_nice_tries,
  3878. sizeof(int), 0644, proc_dointvec_minmax, false);
  3879. set_table_entry(&table[10], "flags", &sd->flags,
  3880. sizeof(int), 0644, proc_dointvec_minmax, false);
  3881. set_table_entry(&table[11], "name", sd->name,
  3882. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  3883. /* &table[12] is terminator */
  3884. return table;
  3885. }
  3886. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  3887. {
  3888. struct ctl_table *entry, *table;
  3889. struct sched_domain *sd;
  3890. int domain_num = 0, i;
  3891. char buf[32];
  3892. for_each_domain(cpu, sd)
  3893. domain_num++;
  3894. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  3895. if (table == NULL)
  3896. return NULL;
  3897. i = 0;
  3898. for_each_domain(cpu, sd) {
  3899. snprintf(buf, 32, "domain%d", i);
  3900. entry->procname = kstrdup(buf, GFP_KERNEL);
  3901. entry->mode = 0555;
  3902. entry->child = sd_alloc_ctl_domain_table(sd);
  3903. entry++;
  3904. i++;
  3905. }
  3906. return table;
  3907. }
  3908. static struct ctl_table_header *sd_sysctl_header;
  3909. static void register_sched_domain_sysctl(void)
  3910. {
  3911. int i, cpu_num = num_possible_cpus();
  3912. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  3913. char buf[32];
  3914. WARN_ON(sd_ctl_dir[0].child);
  3915. sd_ctl_dir[0].child = entry;
  3916. if (entry == NULL)
  3917. return;
  3918. for_each_possible_cpu(i) {
  3919. snprintf(buf, 32, "cpu%d", i);
  3920. entry->procname = kstrdup(buf, GFP_KERNEL);
  3921. entry->mode = 0555;
  3922. entry->child = sd_alloc_ctl_cpu_table(i);
  3923. entry++;
  3924. }
  3925. WARN_ON(sd_sysctl_header);
  3926. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  3927. }
  3928. /* may be called multiple times per register */
  3929. static void unregister_sched_domain_sysctl(void)
  3930. {
  3931. if (sd_sysctl_header)
  3932. unregister_sysctl_table(sd_sysctl_header);
  3933. sd_sysctl_header = NULL;
  3934. if (sd_ctl_dir[0].child)
  3935. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  3936. }
  3937. #else
  3938. static void register_sched_domain_sysctl(void)
  3939. {
  3940. }
  3941. static void unregister_sched_domain_sysctl(void)
  3942. {
  3943. }
  3944. #endif
  3945. static void set_rq_online(struct rq *rq)
  3946. {
  3947. if (!rq->online) {
  3948. const struct sched_class *class;
  3949. cpumask_set_cpu(rq->cpu, rq->rd->online);
  3950. rq->online = 1;
  3951. for_each_class(class) {
  3952. if (class->rq_online)
  3953. class->rq_online(rq);
  3954. }
  3955. }
  3956. }
  3957. static void set_rq_offline(struct rq *rq)
  3958. {
  3959. if (rq->online) {
  3960. const struct sched_class *class;
  3961. for_each_class(class) {
  3962. if (class->rq_offline)
  3963. class->rq_offline(rq);
  3964. }
  3965. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  3966. rq->online = 0;
  3967. }
  3968. }
  3969. /*
  3970. * migration_call - callback that gets triggered when a CPU is added.
  3971. * Here we can start up the necessary migration thread for the new CPU.
  3972. */
  3973. static int __cpuinit
  3974. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  3975. {
  3976. int cpu = (long)hcpu;
  3977. unsigned long flags;
  3978. struct rq *rq = cpu_rq(cpu);
  3979. switch (action & ~CPU_TASKS_FROZEN) {
  3980. case CPU_UP_PREPARE:
  3981. rq->calc_load_update = calc_load_update;
  3982. break;
  3983. case CPU_ONLINE:
  3984. /* Update our root-domain */
  3985. raw_spin_lock_irqsave(&rq->lock, flags);
  3986. if (rq->rd) {
  3987. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  3988. set_rq_online(rq);
  3989. }
  3990. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3991. break;
  3992. #ifdef CONFIG_HOTPLUG_CPU
  3993. case CPU_DYING:
  3994. sched_ttwu_pending();
  3995. /* Update our root-domain */
  3996. raw_spin_lock_irqsave(&rq->lock, flags);
  3997. if (rq->rd) {
  3998. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  3999. set_rq_offline(rq);
  4000. }
  4001. migrate_tasks(cpu);
  4002. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4003. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4004. break;
  4005. case CPU_DEAD:
  4006. calc_load_migrate(rq);
  4007. break;
  4008. #endif
  4009. }
  4010. update_max_interval();
  4011. return NOTIFY_OK;
  4012. }
  4013. /*
  4014. * Register at high priority so that task migration (migrate_all_tasks)
  4015. * happens before everything else. This has to be lower priority than
  4016. * the notifier in the perf_event subsystem, though.
  4017. */
  4018. static struct notifier_block __cpuinitdata migration_notifier = {
  4019. .notifier_call = migration_call,
  4020. .priority = CPU_PRI_MIGRATION,
  4021. };
  4022. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4023. unsigned long action, void *hcpu)
  4024. {
  4025. switch (action & ~CPU_TASKS_FROZEN) {
  4026. case CPU_STARTING:
  4027. case CPU_DOWN_FAILED:
  4028. set_cpu_active((long)hcpu, true);
  4029. return NOTIFY_OK;
  4030. default:
  4031. return NOTIFY_DONE;
  4032. }
  4033. }
  4034. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4035. unsigned long action, void *hcpu)
  4036. {
  4037. switch (action & ~CPU_TASKS_FROZEN) {
  4038. case CPU_DOWN_PREPARE:
  4039. set_cpu_active((long)hcpu, false);
  4040. return NOTIFY_OK;
  4041. default:
  4042. return NOTIFY_DONE;
  4043. }
  4044. }
  4045. static int __init migration_init(void)
  4046. {
  4047. void *cpu = (void *)(long)smp_processor_id();
  4048. int err;
  4049. /* Initialize migration for the boot CPU */
  4050. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4051. BUG_ON(err == NOTIFY_BAD);
  4052. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4053. register_cpu_notifier(&migration_notifier);
  4054. /* Register cpu active notifiers */
  4055. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4056. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4057. return 0;
  4058. }
  4059. early_initcall(migration_init);
  4060. #endif
  4061. #ifdef CONFIG_SMP
  4062. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4063. #ifdef CONFIG_SCHED_DEBUG
  4064. static __read_mostly int sched_debug_enabled;
  4065. static int __init sched_debug_setup(char *str)
  4066. {
  4067. sched_debug_enabled = 1;
  4068. return 0;
  4069. }
  4070. early_param("sched_debug", sched_debug_setup);
  4071. static inline bool sched_debug(void)
  4072. {
  4073. return sched_debug_enabled;
  4074. }
  4075. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4076. struct cpumask *groupmask)
  4077. {
  4078. struct sched_group *group = sd->groups;
  4079. char str[256];
  4080. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4081. cpumask_clear(groupmask);
  4082. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4083. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4084. printk("does not load-balance\n");
  4085. if (sd->parent)
  4086. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4087. " has parent");
  4088. return -1;
  4089. }
  4090. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4091. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4092. printk(KERN_ERR "ERROR: domain->span does not contain "
  4093. "CPU%d\n", cpu);
  4094. }
  4095. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4096. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4097. " CPU%d\n", cpu);
  4098. }
  4099. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4100. do {
  4101. if (!group) {
  4102. printk("\n");
  4103. printk(KERN_ERR "ERROR: group is NULL\n");
  4104. break;
  4105. }
  4106. /*
  4107. * Even though we initialize ->power to something semi-sane,
  4108. * we leave power_orig unset. This allows us to detect if
  4109. * domain iteration is still funny without causing /0 traps.
  4110. */
  4111. if (!group->sgp->power_orig) {
  4112. printk(KERN_CONT "\n");
  4113. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4114. "set\n");
  4115. break;
  4116. }
  4117. if (!cpumask_weight(sched_group_cpus(group))) {
  4118. printk(KERN_CONT "\n");
  4119. printk(KERN_ERR "ERROR: empty group\n");
  4120. break;
  4121. }
  4122. if (!(sd->flags & SD_OVERLAP) &&
  4123. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4124. printk(KERN_CONT "\n");
  4125. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4126. break;
  4127. }
  4128. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4129. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4130. printk(KERN_CONT " %s", str);
  4131. if (group->sgp->power != SCHED_POWER_SCALE) {
  4132. printk(KERN_CONT " (cpu_power = %d)",
  4133. group->sgp->power);
  4134. }
  4135. group = group->next;
  4136. } while (group != sd->groups);
  4137. printk(KERN_CONT "\n");
  4138. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4139. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4140. if (sd->parent &&
  4141. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4142. printk(KERN_ERR "ERROR: parent span is not a superset "
  4143. "of domain->span\n");
  4144. return 0;
  4145. }
  4146. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4147. {
  4148. int level = 0;
  4149. if (!sched_debug_enabled)
  4150. return;
  4151. if (!sd) {
  4152. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4153. return;
  4154. }
  4155. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4156. for (;;) {
  4157. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4158. break;
  4159. level++;
  4160. sd = sd->parent;
  4161. if (!sd)
  4162. break;
  4163. }
  4164. }
  4165. #else /* !CONFIG_SCHED_DEBUG */
  4166. # define sched_domain_debug(sd, cpu) do { } while (0)
  4167. static inline bool sched_debug(void)
  4168. {
  4169. return false;
  4170. }
  4171. #endif /* CONFIG_SCHED_DEBUG */
  4172. static int sd_degenerate(struct sched_domain *sd)
  4173. {
  4174. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4175. return 1;
  4176. /* Following flags need at least 2 groups */
  4177. if (sd->flags & (SD_LOAD_BALANCE |
  4178. SD_BALANCE_NEWIDLE |
  4179. SD_BALANCE_FORK |
  4180. SD_BALANCE_EXEC |
  4181. SD_SHARE_CPUPOWER |
  4182. SD_SHARE_PKG_RESOURCES)) {
  4183. if (sd->groups != sd->groups->next)
  4184. return 0;
  4185. }
  4186. /* Following flags don't use groups */
  4187. if (sd->flags & (SD_WAKE_AFFINE))
  4188. return 0;
  4189. return 1;
  4190. }
  4191. static int
  4192. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4193. {
  4194. unsigned long cflags = sd->flags, pflags = parent->flags;
  4195. if (sd_degenerate(parent))
  4196. return 1;
  4197. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4198. return 0;
  4199. /* Flags needing groups don't count if only 1 group in parent */
  4200. if (parent->groups == parent->groups->next) {
  4201. pflags &= ~(SD_LOAD_BALANCE |
  4202. SD_BALANCE_NEWIDLE |
  4203. SD_BALANCE_FORK |
  4204. SD_BALANCE_EXEC |
  4205. SD_SHARE_CPUPOWER |
  4206. SD_SHARE_PKG_RESOURCES);
  4207. if (nr_node_ids == 1)
  4208. pflags &= ~SD_SERIALIZE;
  4209. }
  4210. if (~cflags & pflags)
  4211. return 0;
  4212. return 1;
  4213. }
  4214. static void free_rootdomain(struct rcu_head *rcu)
  4215. {
  4216. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4217. cpupri_cleanup(&rd->cpupri);
  4218. free_cpumask_var(rd->rto_mask);
  4219. free_cpumask_var(rd->online);
  4220. free_cpumask_var(rd->span);
  4221. kfree(rd);
  4222. }
  4223. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4224. {
  4225. struct root_domain *old_rd = NULL;
  4226. unsigned long flags;
  4227. raw_spin_lock_irqsave(&rq->lock, flags);
  4228. if (rq->rd) {
  4229. old_rd = rq->rd;
  4230. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4231. set_rq_offline(rq);
  4232. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4233. /*
  4234. * If we dont want to free the old_rt yet then
  4235. * set old_rd to NULL to skip the freeing later
  4236. * in this function:
  4237. */
  4238. if (!atomic_dec_and_test(&old_rd->refcount))
  4239. old_rd = NULL;
  4240. }
  4241. atomic_inc(&rd->refcount);
  4242. rq->rd = rd;
  4243. cpumask_set_cpu(rq->cpu, rd->span);
  4244. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4245. set_rq_online(rq);
  4246. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4247. if (old_rd)
  4248. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4249. }
  4250. static int init_rootdomain(struct root_domain *rd)
  4251. {
  4252. memset(rd, 0, sizeof(*rd));
  4253. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4254. goto out;
  4255. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4256. goto free_span;
  4257. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4258. goto free_online;
  4259. if (cpupri_init(&rd->cpupri) != 0)
  4260. goto free_rto_mask;
  4261. return 0;
  4262. free_rto_mask:
  4263. free_cpumask_var(rd->rto_mask);
  4264. free_online:
  4265. free_cpumask_var(rd->online);
  4266. free_span:
  4267. free_cpumask_var(rd->span);
  4268. out:
  4269. return -ENOMEM;
  4270. }
  4271. /*
  4272. * By default the system creates a single root-domain with all cpus as
  4273. * members (mimicking the global state we have today).
  4274. */
  4275. struct root_domain def_root_domain;
  4276. static void init_defrootdomain(void)
  4277. {
  4278. init_rootdomain(&def_root_domain);
  4279. atomic_set(&def_root_domain.refcount, 1);
  4280. }
  4281. static struct root_domain *alloc_rootdomain(void)
  4282. {
  4283. struct root_domain *rd;
  4284. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4285. if (!rd)
  4286. return NULL;
  4287. if (init_rootdomain(rd) != 0) {
  4288. kfree(rd);
  4289. return NULL;
  4290. }
  4291. return rd;
  4292. }
  4293. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4294. {
  4295. struct sched_group *tmp, *first;
  4296. if (!sg)
  4297. return;
  4298. first = sg;
  4299. do {
  4300. tmp = sg->next;
  4301. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4302. kfree(sg->sgp);
  4303. kfree(sg);
  4304. sg = tmp;
  4305. } while (sg != first);
  4306. }
  4307. static void free_sched_domain(struct rcu_head *rcu)
  4308. {
  4309. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4310. /*
  4311. * If its an overlapping domain it has private groups, iterate and
  4312. * nuke them all.
  4313. */
  4314. if (sd->flags & SD_OVERLAP) {
  4315. free_sched_groups(sd->groups, 1);
  4316. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4317. kfree(sd->groups->sgp);
  4318. kfree(sd->groups);
  4319. }
  4320. kfree(sd);
  4321. }
  4322. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4323. {
  4324. call_rcu(&sd->rcu, free_sched_domain);
  4325. }
  4326. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4327. {
  4328. for (; sd; sd = sd->parent)
  4329. destroy_sched_domain(sd, cpu);
  4330. }
  4331. /*
  4332. * Keep a special pointer to the highest sched_domain that has
  4333. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4334. * allows us to avoid some pointer chasing select_idle_sibling().
  4335. *
  4336. * Also keep a unique ID per domain (we use the first cpu number in
  4337. * the cpumask of the domain), this allows us to quickly tell if
  4338. * two cpus are in the same cache domain, see cpus_share_cache().
  4339. */
  4340. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4341. DEFINE_PER_CPU(int, sd_llc_id);
  4342. static void update_top_cache_domain(int cpu)
  4343. {
  4344. struct sched_domain *sd;
  4345. int id = cpu;
  4346. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4347. if (sd)
  4348. id = cpumask_first(sched_domain_span(sd));
  4349. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4350. per_cpu(sd_llc_id, cpu) = id;
  4351. }
  4352. /*
  4353. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4354. * hold the hotplug lock.
  4355. */
  4356. static void
  4357. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4358. {
  4359. struct rq *rq = cpu_rq(cpu);
  4360. struct sched_domain *tmp;
  4361. /* Remove the sched domains which do not contribute to scheduling. */
  4362. for (tmp = sd; tmp; ) {
  4363. struct sched_domain *parent = tmp->parent;
  4364. if (!parent)
  4365. break;
  4366. if (sd_parent_degenerate(tmp, parent)) {
  4367. tmp->parent = parent->parent;
  4368. if (parent->parent)
  4369. parent->parent->child = tmp;
  4370. destroy_sched_domain(parent, cpu);
  4371. } else
  4372. tmp = tmp->parent;
  4373. }
  4374. if (sd && sd_degenerate(sd)) {
  4375. tmp = sd;
  4376. sd = sd->parent;
  4377. destroy_sched_domain(tmp, cpu);
  4378. if (sd)
  4379. sd->child = NULL;
  4380. }
  4381. sched_domain_debug(sd, cpu);
  4382. rq_attach_root(rq, rd);
  4383. tmp = rq->sd;
  4384. rcu_assign_pointer(rq->sd, sd);
  4385. destroy_sched_domains(tmp, cpu);
  4386. update_top_cache_domain(cpu);
  4387. }
  4388. /* cpus with isolated domains */
  4389. static cpumask_var_t cpu_isolated_map;
  4390. /* Setup the mask of cpus configured for isolated domains */
  4391. static int __init isolated_cpu_setup(char *str)
  4392. {
  4393. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4394. cpulist_parse(str, cpu_isolated_map);
  4395. return 1;
  4396. }
  4397. __setup("isolcpus=", isolated_cpu_setup);
  4398. static const struct cpumask *cpu_cpu_mask(int cpu)
  4399. {
  4400. return cpumask_of_node(cpu_to_node(cpu));
  4401. }
  4402. struct sd_data {
  4403. struct sched_domain **__percpu sd;
  4404. struct sched_group **__percpu sg;
  4405. struct sched_group_power **__percpu sgp;
  4406. };
  4407. struct s_data {
  4408. struct sched_domain ** __percpu sd;
  4409. struct root_domain *rd;
  4410. };
  4411. enum s_alloc {
  4412. sa_rootdomain,
  4413. sa_sd,
  4414. sa_sd_storage,
  4415. sa_none,
  4416. };
  4417. struct sched_domain_topology_level;
  4418. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4419. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4420. #define SDTL_OVERLAP 0x01
  4421. struct sched_domain_topology_level {
  4422. sched_domain_init_f init;
  4423. sched_domain_mask_f mask;
  4424. int flags;
  4425. int numa_level;
  4426. struct sd_data data;
  4427. };
  4428. /*
  4429. * Build an iteration mask that can exclude certain CPUs from the upwards
  4430. * domain traversal.
  4431. *
  4432. * Asymmetric node setups can result in situations where the domain tree is of
  4433. * unequal depth, make sure to skip domains that already cover the entire
  4434. * range.
  4435. *
  4436. * In that case build_sched_domains() will have terminated the iteration early
  4437. * and our sibling sd spans will be empty. Domains should always include the
  4438. * cpu they're built on, so check that.
  4439. *
  4440. */
  4441. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4442. {
  4443. const struct cpumask *span = sched_domain_span(sd);
  4444. struct sd_data *sdd = sd->private;
  4445. struct sched_domain *sibling;
  4446. int i;
  4447. for_each_cpu(i, span) {
  4448. sibling = *per_cpu_ptr(sdd->sd, i);
  4449. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4450. continue;
  4451. cpumask_set_cpu(i, sched_group_mask(sg));
  4452. }
  4453. }
  4454. /*
  4455. * Return the canonical balance cpu for this group, this is the first cpu
  4456. * of this group that's also in the iteration mask.
  4457. */
  4458. int group_balance_cpu(struct sched_group *sg)
  4459. {
  4460. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4461. }
  4462. static int
  4463. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4464. {
  4465. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4466. const struct cpumask *span = sched_domain_span(sd);
  4467. struct cpumask *covered = sched_domains_tmpmask;
  4468. struct sd_data *sdd = sd->private;
  4469. struct sched_domain *child;
  4470. int i;
  4471. cpumask_clear(covered);
  4472. for_each_cpu(i, span) {
  4473. struct cpumask *sg_span;
  4474. if (cpumask_test_cpu(i, covered))
  4475. continue;
  4476. child = *per_cpu_ptr(sdd->sd, i);
  4477. /* See the comment near build_group_mask(). */
  4478. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4479. continue;
  4480. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4481. GFP_KERNEL, cpu_to_node(cpu));
  4482. if (!sg)
  4483. goto fail;
  4484. sg_span = sched_group_cpus(sg);
  4485. if (child->child) {
  4486. child = child->child;
  4487. cpumask_copy(sg_span, sched_domain_span(child));
  4488. } else
  4489. cpumask_set_cpu(i, sg_span);
  4490. cpumask_or(covered, covered, sg_span);
  4491. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4492. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4493. build_group_mask(sd, sg);
  4494. /*
  4495. * Initialize sgp->power such that even if we mess up the
  4496. * domains and no possible iteration will get us here, we won't
  4497. * die on a /0 trap.
  4498. */
  4499. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4500. /*
  4501. * Make sure the first group of this domain contains the
  4502. * canonical balance cpu. Otherwise the sched_domain iteration
  4503. * breaks. See update_sg_lb_stats().
  4504. */
  4505. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4506. group_balance_cpu(sg) == cpu)
  4507. groups = sg;
  4508. if (!first)
  4509. first = sg;
  4510. if (last)
  4511. last->next = sg;
  4512. last = sg;
  4513. last->next = first;
  4514. }
  4515. sd->groups = groups;
  4516. return 0;
  4517. fail:
  4518. free_sched_groups(first, 0);
  4519. return -ENOMEM;
  4520. }
  4521. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4522. {
  4523. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4524. struct sched_domain *child = sd->child;
  4525. if (child)
  4526. cpu = cpumask_first(sched_domain_span(child));
  4527. if (sg) {
  4528. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4529. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4530. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4531. }
  4532. return cpu;
  4533. }
  4534. /*
  4535. * build_sched_groups will build a circular linked list of the groups
  4536. * covered by the given span, and will set each group's ->cpumask correctly,
  4537. * and ->cpu_power to 0.
  4538. *
  4539. * Assumes the sched_domain tree is fully constructed
  4540. */
  4541. static int
  4542. build_sched_groups(struct sched_domain *sd, int cpu)
  4543. {
  4544. struct sched_group *first = NULL, *last = NULL;
  4545. struct sd_data *sdd = sd->private;
  4546. const struct cpumask *span = sched_domain_span(sd);
  4547. struct cpumask *covered;
  4548. int i;
  4549. get_group(cpu, sdd, &sd->groups);
  4550. atomic_inc(&sd->groups->ref);
  4551. if (cpu != cpumask_first(sched_domain_span(sd)))
  4552. return 0;
  4553. lockdep_assert_held(&sched_domains_mutex);
  4554. covered = sched_domains_tmpmask;
  4555. cpumask_clear(covered);
  4556. for_each_cpu(i, span) {
  4557. struct sched_group *sg;
  4558. int group = get_group(i, sdd, &sg);
  4559. int j;
  4560. if (cpumask_test_cpu(i, covered))
  4561. continue;
  4562. cpumask_clear(sched_group_cpus(sg));
  4563. sg->sgp->power = 0;
  4564. cpumask_setall(sched_group_mask(sg));
  4565. for_each_cpu(j, span) {
  4566. if (get_group(j, sdd, NULL) != group)
  4567. continue;
  4568. cpumask_set_cpu(j, covered);
  4569. cpumask_set_cpu(j, sched_group_cpus(sg));
  4570. }
  4571. if (!first)
  4572. first = sg;
  4573. if (last)
  4574. last->next = sg;
  4575. last = sg;
  4576. }
  4577. last->next = first;
  4578. return 0;
  4579. }
  4580. /*
  4581. * Initialize sched groups cpu_power.
  4582. *
  4583. * cpu_power indicates the capacity of sched group, which is used while
  4584. * distributing the load between different sched groups in a sched domain.
  4585. * Typically cpu_power for all the groups in a sched domain will be same unless
  4586. * there are asymmetries in the topology. If there are asymmetries, group
  4587. * having more cpu_power will pickup more load compared to the group having
  4588. * less cpu_power.
  4589. */
  4590. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4591. {
  4592. struct sched_group *sg = sd->groups;
  4593. WARN_ON(!sd || !sg);
  4594. do {
  4595. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4596. sg = sg->next;
  4597. } while (sg != sd->groups);
  4598. if (cpu != group_balance_cpu(sg))
  4599. return;
  4600. update_group_power(sd, cpu);
  4601. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4602. }
  4603. int __weak arch_sd_sibling_asym_packing(void)
  4604. {
  4605. return 0*SD_ASYM_PACKING;
  4606. }
  4607. /*
  4608. * Initializers for schedule domains
  4609. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4610. */
  4611. #ifdef CONFIG_SCHED_DEBUG
  4612. # define SD_INIT_NAME(sd, type) sd->name = #type
  4613. #else
  4614. # define SD_INIT_NAME(sd, type) do { } while (0)
  4615. #endif
  4616. #define SD_INIT_FUNC(type) \
  4617. static noinline struct sched_domain * \
  4618. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4619. { \
  4620. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4621. *sd = SD_##type##_INIT; \
  4622. SD_INIT_NAME(sd, type); \
  4623. sd->private = &tl->data; \
  4624. return sd; \
  4625. }
  4626. SD_INIT_FUNC(CPU)
  4627. #ifdef CONFIG_SCHED_SMT
  4628. SD_INIT_FUNC(SIBLING)
  4629. #endif
  4630. #ifdef CONFIG_SCHED_MC
  4631. SD_INIT_FUNC(MC)
  4632. #endif
  4633. #ifdef CONFIG_SCHED_BOOK
  4634. SD_INIT_FUNC(BOOK)
  4635. #endif
  4636. static int default_relax_domain_level = -1;
  4637. int sched_domain_level_max;
  4638. static int __init setup_relax_domain_level(char *str)
  4639. {
  4640. if (kstrtoint(str, 0, &default_relax_domain_level))
  4641. pr_warn("Unable to set relax_domain_level\n");
  4642. return 1;
  4643. }
  4644. __setup("relax_domain_level=", setup_relax_domain_level);
  4645. static void set_domain_attribute(struct sched_domain *sd,
  4646. struct sched_domain_attr *attr)
  4647. {
  4648. int request;
  4649. if (!attr || attr->relax_domain_level < 0) {
  4650. if (default_relax_domain_level < 0)
  4651. return;
  4652. else
  4653. request = default_relax_domain_level;
  4654. } else
  4655. request = attr->relax_domain_level;
  4656. if (request < sd->level) {
  4657. /* turn off idle balance on this domain */
  4658. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4659. } else {
  4660. /* turn on idle balance on this domain */
  4661. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4662. }
  4663. }
  4664. static void __sdt_free(const struct cpumask *cpu_map);
  4665. static int __sdt_alloc(const struct cpumask *cpu_map);
  4666. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4667. const struct cpumask *cpu_map)
  4668. {
  4669. switch (what) {
  4670. case sa_rootdomain:
  4671. if (!atomic_read(&d->rd->refcount))
  4672. free_rootdomain(&d->rd->rcu); /* fall through */
  4673. case sa_sd:
  4674. free_percpu(d->sd); /* fall through */
  4675. case sa_sd_storage:
  4676. __sdt_free(cpu_map); /* fall through */
  4677. case sa_none:
  4678. break;
  4679. }
  4680. }
  4681. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  4682. const struct cpumask *cpu_map)
  4683. {
  4684. memset(d, 0, sizeof(*d));
  4685. if (__sdt_alloc(cpu_map))
  4686. return sa_sd_storage;
  4687. d->sd = alloc_percpu(struct sched_domain *);
  4688. if (!d->sd)
  4689. return sa_sd_storage;
  4690. d->rd = alloc_rootdomain();
  4691. if (!d->rd)
  4692. return sa_sd;
  4693. return sa_rootdomain;
  4694. }
  4695. /*
  4696. * NULL the sd_data elements we've used to build the sched_domain and
  4697. * sched_group structure so that the subsequent __free_domain_allocs()
  4698. * will not free the data we're using.
  4699. */
  4700. static void claim_allocations(int cpu, struct sched_domain *sd)
  4701. {
  4702. struct sd_data *sdd = sd->private;
  4703. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  4704. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  4705. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  4706. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  4707. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  4708. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  4709. }
  4710. #ifdef CONFIG_SCHED_SMT
  4711. static const struct cpumask *cpu_smt_mask(int cpu)
  4712. {
  4713. return topology_thread_cpumask(cpu);
  4714. }
  4715. #endif
  4716. /*
  4717. * Topology list, bottom-up.
  4718. */
  4719. static struct sched_domain_topology_level default_topology[] = {
  4720. #ifdef CONFIG_SCHED_SMT
  4721. { sd_init_SIBLING, cpu_smt_mask, },
  4722. #endif
  4723. #ifdef CONFIG_SCHED_MC
  4724. { sd_init_MC, cpu_coregroup_mask, },
  4725. #endif
  4726. #ifdef CONFIG_SCHED_BOOK
  4727. { sd_init_BOOK, cpu_book_mask, },
  4728. #endif
  4729. { sd_init_CPU, cpu_cpu_mask, },
  4730. { NULL, },
  4731. };
  4732. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  4733. #ifdef CONFIG_NUMA
  4734. static int sched_domains_numa_levels;
  4735. static int *sched_domains_numa_distance;
  4736. static struct cpumask ***sched_domains_numa_masks;
  4737. static int sched_domains_curr_level;
  4738. static inline int sd_local_flags(int level)
  4739. {
  4740. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  4741. return 0;
  4742. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  4743. }
  4744. static struct sched_domain *
  4745. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  4746. {
  4747. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  4748. int level = tl->numa_level;
  4749. int sd_weight = cpumask_weight(
  4750. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  4751. *sd = (struct sched_domain){
  4752. .min_interval = sd_weight,
  4753. .max_interval = 2*sd_weight,
  4754. .busy_factor = 32,
  4755. .imbalance_pct = 125,
  4756. .cache_nice_tries = 2,
  4757. .busy_idx = 3,
  4758. .idle_idx = 2,
  4759. .newidle_idx = 0,
  4760. .wake_idx = 0,
  4761. .forkexec_idx = 0,
  4762. .flags = 1*SD_LOAD_BALANCE
  4763. | 1*SD_BALANCE_NEWIDLE
  4764. | 0*SD_BALANCE_EXEC
  4765. | 0*SD_BALANCE_FORK
  4766. | 0*SD_BALANCE_WAKE
  4767. | 0*SD_WAKE_AFFINE
  4768. | 0*SD_SHARE_CPUPOWER
  4769. | 0*SD_SHARE_PKG_RESOURCES
  4770. | 1*SD_SERIALIZE
  4771. | 0*SD_PREFER_SIBLING
  4772. | sd_local_flags(level)
  4773. ,
  4774. .last_balance = jiffies,
  4775. .balance_interval = sd_weight,
  4776. };
  4777. SD_INIT_NAME(sd, NUMA);
  4778. sd->private = &tl->data;
  4779. /*
  4780. * Ugly hack to pass state to sd_numa_mask()...
  4781. */
  4782. sched_domains_curr_level = tl->numa_level;
  4783. return sd;
  4784. }
  4785. static const struct cpumask *sd_numa_mask(int cpu)
  4786. {
  4787. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  4788. }
  4789. static void sched_numa_warn(const char *str)
  4790. {
  4791. static int done = false;
  4792. int i,j;
  4793. if (done)
  4794. return;
  4795. done = true;
  4796. printk(KERN_WARNING "ERROR: %s\n\n", str);
  4797. for (i = 0; i < nr_node_ids; i++) {
  4798. printk(KERN_WARNING " ");
  4799. for (j = 0; j < nr_node_ids; j++)
  4800. printk(KERN_CONT "%02d ", node_distance(i,j));
  4801. printk(KERN_CONT "\n");
  4802. }
  4803. printk(KERN_WARNING "\n");
  4804. }
  4805. static bool find_numa_distance(int distance)
  4806. {
  4807. int i;
  4808. if (distance == node_distance(0, 0))
  4809. return true;
  4810. for (i = 0; i < sched_domains_numa_levels; i++) {
  4811. if (sched_domains_numa_distance[i] == distance)
  4812. return true;
  4813. }
  4814. return false;
  4815. }
  4816. static void sched_init_numa(void)
  4817. {
  4818. int next_distance, curr_distance = node_distance(0, 0);
  4819. struct sched_domain_topology_level *tl;
  4820. int level = 0;
  4821. int i, j, k;
  4822. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  4823. if (!sched_domains_numa_distance)
  4824. return;
  4825. /*
  4826. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  4827. * unique distances in the node_distance() table.
  4828. *
  4829. * Assumes node_distance(0,j) includes all distances in
  4830. * node_distance(i,j) in order to avoid cubic time.
  4831. */
  4832. next_distance = curr_distance;
  4833. for (i = 0; i < nr_node_ids; i++) {
  4834. for (j = 0; j < nr_node_ids; j++) {
  4835. for (k = 0; k < nr_node_ids; k++) {
  4836. int distance = node_distance(i, k);
  4837. if (distance > curr_distance &&
  4838. (distance < next_distance ||
  4839. next_distance == curr_distance))
  4840. next_distance = distance;
  4841. /*
  4842. * While not a strong assumption it would be nice to know
  4843. * about cases where if node A is connected to B, B is not
  4844. * equally connected to A.
  4845. */
  4846. if (sched_debug() && node_distance(k, i) != distance)
  4847. sched_numa_warn("Node-distance not symmetric");
  4848. if (sched_debug() && i && !find_numa_distance(distance))
  4849. sched_numa_warn("Node-0 not representative");
  4850. }
  4851. if (next_distance != curr_distance) {
  4852. sched_domains_numa_distance[level++] = next_distance;
  4853. sched_domains_numa_levels = level;
  4854. curr_distance = next_distance;
  4855. } else break;
  4856. }
  4857. /*
  4858. * In case of sched_debug() we verify the above assumption.
  4859. */
  4860. if (!sched_debug())
  4861. break;
  4862. }
  4863. /*
  4864. * 'level' contains the number of unique distances, excluding the
  4865. * identity distance node_distance(i,i).
  4866. *
  4867. * The sched_domains_numa_distance[] array includes the actual distance
  4868. * numbers.
  4869. */
  4870. /*
  4871. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  4872. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  4873. * the array will contain less then 'level' members. This could be
  4874. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  4875. * in other functions.
  4876. *
  4877. * We reset it to 'level' at the end of this function.
  4878. */
  4879. sched_domains_numa_levels = 0;
  4880. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  4881. if (!sched_domains_numa_masks)
  4882. return;
  4883. /*
  4884. * Now for each level, construct a mask per node which contains all
  4885. * cpus of nodes that are that many hops away from us.
  4886. */
  4887. for (i = 0; i < level; i++) {
  4888. sched_domains_numa_masks[i] =
  4889. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  4890. if (!sched_domains_numa_masks[i])
  4891. return;
  4892. for (j = 0; j < nr_node_ids; j++) {
  4893. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  4894. if (!mask)
  4895. return;
  4896. sched_domains_numa_masks[i][j] = mask;
  4897. for (k = 0; k < nr_node_ids; k++) {
  4898. if (node_distance(j, k) > sched_domains_numa_distance[i])
  4899. continue;
  4900. cpumask_or(mask, mask, cpumask_of_node(k));
  4901. }
  4902. }
  4903. }
  4904. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  4905. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  4906. if (!tl)
  4907. return;
  4908. /*
  4909. * Copy the default topology bits..
  4910. */
  4911. for (i = 0; default_topology[i].init; i++)
  4912. tl[i] = default_topology[i];
  4913. /*
  4914. * .. and append 'j' levels of NUMA goodness.
  4915. */
  4916. for (j = 0; j < level; i++, j++) {
  4917. tl[i] = (struct sched_domain_topology_level){
  4918. .init = sd_numa_init,
  4919. .mask = sd_numa_mask,
  4920. .flags = SDTL_OVERLAP,
  4921. .numa_level = j,
  4922. };
  4923. }
  4924. sched_domain_topology = tl;
  4925. sched_domains_numa_levels = level;
  4926. }
  4927. static void sched_domains_numa_masks_set(int cpu)
  4928. {
  4929. int i, j;
  4930. int node = cpu_to_node(cpu);
  4931. for (i = 0; i < sched_domains_numa_levels; i++) {
  4932. for (j = 0; j < nr_node_ids; j++) {
  4933. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  4934. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  4935. }
  4936. }
  4937. }
  4938. static void sched_domains_numa_masks_clear(int cpu)
  4939. {
  4940. int i, j;
  4941. for (i = 0; i < sched_domains_numa_levels; i++) {
  4942. for (j = 0; j < nr_node_ids; j++)
  4943. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  4944. }
  4945. }
  4946. /*
  4947. * Update sched_domains_numa_masks[level][node] array when new cpus
  4948. * are onlined.
  4949. */
  4950. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  4951. unsigned long action,
  4952. void *hcpu)
  4953. {
  4954. int cpu = (long)hcpu;
  4955. switch (action & ~CPU_TASKS_FROZEN) {
  4956. case CPU_ONLINE:
  4957. sched_domains_numa_masks_set(cpu);
  4958. break;
  4959. case CPU_DEAD:
  4960. sched_domains_numa_masks_clear(cpu);
  4961. break;
  4962. default:
  4963. return NOTIFY_DONE;
  4964. }
  4965. return NOTIFY_OK;
  4966. }
  4967. #else
  4968. static inline void sched_init_numa(void)
  4969. {
  4970. }
  4971. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  4972. unsigned long action,
  4973. void *hcpu)
  4974. {
  4975. return 0;
  4976. }
  4977. #endif /* CONFIG_NUMA */
  4978. static int __sdt_alloc(const struct cpumask *cpu_map)
  4979. {
  4980. struct sched_domain_topology_level *tl;
  4981. int j;
  4982. for (tl = sched_domain_topology; tl->init; tl++) {
  4983. struct sd_data *sdd = &tl->data;
  4984. sdd->sd = alloc_percpu(struct sched_domain *);
  4985. if (!sdd->sd)
  4986. return -ENOMEM;
  4987. sdd->sg = alloc_percpu(struct sched_group *);
  4988. if (!sdd->sg)
  4989. return -ENOMEM;
  4990. sdd->sgp = alloc_percpu(struct sched_group_power *);
  4991. if (!sdd->sgp)
  4992. return -ENOMEM;
  4993. for_each_cpu(j, cpu_map) {
  4994. struct sched_domain *sd;
  4995. struct sched_group *sg;
  4996. struct sched_group_power *sgp;
  4997. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  4998. GFP_KERNEL, cpu_to_node(j));
  4999. if (!sd)
  5000. return -ENOMEM;
  5001. *per_cpu_ptr(sdd->sd, j) = sd;
  5002. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5003. GFP_KERNEL, cpu_to_node(j));
  5004. if (!sg)
  5005. return -ENOMEM;
  5006. sg->next = sg;
  5007. *per_cpu_ptr(sdd->sg, j) = sg;
  5008. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5009. GFP_KERNEL, cpu_to_node(j));
  5010. if (!sgp)
  5011. return -ENOMEM;
  5012. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5013. }
  5014. }
  5015. return 0;
  5016. }
  5017. static void __sdt_free(const struct cpumask *cpu_map)
  5018. {
  5019. struct sched_domain_topology_level *tl;
  5020. int j;
  5021. for (tl = sched_domain_topology; tl->init; tl++) {
  5022. struct sd_data *sdd = &tl->data;
  5023. for_each_cpu(j, cpu_map) {
  5024. struct sched_domain *sd;
  5025. if (sdd->sd) {
  5026. sd = *per_cpu_ptr(sdd->sd, j);
  5027. if (sd && (sd->flags & SD_OVERLAP))
  5028. free_sched_groups(sd->groups, 0);
  5029. kfree(*per_cpu_ptr(sdd->sd, j));
  5030. }
  5031. if (sdd->sg)
  5032. kfree(*per_cpu_ptr(sdd->sg, j));
  5033. if (sdd->sgp)
  5034. kfree(*per_cpu_ptr(sdd->sgp, j));
  5035. }
  5036. free_percpu(sdd->sd);
  5037. sdd->sd = NULL;
  5038. free_percpu(sdd->sg);
  5039. sdd->sg = NULL;
  5040. free_percpu(sdd->sgp);
  5041. sdd->sgp = NULL;
  5042. }
  5043. }
  5044. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5045. struct s_data *d, const struct cpumask *cpu_map,
  5046. struct sched_domain_attr *attr, struct sched_domain *child,
  5047. int cpu)
  5048. {
  5049. struct sched_domain *sd = tl->init(tl, cpu);
  5050. if (!sd)
  5051. return child;
  5052. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5053. if (child) {
  5054. sd->level = child->level + 1;
  5055. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5056. child->parent = sd;
  5057. }
  5058. sd->child = child;
  5059. set_domain_attribute(sd, attr);
  5060. return sd;
  5061. }
  5062. /*
  5063. * Build sched domains for a given set of cpus and attach the sched domains
  5064. * to the individual cpus
  5065. */
  5066. static int build_sched_domains(const struct cpumask *cpu_map,
  5067. struct sched_domain_attr *attr)
  5068. {
  5069. enum s_alloc alloc_state = sa_none;
  5070. struct sched_domain *sd;
  5071. struct s_data d;
  5072. int i, ret = -ENOMEM;
  5073. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5074. if (alloc_state != sa_rootdomain)
  5075. goto error;
  5076. /* Set up domains for cpus specified by the cpu_map. */
  5077. for_each_cpu(i, cpu_map) {
  5078. struct sched_domain_topology_level *tl;
  5079. sd = NULL;
  5080. for (tl = sched_domain_topology; tl->init; tl++) {
  5081. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5082. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5083. sd->flags |= SD_OVERLAP;
  5084. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5085. break;
  5086. }
  5087. while (sd->child)
  5088. sd = sd->child;
  5089. *per_cpu_ptr(d.sd, i) = sd;
  5090. }
  5091. /* Build the groups for the domains */
  5092. for_each_cpu(i, cpu_map) {
  5093. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5094. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5095. if (sd->flags & SD_OVERLAP) {
  5096. if (build_overlap_sched_groups(sd, i))
  5097. goto error;
  5098. } else {
  5099. if (build_sched_groups(sd, i))
  5100. goto error;
  5101. }
  5102. }
  5103. }
  5104. /* Calculate CPU power for physical packages and nodes */
  5105. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5106. if (!cpumask_test_cpu(i, cpu_map))
  5107. continue;
  5108. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5109. claim_allocations(i, sd);
  5110. init_sched_groups_power(i, sd);
  5111. }
  5112. }
  5113. /* Attach the domains */
  5114. rcu_read_lock();
  5115. for_each_cpu(i, cpu_map) {
  5116. sd = *per_cpu_ptr(d.sd, i);
  5117. cpu_attach_domain(sd, d.rd, i);
  5118. }
  5119. rcu_read_unlock();
  5120. ret = 0;
  5121. error:
  5122. __free_domain_allocs(&d, alloc_state, cpu_map);
  5123. return ret;
  5124. }
  5125. static cpumask_var_t *doms_cur; /* current sched domains */
  5126. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5127. static struct sched_domain_attr *dattr_cur;
  5128. /* attribues of custom domains in 'doms_cur' */
  5129. /*
  5130. * Special case: If a kmalloc of a doms_cur partition (array of
  5131. * cpumask) fails, then fallback to a single sched domain,
  5132. * as determined by the single cpumask fallback_doms.
  5133. */
  5134. static cpumask_var_t fallback_doms;
  5135. /*
  5136. * arch_update_cpu_topology lets virtualized architectures update the
  5137. * cpu core maps. It is supposed to return 1 if the topology changed
  5138. * or 0 if it stayed the same.
  5139. */
  5140. int __attribute__((weak)) arch_update_cpu_topology(void)
  5141. {
  5142. return 0;
  5143. }
  5144. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5145. {
  5146. int i;
  5147. cpumask_var_t *doms;
  5148. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5149. if (!doms)
  5150. return NULL;
  5151. for (i = 0; i < ndoms; i++) {
  5152. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5153. free_sched_domains(doms, i);
  5154. return NULL;
  5155. }
  5156. }
  5157. return doms;
  5158. }
  5159. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5160. {
  5161. unsigned int i;
  5162. for (i = 0; i < ndoms; i++)
  5163. free_cpumask_var(doms[i]);
  5164. kfree(doms);
  5165. }
  5166. /*
  5167. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5168. * For now this just excludes isolated cpus, but could be used to
  5169. * exclude other special cases in the future.
  5170. */
  5171. static int init_sched_domains(const struct cpumask *cpu_map)
  5172. {
  5173. int err;
  5174. arch_update_cpu_topology();
  5175. ndoms_cur = 1;
  5176. doms_cur = alloc_sched_domains(ndoms_cur);
  5177. if (!doms_cur)
  5178. doms_cur = &fallback_doms;
  5179. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5180. err = build_sched_domains(doms_cur[0], NULL);
  5181. register_sched_domain_sysctl();
  5182. return err;
  5183. }
  5184. /*
  5185. * Detach sched domains from a group of cpus specified in cpu_map
  5186. * These cpus will now be attached to the NULL domain
  5187. */
  5188. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5189. {
  5190. int i;
  5191. rcu_read_lock();
  5192. for_each_cpu(i, cpu_map)
  5193. cpu_attach_domain(NULL, &def_root_domain, i);
  5194. rcu_read_unlock();
  5195. }
  5196. /* handle null as "default" */
  5197. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5198. struct sched_domain_attr *new, int idx_new)
  5199. {
  5200. struct sched_domain_attr tmp;
  5201. /* fast path */
  5202. if (!new && !cur)
  5203. return 1;
  5204. tmp = SD_ATTR_INIT;
  5205. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5206. new ? (new + idx_new) : &tmp,
  5207. sizeof(struct sched_domain_attr));
  5208. }
  5209. /*
  5210. * Partition sched domains as specified by the 'ndoms_new'
  5211. * cpumasks in the array doms_new[] of cpumasks. This compares
  5212. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5213. * It destroys each deleted domain and builds each new domain.
  5214. *
  5215. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5216. * The masks don't intersect (don't overlap.) We should setup one
  5217. * sched domain for each mask. CPUs not in any of the cpumasks will
  5218. * not be load balanced. If the same cpumask appears both in the
  5219. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5220. * it as it is.
  5221. *
  5222. * The passed in 'doms_new' should be allocated using
  5223. * alloc_sched_domains. This routine takes ownership of it and will
  5224. * free_sched_domains it when done with it. If the caller failed the
  5225. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5226. * and partition_sched_domains() will fallback to the single partition
  5227. * 'fallback_doms', it also forces the domains to be rebuilt.
  5228. *
  5229. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5230. * ndoms_new == 0 is a special case for destroying existing domains,
  5231. * and it will not create the default domain.
  5232. *
  5233. * Call with hotplug lock held
  5234. */
  5235. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5236. struct sched_domain_attr *dattr_new)
  5237. {
  5238. int i, j, n;
  5239. int new_topology;
  5240. mutex_lock(&sched_domains_mutex);
  5241. /* always unregister in case we don't destroy any domains */
  5242. unregister_sched_domain_sysctl();
  5243. /* Let architecture update cpu core mappings. */
  5244. new_topology = arch_update_cpu_topology();
  5245. n = doms_new ? ndoms_new : 0;
  5246. /* Destroy deleted domains */
  5247. for (i = 0; i < ndoms_cur; i++) {
  5248. for (j = 0; j < n && !new_topology; j++) {
  5249. if (cpumask_equal(doms_cur[i], doms_new[j])
  5250. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5251. goto match1;
  5252. }
  5253. /* no match - a current sched domain not in new doms_new[] */
  5254. detach_destroy_domains(doms_cur[i]);
  5255. match1:
  5256. ;
  5257. }
  5258. if (doms_new == NULL) {
  5259. ndoms_cur = 0;
  5260. doms_new = &fallback_doms;
  5261. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5262. WARN_ON_ONCE(dattr_new);
  5263. }
  5264. /* Build new domains */
  5265. for (i = 0; i < ndoms_new; i++) {
  5266. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5267. if (cpumask_equal(doms_new[i], doms_cur[j])
  5268. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5269. goto match2;
  5270. }
  5271. /* no match - add a new doms_new */
  5272. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5273. match2:
  5274. ;
  5275. }
  5276. /* Remember the new sched domains */
  5277. if (doms_cur != &fallback_doms)
  5278. free_sched_domains(doms_cur, ndoms_cur);
  5279. kfree(dattr_cur); /* kfree(NULL) is safe */
  5280. doms_cur = doms_new;
  5281. dattr_cur = dattr_new;
  5282. ndoms_cur = ndoms_new;
  5283. register_sched_domain_sysctl();
  5284. mutex_unlock(&sched_domains_mutex);
  5285. }
  5286. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5287. /*
  5288. * Update cpusets according to cpu_active mask. If cpusets are
  5289. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5290. * around partition_sched_domains().
  5291. *
  5292. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5293. * want to restore it back to its original state upon resume anyway.
  5294. */
  5295. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5296. void *hcpu)
  5297. {
  5298. switch (action) {
  5299. case CPU_ONLINE_FROZEN:
  5300. case CPU_DOWN_FAILED_FROZEN:
  5301. /*
  5302. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5303. * resume sequence. As long as this is not the last online
  5304. * operation in the resume sequence, just build a single sched
  5305. * domain, ignoring cpusets.
  5306. */
  5307. num_cpus_frozen--;
  5308. if (likely(num_cpus_frozen)) {
  5309. partition_sched_domains(1, NULL, NULL);
  5310. break;
  5311. }
  5312. /*
  5313. * This is the last CPU online operation. So fall through and
  5314. * restore the original sched domains by considering the
  5315. * cpuset configurations.
  5316. */
  5317. case CPU_ONLINE:
  5318. case CPU_DOWN_FAILED:
  5319. cpuset_update_active_cpus(true);
  5320. break;
  5321. default:
  5322. return NOTIFY_DONE;
  5323. }
  5324. return NOTIFY_OK;
  5325. }
  5326. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5327. void *hcpu)
  5328. {
  5329. switch (action) {
  5330. case CPU_DOWN_PREPARE:
  5331. cpuset_update_active_cpus(false);
  5332. break;
  5333. case CPU_DOWN_PREPARE_FROZEN:
  5334. num_cpus_frozen++;
  5335. partition_sched_domains(1, NULL, NULL);
  5336. break;
  5337. default:
  5338. return NOTIFY_DONE;
  5339. }
  5340. return NOTIFY_OK;
  5341. }
  5342. void __init sched_init_smp(void)
  5343. {
  5344. cpumask_var_t non_isolated_cpus;
  5345. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5346. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5347. sched_init_numa();
  5348. get_online_cpus();
  5349. mutex_lock(&sched_domains_mutex);
  5350. init_sched_domains(cpu_active_mask);
  5351. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5352. if (cpumask_empty(non_isolated_cpus))
  5353. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5354. mutex_unlock(&sched_domains_mutex);
  5355. put_online_cpus();
  5356. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5357. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5358. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5359. init_hrtick();
  5360. /* Move init over to a non-isolated CPU */
  5361. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5362. BUG();
  5363. sched_init_granularity();
  5364. free_cpumask_var(non_isolated_cpus);
  5365. init_sched_rt_class();
  5366. }
  5367. #else
  5368. void __init sched_init_smp(void)
  5369. {
  5370. sched_init_granularity();
  5371. }
  5372. #endif /* CONFIG_SMP */
  5373. const_debug unsigned int sysctl_timer_migration = 1;
  5374. int in_sched_functions(unsigned long addr)
  5375. {
  5376. return in_lock_functions(addr) ||
  5377. (addr >= (unsigned long)__sched_text_start
  5378. && addr < (unsigned long)__sched_text_end);
  5379. }
  5380. #ifdef CONFIG_CGROUP_SCHED
  5381. /*
  5382. * Default task group.
  5383. * Every task in system belongs to this group at bootup.
  5384. */
  5385. struct task_group root_task_group;
  5386. LIST_HEAD(task_groups);
  5387. #endif
  5388. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5389. void __init sched_init(void)
  5390. {
  5391. int i, j;
  5392. unsigned long alloc_size = 0, ptr;
  5393. #ifdef CONFIG_FAIR_GROUP_SCHED
  5394. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5395. #endif
  5396. #ifdef CONFIG_RT_GROUP_SCHED
  5397. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5398. #endif
  5399. #ifdef CONFIG_CPUMASK_OFFSTACK
  5400. alloc_size += num_possible_cpus() * cpumask_size();
  5401. #endif
  5402. if (alloc_size) {
  5403. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5404. #ifdef CONFIG_FAIR_GROUP_SCHED
  5405. root_task_group.se = (struct sched_entity **)ptr;
  5406. ptr += nr_cpu_ids * sizeof(void **);
  5407. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5408. ptr += nr_cpu_ids * sizeof(void **);
  5409. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5410. #ifdef CONFIG_RT_GROUP_SCHED
  5411. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5412. ptr += nr_cpu_ids * sizeof(void **);
  5413. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5414. ptr += nr_cpu_ids * sizeof(void **);
  5415. #endif /* CONFIG_RT_GROUP_SCHED */
  5416. #ifdef CONFIG_CPUMASK_OFFSTACK
  5417. for_each_possible_cpu(i) {
  5418. per_cpu(load_balance_mask, i) = (void *)ptr;
  5419. ptr += cpumask_size();
  5420. }
  5421. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5422. }
  5423. #ifdef CONFIG_SMP
  5424. init_defrootdomain();
  5425. #endif
  5426. init_rt_bandwidth(&def_rt_bandwidth,
  5427. global_rt_period(), global_rt_runtime());
  5428. #ifdef CONFIG_RT_GROUP_SCHED
  5429. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5430. global_rt_period(), global_rt_runtime());
  5431. #endif /* CONFIG_RT_GROUP_SCHED */
  5432. #ifdef CONFIG_CGROUP_SCHED
  5433. list_add(&root_task_group.list, &task_groups);
  5434. INIT_LIST_HEAD(&root_task_group.children);
  5435. INIT_LIST_HEAD(&root_task_group.siblings);
  5436. autogroup_init(&init_task);
  5437. #endif /* CONFIG_CGROUP_SCHED */
  5438. for_each_possible_cpu(i) {
  5439. struct rq *rq;
  5440. rq = cpu_rq(i);
  5441. raw_spin_lock_init(&rq->lock);
  5442. rq->nr_running = 0;
  5443. rq->calc_load_active = 0;
  5444. rq->calc_load_update = jiffies + LOAD_FREQ;
  5445. init_cfs_rq(&rq->cfs);
  5446. init_rt_rq(&rq->rt, rq);
  5447. #ifdef CONFIG_FAIR_GROUP_SCHED
  5448. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5449. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5450. /*
  5451. * How much cpu bandwidth does root_task_group get?
  5452. *
  5453. * In case of task-groups formed thr' the cgroup filesystem, it
  5454. * gets 100% of the cpu resources in the system. This overall
  5455. * system cpu resource is divided among the tasks of
  5456. * root_task_group and its child task-groups in a fair manner,
  5457. * based on each entity's (task or task-group's) weight
  5458. * (se->load.weight).
  5459. *
  5460. * In other words, if root_task_group has 10 tasks of weight
  5461. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5462. * then A0's share of the cpu resource is:
  5463. *
  5464. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5465. *
  5466. * We achieve this by letting root_task_group's tasks sit
  5467. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5468. */
  5469. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5470. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5471. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5472. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5473. #ifdef CONFIG_RT_GROUP_SCHED
  5474. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5475. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5476. #endif
  5477. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5478. rq->cpu_load[j] = 0;
  5479. rq->last_load_update_tick = jiffies;
  5480. #ifdef CONFIG_SMP
  5481. rq->sd = NULL;
  5482. rq->rd = NULL;
  5483. rq->cpu_power = SCHED_POWER_SCALE;
  5484. rq->post_schedule = 0;
  5485. rq->active_balance = 0;
  5486. rq->next_balance = jiffies;
  5487. rq->push_cpu = 0;
  5488. rq->cpu = i;
  5489. rq->online = 0;
  5490. rq->idle_stamp = 0;
  5491. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5492. INIT_LIST_HEAD(&rq->cfs_tasks);
  5493. rq_attach_root(rq, &def_root_domain);
  5494. #ifdef CONFIG_NO_HZ_COMMON
  5495. rq->nohz_flags = 0;
  5496. #endif
  5497. #ifdef CONFIG_NO_HZ_FULL
  5498. rq->last_sched_tick = 0;
  5499. #endif
  5500. #endif
  5501. init_rq_hrtick(rq);
  5502. atomic_set(&rq->nr_iowait, 0);
  5503. }
  5504. set_load_weight(&init_task);
  5505. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5506. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5507. #endif
  5508. #ifdef CONFIG_RT_MUTEXES
  5509. plist_head_init(&init_task.pi_waiters);
  5510. #endif
  5511. /*
  5512. * The boot idle thread does lazy MMU switching as well:
  5513. */
  5514. atomic_inc(&init_mm.mm_count);
  5515. enter_lazy_tlb(&init_mm, current);
  5516. /*
  5517. * Make us the idle thread. Technically, schedule() should not be
  5518. * called from this thread, however somewhere below it might be,
  5519. * but because we are the idle thread, we just pick up running again
  5520. * when this runqueue becomes "idle".
  5521. */
  5522. init_idle(current, smp_processor_id());
  5523. calc_load_update = jiffies + LOAD_FREQ;
  5524. /*
  5525. * During early bootup we pretend to be a normal task:
  5526. */
  5527. current->sched_class = &fair_sched_class;
  5528. #ifdef CONFIG_SMP
  5529. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5530. /* May be allocated at isolcpus cmdline parse time */
  5531. if (cpu_isolated_map == NULL)
  5532. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5533. idle_thread_set_boot_cpu();
  5534. #endif
  5535. init_sched_fair_class();
  5536. scheduler_running = 1;
  5537. }
  5538. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5539. static inline int preempt_count_equals(int preempt_offset)
  5540. {
  5541. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5542. return (nested == preempt_offset);
  5543. }
  5544. void __might_sleep(const char *file, int line, int preempt_offset)
  5545. {
  5546. static unsigned long prev_jiffy; /* ratelimiting */
  5547. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5548. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5549. system_state != SYSTEM_RUNNING || oops_in_progress)
  5550. return;
  5551. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5552. return;
  5553. prev_jiffy = jiffies;
  5554. printk(KERN_ERR
  5555. "BUG: sleeping function called from invalid context at %s:%d\n",
  5556. file, line);
  5557. printk(KERN_ERR
  5558. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5559. in_atomic(), irqs_disabled(),
  5560. current->pid, current->comm);
  5561. debug_show_held_locks(current);
  5562. if (irqs_disabled())
  5563. print_irqtrace_events(current);
  5564. dump_stack();
  5565. }
  5566. EXPORT_SYMBOL(__might_sleep);
  5567. #endif
  5568. #ifdef CONFIG_MAGIC_SYSRQ
  5569. static void normalize_task(struct rq *rq, struct task_struct *p)
  5570. {
  5571. const struct sched_class *prev_class = p->sched_class;
  5572. int old_prio = p->prio;
  5573. int on_rq;
  5574. on_rq = p->on_rq;
  5575. if (on_rq)
  5576. dequeue_task(rq, p, 0);
  5577. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5578. if (on_rq) {
  5579. enqueue_task(rq, p, 0);
  5580. resched_task(rq->curr);
  5581. }
  5582. check_class_changed(rq, p, prev_class, old_prio);
  5583. }
  5584. void normalize_rt_tasks(void)
  5585. {
  5586. struct task_struct *g, *p;
  5587. unsigned long flags;
  5588. struct rq *rq;
  5589. read_lock_irqsave(&tasklist_lock, flags);
  5590. do_each_thread(g, p) {
  5591. /*
  5592. * Only normalize user tasks:
  5593. */
  5594. if (!p->mm)
  5595. continue;
  5596. p->se.exec_start = 0;
  5597. #ifdef CONFIG_SCHEDSTATS
  5598. p->se.statistics.wait_start = 0;
  5599. p->se.statistics.sleep_start = 0;
  5600. p->se.statistics.block_start = 0;
  5601. #endif
  5602. if (!rt_task(p)) {
  5603. /*
  5604. * Renice negative nice level userspace
  5605. * tasks back to 0:
  5606. */
  5607. if (TASK_NICE(p) < 0 && p->mm)
  5608. set_user_nice(p, 0);
  5609. continue;
  5610. }
  5611. raw_spin_lock(&p->pi_lock);
  5612. rq = __task_rq_lock(p);
  5613. normalize_task(rq, p);
  5614. __task_rq_unlock(rq);
  5615. raw_spin_unlock(&p->pi_lock);
  5616. } while_each_thread(g, p);
  5617. read_unlock_irqrestore(&tasklist_lock, flags);
  5618. }
  5619. #endif /* CONFIG_MAGIC_SYSRQ */
  5620. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5621. /*
  5622. * These functions are only useful for the IA64 MCA handling, or kdb.
  5623. *
  5624. * They can only be called when the whole system has been
  5625. * stopped - every CPU needs to be quiescent, and no scheduling
  5626. * activity can take place. Using them for anything else would
  5627. * be a serious bug, and as a result, they aren't even visible
  5628. * under any other configuration.
  5629. */
  5630. /**
  5631. * curr_task - return the current task for a given cpu.
  5632. * @cpu: the processor in question.
  5633. *
  5634. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5635. */
  5636. struct task_struct *curr_task(int cpu)
  5637. {
  5638. return cpu_curr(cpu);
  5639. }
  5640. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5641. #ifdef CONFIG_IA64
  5642. /**
  5643. * set_curr_task - set the current task for a given cpu.
  5644. * @cpu: the processor in question.
  5645. * @p: the task pointer to set.
  5646. *
  5647. * Description: This function must only be used when non-maskable interrupts
  5648. * are serviced on a separate stack. It allows the architecture to switch the
  5649. * notion of the current task on a cpu in a non-blocking manner. This function
  5650. * must be called with all CPU's synchronized, and interrupts disabled, the
  5651. * and caller must save the original value of the current task (see
  5652. * curr_task() above) and restore that value before reenabling interrupts and
  5653. * re-starting the system.
  5654. *
  5655. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5656. */
  5657. void set_curr_task(int cpu, struct task_struct *p)
  5658. {
  5659. cpu_curr(cpu) = p;
  5660. }
  5661. #endif
  5662. #ifdef CONFIG_CGROUP_SCHED
  5663. /* task_group_lock serializes the addition/removal of task groups */
  5664. static DEFINE_SPINLOCK(task_group_lock);
  5665. static void free_sched_group(struct task_group *tg)
  5666. {
  5667. free_fair_sched_group(tg);
  5668. free_rt_sched_group(tg);
  5669. autogroup_free(tg);
  5670. kfree(tg);
  5671. }
  5672. /* allocate runqueue etc for a new task group */
  5673. struct task_group *sched_create_group(struct task_group *parent)
  5674. {
  5675. struct task_group *tg;
  5676. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5677. if (!tg)
  5678. return ERR_PTR(-ENOMEM);
  5679. if (!alloc_fair_sched_group(tg, parent))
  5680. goto err;
  5681. if (!alloc_rt_sched_group(tg, parent))
  5682. goto err;
  5683. return tg;
  5684. err:
  5685. free_sched_group(tg);
  5686. return ERR_PTR(-ENOMEM);
  5687. }
  5688. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5689. {
  5690. unsigned long flags;
  5691. spin_lock_irqsave(&task_group_lock, flags);
  5692. list_add_rcu(&tg->list, &task_groups);
  5693. WARN_ON(!parent); /* root should already exist */
  5694. tg->parent = parent;
  5695. INIT_LIST_HEAD(&tg->children);
  5696. list_add_rcu(&tg->siblings, &parent->children);
  5697. spin_unlock_irqrestore(&task_group_lock, flags);
  5698. }
  5699. /* rcu callback to free various structures associated with a task group */
  5700. static void free_sched_group_rcu(struct rcu_head *rhp)
  5701. {
  5702. /* now it should be safe to free those cfs_rqs */
  5703. free_sched_group(container_of(rhp, struct task_group, rcu));
  5704. }
  5705. /* Destroy runqueue etc associated with a task group */
  5706. void sched_destroy_group(struct task_group *tg)
  5707. {
  5708. /* wait for possible concurrent references to cfs_rqs complete */
  5709. call_rcu(&tg->rcu, free_sched_group_rcu);
  5710. }
  5711. void sched_offline_group(struct task_group *tg)
  5712. {
  5713. unsigned long flags;
  5714. int i;
  5715. /* end participation in shares distribution */
  5716. for_each_possible_cpu(i)
  5717. unregister_fair_sched_group(tg, i);
  5718. spin_lock_irqsave(&task_group_lock, flags);
  5719. list_del_rcu(&tg->list);
  5720. list_del_rcu(&tg->siblings);
  5721. spin_unlock_irqrestore(&task_group_lock, flags);
  5722. }
  5723. /* change task's runqueue when it moves between groups.
  5724. * The caller of this function should have put the task in its new group
  5725. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5726. * reflect its new group.
  5727. */
  5728. void sched_move_task(struct task_struct *tsk)
  5729. {
  5730. struct task_group *tg;
  5731. int on_rq, running;
  5732. unsigned long flags;
  5733. struct rq *rq;
  5734. rq = task_rq_lock(tsk, &flags);
  5735. running = task_current(rq, tsk);
  5736. on_rq = tsk->on_rq;
  5737. if (on_rq)
  5738. dequeue_task(rq, tsk, 0);
  5739. if (unlikely(running))
  5740. tsk->sched_class->put_prev_task(rq, tsk);
  5741. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  5742. lockdep_is_held(&tsk->sighand->siglock)),
  5743. struct task_group, css);
  5744. tg = autogroup_task_group(tsk, tg);
  5745. tsk->sched_task_group = tg;
  5746. #ifdef CONFIG_FAIR_GROUP_SCHED
  5747. if (tsk->sched_class->task_move_group)
  5748. tsk->sched_class->task_move_group(tsk, on_rq);
  5749. else
  5750. #endif
  5751. set_task_rq(tsk, task_cpu(tsk));
  5752. if (unlikely(running))
  5753. tsk->sched_class->set_curr_task(rq);
  5754. if (on_rq)
  5755. enqueue_task(rq, tsk, 0);
  5756. task_rq_unlock(rq, tsk, &flags);
  5757. }
  5758. #endif /* CONFIG_CGROUP_SCHED */
  5759. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  5760. static unsigned long to_ratio(u64 period, u64 runtime)
  5761. {
  5762. if (runtime == RUNTIME_INF)
  5763. return 1ULL << 20;
  5764. return div64_u64(runtime << 20, period);
  5765. }
  5766. #endif
  5767. #ifdef CONFIG_RT_GROUP_SCHED
  5768. /*
  5769. * Ensure that the real time constraints are schedulable.
  5770. */
  5771. static DEFINE_MUTEX(rt_constraints_mutex);
  5772. /* Must be called with tasklist_lock held */
  5773. static inline int tg_has_rt_tasks(struct task_group *tg)
  5774. {
  5775. struct task_struct *g, *p;
  5776. do_each_thread(g, p) {
  5777. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  5778. return 1;
  5779. } while_each_thread(g, p);
  5780. return 0;
  5781. }
  5782. struct rt_schedulable_data {
  5783. struct task_group *tg;
  5784. u64 rt_period;
  5785. u64 rt_runtime;
  5786. };
  5787. static int tg_rt_schedulable(struct task_group *tg, void *data)
  5788. {
  5789. struct rt_schedulable_data *d = data;
  5790. struct task_group *child;
  5791. unsigned long total, sum = 0;
  5792. u64 period, runtime;
  5793. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5794. runtime = tg->rt_bandwidth.rt_runtime;
  5795. if (tg == d->tg) {
  5796. period = d->rt_period;
  5797. runtime = d->rt_runtime;
  5798. }
  5799. /*
  5800. * Cannot have more runtime than the period.
  5801. */
  5802. if (runtime > period && runtime != RUNTIME_INF)
  5803. return -EINVAL;
  5804. /*
  5805. * Ensure we don't starve existing RT tasks.
  5806. */
  5807. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  5808. return -EBUSY;
  5809. total = to_ratio(period, runtime);
  5810. /*
  5811. * Nobody can have more than the global setting allows.
  5812. */
  5813. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  5814. return -EINVAL;
  5815. /*
  5816. * The sum of our children's runtime should not exceed our own.
  5817. */
  5818. list_for_each_entry_rcu(child, &tg->children, siblings) {
  5819. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  5820. runtime = child->rt_bandwidth.rt_runtime;
  5821. if (child == d->tg) {
  5822. period = d->rt_period;
  5823. runtime = d->rt_runtime;
  5824. }
  5825. sum += to_ratio(period, runtime);
  5826. }
  5827. if (sum > total)
  5828. return -EINVAL;
  5829. return 0;
  5830. }
  5831. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  5832. {
  5833. int ret;
  5834. struct rt_schedulable_data data = {
  5835. .tg = tg,
  5836. .rt_period = period,
  5837. .rt_runtime = runtime,
  5838. };
  5839. rcu_read_lock();
  5840. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  5841. rcu_read_unlock();
  5842. return ret;
  5843. }
  5844. static int tg_set_rt_bandwidth(struct task_group *tg,
  5845. u64 rt_period, u64 rt_runtime)
  5846. {
  5847. int i, err = 0;
  5848. mutex_lock(&rt_constraints_mutex);
  5849. read_lock(&tasklist_lock);
  5850. err = __rt_schedulable(tg, rt_period, rt_runtime);
  5851. if (err)
  5852. goto unlock;
  5853. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5854. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  5855. tg->rt_bandwidth.rt_runtime = rt_runtime;
  5856. for_each_possible_cpu(i) {
  5857. struct rt_rq *rt_rq = tg->rt_rq[i];
  5858. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5859. rt_rq->rt_runtime = rt_runtime;
  5860. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5861. }
  5862. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5863. unlock:
  5864. read_unlock(&tasklist_lock);
  5865. mutex_unlock(&rt_constraints_mutex);
  5866. return err;
  5867. }
  5868. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  5869. {
  5870. u64 rt_runtime, rt_period;
  5871. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5872. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  5873. if (rt_runtime_us < 0)
  5874. rt_runtime = RUNTIME_INF;
  5875. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5876. }
  5877. static long sched_group_rt_runtime(struct task_group *tg)
  5878. {
  5879. u64 rt_runtime_us;
  5880. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  5881. return -1;
  5882. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  5883. do_div(rt_runtime_us, NSEC_PER_USEC);
  5884. return rt_runtime_us;
  5885. }
  5886. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  5887. {
  5888. u64 rt_runtime, rt_period;
  5889. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  5890. rt_runtime = tg->rt_bandwidth.rt_runtime;
  5891. if (rt_period == 0)
  5892. return -EINVAL;
  5893. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5894. }
  5895. static long sched_group_rt_period(struct task_group *tg)
  5896. {
  5897. u64 rt_period_us;
  5898. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5899. do_div(rt_period_us, NSEC_PER_USEC);
  5900. return rt_period_us;
  5901. }
  5902. static int sched_rt_global_constraints(void)
  5903. {
  5904. u64 runtime, period;
  5905. int ret = 0;
  5906. if (sysctl_sched_rt_period <= 0)
  5907. return -EINVAL;
  5908. runtime = global_rt_runtime();
  5909. period = global_rt_period();
  5910. /*
  5911. * Sanity check on the sysctl variables.
  5912. */
  5913. if (runtime > period && runtime != RUNTIME_INF)
  5914. return -EINVAL;
  5915. mutex_lock(&rt_constraints_mutex);
  5916. read_lock(&tasklist_lock);
  5917. ret = __rt_schedulable(NULL, 0, 0);
  5918. read_unlock(&tasklist_lock);
  5919. mutex_unlock(&rt_constraints_mutex);
  5920. return ret;
  5921. }
  5922. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  5923. {
  5924. /* Don't accept realtime tasks when there is no way for them to run */
  5925. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  5926. return 0;
  5927. return 1;
  5928. }
  5929. #else /* !CONFIG_RT_GROUP_SCHED */
  5930. static int sched_rt_global_constraints(void)
  5931. {
  5932. unsigned long flags;
  5933. int i;
  5934. if (sysctl_sched_rt_period <= 0)
  5935. return -EINVAL;
  5936. /*
  5937. * There's always some RT tasks in the root group
  5938. * -- migration, kstopmachine etc..
  5939. */
  5940. if (sysctl_sched_rt_runtime == 0)
  5941. return -EBUSY;
  5942. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  5943. for_each_possible_cpu(i) {
  5944. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  5945. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5946. rt_rq->rt_runtime = global_rt_runtime();
  5947. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5948. }
  5949. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  5950. return 0;
  5951. }
  5952. #endif /* CONFIG_RT_GROUP_SCHED */
  5953. int sched_rr_handler(struct ctl_table *table, int write,
  5954. void __user *buffer, size_t *lenp,
  5955. loff_t *ppos)
  5956. {
  5957. int ret;
  5958. static DEFINE_MUTEX(mutex);
  5959. mutex_lock(&mutex);
  5960. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  5961. /* make sure that internally we keep jiffies */
  5962. /* also, writing zero resets timeslice to default */
  5963. if (!ret && write) {
  5964. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  5965. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  5966. }
  5967. mutex_unlock(&mutex);
  5968. return ret;
  5969. }
  5970. int sched_rt_handler(struct ctl_table *table, int write,
  5971. void __user *buffer, size_t *lenp,
  5972. loff_t *ppos)
  5973. {
  5974. int ret;
  5975. int old_period, old_runtime;
  5976. static DEFINE_MUTEX(mutex);
  5977. mutex_lock(&mutex);
  5978. old_period = sysctl_sched_rt_period;
  5979. old_runtime = sysctl_sched_rt_runtime;
  5980. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  5981. if (!ret && write) {
  5982. ret = sched_rt_global_constraints();
  5983. if (ret) {
  5984. sysctl_sched_rt_period = old_period;
  5985. sysctl_sched_rt_runtime = old_runtime;
  5986. } else {
  5987. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  5988. def_rt_bandwidth.rt_period =
  5989. ns_to_ktime(global_rt_period());
  5990. }
  5991. }
  5992. mutex_unlock(&mutex);
  5993. return ret;
  5994. }
  5995. #ifdef CONFIG_CGROUP_SCHED
  5996. /* return corresponding task_group object of a cgroup */
  5997. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  5998. {
  5999. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6000. struct task_group, css);
  6001. }
  6002. static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
  6003. {
  6004. struct task_group *tg, *parent;
  6005. if (!cgrp->parent) {
  6006. /* This is early initialization for the top cgroup */
  6007. return &root_task_group.css;
  6008. }
  6009. parent = cgroup_tg(cgrp->parent);
  6010. tg = sched_create_group(parent);
  6011. if (IS_ERR(tg))
  6012. return ERR_PTR(-ENOMEM);
  6013. return &tg->css;
  6014. }
  6015. static int cpu_cgroup_css_online(struct cgroup *cgrp)
  6016. {
  6017. struct task_group *tg = cgroup_tg(cgrp);
  6018. struct task_group *parent;
  6019. if (!cgrp->parent)
  6020. return 0;
  6021. parent = cgroup_tg(cgrp->parent);
  6022. sched_online_group(tg, parent);
  6023. return 0;
  6024. }
  6025. static void cpu_cgroup_css_free(struct cgroup *cgrp)
  6026. {
  6027. struct task_group *tg = cgroup_tg(cgrp);
  6028. sched_destroy_group(tg);
  6029. }
  6030. static void cpu_cgroup_css_offline(struct cgroup *cgrp)
  6031. {
  6032. struct task_group *tg = cgroup_tg(cgrp);
  6033. sched_offline_group(tg);
  6034. }
  6035. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6036. struct cgroup_taskset *tset)
  6037. {
  6038. struct task_struct *task;
  6039. cgroup_taskset_for_each(task, cgrp, tset) {
  6040. #ifdef CONFIG_RT_GROUP_SCHED
  6041. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6042. return -EINVAL;
  6043. #else
  6044. /* We don't support RT-tasks being in separate groups */
  6045. if (task->sched_class != &fair_sched_class)
  6046. return -EINVAL;
  6047. #endif
  6048. }
  6049. return 0;
  6050. }
  6051. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6052. struct cgroup_taskset *tset)
  6053. {
  6054. struct task_struct *task;
  6055. cgroup_taskset_for_each(task, cgrp, tset)
  6056. sched_move_task(task);
  6057. }
  6058. static void
  6059. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6060. struct task_struct *task)
  6061. {
  6062. /*
  6063. * cgroup_exit() is called in the copy_process() failure path.
  6064. * Ignore this case since the task hasn't ran yet, this avoids
  6065. * trying to poke a half freed task state from generic code.
  6066. */
  6067. if (!(task->flags & PF_EXITING))
  6068. return;
  6069. sched_move_task(task);
  6070. }
  6071. #ifdef CONFIG_FAIR_GROUP_SCHED
  6072. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6073. u64 shareval)
  6074. {
  6075. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6076. }
  6077. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6078. {
  6079. struct task_group *tg = cgroup_tg(cgrp);
  6080. return (u64) scale_load_down(tg->shares);
  6081. }
  6082. #ifdef CONFIG_CFS_BANDWIDTH
  6083. static DEFINE_MUTEX(cfs_constraints_mutex);
  6084. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6085. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6086. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6087. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6088. {
  6089. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6090. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6091. if (tg == &root_task_group)
  6092. return -EINVAL;
  6093. /*
  6094. * Ensure we have at some amount of bandwidth every period. This is
  6095. * to prevent reaching a state of large arrears when throttled via
  6096. * entity_tick() resulting in prolonged exit starvation.
  6097. */
  6098. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6099. return -EINVAL;
  6100. /*
  6101. * Likewise, bound things on the otherside by preventing insane quota
  6102. * periods. This also allows us to normalize in computing quota
  6103. * feasibility.
  6104. */
  6105. if (period > max_cfs_quota_period)
  6106. return -EINVAL;
  6107. mutex_lock(&cfs_constraints_mutex);
  6108. ret = __cfs_schedulable(tg, period, quota);
  6109. if (ret)
  6110. goto out_unlock;
  6111. runtime_enabled = quota != RUNTIME_INF;
  6112. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6113. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6114. raw_spin_lock_irq(&cfs_b->lock);
  6115. cfs_b->period = ns_to_ktime(period);
  6116. cfs_b->quota = quota;
  6117. __refill_cfs_bandwidth_runtime(cfs_b);
  6118. /* restart the period timer (if active) to handle new period expiry */
  6119. if (runtime_enabled && cfs_b->timer_active) {
  6120. /* force a reprogram */
  6121. cfs_b->timer_active = 0;
  6122. __start_cfs_bandwidth(cfs_b);
  6123. }
  6124. raw_spin_unlock_irq(&cfs_b->lock);
  6125. for_each_possible_cpu(i) {
  6126. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6127. struct rq *rq = cfs_rq->rq;
  6128. raw_spin_lock_irq(&rq->lock);
  6129. cfs_rq->runtime_enabled = runtime_enabled;
  6130. cfs_rq->runtime_remaining = 0;
  6131. if (cfs_rq->throttled)
  6132. unthrottle_cfs_rq(cfs_rq);
  6133. raw_spin_unlock_irq(&rq->lock);
  6134. }
  6135. out_unlock:
  6136. mutex_unlock(&cfs_constraints_mutex);
  6137. return ret;
  6138. }
  6139. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6140. {
  6141. u64 quota, period;
  6142. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6143. if (cfs_quota_us < 0)
  6144. quota = RUNTIME_INF;
  6145. else
  6146. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6147. return tg_set_cfs_bandwidth(tg, period, quota);
  6148. }
  6149. long tg_get_cfs_quota(struct task_group *tg)
  6150. {
  6151. u64 quota_us;
  6152. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6153. return -1;
  6154. quota_us = tg->cfs_bandwidth.quota;
  6155. do_div(quota_us, NSEC_PER_USEC);
  6156. return quota_us;
  6157. }
  6158. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6159. {
  6160. u64 quota, period;
  6161. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6162. quota = tg->cfs_bandwidth.quota;
  6163. return tg_set_cfs_bandwidth(tg, period, quota);
  6164. }
  6165. long tg_get_cfs_period(struct task_group *tg)
  6166. {
  6167. u64 cfs_period_us;
  6168. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6169. do_div(cfs_period_us, NSEC_PER_USEC);
  6170. return cfs_period_us;
  6171. }
  6172. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6173. {
  6174. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6175. }
  6176. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6177. s64 cfs_quota_us)
  6178. {
  6179. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6180. }
  6181. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6182. {
  6183. return tg_get_cfs_period(cgroup_tg(cgrp));
  6184. }
  6185. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6186. u64 cfs_period_us)
  6187. {
  6188. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6189. }
  6190. struct cfs_schedulable_data {
  6191. struct task_group *tg;
  6192. u64 period, quota;
  6193. };
  6194. /*
  6195. * normalize group quota/period to be quota/max_period
  6196. * note: units are usecs
  6197. */
  6198. static u64 normalize_cfs_quota(struct task_group *tg,
  6199. struct cfs_schedulable_data *d)
  6200. {
  6201. u64 quota, period;
  6202. if (tg == d->tg) {
  6203. period = d->period;
  6204. quota = d->quota;
  6205. } else {
  6206. period = tg_get_cfs_period(tg);
  6207. quota = tg_get_cfs_quota(tg);
  6208. }
  6209. /* note: these should typically be equivalent */
  6210. if (quota == RUNTIME_INF || quota == -1)
  6211. return RUNTIME_INF;
  6212. return to_ratio(period, quota);
  6213. }
  6214. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6215. {
  6216. struct cfs_schedulable_data *d = data;
  6217. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6218. s64 quota = 0, parent_quota = -1;
  6219. if (!tg->parent) {
  6220. quota = RUNTIME_INF;
  6221. } else {
  6222. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6223. quota = normalize_cfs_quota(tg, d);
  6224. parent_quota = parent_b->hierarchal_quota;
  6225. /*
  6226. * ensure max(child_quota) <= parent_quota, inherit when no
  6227. * limit is set
  6228. */
  6229. if (quota == RUNTIME_INF)
  6230. quota = parent_quota;
  6231. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6232. return -EINVAL;
  6233. }
  6234. cfs_b->hierarchal_quota = quota;
  6235. return 0;
  6236. }
  6237. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6238. {
  6239. int ret;
  6240. struct cfs_schedulable_data data = {
  6241. .tg = tg,
  6242. .period = period,
  6243. .quota = quota,
  6244. };
  6245. if (quota != RUNTIME_INF) {
  6246. do_div(data.period, NSEC_PER_USEC);
  6247. do_div(data.quota, NSEC_PER_USEC);
  6248. }
  6249. rcu_read_lock();
  6250. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6251. rcu_read_unlock();
  6252. return ret;
  6253. }
  6254. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6255. struct cgroup_map_cb *cb)
  6256. {
  6257. struct task_group *tg = cgroup_tg(cgrp);
  6258. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6259. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6260. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6261. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6262. return 0;
  6263. }
  6264. #endif /* CONFIG_CFS_BANDWIDTH */
  6265. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6266. #ifdef CONFIG_RT_GROUP_SCHED
  6267. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6268. s64 val)
  6269. {
  6270. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6271. }
  6272. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6273. {
  6274. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6275. }
  6276. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6277. u64 rt_period_us)
  6278. {
  6279. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6280. }
  6281. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6282. {
  6283. return sched_group_rt_period(cgroup_tg(cgrp));
  6284. }
  6285. #endif /* CONFIG_RT_GROUP_SCHED */
  6286. static struct cftype cpu_files[] = {
  6287. #ifdef CONFIG_FAIR_GROUP_SCHED
  6288. {
  6289. .name = "shares",
  6290. .read_u64 = cpu_shares_read_u64,
  6291. .write_u64 = cpu_shares_write_u64,
  6292. },
  6293. #endif
  6294. #ifdef CONFIG_CFS_BANDWIDTH
  6295. {
  6296. .name = "cfs_quota_us",
  6297. .read_s64 = cpu_cfs_quota_read_s64,
  6298. .write_s64 = cpu_cfs_quota_write_s64,
  6299. },
  6300. {
  6301. .name = "cfs_period_us",
  6302. .read_u64 = cpu_cfs_period_read_u64,
  6303. .write_u64 = cpu_cfs_period_write_u64,
  6304. },
  6305. {
  6306. .name = "stat",
  6307. .read_map = cpu_stats_show,
  6308. },
  6309. #endif
  6310. #ifdef CONFIG_RT_GROUP_SCHED
  6311. {
  6312. .name = "rt_runtime_us",
  6313. .read_s64 = cpu_rt_runtime_read,
  6314. .write_s64 = cpu_rt_runtime_write,
  6315. },
  6316. {
  6317. .name = "rt_period_us",
  6318. .read_u64 = cpu_rt_period_read_uint,
  6319. .write_u64 = cpu_rt_period_write_uint,
  6320. },
  6321. #endif
  6322. { } /* terminate */
  6323. };
  6324. struct cgroup_subsys cpu_cgroup_subsys = {
  6325. .name = "cpu",
  6326. .css_alloc = cpu_cgroup_css_alloc,
  6327. .css_free = cpu_cgroup_css_free,
  6328. .css_online = cpu_cgroup_css_online,
  6329. .css_offline = cpu_cgroup_css_offline,
  6330. .can_attach = cpu_cgroup_can_attach,
  6331. .attach = cpu_cgroup_attach,
  6332. .exit = cpu_cgroup_exit,
  6333. .subsys_id = cpu_cgroup_subsys_id,
  6334. .base_cftypes = cpu_files,
  6335. .early_init = 1,
  6336. };
  6337. #endif /* CONFIG_CGROUP_SCHED */
  6338. void dump_cpu_task(int cpu)
  6339. {
  6340. pr_info("Task dump for CPU %d:\n", cpu);
  6341. sched_show_task(cpu_curr(cpu));
  6342. }