disk-io.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <linux/semaphore.h>
  34. #include <asm/unaligned.h>
  35. #include "compat.h"
  36. #include "ctree.h"
  37. #include "disk-io.h"
  38. #include "transaction.h"
  39. #include "btrfs_inode.h"
  40. #include "volumes.h"
  41. #include "print-tree.h"
  42. #include "async-thread.h"
  43. #include "locking.h"
  44. #include "tree-log.h"
  45. #include "free-space-cache.h"
  46. #include "inode-map.h"
  47. #include "check-integrity.h"
  48. #include "rcu-string.h"
  49. #include "dev-replace.h"
  50. #include "raid56.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  277. "failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id, buf->start,
  280. val, found, btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. eb->start, parent_transid, btrfs_header_generation(eb));
  318. ret = 1;
  319. clear_extent_buffer_uptodate(eb);
  320. out:
  321. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  322. &cached_state, GFP_NOFS);
  323. return ret;
  324. }
  325. /*
  326. * Return 0 if the superblock checksum type matches the checksum value of that
  327. * algorithm. Pass the raw disk superblock data.
  328. */
  329. static int btrfs_check_super_csum(char *raw_disk_sb)
  330. {
  331. struct btrfs_super_block *disk_sb =
  332. (struct btrfs_super_block *)raw_disk_sb;
  333. u16 csum_type = btrfs_super_csum_type(disk_sb);
  334. int ret = 0;
  335. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  336. u32 crc = ~(u32)0;
  337. const int csum_size = sizeof(crc);
  338. char result[csum_size];
  339. /*
  340. * The super_block structure does not span the whole
  341. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  342. * is filled with zeros and is included in the checkum.
  343. */
  344. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  345. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  346. btrfs_csum_final(crc, result);
  347. if (memcmp(raw_disk_sb, result, csum_size))
  348. ret = 1;
  349. if (ret && btrfs_super_generation(disk_sb) < 10) {
  350. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  351. ret = 0;
  352. }
  353. }
  354. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  355. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  356. csum_type);
  357. ret = 1;
  358. }
  359. return ret;
  360. }
  361. /*
  362. * helper to read a given tree block, doing retries as required when
  363. * the checksums don't match and we have alternate mirrors to try.
  364. */
  365. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  366. struct extent_buffer *eb,
  367. u64 start, u64 parent_transid)
  368. {
  369. struct extent_io_tree *io_tree;
  370. int failed = 0;
  371. int ret;
  372. int num_copies = 0;
  373. int mirror_num = 0;
  374. int failed_mirror = 0;
  375. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  376. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  377. while (1) {
  378. ret = read_extent_buffer_pages(io_tree, eb, start,
  379. WAIT_COMPLETE,
  380. btree_get_extent, mirror_num);
  381. if (!ret) {
  382. if (!verify_parent_transid(io_tree, eb,
  383. parent_transid, 0))
  384. break;
  385. else
  386. ret = -EIO;
  387. }
  388. /*
  389. * This buffer's crc is fine, but its contents are corrupted, so
  390. * there is no reason to read the other copies, they won't be
  391. * any less wrong.
  392. */
  393. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  394. break;
  395. num_copies = btrfs_num_copies(root->fs_info,
  396. eb->start, eb->len);
  397. if (num_copies == 1)
  398. break;
  399. if (!failed_mirror) {
  400. failed = 1;
  401. failed_mirror = eb->read_mirror;
  402. }
  403. mirror_num++;
  404. if (mirror_num == failed_mirror)
  405. mirror_num++;
  406. if (mirror_num > num_copies)
  407. break;
  408. }
  409. if (failed && !ret && failed_mirror)
  410. repair_eb_io_failure(root, eb, failed_mirror);
  411. return ret;
  412. }
  413. /*
  414. * checksum a dirty tree block before IO. This has extra checks to make sure
  415. * we only fill in the checksum field in the first page of a multi-page block
  416. */
  417. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  418. {
  419. struct extent_io_tree *tree;
  420. u64 start = page_offset(page);
  421. u64 found_start;
  422. struct extent_buffer *eb;
  423. tree = &BTRFS_I(page->mapping->host)->io_tree;
  424. eb = (struct extent_buffer *)page->private;
  425. if (page != eb->pages[0])
  426. return 0;
  427. found_start = btrfs_header_bytenr(eb);
  428. if (found_start != start) {
  429. WARN_ON(1);
  430. return 0;
  431. }
  432. if (!PageUptodate(page)) {
  433. WARN_ON(1);
  434. return 0;
  435. }
  436. csum_tree_block(root, eb, 0);
  437. return 0;
  438. }
  439. static int check_tree_block_fsid(struct btrfs_root *root,
  440. struct extent_buffer *eb)
  441. {
  442. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  443. u8 fsid[BTRFS_UUID_SIZE];
  444. int ret = 1;
  445. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  446. while (fs_devices) {
  447. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  448. ret = 0;
  449. break;
  450. }
  451. fs_devices = fs_devices->seed;
  452. }
  453. return ret;
  454. }
  455. #define CORRUPT(reason, eb, root, slot) \
  456. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  457. "root=%llu, slot=%d\n", reason, \
  458. btrfs_header_bytenr(eb), root->objectid, slot)
  459. static noinline int check_leaf(struct btrfs_root *root,
  460. struct extent_buffer *leaf)
  461. {
  462. struct btrfs_key key;
  463. struct btrfs_key leaf_key;
  464. u32 nritems = btrfs_header_nritems(leaf);
  465. int slot;
  466. if (nritems == 0)
  467. return 0;
  468. /* Check the 0 item */
  469. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  470. BTRFS_LEAF_DATA_SIZE(root)) {
  471. CORRUPT("invalid item offset size pair", leaf, root, 0);
  472. return -EIO;
  473. }
  474. /*
  475. * Check to make sure each items keys are in the correct order and their
  476. * offsets make sense. We only have to loop through nritems-1 because
  477. * we check the current slot against the next slot, which verifies the
  478. * next slot's offset+size makes sense and that the current's slot
  479. * offset is correct.
  480. */
  481. for (slot = 0; slot < nritems - 1; slot++) {
  482. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  483. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  484. /* Make sure the keys are in the right order */
  485. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  486. CORRUPT("bad key order", leaf, root, slot);
  487. return -EIO;
  488. }
  489. /*
  490. * Make sure the offset and ends are right, remember that the
  491. * item data starts at the end of the leaf and grows towards the
  492. * front.
  493. */
  494. if (btrfs_item_offset_nr(leaf, slot) !=
  495. btrfs_item_end_nr(leaf, slot + 1)) {
  496. CORRUPT("slot offset bad", leaf, root, slot);
  497. return -EIO;
  498. }
  499. /*
  500. * Check to make sure that we don't point outside of the leaf,
  501. * just incase all the items are consistent to eachother, but
  502. * all point outside of the leaf.
  503. */
  504. if (btrfs_item_end_nr(leaf, slot) >
  505. BTRFS_LEAF_DATA_SIZE(root)) {
  506. CORRUPT("slot end outside of leaf", leaf, root, slot);
  507. return -EIO;
  508. }
  509. }
  510. return 0;
  511. }
  512. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  513. u64 phy_offset, struct page *page,
  514. u64 start, u64 end, int mirror)
  515. {
  516. struct extent_io_tree *tree;
  517. u64 found_start;
  518. int found_level;
  519. struct extent_buffer *eb;
  520. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  521. int ret = 0;
  522. int reads_done;
  523. if (!page->private)
  524. goto out;
  525. tree = &BTRFS_I(page->mapping->host)->io_tree;
  526. eb = (struct extent_buffer *)page->private;
  527. /* the pending IO might have been the only thing that kept this buffer
  528. * in memory. Make sure we have a ref for all this other checks
  529. */
  530. extent_buffer_get(eb);
  531. reads_done = atomic_dec_and_test(&eb->io_pages);
  532. if (!reads_done)
  533. goto err;
  534. eb->read_mirror = mirror;
  535. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  536. ret = -EIO;
  537. goto err;
  538. }
  539. found_start = btrfs_header_bytenr(eb);
  540. if (found_start != eb->start) {
  541. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  542. "%llu %llu\n",
  543. found_start, eb->start);
  544. ret = -EIO;
  545. goto err;
  546. }
  547. if (check_tree_block_fsid(root, eb)) {
  548. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  549. eb->start);
  550. ret = -EIO;
  551. goto err;
  552. }
  553. found_level = btrfs_header_level(eb);
  554. if (found_level >= BTRFS_MAX_LEVEL) {
  555. btrfs_info(root->fs_info, "bad tree block level %d\n",
  556. (int)btrfs_header_level(eb));
  557. ret = -EIO;
  558. goto err;
  559. }
  560. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  561. eb, found_level);
  562. ret = csum_tree_block(root, eb, 1);
  563. if (ret) {
  564. ret = -EIO;
  565. goto err;
  566. }
  567. /*
  568. * If this is a leaf block and it is corrupt, set the corrupt bit so
  569. * that we don't try and read the other copies of this block, just
  570. * return -EIO.
  571. */
  572. if (found_level == 0 && check_leaf(root, eb)) {
  573. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  574. ret = -EIO;
  575. }
  576. if (!ret)
  577. set_extent_buffer_uptodate(eb);
  578. err:
  579. if (reads_done &&
  580. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  581. btree_readahead_hook(root, eb, eb->start, ret);
  582. if (ret) {
  583. /*
  584. * our io error hook is going to dec the io pages
  585. * again, we have to make sure it has something
  586. * to decrement
  587. */
  588. atomic_inc(&eb->io_pages);
  589. clear_extent_buffer_uptodate(eb);
  590. }
  591. free_extent_buffer(eb);
  592. out:
  593. return ret;
  594. }
  595. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  596. {
  597. struct extent_buffer *eb;
  598. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  599. eb = (struct extent_buffer *)page->private;
  600. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  601. eb->read_mirror = failed_mirror;
  602. atomic_dec(&eb->io_pages);
  603. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  604. btree_readahead_hook(root, eb, eb->start, -EIO);
  605. return -EIO; /* we fixed nothing */
  606. }
  607. static void end_workqueue_bio(struct bio *bio, int err)
  608. {
  609. struct end_io_wq *end_io_wq = bio->bi_private;
  610. struct btrfs_fs_info *fs_info;
  611. fs_info = end_io_wq->info;
  612. end_io_wq->error = err;
  613. end_io_wq->work.func = end_workqueue_fn;
  614. end_io_wq->work.flags = 0;
  615. if (bio->bi_rw & REQ_WRITE) {
  616. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  617. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  618. &end_io_wq->work);
  619. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  620. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  621. &end_io_wq->work);
  622. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  623. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  624. &end_io_wq->work);
  625. else
  626. btrfs_queue_worker(&fs_info->endio_write_workers,
  627. &end_io_wq->work);
  628. } else {
  629. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  630. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  631. &end_io_wq->work);
  632. else if (end_io_wq->metadata)
  633. btrfs_queue_worker(&fs_info->endio_meta_workers,
  634. &end_io_wq->work);
  635. else
  636. btrfs_queue_worker(&fs_info->endio_workers,
  637. &end_io_wq->work);
  638. }
  639. }
  640. /*
  641. * For the metadata arg you want
  642. *
  643. * 0 - if data
  644. * 1 - if normal metadta
  645. * 2 - if writing to the free space cache area
  646. * 3 - raid parity work
  647. */
  648. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  649. int metadata)
  650. {
  651. struct end_io_wq *end_io_wq;
  652. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  653. if (!end_io_wq)
  654. return -ENOMEM;
  655. end_io_wq->private = bio->bi_private;
  656. end_io_wq->end_io = bio->bi_end_io;
  657. end_io_wq->info = info;
  658. end_io_wq->error = 0;
  659. end_io_wq->bio = bio;
  660. end_io_wq->metadata = metadata;
  661. bio->bi_private = end_io_wq;
  662. bio->bi_end_io = end_workqueue_bio;
  663. return 0;
  664. }
  665. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  666. {
  667. unsigned long limit = min_t(unsigned long,
  668. info->workers.max_workers,
  669. info->fs_devices->open_devices);
  670. return 256 * limit;
  671. }
  672. static void run_one_async_start(struct btrfs_work *work)
  673. {
  674. struct async_submit_bio *async;
  675. int ret;
  676. async = container_of(work, struct async_submit_bio, work);
  677. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  678. async->mirror_num, async->bio_flags,
  679. async->bio_offset);
  680. if (ret)
  681. async->error = ret;
  682. }
  683. static void run_one_async_done(struct btrfs_work *work)
  684. {
  685. struct btrfs_fs_info *fs_info;
  686. struct async_submit_bio *async;
  687. int limit;
  688. async = container_of(work, struct async_submit_bio, work);
  689. fs_info = BTRFS_I(async->inode)->root->fs_info;
  690. limit = btrfs_async_submit_limit(fs_info);
  691. limit = limit * 2 / 3;
  692. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  693. waitqueue_active(&fs_info->async_submit_wait))
  694. wake_up(&fs_info->async_submit_wait);
  695. /* If an error occured we just want to clean up the bio and move on */
  696. if (async->error) {
  697. bio_endio(async->bio, async->error);
  698. return;
  699. }
  700. async->submit_bio_done(async->inode, async->rw, async->bio,
  701. async->mirror_num, async->bio_flags,
  702. async->bio_offset);
  703. }
  704. static void run_one_async_free(struct btrfs_work *work)
  705. {
  706. struct async_submit_bio *async;
  707. async = container_of(work, struct async_submit_bio, work);
  708. kfree(async);
  709. }
  710. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  711. int rw, struct bio *bio, int mirror_num,
  712. unsigned long bio_flags,
  713. u64 bio_offset,
  714. extent_submit_bio_hook_t *submit_bio_start,
  715. extent_submit_bio_hook_t *submit_bio_done)
  716. {
  717. struct async_submit_bio *async;
  718. async = kmalloc(sizeof(*async), GFP_NOFS);
  719. if (!async)
  720. return -ENOMEM;
  721. async->inode = inode;
  722. async->rw = rw;
  723. async->bio = bio;
  724. async->mirror_num = mirror_num;
  725. async->submit_bio_start = submit_bio_start;
  726. async->submit_bio_done = submit_bio_done;
  727. async->work.func = run_one_async_start;
  728. async->work.ordered_func = run_one_async_done;
  729. async->work.ordered_free = run_one_async_free;
  730. async->work.flags = 0;
  731. async->bio_flags = bio_flags;
  732. async->bio_offset = bio_offset;
  733. async->error = 0;
  734. atomic_inc(&fs_info->nr_async_submits);
  735. if (rw & REQ_SYNC)
  736. btrfs_set_work_high_prio(&async->work);
  737. btrfs_queue_worker(&fs_info->workers, &async->work);
  738. while (atomic_read(&fs_info->async_submit_draining) &&
  739. atomic_read(&fs_info->nr_async_submits)) {
  740. wait_event(fs_info->async_submit_wait,
  741. (atomic_read(&fs_info->nr_async_submits) == 0));
  742. }
  743. return 0;
  744. }
  745. static int btree_csum_one_bio(struct bio *bio)
  746. {
  747. struct bio_vec *bvec = bio->bi_io_vec;
  748. int bio_index = 0;
  749. struct btrfs_root *root;
  750. int ret = 0;
  751. WARN_ON(bio->bi_vcnt <= 0);
  752. while (bio_index < bio->bi_vcnt) {
  753. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  754. ret = csum_dirty_buffer(root, bvec->bv_page);
  755. if (ret)
  756. break;
  757. bio_index++;
  758. bvec++;
  759. }
  760. return ret;
  761. }
  762. static int __btree_submit_bio_start(struct inode *inode, int rw,
  763. struct bio *bio, int mirror_num,
  764. unsigned long bio_flags,
  765. u64 bio_offset)
  766. {
  767. /*
  768. * when we're called for a write, we're already in the async
  769. * submission context. Just jump into btrfs_map_bio
  770. */
  771. return btree_csum_one_bio(bio);
  772. }
  773. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  774. int mirror_num, unsigned long bio_flags,
  775. u64 bio_offset)
  776. {
  777. int ret;
  778. /*
  779. * when we're called for a write, we're already in the async
  780. * submission context. Just jump into btrfs_map_bio
  781. */
  782. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  783. if (ret)
  784. bio_endio(bio, ret);
  785. return ret;
  786. }
  787. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  788. {
  789. if (bio_flags & EXTENT_BIO_TREE_LOG)
  790. return 0;
  791. #ifdef CONFIG_X86
  792. if (cpu_has_xmm4_2)
  793. return 0;
  794. #endif
  795. return 1;
  796. }
  797. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  798. int mirror_num, unsigned long bio_flags,
  799. u64 bio_offset)
  800. {
  801. int async = check_async_write(inode, bio_flags);
  802. int ret;
  803. if (!(rw & REQ_WRITE)) {
  804. /*
  805. * called for a read, do the setup so that checksum validation
  806. * can happen in the async kernel threads
  807. */
  808. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  809. bio, 1);
  810. if (ret)
  811. goto out_w_error;
  812. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  813. mirror_num, 0);
  814. } else if (!async) {
  815. ret = btree_csum_one_bio(bio);
  816. if (ret)
  817. goto out_w_error;
  818. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  819. mirror_num, 0);
  820. } else {
  821. /*
  822. * kthread helpers are used to submit writes so that
  823. * checksumming can happen in parallel across all CPUs
  824. */
  825. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  826. inode, rw, bio, mirror_num, 0,
  827. bio_offset,
  828. __btree_submit_bio_start,
  829. __btree_submit_bio_done);
  830. }
  831. if (ret) {
  832. out_w_error:
  833. bio_endio(bio, ret);
  834. }
  835. return ret;
  836. }
  837. #ifdef CONFIG_MIGRATION
  838. static int btree_migratepage(struct address_space *mapping,
  839. struct page *newpage, struct page *page,
  840. enum migrate_mode mode)
  841. {
  842. /*
  843. * we can't safely write a btree page from here,
  844. * we haven't done the locking hook
  845. */
  846. if (PageDirty(page))
  847. return -EAGAIN;
  848. /*
  849. * Buffers may be managed in a filesystem specific way.
  850. * We must have no buffers or drop them.
  851. */
  852. if (page_has_private(page) &&
  853. !try_to_release_page(page, GFP_KERNEL))
  854. return -EAGAIN;
  855. return migrate_page(mapping, newpage, page, mode);
  856. }
  857. #endif
  858. static int btree_writepages(struct address_space *mapping,
  859. struct writeback_control *wbc)
  860. {
  861. struct extent_io_tree *tree;
  862. struct btrfs_fs_info *fs_info;
  863. int ret;
  864. tree = &BTRFS_I(mapping->host)->io_tree;
  865. if (wbc->sync_mode == WB_SYNC_NONE) {
  866. if (wbc->for_kupdate)
  867. return 0;
  868. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  869. /* this is a bit racy, but that's ok */
  870. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  871. BTRFS_DIRTY_METADATA_THRESH);
  872. if (ret < 0)
  873. return 0;
  874. }
  875. return btree_write_cache_pages(mapping, wbc);
  876. }
  877. static int btree_readpage(struct file *file, struct page *page)
  878. {
  879. struct extent_io_tree *tree;
  880. tree = &BTRFS_I(page->mapping->host)->io_tree;
  881. return extent_read_full_page(tree, page, btree_get_extent, 0);
  882. }
  883. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  884. {
  885. if (PageWriteback(page) || PageDirty(page))
  886. return 0;
  887. return try_release_extent_buffer(page);
  888. }
  889. static void btree_invalidatepage(struct page *page, unsigned int offset,
  890. unsigned int length)
  891. {
  892. struct extent_io_tree *tree;
  893. tree = &BTRFS_I(page->mapping->host)->io_tree;
  894. extent_invalidatepage(tree, page, offset);
  895. btree_releasepage(page, GFP_NOFS);
  896. if (PagePrivate(page)) {
  897. printk(KERN_WARNING "btrfs warning page private not zero "
  898. "on page %llu\n", (unsigned long long)page_offset(page));
  899. ClearPagePrivate(page);
  900. set_page_private(page, 0);
  901. page_cache_release(page);
  902. }
  903. }
  904. static int btree_set_page_dirty(struct page *page)
  905. {
  906. #ifdef DEBUG
  907. struct extent_buffer *eb;
  908. BUG_ON(!PagePrivate(page));
  909. eb = (struct extent_buffer *)page->private;
  910. BUG_ON(!eb);
  911. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  912. BUG_ON(!atomic_read(&eb->refs));
  913. btrfs_assert_tree_locked(eb);
  914. #endif
  915. return __set_page_dirty_nobuffers(page);
  916. }
  917. static const struct address_space_operations btree_aops = {
  918. .readpage = btree_readpage,
  919. .writepages = btree_writepages,
  920. .releasepage = btree_releasepage,
  921. .invalidatepage = btree_invalidatepage,
  922. #ifdef CONFIG_MIGRATION
  923. .migratepage = btree_migratepage,
  924. #endif
  925. .set_page_dirty = btree_set_page_dirty,
  926. };
  927. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  928. u64 parent_transid)
  929. {
  930. struct extent_buffer *buf = NULL;
  931. struct inode *btree_inode = root->fs_info->btree_inode;
  932. int ret = 0;
  933. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  934. if (!buf)
  935. return 0;
  936. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  937. buf, 0, WAIT_NONE, btree_get_extent, 0);
  938. free_extent_buffer(buf);
  939. return ret;
  940. }
  941. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  942. int mirror_num, struct extent_buffer **eb)
  943. {
  944. struct extent_buffer *buf = NULL;
  945. struct inode *btree_inode = root->fs_info->btree_inode;
  946. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  947. int ret;
  948. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  949. if (!buf)
  950. return 0;
  951. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  952. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  953. btree_get_extent, mirror_num);
  954. if (ret) {
  955. free_extent_buffer(buf);
  956. return ret;
  957. }
  958. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  959. free_extent_buffer(buf);
  960. return -EIO;
  961. } else if (extent_buffer_uptodate(buf)) {
  962. *eb = buf;
  963. } else {
  964. free_extent_buffer(buf);
  965. }
  966. return 0;
  967. }
  968. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  969. u64 bytenr, u32 blocksize)
  970. {
  971. struct inode *btree_inode = root->fs_info->btree_inode;
  972. struct extent_buffer *eb;
  973. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  974. bytenr, blocksize);
  975. return eb;
  976. }
  977. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  978. u64 bytenr, u32 blocksize)
  979. {
  980. struct inode *btree_inode = root->fs_info->btree_inode;
  981. struct extent_buffer *eb;
  982. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  983. bytenr, blocksize);
  984. return eb;
  985. }
  986. int btrfs_write_tree_block(struct extent_buffer *buf)
  987. {
  988. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  989. buf->start + buf->len - 1);
  990. }
  991. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  992. {
  993. return filemap_fdatawait_range(buf->pages[0]->mapping,
  994. buf->start, buf->start + buf->len - 1);
  995. }
  996. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  997. u32 blocksize, u64 parent_transid)
  998. {
  999. struct extent_buffer *buf = NULL;
  1000. int ret;
  1001. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1002. if (!buf)
  1003. return NULL;
  1004. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1005. if (ret) {
  1006. free_extent_buffer(buf);
  1007. return NULL;
  1008. }
  1009. return buf;
  1010. }
  1011. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1012. struct extent_buffer *buf)
  1013. {
  1014. struct btrfs_fs_info *fs_info = root->fs_info;
  1015. if (btrfs_header_generation(buf) ==
  1016. fs_info->running_transaction->transid) {
  1017. btrfs_assert_tree_locked(buf);
  1018. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1019. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1020. -buf->len,
  1021. fs_info->dirty_metadata_batch);
  1022. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1023. btrfs_set_lock_blocking(buf);
  1024. clear_extent_buffer_dirty(buf);
  1025. }
  1026. }
  1027. }
  1028. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1029. u32 stripesize, struct btrfs_root *root,
  1030. struct btrfs_fs_info *fs_info,
  1031. u64 objectid)
  1032. {
  1033. root->node = NULL;
  1034. root->commit_root = NULL;
  1035. root->sectorsize = sectorsize;
  1036. root->nodesize = nodesize;
  1037. root->leafsize = leafsize;
  1038. root->stripesize = stripesize;
  1039. root->ref_cows = 0;
  1040. root->track_dirty = 0;
  1041. root->in_radix = 0;
  1042. root->orphan_item_inserted = 0;
  1043. root->orphan_cleanup_state = 0;
  1044. root->objectid = objectid;
  1045. root->last_trans = 0;
  1046. root->highest_objectid = 0;
  1047. root->nr_delalloc_inodes = 0;
  1048. root->nr_ordered_extents = 0;
  1049. root->name = NULL;
  1050. root->inode_tree = RB_ROOT;
  1051. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1052. root->block_rsv = NULL;
  1053. root->orphan_block_rsv = NULL;
  1054. INIT_LIST_HEAD(&root->dirty_list);
  1055. INIT_LIST_HEAD(&root->root_list);
  1056. INIT_LIST_HEAD(&root->delalloc_inodes);
  1057. INIT_LIST_HEAD(&root->delalloc_root);
  1058. INIT_LIST_HEAD(&root->ordered_extents);
  1059. INIT_LIST_HEAD(&root->ordered_root);
  1060. INIT_LIST_HEAD(&root->logged_list[0]);
  1061. INIT_LIST_HEAD(&root->logged_list[1]);
  1062. spin_lock_init(&root->orphan_lock);
  1063. spin_lock_init(&root->inode_lock);
  1064. spin_lock_init(&root->delalloc_lock);
  1065. spin_lock_init(&root->ordered_extent_lock);
  1066. spin_lock_init(&root->accounting_lock);
  1067. spin_lock_init(&root->log_extents_lock[0]);
  1068. spin_lock_init(&root->log_extents_lock[1]);
  1069. mutex_init(&root->objectid_mutex);
  1070. mutex_init(&root->log_mutex);
  1071. init_waitqueue_head(&root->log_writer_wait);
  1072. init_waitqueue_head(&root->log_commit_wait[0]);
  1073. init_waitqueue_head(&root->log_commit_wait[1]);
  1074. atomic_set(&root->log_commit[0], 0);
  1075. atomic_set(&root->log_commit[1], 0);
  1076. atomic_set(&root->log_writers, 0);
  1077. atomic_set(&root->log_batch, 0);
  1078. atomic_set(&root->orphan_inodes, 0);
  1079. atomic_set(&root->refs, 1);
  1080. root->log_transid = 0;
  1081. root->last_log_commit = 0;
  1082. if (fs_info)
  1083. extent_io_tree_init(&root->dirty_log_pages,
  1084. fs_info->btree_inode->i_mapping);
  1085. memset(&root->root_key, 0, sizeof(root->root_key));
  1086. memset(&root->root_item, 0, sizeof(root->root_item));
  1087. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1088. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1089. if (fs_info)
  1090. root->defrag_trans_start = fs_info->generation;
  1091. else
  1092. root->defrag_trans_start = 0;
  1093. init_completion(&root->kobj_unregister);
  1094. root->defrag_running = 0;
  1095. root->root_key.objectid = objectid;
  1096. root->anon_dev = 0;
  1097. spin_lock_init(&root->root_item_lock);
  1098. }
  1099. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1100. {
  1101. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1102. if (root)
  1103. root->fs_info = fs_info;
  1104. return root;
  1105. }
  1106. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1107. /* Should only be used by the testing infrastructure */
  1108. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1109. {
  1110. struct btrfs_root *root;
  1111. root = btrfs_alloc_root(NULL);
  1112. if (!root)
  1113. return ERR_PTR(-ENOMEM);
  1114. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1115. root->dummy_root = 1;
  1116. return root;
  1117. }
  1118. #endif
  1119. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1120. struct btrfs_fs_info *fs_info,
  1121. u64 objectid)
  1122. {
  1123. struct extent_buffer *leaf;
  1124. struct btrfs_root *tree_root = fs_info->tree_root;
  1125. struct btrfs_root *root;
  1126. struct btrfs_key key;
  1127. int ret = 0;
  1128. u64 bytenr;
  1129. uuid_le uuid;
  1130. root = btrfs_alloc_root(fs_info);
  1131. if (!root)
  1132. return ERR_PTR(-ENOMEM);
  1133. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1134. tree_root->sectorsize, tree_root->stripesize,
  1135. root, fs_info, objectid);
  1136. root->root_key.objectid = objectid;
  1137. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1138. root->root_key.offset = 0;
  1139. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1140. 0, objectid, NULL, 0, 0, 0);
  1141. if (IS_ERR(leaf)) {
  1142. ret = PTR_ERR(leaf);
  1143. leaf = NULL;
  1144. goto fail;
  1145. }
  1146. bytenr = leaf->start;
  1147. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1148. btrfs_set_header_bytenr(leaf, leaf->start);
  1149. btrfs_set_header_generation(leaf, trans->transid);
  1150. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1151. btrfs_set_header_owner(leaf, objectid);
  1152. root->node = leaf;
  1153. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1154. BTRFS_FSID_SIZE);
  1155. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1156. btrfs_header_chunk_tree_uuid(leaf),
  1157. BTRFS_UUID_SIZE);
  1158. btrfs_mark_buffer_dirty(leaf);
  1159. root->commit_root = btrfs_root_node(root);
  1160. root->track_dirty = 1;
  1161. root->root_item.flags = 0;
  1162. root->root_item.byte_limit = 0;
  1163. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1164. btrfs_set_root_generation(&root->root_item, trans->transid);
  1165. btrfs_set_root_level(&root->root_item, 0);
  1166. btrfs_set_root_refs(&root->root_item, 1);
  1167. btrfs_set_root_used(&root->root_item, leaf->len);
  1168. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1169. btrfs_set_root_dirid(&root->root_item, 0);
  1170. uuid_le_gen(&uuid);
  1171. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1172. root->root_item.drop_level = 0;
  1173. key.objectid = objectid;
  1174. key.type = BTRFS_ROOT_ITEM_KEY;
  1175. key.offset = 0;
  1176. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1177. if (ret)
  1178. goto fail;
  1179. btrfs_tree_unlock(leaf);
  1180. return root;
  1181. fail:
  1182. if (leaf) {
  1183. btrfs_tree_unlock(leaf);
  1184. free_extent_buffer(leaf);
  1185. }
  1186. kfree(root);
  1187. return ERR_PTR(ret);
  1188. }
  1189. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1190. struct btrfs_fs_info *fs_info)
  1191. {
  1192. struct btrfs_root *root;
  1193. struct btrfs_root *tree_root = fs_info->tree_root;
  1194. struct extent_buffer *leaf;
  1195. root = btrfs_alloc_root(fs_info);
  1196. if (!root)
  1197. return ERR_PTR(-ENOMEM);
  1198. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1199. tree_root->sectorsize, tree_root->stripesize,
  1200. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1201. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1202. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1203. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1204. /*
  1205. * log trees do not get reference counted because they go away
  1206. * before a real commit is actually done. They do store pointers
  1207. * to file data extents, and those reference counts still get
  1208. * updated (along with back refs to the log tree).
  1209. */
  1210. root->ref_cows = 0;
  1211. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1212. BTRFS_TREE_LOG_OBJECTID, NULL,
  1213. 0, 0, 0);
  1214. if (IS_ERR(leaf)) {
  1215. kfree(root);
  1216. return ERR_CAST(leaf);
  1217. }
  1218. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1219. btrfs_set_header_bytenr(leaf, leaf->start);
  1220. btrfs_set_header_generation(leaf, trans->transid);
  1221. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1222. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1223. root->node = leaf;
  1224. write_extent_buffer(root->node, root->fs_info->fsid,
  1225. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1226. btrfs_mark_buffer_dirty(root->node);
  1227. btrfs_tree_unlock(root->node);
  1228. return root;
  1229. }
  1230. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1231. struct btrfs_fs_info *fs_info)
  1232. {
  1233. struct btrfs_root *log_root;
  1234. log_root = alloc_log_tree(trans, fs_info);
  1235. if (IS_ERR(log_root))
  1236. return PTR_ERR(log_root);
  1237. WARN_ON(fs_info->log_root_tree);
  1238. fs_info->log_root_tree = log_root;
  1239. return 0;
  1240. }
  1241. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1242. struct btrfs_root *root)
  1243. {
  1244. struct btrfs_root *log_root;
  1245. struct btrfs_inode_item *inode_item;
  1246. log_root = alloc_log_tree(trans, root->fs_info);
  1247. if (IS_ERR(log_root))
  1248. return PTR_ERR(log_root);
  1249. log_root->last_trans = trans->transid;
  1250. log_root->root_key.offset = root->root_key.objectid;
  1251. inode_item = &log_root->root_item.inode;
  1252. btrfs_set_stack_inode_generation(inode_item, 1);
  1253. btrfs_set_stack_inode_size(inode_item, 3);
  1254. btrfs_set_stack_inode_nlink(inode_item, 1);
  1255. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1256. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1257. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1258. WARN_ON(root->log_root);
  1259. root->log_root = log_root;
  1260. root->log_transid = 0;
  1261. root->last_log_commit = 0;
  1262. return 0;
  1263. }
  1264. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1265. struct btrfs_key *key)
  1266. {
  1267. struct btrfs_root *root;
  1268. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1269. struct btrfs_path *path;
  1270. u64 generation;
  1271. u32 blocksize;
  1272. int ret;
  1273. path = btrfs_alloc_path();
  1274. if (!path)
  1275. return ERR_PTR(-ENOMEM);
  1276. root = btrfs_alloc_root(fs_info);
  1277. if (!root) {
  1278. ret = -ENOMEM;
  1279. goto alloc_fail;
  1280. }
  1281. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1282. tree_root->sectorsize, tree_root->stripesize,
  1283. root, fs_info, key->objectid);
  1284. ret = btrfs_find_root(tree_root, key, path,
  1285. &root->root_item, &root->root_key);
  1286. if (ret) {
  1287. if (ret > 0)
  1288. ret = -ENOENT;
  1289. goto find_fail;
  1290. }
  1291. generation = btrfs_root_generation(&root->root_item);
  1292. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1293. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1294. blocksize, generation);
  1295. if (!root->node) {
  1296. ret = -ENOMEM;
  1297. goto find_fail;
  1298. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1299. ret = -EIO;
  1300. goto read_fail;
  1301. }
  1302. root->commit_root = btrfs_root_node(root);
  1303. out:
  1304. btrfs_free_path(path);
  1305. return root;
  1306. read_fail:
  1307. free_extent_buffer(root->node);
  1308. find_fail:
  1309. kfree(root);
  1310. alloc_fail:
  1311. root = ERR_PTR(ret);
  1312. goto out;
  1313. }
  1314. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1315. struct btrfs_key *location)
  1316. {
  1317. struct btrfs_root *root;
  1318. root = btrfs_read_tree_root(tree_root, location);
  1319. if (IS_ERR(root))
  1320. return root;
  1321. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1322. root->ref_cows = 1;
  1323. btrfs_check_and_init_root_item(&root->root_item);
  1324. }
  1325. return root;
  1326. }
  1327. int btrfs_init_fs_root(struct btrfs_root *root)
  1328. {
  1329. int ret;
  1330. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1331. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1332. GFP_NOFS);
  1333. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1334. ret = -ENOMEM;
  1335. goto fail;
  1336. }
  1337. btrfs_init_free_ino_ctl(root);
  1338. mutex_init(&root->fs_commit_mutex);
  1339. spin_lock_init(&root->cache_lock);
  1340. init_waitqueue_head(&root->cache_wait);
  1341. ret = get_anon_bdev(&root->anon_dev);
  1342. if (ret)
  1343. goto fail;
  1344. return 0;
  1345. fail:
  1346. kfree(root->free_ino_ctl);
  1347. kfree(root->free_ino_pinned);
  1348. return ret;
  1349. }
  1350. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1351. u64 root_id)
  1352. {
  1353. struct btrfs_root *root;
  1354. spin_lock(&fs_info->fs_roots_radix_lock);
  1355. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1356. (unsigned long)root_id);
  1357. spin_unlock(&fs_info->fs_roots_radix_lock);
  1358. return root;
  1359. }
  1360. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1361. struct btrfs_root *root)
  1362. {
  1363. int ret;
  1364. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1365. if (ret)
  1366. return ret;
  1367. spin_lock(&fs_info->fs_roots_radix_lock);
  1368. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1369. (unsigned long)root->root_key.objectid,
  1370. root);
  1371. if (ret == 0)
  1372. root->in_radix = 1;
  1373. spin_unlock(&fs_info->fs_roots_radix_lock);
  1374. radix_tree_preload_end();
  1375. return ret;
  1376. }
  1377. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1378. struct btrfs_key *location,
  1379. bool check_ref)
  1380. {
  1381. struct btrfs_root *root;
  1382. int ret;
  1383. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1384. return fs_info->tree_root;
  1385. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1386. return fs_info->extent_root;
  1387. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1388. return fs_info->chunk_root;
  1389. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1390. return fs_info->dev_root;
  1391. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1392. return fs_info->csum_root;
  1393. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1394. return fs_info->quota_root ? fs_info->quota_root :
  1395. ERR_PTR(-ENOENT);
  1396. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1397. return fs_info->uuid_root ? fs_info->uuid_root :
  1398. ERR_PTR(-ENOENT);
  1399. again:
  1400. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1401. if (root) {
  1402. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1403. return ERR_PTR(-ENOENT);
  1404. return root;
  1405. }
  1406. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1407. if (IS_ERR(root))
  1408. return root;
  1409. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1410. ret = -ENOENT;
  1411. goto fail;
  1412. }
  1413. ret = btrfs_init_fs_root(root);
  1414. if (ret)
  1415. goto fail;
  1416. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1417. if (ret < 0)
  1418. goto fail;
  1419. if (ret == 0)
  1420. root->orphan_item_inserted = 1;
  1421. ret = btrfs_insert_fs_root(fs_info, root);
  1422. if (ret) {
  1423. if (ret == -EEXIST) {
  1424. free_fs_root(root);
  1425. goto again;
  1426. }
  1427. goto fail;
  1428. }
  1429. return root;
  1430. fail:
  1431. free_fs_root(root);
  1432. return ERR_PTR(ret);
  1433. }
  1434. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1435. {
  1436. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1437. int ret = 0;
  1438. struct btrfs_device *device;
  1439. struct backing_dev_info *bdi;
  1440. rcu_read_lock();
  1441. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1442. if (!device->bdev)
  1443. continue;
  1444. bdi = blk_get_backing_dev_info(device->bdev);
  1445. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1446. ret = 1;
  1447. break;
  1448. }
  1449. }
  1450. rcu_read_unlock();
  1451. return ret;
  1452. }
  1453. /*
  1454. * If this fails, caller must call bdi_destroy() to get rid of the
  1455. * bdi again.
  1456. */
  1457. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1458. {
  1459. int err;
  1460. bdi->capabilities = BDI_CAP_MAP_COPY;
  1461. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1462. if (err)
  1463. return err;
  1464. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1465. bdi->congested_fn = btrfs_congested_fn;
  1466. bdi->congested_data = info;
  1467. return 0;
  1468. }
  1469. /*
  1470. * called by the kthread helper functions to finally call the bio end_io
  1471. * functions. This is where read checksum verification actually happens
  1472. */
  1473. static void end_workqueue_fn(struct btrfs_work *work)
  1474. {
  1475. struct bio *bio;
  1476. struct end_io_wq *end_io_wq;
  1477. struct btrfs_fs_info *fs_info;
  1478. int error;
  1479. end_io_wq = container_of(work, struct end_io_wq, work);
  1480. bio = end_io_wq->bio;
  1481. fs_info = end_io_wq->info;
  1482. error = end_io_wq->error;
  1483. bio->bi_private = end_io_wq->private;
  1484. bio->bi_end_io = end_io_wq->end_io;
  1485. kfree(end_io_wq);
  1486. bio_endio(bio, error);
  1487. }
  1488. static int cleaner_kthread(void *arg)
  1489. {
  1490. struct btrfs_root *root = arg;
  1491. int again;
  1492. do {
  1493. again = 0;
  1494. /* Make the cleaner go to sleep early. */
  1495. if (btrfs_need_cleaner_sleep(root))
  1496. goto sleep;
  1497. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1498. goto sleep;
  1499. /*
  1500. * Avoid the problem that we change the status of the fs
  1501. * during the above check and trylock.
  1502. */
  1503. if (btrfs_need_cleaner_sleep(root)) {
  1504. mutex_unlock(&root->fs_info->cleaner_mutex);
  1505. goto sleep;
  1506. }
  1507. btrfs_run_delayed_iputs(root);
  1508. again = btrfs_clean_one_deleted_snapshot(root);
  1509. mutex_unlock(&root->fs_info->cleaner_mutex);
  1510. /*
  1511. * The defragger has dealt with the R/O remount and umount,
  1512. * needn't do anything special here.
  1513. */
  1514. btrfs_run_defrag_inodes(root->fs_info);
  1515. sleep:
  1516. if (!try_to_freeze() && !again) {
  1517. set_current_state(TASK_INTERRUPTIBLE);
  1518. if (!kthread_should_stop())
  1519. schedule();
  1520. __set_current_state(TASK_RUNNING);
  1521. }
  1522. } while (!kthread_should_stop());
  1523. return 0;
  1524. }
  1525. static int transaction_kthread(void *arg)
  1526. {
  1527. struct btrfs_root *root = arg;
  1528. struct btrfs_trans_handle *trans;
  1529. struct btrfs_transaction *cur;
  1530. u64 transid;
  1531. unsigned long now;
  1532. unsigned long delay;
  1533. bool cannot_commit;
  1534. do {
  1535. cannot_commit = false;
  1536. delay = HZ * root->fs_info->commit_interval;
  1537. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1538. spin_lock(&root->fs_info->trans_lock);
  1539. cur = root->fs_info->running_transaction;
  1540. if (!cur) {
  1541. spin_unlock(&root->fs_info->trans_lock);
  1542. goto sleep;
  1543. }
  1544. now = get_seconds();
  1545. if (cur->state < TRANS_STATE_BLOCKED &&
  1546. (now < cur->start_time ||
  1547. now - cur->start_time < root->fs_info->commit_interval)) {
  1548. spin_unlock(&root->fs_info->trans_lock);
  1549. delay = HZ * 5;
  1550. goto sleep;
  1551. }
  1552. transid = cur->transid;
  1553. spin_unlock(&root->fs_info->trans_lock);
  1554. /* If the file system is aborted, this will always fail. */
  1555. trans = btrfs_attach_transaction(root);
  1556. if (IS_ERR(trans)) {
  1557. if (PTR_ERR(trans) != -ENOENT)
  1558. cannot_commit = true;
  1559. goto sleep;
  1560. }
  1561. if (transid == trans->transid) {
  1562. btrfs_commit_transaction(trans, root);
  1563. } else {
  1564. btrfs_end_transaction(trans, root);
  1565. }
  1566. sleep:
  1567. wake_up_process(root->fs_info->cleaner_kthread);
  1568. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1569. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1570. &root->fs_info->fs_state)))
  1571. btrfs_cleanup_transaction(root);
  1572. if (!try_to_freeze()) {
  1573. set_current_state(TASK_INTERRUPTIBLE);
  1574. if (!kthread_should_stop() &&
  1575. (!btrfs_transaction_blocked(root->fs_info) ||
  1576. cannot_commit))
  1577. schedule_timeout(delay);
  1578. __set_current_state(TASK_RUNNING);
  1579. }
  1580. } while (!kthread_should_stop());
  1581. return 0;
  1582. }
  1583. /*
  1584. * this will find the highest generation in the array of
  1585. * root backups. The index of the highest array is returned,
  1586. * or -1 if we can't find anything.
  1587. *
  1588. * We check to make sure the array is valid by comparing the
  1589. * generation of the latest root in the array with the generation
  1590. * in the super block. If they don't match we pitch it.
  1591. */
  1592. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1593. {
  1594. u64 cur;
  1595. int newest_index = -1;
  1596. struct btrfs_root_backup *root_backup;
  1597. int i;
  1598. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1599. root_backup = info->super_copy->super_roots + i;
  1600. cur = btrfs_backup_tree_root_gen(root_backup);
  1601. if (cur == newest_gen)
  1602. newest_index = i;
  1603. }
  1604. /* check to see if we actually wrapped around */
  1605. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1606. root_backup = info->super_copy->super_roots;
  1607. cur = btrfs_backup_tree_root_gen(root_backup);
  1608. if (cur == newest_gen)
  1609. newest_index = 0;
  1610. }
  1611. return newest_index;
  1612. }
  1613. /*
  1614. * find the oldest backup so we know where to store new entries
  1615. * in the backup array. This will set the backup_root_index
  1616. * field in the fs_info struct
  1617. */
  1618. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1619. u64 newest_gen)
  1620. {
  1621. int newest_index = -1;
  1622. newest_index = find_newest_super_backup(info, newest_gen);
  1623. /* if there was garbage in there, just move along */
  1624. if (newest_index == -1) {
  1625. info->backup_root_index = 0;
  1626. } else {
  1627. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1628. }
  1629. }
  1630. /*
  1631. * copy all the root pointers into the super backup array.
  1632. * this will bump the backup pointer by one when it is
  1633. * done
  1634. */
  1635. static void backup_super_roots(struct btrfs_fs_info *info)
  1636. {
  1637. int next_backup;
  1638. struct btrfs_root_backup *root_backup;
  1639. int last_backup;
  1640. next_backup = info->backup_root_index;
  1641. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1642. BTRFS_NUM_BACKUP_ROOTS;
  1643. /*
  1644. * just overwrite the last backup if we're at the same generation
  1645. * this happens only at umount
  1646. */
  1647. root_backup = info->super_for_commit->super_roots + last_backup;
  1648. if (btrfs_backup_tree_root_gen(root_backup) ==
  1649. btrfs_header_generation(info->tree_root->node))
  1650. next_backup = last_backup;
  1651. root_backup = info->super_for_commit->super_roots + next_backup;
  1652. /*
  1653. * make sure all of our padding and empty slots get zero filled
  1654. * regardless of which ones we use today
  1655. */
  1656. memset(root_backup, 0, sizeof(*root_backup));
  1657. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1658. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1659. btrfs_set_backup_tree_root_gen(root_backup,
  1660. btrfs_header_generation(info->tree_root->node));
  1661. btrfs_set_backup_tree_root_level(root_backup,
  1662. btrfs_header_level(info->tree_root->node));
  1663. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1664. btrfs_set_backup_chunk_root_gen(root_backup,
  1665. btrfs_header_generation(info->chunk_root->node));
  1666. btrfs_set_backup_chunk_root_level(root_backup,
  1667. btrfs_header_level(info->chunk_root->node));
  1668. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1669. btrfs_set_backup_extent_root_gen(root_backup,
  1670. btrfs_header_generation(info->extent_root->node));
  1671. btrfs_set_backup_extent_root_level(root_backup,
  1672. btrfs_header_level(info->extent_root->node));
  1673. /*
  1674. * we might commit during log recovery, which happens before we set
  1675. * the fs_root. Make sure it is valid before we fill it in.
  1676. */
  1677. if (info->fs_root && info->fs_root->node) {
  1678. btrfs_set_backup_fs_root(root_backup,
  1679. info->fs_root->node->start);
  1680. btrfs_set_backup_fs_root_gen(root_backup,
  1681. btrfs_header_generation(info->fs_root->node));
  1682. btrfs_set_backup_fs_root_level(root_backup,
  1683. btrfs_header_level(info->fs_root->node));
  1684. }
  1685. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1686. btrfs_set_backup_dev_root_gen(root_backup,
  1687. btrfs_header_generation(info->dev_root->node));
  1688. btrfs_set_backup_dev_root_level(root_backup,
  1689. btrfs_header_level(info->dev_root->node));
  1690. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1691. btrfs_set_backup_csum_root_gen(root_backup,
  1692. btrfs_header_generation(info->csum_root->node));
  1693. btrfs_set_backup_csum_root_level(root_backup,
  1694. btrfs_header_level(info->csum_root->node));
  1695. btrfs_set_backup_total_bytes(root_backup,
  1696. btrfs_super_total_bytes(info->super_copy));
  1697. btrfs_set_backup_bytes_used(root_backup,
  1698. btrfs_super_bytes_used(info->super_copy));
  1699. btrfs_set_backup_num_devices(root_backup,
  1700. btrfs_super_num_devices(info->super_copy));
  1701. /*
  1702. * if we don't copy this out to the super_copy, it won't get remembered
  1703. * for the next commit
  1704. */
  1705. memcpy(&info->super_copy->super_roots,
  1706. &info->super_for_commit->super_roots,
  1707. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1708. }
  1709. /*
  1710. * this copies info out of the root backup array and back into
  1711. * the in-memory super block. It is meant to help iterate through
  1712. * the array, so you send it the number of backups you've already
  1713. * tried and the last backup index you used.
  1714. *
  1715. * this returns -1 when it has tried all the backups
  1716. */
  1717. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1718. struct btrfs_super_block *super,
  1719. int *num_backups_tried, int *backup_index)
  1720. {
  1721. struct btrfs_root_backup *root_backup;
  1722. int newest = *backup_index;
  1723. if (*num_backups_tried == 0) {
  1724. u64 gen = btrfs_super_generation(super);
  1725. newest = find_newest_super_backup(info, gen);
  1726. if (newest == -1)
  1727. return -1;
  1728. *backup_index = newest;
  1729. *num_backups_tried = 1;
  1730. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1731. /* we've tried all the backups, all done */
  1732. return -1;
  1733. } else {
  1734. /* jump to the next oldest backup */
  1735. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1736. BTRFS_NUM_BACKUP_ROOTS;
  1737. *backup_index = newest;
  1738. *num_backups_tried += 1;
  1739. }
  1740. root_backup = super->super_roots + newest;
  1741. btrfs_set_super_generation(super,
  1742. btrfs_backup_tree_root_gen(root_backup));
  1743. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1744. btrfs_set_super_root_level(super,
  1745. btrfs_backup_tree_root_level(root_backup));
  1746. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1747. /*
  1748. * fixme: the total bytes and num_devices need to match or we should
  1749. * need a fsck
  1750. */
  1751. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1752. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1753. return 0;
  1754. }
  1755. /* helper to cleanup workers */
  1756. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1757. {
  1758. btrfs_stop_workers(&fs_info->generic_worker);
  1759. btrfs_stop_workers(&fs_info->fixup_workers);
  1760. btrfs_stop_workers(&fs_info->delalloc_workers);
  1761. btrfs_stop_workers(&fs_info->workers);
  1762. btrfs_stop_workers(&fs_info->endio_workers);
  1763. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1764. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1765. btrfs_stop_workers(&fs_info->rmw_workers);
  1766. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1767. btrfs_stop_workers(&fs_info->endio_write_workers);
  1768. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1769. btrfs_stop_workers(&fs_info->submit_workers);
  1770. btrfs_stop_workers(&fs_info->delayed_workers);
  1771. btrfs_stop_workers(&fs_info->caching_workers);
  1772. btrfs_stop_workers(&fs_info->readahead_workers);
  1773. btrfs_stop_workers(&fs_info->flush_workers);
  1774. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1775. }
  1776. /* helper to cleanup tree roots */
  1777. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1778. {
  1779. free_extent_buffer(info->tree_root->node);
  1780. free_extent_buffer(info->tree_root->commit_root);
  1781. info->tree_root->node = NULL;
  1782. info->tree_root->commit_root = NULL;
  1783. if (info->dev_root) {
  1784. free_extent_buffer(info->dev_root->node);
  1785. free_extent_buffer(info->dev_root->commit_root);
  1786. info->dev_root->node = NULL;
  1787. info->dev_root->commit_root = NULL;
  1788. }
  1789. if (info->extent_root) {
  1790. free_extent_buffer(info->extent_root->node);
  1791. free_extent_buffer(info->extent_root->commit_root);
  1792. info->extent_root->node = NULL;
  1793. info->extent_root->commit_root = NULL;
  1794. }
  1795. if (info->csum_root) {
  1796. free_extent_buffer(info->csum_root->node);
  1797. free_extent_buffer(info->csum_root->commit_root);
  1798. info->csum_root->node = NULL;
  1799. info->csum_root->commit_root = NULL;
  1800. }
  1801. if (info->quota_root) {
  1802. free_extent_buffer(info->quota_root->node);
  1803. free_extent_buffer(info->quota_root->commit_root);
  1804. info->quota_root->node = NULL;
  1805. info->quota_root->commit_root = NULL;
  1806. }
  1807. if (info->uuid_root) {
  1808. free_extent_buffer(info->uuid_root->node);
  1809. free_extent_buffer(info->uuid_root->commit_root);
  1810. info->uuid_root->node = NULL;
  1811. info->uuid_root->commit_root = NULL;
  1812. }
  1813. if (chunk_root) {
  1814. free_extent_buffer(info->chunk_root->node);
  1815. free_extent_buffer(info->chunk_root->commit_root);
  1816. info->chunk_root->node = NULL;
  1817. info->chunk_root->commit_root = NULL;
  1818. }
  1819. }
  1820. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1821. {
  1822. int ret;
  1823. struct btrfs_root *gang[8];
  1824. int i;
  1825. while (!list_empty(&fs_info->dead_roots)) {
  1826. gang[0] = list_entry(fs_info->dead_roots.next,
  1827. struct btrfs_root, root_list);
  1828. list_del(&gang[0]->root_list);
  1829. if (gang[0]->in_radix) {
  1830. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1831. } else {
  1832. free_extent_buffer(gang[0]->node);
  1833. free_extent_buffer(gang[0]->commit_root);
  1834. btrfs_put_fs_root(gang[0]);
  1835. }
  1836. }
  1837. while (1) {
  1838. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1839. (void **)gang, 0,
  1840. ARRAY_SIZE(gang));
  1841. if (!ret)
  1842. break;
  1843. for (i = 0; i < ret; i++)
  1844. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1845. }
  1846. }
  1847. int open_ctree(struct super_block *sb,
  1848. struct btrfs_fs_devices *fs_devices,
  1849. char *options)
  1850. {
  1851. u32 sectorsize;
  1852. u32 nodesize;
  1853. u32 leafsize;
  1854. u32 blocksize;
  1855. u32 stripesize;
  1856. u64 generation;
  1857. u64 features;
  1858. struct btrfs_key location;
  1859. struct buffer_head *bh;
  1860. struct btrfs_super_block *disk_super;
  1861. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1862. struct btrfs_root *tree_root;
  1863. struct btrfs_root *extent_root;
  1864. struct btrfs_root *csum_root;
  1865. struct btrfs_root *chunk_root;
  1866. struct btrfs_root *dev_root;
  1867. struct btrfs_root *quota_root;
  1868. struct btrfs_root *uuid_root;
  1869. struct btrfs_root *log_tree_root;
  1870. int ret;
  1871. int err = -EINVAL;
  1872. int num_backups_tried = 0;
  1873. int backup_index = 0;
  1874. bool create_uuid_tree;
  1875. bool check_uuid_tree;
  1876. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1877. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1878. if (!tree_root || !chunk_root) {
  1879. err = -ENOMEM;
  1880. goto fail;
  1881. }
  1882. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1883. if (ret) {
  1884. err = ret;
  1885. goto fail;
  1886. }
  1887. ret = setup_bdi(fs_info, &fs_info->bdi);
  1888. if (ret) {
  1889. err = ret;
  1890. goto fail_srcu;
  1891. }
  1892. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1893. if (ret) {
  1894. err = ret;
  1895. goto fail_bdi;
  1896. }
  1897. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1898. (1 + ilog2(nr_cpu_ids));
  1899. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1900. if (ret) {
  1901. err = ret;
  1902. goto fail_dirty_metadata_bytes;
  1903. }
  1904. fs_info->btree_inode = new_inode(sb);
  1905. if (!fs_info->btree_inode) {
  1906. err = -ENOMEM;
  1907. goto fail_delalloc_bytes;
  1908. }
  1909. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1910. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1911. INIT_LIST_HEAD(&fs_info->trans_list);
  1912. INIT_LIST_HEAD(&fs_info->dead_roots);
  1913. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1914. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1915. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1916. spin_lock_init(&fs_info->delalloc_root_lock);
  1917. spin_lock_init(&fs_info->trans_lock);
  1918. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1919. spin_lock_init(&fs_info->delayed_iput_lock);
  1920. spin_lock_init(&fs_info->defrag_inodes_lock);
  1921. spin_lock_init(&fs_info->free_chunk_lock);
  1922. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1923. spin_lock_init(&fs_info->super_lock);
  1924. rwlock_init(&fs_info->tree_mod_log_lock);
  1925. mutex_init(&fs_info->reloc_mutex);
  1926. seqlock_init(&fs_info->profiles_lock);
  1927. init_completion(&fs_info->kobj_unregister);
  1928. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1929. INIT_LIST_HEAD(&fs_info->space_info);
  1930. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1931. btrfs_mapping_init(&fs_info->mapping_tree);
  1932. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1933. BTRFS_BLOCK_RSV_GLOBAL);
  1934. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1935. BTRFS_BLOCK_RSV_DELALLOC);
  1936. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1937. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1938. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1939. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1940. BTRFS_BLOCK_RSV_DELOPS);
  1941. atomic_set(&fs_info->nr_async_submits, 0);
  1942. atomic_set(&fs_info->async_delalloc_pages, 0);
  1943. atomic_set(&fs_info->async_submit_draining, 0);
  1944. atomic_set(&fs_info->nr_async_bios, 0);
  1945. atomic_set(&fs_info->defrag_running, 0);
  1946. atomic64_set(&fs_info->tree_mod_seq, 0);
  1947. fs_info->sb = sb;
  1948. fs_info->max_inline = 8192 * 1024;
  1949. fs_info->metadata_ratio = 0;
  1950. fs_info->defrag_inodes = RB_ROOT;
  1951. fs_info->free_chunk_space = 0;
  1952. fs_info->tree_mod_log = RB_ROOT;
  1953. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1954. /* readahead state */
  1955. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1956. spin_lock_init(&fs_info->reada_lock);
  1957. fs_info->thread_pool_size = min_t(unsigned long,
  1958. num_online_cpus() + 2, 8);
  1959. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1960. spin_lock_init(&fs_info->ordered_root_lock);
  1961. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1962. GFP_NOFS);
  1963. if (!fs_info->delayed_root) {
  1964. err = -ENOMEM;
  1965. goto fail_iput;
  1966. }
  1967. btrfs_init_delayed_root(fs_info->delayed_root);
  1968. mutex_init(&fs_info->scrub_lock);
  1969. atomic_set(&fs_info->scrubs_running, 0);
  1970. atomic_set(&fs_info->scrub_pause_req, 0);
  1971. atomic_set(&fs_info->scrubs_paused, 0);
  1972. atomic_set(&fs_info->scrub_cancel_req, 0);
  1973. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1974. init_rwsem(&fs_info->scrub_super_lock);
  1975. fs_info->scrub_workers_refcnt = 0;
  1976. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1977. fs_info->check_integrity_print_mask = 0;
  1978. #endif
  1979. spin_lock_init(&fs_info->balance_lock);
  1980. mutex_init(&fs_info->balance_mutex);
  1981. atomic_set(&fs_info->balance_running, 0);
  1982. atomic_set(&fs_info->balance_pause_req, 0);
  1983. atomic_set(&fs_info->balance_cancel_req, 0);
  1984. fs_info->balance_ctl = NULL;
  1985. init_waitqueue_head(&fs_info->balance_wait_q);
  1986. sb->s_blocksize = 4096;
  1987. sb->s_blocksize_bits = blksize_bits(4096);
  1988. sb->s_bdi = &fs_info->bdi;
  1989. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1990. set_nlink(fs_info->btree_inode, 1);
  1991. /*
  1992. * we set the i_size on the btree inode to the max possible int.
  1993. * the real end of the address space is determined by all of
  1994. * the devices in the system
  1995. */
  1996. fs_info->btree_inode->i_size = OFFSET_MAX;
  1997. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1998. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1999. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2000. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2001. fs_info->btree_inode->i_mapping);
  2002. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2003. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2004. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2005. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2006. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2007. sizeof(struct btrfs_key));
  2008. set_bit(BTRFS_INODE_DUMMY,
  2009. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2010. btrfs_insert_inode_hash(fs_info->btree_inode);
  2011. spin_lock_init(&fs_info->block_group_cache_lock);
  2012. fs_info->block_group_cache_tree = RB_ROOT;
  2013. fs_info->first_logical_byte = (u64)-1;
  2014. extent_io_tree_init(&fs_info->freed_extents[0],
  2015. fs_info->btree_inode->i_mapping);
  2016. extent_io_tree_init(&fs_info->freed_extents[1],
  2017. fs_info->btree_inode->i_mapping);
  2018. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2019. fs_info->do_barriers = 1;
  2020. mutex_init(&fs_info->ordered_operations_mutex);
  2021. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2022. mutex_init(&fs_info->tree_log_mutex);
  2023. mutex_init(&fs_info->chunk_mutex);
  2024. mutex_init(&fs_info->transaction_kthread_mutex);
  2025. mutex_init(&fs_info->cleaner_mutex);
  2026. mutex_init(&fs_info->volume_mutex);
  2027. init_rwsem(&fs_info->extent_commit_sem);
  2028. init_rwsem(&fs_info->cleanup_work_sem);
  2029. init_rwsem(&fs_info->subvol_sem);
  2030. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2031. fs_info->dev_replace.lock_owner = 0;
  2032. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2033. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2034. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2035. mutex_init(&fs_info->dev_replace.lock);
  2036. spin_lock_init(&fs_info->qgroup_lock);
  2037. mutex_init(&fs_info->qgroup_ioctl_lock);
  2038. fs_info->qgroup_tree = RB_ROOT;
  2039. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2040. fs_info->qgroup_seq = 1;
  2041. fs_info->quota_enabled = 0;
  2042. fs_info->pending_quota_state = 0;
  2043. fs_info->qgroup_ulist = NULL;
  2044. mutex_init(&fs_info->qgroup_rescan_lock);
  2045. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2046. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2047. init_waitqueue_head(&fs_info->transaction_throttle);
  2048. init_waitqueue_head(&fs_info->transaction_wait);
  2049. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2050. init_waitqueue_head(&fs_info->async_submit_wait);
  2051. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2052. if (ret) {
  2053. err = ret;
  2054. goto fail_alloc;
  2055. }
  2056. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2057. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2058. invalidate_bdev(fs_devices->latest_bdev);
  2059. /*
  2060. * Read super block and check the signature bytes only
  2061. */
  2062. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2063. if (!bh) {
  2064. err = -EINVAL;
  2065. goto fail_alloc;
  2066. }
  2067. /*
  2068. * We want to check superblock checksum, the type is stored inside.
  2069. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2070. */
  2071. if (btrfs_check_super_csum(bh->b_data)) {
  2072. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2073. err = -EINVAL;
  2074. goto fail_alloc;
  2075. }
  2076. /*
  2077. * super_copy is zeroed at allocation time and we never touch the
  2078. * following bytes up to INFO_SIZE, the checksum is calculated from
  2079. * the whole block of INFO_SIZE
  2080. */
  2081. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2082. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2083. sizeof(*fs_info->super_for_commit));
  2084. brelse(bh);
  2085. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2086. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2087. if (ret) {
  2088. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2089. err = -EINVAL;
  2090. goto fail_alloc;
  2091. }
  2092. disk_super = fs_info->super_copy;
  2093. if (!btrfs_super_root(disk_super))
  2094. goto fail_alloc;
  2095. /* check FS state, whether FS is broken. */
  2096. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2097. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2098. /*
  2099. * run through our array of backup supers and setup
  2100. * our ring pointer to the oldest one
  2101. */
  2102. generation = btrfs_super_generation(disk_super);
  2103. find_oldest_super_backup(fs_info, generation);
  2104. /*
  2105. * In the long term, we'll store the compression type in the super
  2106. * block, and it'll be used for per file compression control.
  2107. */
  2108. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2109. ret = btrfs_parse_options(tree_root, options);
  2110. if (ret) {
  2111. err = ret;
  2112. goto fail_alloc;
  2113. }
  2114. features = btrfs_super_incompat_flags(disk_super) &
  2115. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2116. if (features) {
  2117. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2118. "unsupported optional features (%Lx).\n",
  2119. features);
  2120. err = -EINVAL;
  2121. goto fail_alloc;
  2122. }
  2123. if (btrfs_super_leafsize(disk_super) !=
  2124. btrfs_super_nodesize(disk_super)) {
  2125. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2126. "blocksizes don't match. node %d leaf %d\n",
  2127. btrfs_super_nodesize(disk_super),
  2128. btrfs_super_leafsize(disk_super));
  2129. err = -EINVAL;
  2130. goto fail_alloc;
  2131. }
  2132. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2133. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2134. "blocksize (%d) was too large\n",
  2135. btrfs_super_leafsize(disk_super));
  2136. err = -EINVAL;
  2137. goto fail_alloc;
  2138. }
  2139. features = btrfs_super_incompat_flags(disk_super);
  2140. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2141. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2142. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2143. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2144. printk(KERN_ERR "btrfs: has skinny extents\n");
  2145. /*
  2146. * flag our filesystem as having big metadata blocks if
  2147. * they are bigger than the page size
  2148. */
  2149. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2150. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2151. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2152. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2153. }
  2154. nodesize = btrfs_super_nodesize(disk_super);
  2155. leafsize = btrfs_super_leafsize(disk_super);
  2156. sectorsize = btrfs_super_sectorsize(disk_super);
  2157. stripesize = btrfs_super_stripesize(disk_super);
  2158. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2159. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2160. /*
  2161. * mixed block groups end up with duplicate but slightly offset
  2162. * extent buffers for the same range. It leads to corruptions
  2163. */
  2164. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2165. (sectorsize != leafsize)) {
  2166. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2167. "are not allowed for mixed block groups on %s\n",
  2168. sb->s_id);
  2169. goto fail_alloc;
  2170. }
  2171. /*
  2172. * Needn't use the lock because there is no other task which will
  2173. * update the flag.
  2174. */
  2175. btrfs_set_super_incompat_flags(disk_super, features);
  2176. features = btrfs_super_compat_ro_flags(disk_super) &
  2177. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2178. if (!(sb->s_flags & MS_RDONLY) && features) {
  2179. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2180. "unsupported option features (%Lx).\n",
  2181. features);
  2182. err = -EINVAL;
  2183. goto fail_alloc;
  2184. }
  2185. btrfs_init_workers(&fs_info->generic_worker,
  2186. "genwork", 1, NULL);
  2187. btrfs_init_workers(&fs_info->workers, "worker",
  2188. fs_info->thread_pool_size,
  2189. &fs_info->generic_worker);
  2190. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2191. fs_info->thread_pool_size, NULL);
  2192. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2193. fs_info->thread_pool_size, NULL);
  2194. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2195. min_t(u64, fs_devices->num_devices,
  2196. fs_info->thread_pool_size), NULL);
  2197. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2198. fs_info->thread_pool_size, NULL);
  2199. /* a higher idle thresh on the submit workers makes it much more
  2200. * likely that bios will be send down in a sane order to the
  2201. * devices
  2202. */
  2203. fs_info->submit_workers.idle_thresh = 64;
  2204. fs_info->workers.idle_thresh = 16;
  2205. fs_info->workers.ordered = 1;
  2206. fs_info->delalloc_workers.idle_thresh = 2;
  2207. fs_info->delalloc_workers.ordered = 1;
  2208. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2209. &fs_info->generic_worker);
  2210. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2211. fs_info->thread_pool_size,
  2212. &fs_info->generic_worker);
  2213. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2214. fs_info->thread_pool_size,
  2215. &fs_info->generic_worker);
  2216. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2217. "endio-meta-write", fs_info->thread_pool_size,
  2218. &fs_info->generic_worker);
  2219. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2220. "endio-raid56", fs_info->thread_pool_size,
  2221. &fs_info->generic_worker);
  2222. btrfs_init_workers(&fs_info->rmw_workers,
  2223. "rmw", fs_info->thread_pool_size,
  2224. &fs_info->generic_worker);
  2225. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2226. fs_info->thread_pool_size,
  2227. &fs_info->generic_worker);
  2228. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2229. 1, &fs_info->generic_worker);
  2230. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2231. fs_info->thread_pool_size,
  2232. &fs_info->generic_worker);
  2233. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2234. fs_info->thread_pool_size,
  2235. &fs_info->generic_worker);
  2236. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2237. &fs_info->generic_worker);
  2238. /*
  2239. * endios are largely parallel and should have a very
  2240. * low idle thresh
  2241. */
  2242. fs_info->endio_workers.idle_thresh = 4;
  2243. fs_info->endio_meta_workers.idle_thresh = 4;
  2244. fs_info->endio_raid56_workers.idle_thresh = 4;
  2245. fs_info->rmw_workers.idle_thresh = 2;
  2246. fs_info->endio_write_workers.idle_thresh = 2;
  2247. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2248. fs_info->readahead_workers.idle_thresh = 2;
  2249. /*
  2250. * btrfs_start_workers can really only fail because of ENOMEM so just
  2251. * return -ENOMEM if any of these fail.
  2252. */
  2253. ret = btrfs_start_workers(&fs_info->workers);
  2254. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2255. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2256. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2257. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2258. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2259. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2260. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2261. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2262. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2263. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2264. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2265. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2266. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2267. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2268. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2269. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2270. if (ret) {
  2271. err = -ENOMEM;
  2272. goto fail_sb_buffer;
  2273. }
  2274. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2275. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2276. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2277. tree_root->nodesize = nodesize;
  2278. tree_root->leafsize = leafsize;
  2279. tree_root->sectorsize = sectorsize;
  2280. tree_root->stripesize = stripesize;
  2281. sb->s_blocksize = sectorsize;
  2282. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2283. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2284. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2285. goto fail_sb_buffer;
  2286. }
  2287. if (sectorsize != PAGE_SIZE) {
  2288. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2289. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2290. goto fail_sb_buffer;
  2291. }
  2292. mutex_lock(&fs_info->chunk_mutex);
  2293. ret = btrfs_read_sys_array(tree_root);
  2294. mutex_unlock(&fs_info->chunk_mutex);
  2295. if (ret) {
  2296. printk(KERN_WARNING "btrfs: failed to read the system "
  2297. "array on %s\n", sb->s_id);
  2298. goto fail_sb_buffer;
  2299. }
  2300. blocksize = btrfs_level_size(tree_root,
  2301. btrfs_super_chunk_root_level(disk_super));
  2302. generation = btrfs_super_chunk_root_generation(disk_super);
  2303. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2304. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2305. chunk_root->node = read_tree_block(chunk_root,
  2306. btrfs_super_chunk_root(disk_super),
  2307. blocksize, generation);
  2308. if (!chunk_root->node ||
  2309. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2310. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2311. sb->s_id);
  2312. goto fail_tree_roots;
  2313. }
  2314. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2315. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2316. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2317. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2318. ret = btrfs_read_chunk_tree(chunk_root);
  2319. if (ret) {
  2320. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2321. sb->s_id);
  2322. goto fail_tree_roots;
  2323. }
  2324. /*
  2325. * keep the device that is marked to be the target device for the
  2326. * dev_replace procedure
  2327. */
  2328. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2329. if (!fs_devices->latest_bdev) {
  2330. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2331. sb->s_id);
  2332. goto fail_tree_roots;
  2333. }
  2334. retry_root_backup:
  2335. blocksize = btrfs_level_size(tree_root,
  2336. btrfs_super_root_level(disk_super));
  2337. generation = btrfs_super_generation(disk_super);
  2338. tree_root->node = read_tree_block(tree_root,
  2339. btrfs_super_root(disk_super),
  2340. blocksize, generation);
  2341. if (!tree_root->node ||
  2342. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2343. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2344. sb->s_id);
  2345. goto recovery_tree_root;
  2346. }
  2347. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2348. tree_root->commit_root = btrfs_root_node(tree_root);
  2349. btrfs_set_root_refs(&tree_root->root_item, 1);
  2350. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2351. location.type = BTRFS_ROOT_ITEM_KEY;
  2352. location.offset = 0;
  2353. extent_root = btrfs_read_tree_root(tree_root, &location);
  2354. if (IS_ERR(extent_root)) {
  2355. ret = PTR_ERR(extent_root);
  2356. goto recovery_tree_root;
  2357. }
  2358. extent_root->track_dirty = 1;
  2359. fs_info->extent_root = extent_root;
  2360. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2361. dev_root = btrfs_read_tree_root(tree_root, &location);
  2362. if (IS_ERR(dev_root)) {
  2363. ret = PTR_ERR(dev_root);
  2364. goto recovery_tree_root;
  2365. }
  2366. dev_root->track_dirty = 1;
  2367. fs_info->dev_root = dev_root;
  2368. btrfs_init_devices_late(fs_info);
  2369. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2370. csum_root = btrfs_read_tree_root(tree_root, &location);
  2371. if (IS_ERR(csum_root)) {
  2372. ret = PTR_ERR(csum_root);
  2373. goto recovery_tree_root;
  2374. }
  2375. csum_root->track_dirty = 1;
  2376. fs_info->csum_root = csum_root;
  2377. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2378. quota_root = btrfs_read_tree_root(tree_root, &location);
  2379. if (!IS_ERR(quota_root)) {
  2380. quota_root->track_dirty = 1;
  2381. fs_info->quota_enabled = 1;
  2382. fs_info->pending_quota_state = 1;
  2383. fs_info->quota_root = quota_root;
  2384. }
  2385. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2386. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2387. if (IS_ERR(uuid_root)) {
  2388. ret = PTR_ERR(uuid_root);
  2389. if (ret != -ENOENT)
  2390. goto recovery_tree_root;
  2391. create_uuid_tree = true;
  2392. check_uuid_tree = false;
  2393. } else {
  2394. uuid_root->track_dirty = 1;
  2395. fs_info->uuid_root = uuid_root;
  2396. create_uuid_tree = false;
  2397. check_uuid_tree =
  2398. generation != btrfs_super_uuid_tree_generation(disk_super);
  2399. }
  2400. fs_info->generation = generation;
  2401. fs_info->last_trans_committed = generation;
  2402. ret = btrfs_recover_balance(fs_info);
  2403. if (ret) {
  2404. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2405. goto fail_block_groups;
  2406. }
  2407. ret = btrfs_init_dev_stats(fs_info);
  2408. if (ret) {
  2409. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2410. ret);
  2411. goto fail_block_groups;
  2412. }
  2413. ret = btrfs_init_dev_replace(fs_info);
  2414. if (ret) {
  2415. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2416. goto fail_block_groups;
  2417. }
  2418. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2419. ret = btrfs_init_space_info(fs_info);
  2420. if (ret) {
  2421. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2422. goto fail_block_groups;
  2423. }
  2424. ret = btrfs_read_block_groups(extent_root);
  2425. if (ret) {
  2426. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2427. goto fail_block_groups;
  2428. }
  2429. fs_info->num_tolerated_disk_barrier_failures =
  2430. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2431. if (fs_info->fs_devices->missing_devices >
  2432. fs_info->num_tolerated_disk_barrier_failures &&
  2433. !(sb->s_flags & MS_RDONLY)) {
  2434. printk(KERN_WARNING
  2435. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2436. goto fail_block_groups;
  2437. }
  2438. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2439. "btrfs-cleaner");
  2440. if (IS_ERR(fs_info->cleaner_kthread))
  2441. goto fail_block_groups;
  2442. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2443. tree_root,
  2444. "btrfs-transaction");
  2445. if (IS_ERR(fs_info->transaction_kthread))
  2446. goto fail_cleaner;
  2447. if (!btrfs_test_opt(tree_root, SSD) &&
  2448. !btrfs_test_opt(tree_root, NOSSD) &&
  2449. !fs_info->fs_devices->rotating) {
  2450. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2451. "mode\n");
  2452. btrfs_set_opt(fs_info->mount_opt, SSD);
  2453. }
  2454. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2455. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2456. ret = btrfsic_mount(tree_root, fs_devices,
  2457. btrfs_test_opt(tree_root,
  2458. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2459. 1 : 0,
  2460. fs_info->check_integrity_print_mask);
  2461. if (ret)
  2462. printk(KERN_WARNING "btrfs: failed to initialize"
  2463. " integrity check module %s\n", sb->s_id);
  2464. }
  2465. #endif
  2466. ret = btrfs_read_qgroup_config(fs_info);
  2467. if (ret)
  2468. goto fail_trans_kthread;
  2469. /* do not make disk changes in broken FS */
  2470. if (btrfs_super_log_root(disk_super) != 0) {
  2471. u64 bytenr = btrfs_super_log_root(disk_super);
  2472. if (fs_devices->rw_devices == 0) {
  2473. printk(KERN_WARNING "Btrfs log replay required "
  2474. "on RO media\n");
  2475. err = -EIO;
  2476. goto fail_qgroup;
  2477. }
  2478. blocksize =
  2479. btrfs_level_size(tree_root,
  2480. btrfs_super_log_root_level(disk_super));
  2481. log_tree_root = btrfs_alloc_root(fs_info);
  2482. if (!log_tree_root) {
  2483. err = -ENOMEM;
  2484. goto fail_qgroup;
  2485. }
  2486. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2487. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2488. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2489. blocksize,
  2490. generation + 1);
  2491. if (!log_tree_root->node ||
  2492. !extent_buffer_uptodate(log_tree_root->node)) {
  2493. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2494. free_extent_buffer(log_tree_root->node);
  2495. kfree(log_tree_root);
  2496. goto fail_trans_kthread;
  2497. }
  2498. /* returns with log_tree_root freed on success */
  2499. ret = btrfs_recover_log_trees(log_tree_root);
  2500. if (ret) {
  2501. btrfs_error(tree_root->fs_info, ret,
  2502. "Failed to recover log tree");
  2503. free_extent_buffer(log_tree_root->node);
  2504. kfree(log_tree_root);
  2505. goto fail_trans_kthread;
  2506. }
  2507. if (sb->s_flags & MS_RDONLY) {
  2508. ret = btrfs_commit_super(tree_root);
  2509. if (ret)
  2510. goto fail_trans_kthread;
  2511. }
  2512. }
  2513. ret = btrfs_find_orphan_roots(tree_root);
  2514. if (ret)
  2515. goto fail_trans_kthread;
  2516. if (!(sb->s_flags & MS_RDONLY)) {
  2517. ret = btrfs_cleanup_fs_roots(fs_info);
  2518. if (ret)
  2519. goto fail_trans_kthread;
  2520. ret = btrfs_recover_relocation(tree_root);
  2521. if (ret < 0) {
  2522. printk(KERN_WARNING
  2523. "btrfs: failed to recover relocation\n");
  2524. err = -EINVAL;
  2525. goto fail_qgroup;
  2526. }
  2527. }
  2528. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2529. location.type = BTRFS_ROOT_ITEM_KEY;
  2530. location.offset = 0;
  2531. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2532. if (IS_ERR(fs_info->fs_root)) {
  2533. err = PTR_ERR(fs_info->fs_root);
  2534. goto fail_qgroup;
  2535. }
  2536. if (sb->s_flags & MS_RDONLY)
  2537. return 0;
  2538. down_read(&fs_info->cleanup_work_sem);
  2539. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2540. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2541. up_read(&fs_info->cleanup_work_sem);
  2542. close_ctree(tree_root);
  2543. return ret;
  2544. }
  2545. up_read(&fs_info->cleanup_work_sem);
  2546. ret = btrfs_resume_balance_async(fs_info);
  2547. if (ret) {
  2548. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2549. close_ctree(tree_root);
  2550. return ret;
  2551. }
  2552. ret = btrfs_resume_dev_replace_async(fs_info);
  2553. if (ret) {
  2554. pr_warn("btrfs: failed to resume dev_replace\n");
  2555. close_ctree(tree_root);
  2556. return ret;
  2557. }
  2558. btrfs_qgroup_rescan_resume(fs_info);
  2559. if (create_uuid_tree) {
  2560. pr_info("btrfs: creating UUID tree\n");
  2561. ret = btrfs_create_uuid_tree(fs_info);
  2562. if (ret) {
  2563. pr_warn("btrfs: failed to create the UUID tree %d\n",
  2564. ret);
  2565. close_ctree(tree_root);
  2566. return ret;
  2567. }
  2568. } else if (check_uuid_tree ||
  2569. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2570. pr_info("btrfs: checking UUID tree\n");
  2571. ret = btrfs_check_uuid_tree(fs_info);
  2572. if (ret) {
  2573. pr_warn("btrfs: failed to check the UUID tree %d\n",
  2574. ret);
  2575. close_ctree(tree_root);
  2576. return ret;
  2577. }
  2578. } else {
  2579. fs_info->update_uuid_tree_gen = 1;
  2580. }
  2581. return 0;
  2582. fail_qgroup:
  2583. btrfs_free_qgroup_config(fs_info);
  2584. fail_trans_kthread:
  2585. kthread_stop(fs_info->transaction_kthread);
  2586. btrfs_cleanup_transaction(fs_info->tree_root);
  2587. del_fs_roots(fs_info);
  2588. fail_cleaner:
  2589. kthread_stop(fs_info->cleaner_kthread);
  2590. /*
  2591. * make sure we're done with the btree inode before we stop our
  2592. * kthreads
  2593. */
  2594. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2595. fail_block_groups:
  2596. btrfs_put_block_group_cache(fs_info);
  2597. btrfs_free_block_groups(fs_info);
  2598. fail_tree_roots:
  2599. free_root_pointers(fs_info, 1);
  2600. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2601. fail_sb_buffer:
  2602. btrfs_stop_all_workers(fs_info);
  2603. fail_alloc:
  2604. fail_iput:
  2605. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2606. iput(fs_info->btree_inode);
  2607. fail_delalloc_bytes:
  2608. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2609. fail_dirty_metadata_bytes:
  2610. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2611. fail_bdi:
  2612. bdi_destroy(&fs_info->bdi);
  2613. fail_srcu:
  2614. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2615. fail:
  2616. btrfs_free_stripe_hash_table(fs_info);
  2617. btrfs_close_devices(fs_info->fs_devices);
  2618. return err;
  2619. recovery_tree_root:
  2620. if (!btrfs_test_opt(tree_root, RECOVERY))
  2621. goto fail_tree_roots;
  2622. free_root_pointers(fs_info, 0);
  2623. /* don't use the log in recovery mode, it won't be valid */
  2624. btrfs_set_super_log_root(disk_super, 0);
  2625. /* we can't trust the free space cache either */
  2626. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2627. ret = next_root_backup(fs_info, fs_info->super_copy,
  2628. &num_backups_tried, &backup_index);
  2629. if (ret == -1)
  2630. goto fail_block_groups;
  2631. goto retry_root_backup;
  2632. }
  2633. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2634. {
  2635. if (uptodate) {
  2636. set_buffer_uptodate(bh);
  2637. } else {
  2638. struct btrfs_device *device = (struct btrfs_device *)
  2639. bh->b_private;
  2640. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2641. "I/O error on %s\n",
  2642. rcu_str_deref(device->name));
  2643. /* note, we dont' set_buffer_write_io_error because we have
  2644. * our own ways of dealing with the IO errors
  2645. */
  2646. clear_buffer_uptodate(bh);
  2647. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2648. }
  2649. unlock_buffer(bh);
  2650. put_bh(bh);
  2651. }
  2652. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2653. {
  2654. struct buffer_head *bh;
  2655. struct buffer_head *latest = NULL;
  2656. struct btrfs_super_block *super;
  2657. int i;
  2658. u64 transid = 0;
  2659. u64 bytenr;
  2660. /* we would like to check all the supers, but that would make
  2661. * a btrfs mount succeed after a mkfs from a different FS.
  2662. * So, we need to add a special mount option to scan for
  2663. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2664. */
  2665. for (i = 0; i < 1; i++) {
  2666. bytenr = btrfs_sb_offset(i);
  2667. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2668. i_size_read(bdev->bd_inode))
  2669. break;
  2670. bh = __bread(bdev, bytenr / 4096,
  2671. BTRFS_SUPER_INFO_SIZE);
  2672. if (!bh)
  2673. continue;
  2674. super = (struct btrfs_super_block *)bh->b_data;
  2675. if (btrfs_super_bytenr(super) != bytenr ||
  2676. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2677. brelse(bh);
  2678. continue;
  2679. }
  2680. if (!latest || btrfs_super_generation(super) > transid) {
  2681. brelse(latest);
  2682. latest = bh;
  2683. transid = btrfs_super_generation(super);
  2684. } else {
  2685. brelse(bh);
  2686. }
  2687. }
  2688. return latest;
  2689. }
  2690. /*
  2691. * this should be called twice, once with wait == 0 and
  2692. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2693. * we write are pinned.
  2694. *
  2695. * They are released when wait == 1 is done.
  2696. * max_mirrors must be the same for both runs, and it indicates how
  2697. * many supers on this one device should be written.
  2698. *
  2699. * max_mirrors == 0 means to write them all.
  2700. */
  2701. static int write_dev_supers(struct btrfs_device *device,
  2702. struct btrfs_super_block *sb,
  2703. int do_barriers, int wait, int max_mirrors)
  2704. {
  2705. struct buffer_head *bh;
  2706. int i;
  2707. int ret;
  2708. int errors = 0;
  2709. u32 crc;
  2710. u64 bytenr;
  2711. if (max_mirrors == 0)
  2712. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2713. for (i = 0; i < max_mirrors; i++) {
  2714. bytenr = btrfs_sb_offset(i);
  2715. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2716. break;
  2717. if (wait) {
  2718. bh = __find_get_block(device->bdev, bytenr / 4096,
  2719. BTRFS_SUPER_INFO_SIZE);
  2720. if (!bh) {
  2721. errors++;
  2722. continue;
  2723. }
  2724. wait_on_buffer(bh);
  2725. if (!buffer_uptodate(bh))
  2726. errors++;
  2727. /* drop our reference */
  2728. brelse(bh);
  2729. /* drop the reference from the wait == 0 run */
  2730. brelse(bh);
  2731. continue;
  2732. } else {
  2733. btrfs_set_super_bytenr(sb, bytenr);
  2734. crc = ~(u32)0;
  2735. crc = btrfs_csum_data((char *)sb +
  2736. BTRFS_CSUM_SIZE, crc,
  2737. BTRFS_SUPER_INFO_SIZE -
  2738. BTRFS_CSUM_SIZE);
  2739. btrfs_csum_final(crc, sb->csum);
  2740. /*
  2741. * one reference for us, and we leave it for the
  2742. * caller
  2743. */
  2744. bh = __getblk(device->bdev, bytenr / 4096,
  2745. BTRFS_SUPER_INFO_SIZE);
  2746. if (!bh) {
  2747. printk(KERN_ERR "btrfs: couldn't get super "
  2748. "buffer head for bytenr %Lu\n", bytenr);
  2749. errors++;
  2750. continue;
  2751. }
  2752. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2753. /* one reference for submit_bh */
  2754. get_bh(bh);
  2755. set_buffer_uptodate(bh);
  2756. lock_buffer(bh);
  2757. bh->b_end_io = btrfs_end_buffer_write_sync;
  2758. bh->b_private = device;
  2759. }
  2760. /*
  2761. * we fua the first super. The others we allow
  2762. * to go down lazy.
  2763. */
  2764. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2765. if (ret)
  2766. errors++;
  2767. }
  2768. return errors < i ? 0 : -1;
  2769. }
  2770. /*
  2771. * endio for the write_dev_flush, this will wake anyone waiting
  2772. * for the barrier when it is done
  2773. */
  2774. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2775. {
  2776. if (err) {
  2777. if (err == -EOPNOTSUPP)
  2778. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2779. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2780. }
  2781. if (bio->bi_private)
  2782. complete(bio->bi_private);
  2783. bio_put(bio);
  2784. }
  2785. /*
  2786. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2787. * sent down. With wait == 1, it waits for the previous flush.
  2788. *
  2789. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2790. * capable
  2791. */
  2792. static int write_dev_flush(struct btrfs_device *device, int wait)
  2793. {
  2794. struct bio *bio;
  2795. int ret = 0;
  2796. if (device->nobarriers)
  2797. return 0;
  2798. if (wait) {
  2799. bio = device->flush_bio;
  2800. if (!bio)
  2801. return 0;
  2802. wait_for_completion(&device->flush_wait);
  2803. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2804. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2805. rcu_str_deref(device->name));
  2806. device->nobarriers = 1;
  2807. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2808. ret = -EIO;
  2809. btrfs_dev_stat_inc_and_print(device,
  2810. BTRFS_DEV_STAT_FLUSH_ERRS);
  2811. }
  2812. /* drop the reference from the wait == 0 run */
  2813. bio_put(bio);
  2814. device->flush_bio = NULL;
  2815. return ret;
  2816. }
  2817. /*
  2818. * one reference for us, and we leave it for the
  2819. * caller
  2820. */
  2821. device->flush_bio = NULL;
  2822. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2823. if (!bio)
  2824. return -ENOMEM;
  2825. bio->bi_end_io = btrfs_end_empty_barrier;
  2826. bio->bi_bdev = device->bdev;
  2827. init_completion(&device->flush_wait);
  2828. bio->bi_private = &device->flush_wait;
  2829. device->flush_bio = bio;
  2830. bio_get(bio);
  2831. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2832. return 0;
  2833. }
  2834. /*
  2835. * send an empty flush down to each device in parallel,
  2836. * then wait for them
  2837. */
  2838. static int barrier_all_devices(struct btrfs_fs_info *info)
  2839. {
  2840. struct list_head *head;
  2841. struct btrfs_device *dev;
  2842. int errors_send = 0;
  2843. int errors_wait = 0;
  2844. int ret;
  2845. /* send down all the barriers */
  2846. head = &info->fs_devices->devices;
  2847. list_for_each_entry_rcu(dev, head, dev_list) {
  2848. if (!dev->bdev) {
  2849. errors_send++;
  2850. continue;
  2851. }
  2852. if (!dev->in_fs_metadata || !dev->writeable)
  2853. continue;
  2854. ret = write_dev_flush(dev, 0);
  2855. if (ret)
  2856. errors_send++;
  2857. }
  2858. /* wait for all the barriers */
  2859. list_for_each_entry_rcu(dev, head, dev_list) {
  2860. if (!dev->bdev) {
  2861. errors_wait++;
  2862. continue;
  2863. }
  2864. if (!dev->in_fs_metadata || !dev->writeable)
  2865. continue;
  2866. ret = write_dev_flush(dev, 1);
  2867. if (ret)
  2868. errors_wait++;
  2869. }
  2870. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2871. errors_wait > info->num_tolerated_disk_barrier_failures)
  2872. return -EIO;
  2873. return 0;
  2874. }
  2875. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2876. struct btrfs_fs_info *fs_info)
  2877. {
  2878. struct btrfs_ioctl_space_info space;
  2879. struct btrfs_space_info *sinfo;
  2880. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2881. BTRFS_BLOCK_GROUP_SYSTEM,
  2882. BTRFS_BLOCK_GROUP_METADATA,
  2883. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2884. int num_types = 4;
  2885. int i;
  2886. int c;
  2887. int num_tolerated_disk_barrier_failures =
  2888. (int)fs_info->fs_devices->num_devices;
  2889. for (i = 0; i < num_types; i++) {
  2890. struct btrfs_space_info *tmp;
  2891. sinfo = NULL;
  2892. rcu_read_lock();
  2893. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2894. if (tmp->flags == types[i]) {
  2895. sinfo = tmp;
  2896. break;
  2897. }
  2898. }
  2899. rcu_read_unlock();
  2900. if (!sinfo)
  2901. continue;
  2902. down_read(&sinfo->groups_sem);
  2903. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2904. if (!list_empty(&sinfo->block_groups[c])) {
  2905. u64 flags;
  2906. btrfs_get_block_group_info(
  2907. &sinfo->block_groups[c], &space);
  2908. if (space.total_bytes == 0 ||
  2909. space.used_bytes == 0)
  2910. continue;
  2911. flags = space.flags;
  2912. /*
  2913. * return
  2914. * 0: if dup, single or RAID0 is configured for
  2915. * any of metadata, system or data, else
  2916. * 1: if RAID5 is configured, or if RAID1 or
  2917. * RAID10 is configured and only two mirrors
  2918. * are used, else
  2919. * 2: if RAID6 is configured, else
  2920. * num_mirrors - 1: if RAID1 or RAID10 is
  2921. * configured and more than
  2922. * 2 mirrors are used.
  2923. */
  2924. if (num_tolerated_disk_barrier_failures > 0 &&
  2925. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2926. BTRFS_BLOCK_GROUP_RAID0)) ||
  2927. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2928. == 0)))
  2929. num_tolerated_disk_barrier_failures = 0;
  2930. else if (num_tolerated_disk_barrier_failures > 1) {
  2931. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2932. BTRFS_BLOCK_GROUP_RAID5 |
  2933. BTRFS_BLOCK_GROUP_RAID10)) {
  2934. num_tolerated_disk_barrier_failures = 1;
  2935. } else if (flags &
  2936. BTRFS_BLOCK_GROUP_RAID6) {
  2937. num_tolerated_disk_barrier_failures = 2;
  2938. }
  2939. }
  2940. }
  2941. }
  2942. up_read(&sinfo->groups_sem);
  2943. }
  2944. return num_tolerated_disk_barrier_failures;
  2945. }
  2946. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2947. {
  2948. struct list_head *head;
  2949. struct btrfs_device *dev;
  2950. struct btrfs_super_block *sb;
  2951. struct btrfs_dev_item *dev_item;
  2952. int ret;
  2953. int do_barriers;
  2954. int max_errors;
  2955. int total_errors = 0;
  2956. u64 flags;
  2957. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2958. backup_super_roots(root->fs_info);
  2959. sb = root->fs_info->super_for_commit;
  2960. dev_item = &sb->dev_item;
  2961. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2962. head = &root->fs_info->fs_devices->devices;
  2963. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2964. if (do_barriers) {
  2965. ret = barrier_all_devices(root->fs_info);
  2966. if (ret) {
  2967. mutex_unlock(
  2968. &root->fs_info->fs_devices->device_list_mutex);
  2969. btrfs_error(root->fs_info, ret,
  2970. "errors while submitting device barriers.");
  2971. return ret;
  2972. }
  2973. }
  2974. list_for_each_entry_rcu(dev, head, dev_list) {
  2975. if (!dev->bdev) {
  2976. total_errors++;
  2977. continue;
  2978. }
  2979. if (!dev->in_fs_metadata || !dev->writeable)
  2980. continue;
  2981. btrfs_set_stack_device_generation(dev_item, 0);
  2982. btrfs_set_stack_device_type(dev_item, dev->type);
  2983. btrfs_set_stack_device_id(dev_item, dev->devid);
  2984. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2985. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2986. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2987. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2988. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2989. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2990. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2991. flags = btrfs_super_flags(sb);
  2992. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2993. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2994. if (ret)
  2995. total_errors++;
  2996. }
  2997. if (total_errors > max_errors) {
  2998. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2999. total_errors);
  3000. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3001. /* FUA is masked off if unsupported and can't be the reason */
  3002. btrfs_error(root->fs_info, -EIO,
  3003. "%d errors while writing supers", total_errors);
  3004. return -EIO;
  3005. }
  3006. total_errors = 0;
  3007. list_for_each_entry_rcu(dev, head, dev_list) {
  3008. if (!dev->bdev)
  3009. continue;
  3010. if (!dev->in_fs_metadata || !dev->writeable)
  3011. continue;
  3012. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3013. if (ret)
  3014. total_errors++;
  3015. }
  3016. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3017. if (total_errors > max_errors) {
  3018. btrfs_error(root->fs_info, -EIO,
  3019. "%d errors while writing supers", total_errors);
  3020. return -EIO;
  3021. }
  3022. return 0;
  3023. }
  3024. int write_ctree_super(struct btrfs_trans_handle *trans,
  3025. struct btrfs_root *root, int max_mirrors)
  3026. {
  3027. int ret;
  3028. ret = write_all_supers(root, max_mirrors);
  3029. return ret;
  3030. }
  3031. /* Drop a fs root from the radix tree and free it. */
  3032. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3033. struct btrfs_root *root)
  3034. {
  3035. spin_lock(&fs_info->fs_roots_radix_lock);
  3036. radix_tree_delete(&fs_info->fs_roots_radix,
  3037. (unsigned long)root->root_key.objectid);
  3038. spin_unlock(&fs_info->fs_roots_radix_lock);
  3039. if (btrfs_root_refs(&root->root_item) == 0)
  3040. synchronize_srcu(&fs_info->subvol_srcu);
  3041. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3042. btrfs_free_log(NULL, root);
  3043. btrfs_free_log_root_tree(NULL, fs_info);
  3044. }
  3045. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3046. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3047. free_fs_root(root);
  3048. }
  3049. static void free_fs_root(struct btrfs_root *root)
  3050. {
  3051. iput(root->cache_inode);
  3052. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3053. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3054. root->orphan_block_rsv = NULL;
  3055. if (root->anon_dev)
  3056. free_anon_bdev(root->anon_dev);
  3057. free_extent_buffer(root->node);
  3058. free_extent_buffer(root->commit_root);
  3059. kfree(root->free_ino_ctl);
  3060. kfree(root->free_ino_pinned);
  3061. kfree(root->name);
  3062. btrfs_put_fs_root(root);
  3063. }
  3064. void btrfs_free_fs_root(struct btrfs_root *root)
  3065. {
  3066. free_fs_root(root);
  3067. }
  3068. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3069. {
  3070. u64 root_objectid = 0;
  3071. struct btrfs_root *gang[8];
  3072. int i;
  3073. int ret;
  3074. while (1) {
  3075. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3076. (void **)gang, root_objectid,
  3077. ARRAY_SIZE(gang));
  3078. if (!ret)
  3079. break;
  3080. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3081. for (i = 0; i < ret; i++) {
  3082. int err;
  3083. root_objectid = gang[i]->root_key.objectid;
  3084. err = btrfs_orphan_cleanup(gang[i]);
  3085. if (err)
  3086. return err;
  3087. }
  3088. root_objectid++;
  3089. }
  3090. return 0;
  3091. }
  3092. int btrfs_commit_super(struct btrfs_root *root)
  3093. {
  3094. struct btrfs_trans_handle *trans;
  3095. int ret;
  3096. mutex_lock(&root->fs_info->cleaner_mutex);
  3097. btrfs_run_delayed_iputs(root);
  3098. mutex_unlock(&root->fs_info->cleaner_mutex);
  3099. wake_up_process(root->fs_info->cleaner_kthread);
  3100. /* wait until ongoing cleanup work done */
  3101. down_write(&root->fs_info->cleanup_work_sem);
  3102. up_write(&root->fs_info->cleanup_work_sem);
  3103. trans = btrfs_join_transaction(root);
  3104. if (IS_ERR(trans))
  3105. return PTR_ERR(trans);
  3106. ret = btrfs_commit_transaction(trans, root);
  3107. if (ret)
  3108. return ret;
  3109. /* run commit again to drop the original snapshot */
  3110. trans = btrfs_join_transaction(root);
  3111. if (IS_ERR(trans))
  3112. return PTR_ERR(trans);
  3113. ret = btrfs_commit_transaction(trans, root);
  3114. if (ret)
  3115. return ret;
  3116. ret = btrfs_write_and_wait_transaction(NULL, root);
  3117. if (ret) {
  3118. btrfs_error(root->fs_info, ret,
  3119. "Failed to sync btree inode to disk.");
  3120. return ret;
  3121. }
  3122. ret = write_ctree_super(NULL, root, 0);
  3123. return ret;
  3124. }
  3125. int close_ctree(struct btrfs_root *root)
  3126. {
  3127. struct btrfs_fs_info *fs_info = root->fs_info;
  3128. int ret;
  3129. fs_info->closing = 1;
  3130. smp_mb();
  3131. /* wait for the uuid_scan task to finish */
  3132. down(&fs_info->uuid_tree_rescan_sem);
  3133. /* avoid complains from lockdep et al., set sem back to initial state */
  3134. up(&fs_info->uuid_tree_rescan_sem);
  3135. /* pause restriper - we want to resume on mount */
  3136. btrfs_pause_balance(fs_info);
  3137. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3138. btrfs_scrub_cancel(fs_info);
  3139. /* wait for any defraggers to finish */
  3140. wait_event(fs_info->transaction_wait,
  3141. (atomic_read(&fs_info->defrag_running) == 0));
  3142. /* clear out the rbtree of defraggable inodes */
  3143. btrfs_cleanup_defrag_inodes(fs_info);
  3144. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3145. ret = btrfs_commit_super(root);
  3146. if (ret)
  3147. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3148. }
  3149. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3150. btrfs_error_commit_super(root);
  3151. btrfs_put_block_group_cache(fs_info);
  3152. kthread_stop(fs_info->transaction_kthread);
  3153. kthread_stop(fs_info->cleaner_kthread);
  3154. fs_info->closing = 2;
  3155. smp_mb();
  3156. btrfs_free_qgroup_config(root->fs_info);
  3157. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3158. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3159. percpu_counter_sum(&fs_info->delalloc_bytes));
  3160. }
  3161. btrfs_free_block_groups(fs_info);
  3162. btrfs_stop_all_workers(fs_info);
  3163. del_fs_roots(fs_info);
  3164. free_root_pointers(fs_info, 1);
  3165. iput(fs_info->btree_inode);
  3166. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3167. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3168. btrfsic_unmount(root, fs_info->fs_devices);
  3169. #endif
  3170. btrfs_close_devices(fs_info->fs_devices);
  3171. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3172. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3173. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3174. bdi_destroy(&fs_info->bdi);
  3175. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3176. btrfs_free_stripe_hash_table(fs_info);
  3177. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3178. root->orphan_block_rsv = NULL;
  3179. return 0;
  3180. }
  3181. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3182. int atomic)
  3183. {
  3184. int ret;
  3185. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3186. ret = extent_buffer_uptodate(buf);
  3187. if (!ret)
  3188. return ret;
  3189. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3190. parent_transid, atomic);
  3191. if (ret == -EAGAIN)
  3192. return ret;
  3193. return !ret;
  3194. }
  3195. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3196. {
  3197. return set_extent_buffer_uptodate(buf);
  3198. }
  3199. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3200. {
  3201. struct btrfs_root *root;
  3202. u64 transid = btrfs_header_generation(buf);
  3203. int was_dirty;
  3204. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3205. /*
  3206. * This is a fast path so only do this check if we have sanity tests
  3207. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3208. * outside of the sanity tests.
  3209. */
  3210. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3211. return;
  3212. #endif
  3213. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3214. btrfs_assert_tree_locked(buf);
  3215. if (transid != root->fs_info->generation)
  3216. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3217. "found %llu running %llu\n",
  3218. buf->start, transid, root->fs_info->generation);
  3219. was_dirty = set_extent_buffer_dirty(buf);
  3220. if (!was_dirty)
  3221. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3222. buf->len,
  3223. root->fs_info->dirty_metadata_batch);
  3224. }
  3225. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3226. int flush_delayed)
  3227. {
  3228. /*
  3229. * looks as though older kernels can get into trouble with
  3230. * this code, they end up stuck in balance_dirty_pages forever
  3231. */
  3232. int ret;
  3233. if (current->flags & PF_MEMALLOC)
  3234. return;
  3235. if (flush_delayed)
  3236. btrfs_balance_delayed_items(root);
  3237. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3238. BTRFS_DIRTY_METADATA_THRESH);
  3239. if (ret > 0) {
  3240. balance_dirty_pages_ratelimited(
  3241. root->fs_info->btree_inode->i_mapping);
  3242. }
  3243. return;
  3244. }
  3245. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3246. {
  3247. __btrfs_btree_balance_dirty(root, 1);
  3248. }
  3249. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3250. {
  3251. __btrfs_btree_balance_dirty(root, 0);
  3252. }
  3253. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3254. {
  3255. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3256. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3257. }
  3258. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3259. int read_only)
  3260. {
  3261. /*
  3262. * Placeholder for checks
  3263. */
  3264. return 0;
  3265. }
  3266. static void btrfs_error_commit_super(struct btrfs_root *root)
  3267. {
  3268. mutex_lock(&root->fs_info->cleaner_mutex);
  3269. btrfs_run_delayed_iputs(root);
  3270. mutex_unlock(&root->fs_info->cleaner_mutex);
  3271. down_write(&root->fs_info->cleanup_work_sem);
  3272. up_write(&root->fs_info->cleanup_work_sem);
  3273. /* cleanup FS via transaction */
  3274. btrfs_cleanup_transaction(root);
  3275. }
  3276. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3277. struct btrfs_root *root)
  3278. {
  3279. struct btrfs_inode *btrfs_inode;
  3280. struct list_head splice;
  3281. INIT_LIST_HEAD(&splice);
  3282. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3283. spin_lock(&root->fs_info->ordered_root_lock);
  3284. list_splice_init(&t->ordered_operations, &splice);
  3285. while (!list_empty(&splice)) {
  3286. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3287. ordered_operations);
  3288. list_del_init(&btrfs_inode->ordered_operations);
  3289. spin_unlock(&root->fs_info->ordered_root_lock);
  3290. btrfs_invalidate_inodes(btrfs_inode->root);
  3291. spin_lock(&root->fs_info->ordered_root_lock);
  3292. }
  3293. spin_unlock(&root->fs_info->ordered_root_lock);
  3294. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3295. }
  3296. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3297. {
  3298. struct btrfs_ordered_extent *ordered;
  3299. spin_lock(&root->ordered_extent_lock);
  3300. /*
  3301. * This will just short circuit the ordered completion stuff which will
  3302. * make sure the ordered extent gets properly cleaned up.
  3303. */
  3304. list_for_each_entry(ordered, &root->ordered_extents,
  3305. root_extent_list)
  3306. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3307. spin_unlock(&root->ordered_extent_lock);
  3308. }
  3309. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3310. {
  3311. struct btrfs_root *root;
  3312. struct list_head splice;
  3313. INIT_LIST_HEAD(&splice);
  3314. spin_lock(&fs_info->ordered_root_lock);
  3315. list_splice_init(&fs_info->ordered_roots, &splice);
  3316. while (!list_empty(&splice)) {
  3317. root = list_first_entry(&splice, struct btrfs_root,
  3318. ordered_root);
  3319. list_move_tail(&root->ordered_root,
  3320. &fs_info->ordered_roots);
  3321. btrfs_destroy_ordered_extents(root);
  3322. cond_resched_lock(&fs_info->ordered_root_lock);
  3323. }
  3324. spin_unlock(&fs_info->ordered_root_lock);
  3325. }
  3326. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3327. struct btrfs_root *root)
  3328. {
  3329. struct rb_node *node;
  3330. struct btrfs_delayed_ref_root *delayed_refs;
  3331. struct btrfs_delayed_ref_node *ref;
  3332. int ret = 0;
  3333. delayed_refs = &trans->delayed_refs;
  3334. spin_lock(&delayed_refs->lock);
  3335. if (delayed_refs->num_entries == 0) {
  3336. spin_unlock(&delayed_refs->lock);
  3337. printk(KERN_INFO "delayed_refs has NO entry\n");
  3338. return ret;
  3339. }
  3340. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3341. struct btrfs_delayed_ref_head *head = NULL;
  3342. bool pin_bytes = false;
  3343. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3344. atomic_set(&ref->refs, 1);
  3345. if (btrfs_delayed_ref_is_head(ref)) {
  3346. head = btrfs_delayed_node_to_head(ref);
  3347. if (!mutex_trylock(&head->mutex)) {
  3348. atomic_inc(&ref->refs);
  3349. spin_unlock(&delayed_refs->lock);
  3350. /* Need to wait for the delayed ref to run */
  3351. mutex_lock(&head->mutex);
  3352. mutex_unlock(&head->mutex);
  3353. btrfs_put_delayed_ref(ref);
  3354. spin_lock(&delayed_refs->lock);
  3355. continue;
  3356. }
  3357. if (head->must_insert_reserved)
  3358. pin_bytes = true;
  3359. btrfs_free_delayed_extent_op(head->extent_op);
  3360. delayed_refs->num_heads--;
  3361. if (list_empty(&head->cluster))
  3362. delayed_refs->num_heads_ready--;
  3363. list_del_init(&head->cluster);
  3364. }
  3365. ref->in_tree = 0;
  3366. rb_erase(&ref->rb_node, &delayed_refs->root);
  3367. delayed_refs->num_entries--;
  3368. spin_unlock(&delayed_refs->lock);
  3369. if (head) {
  3370. if (pin_bytes)
  3371. btrfs_pin_extent(root, ref->bytenr,
  3372. ref->num_bytes, 1);
  3373. mutex_unlock(&head->mutex);
  3374. }
  3375. btrfs_put_delayed_ref(ref);
  3376. cond_resched();
  3377. spin_lock(&delayed_refs->lock);
  3378. }
  3379. spin_unlock(&delayed_refs->lock);
  3380. return ret;
  3381. }
  3382. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3383. {
  3384. struct btrfs_inode *btrfs_inode;
  3385. struct list_head splice;
  3386. INIT_LIST_HEAD(&splice);
  3387. spin_lock(&root->delalloc_lock);
  3388. list_splice_init(&root->delalloc_inodes, &splice);
  3389. while (!list_empty(&splice)) {
  3390. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3391. delalloc_inodes);
  3392. list_del_init(&btrfs_inode->delalloc_inodes);
  3393. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3394. &btrfs_inode->runtime_flags);
  3395. spin_unlock(&root->delalloc_lock);
  3396. btrfs_invalidate_inodes(btrfs_inode->root);
  3397. spin_lock(&root->delalloc_lock);
  3398. }
  3399. spin_unlock(&root->delalloc_lock);
  3400. }
  3401. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3402. {
  3403. struct btrfs_root *root;
  3404. struct list_head splice;
  3405. INIT_LIST_HEAD(&splice);
  3406. spin_lock(&fs_info->delalloc_root_lock);
  3407. list_splice_init(&fs_info->delalloc_roots, &splice);
  3408. while (!list_empty(&splice)) {
  3409. root = list_first_entry(&splice, struct btrfs_root,
  3410. delalloc_root);
  3411. list_del_init(&root->delalloc_root);
  3412. root = btrfs_grab_fs_root(root);
  3413. BUG_ON(!root);
  3414. spin_unlock(&fs_info->delalloc_root_lock);
  3415. btrfs_destroy_delalloc_inodes(root);
  3416. btrfs_put_fs_root(root);
  3417. spin_lock(&fs_info->delalloc_root_lock);
  3418. }
  3419. spin_unlock(&fs_info->delalloc_root_lock);
  3420. }
  3421. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3422. struct extent_io_tree *dirty_pages,
  3423. int mark)
  3424. {
  3425. int ret;
  3426. struct extent_buffer *eb;
  3427. u64 start = 0;
  3428. u64 end;
  3429. while (1) {
  3430. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3431. mark, NULL);
  3432. if (ret)
  3433. break;
  3434. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3435. while (start <= end) {
  3436. eb = btrfs_find_tree_block(root, start,
  3437. root->leafsize);
  3438. start += root->leafsize;
  3439. if (!eb)
  3440. continue;
  3441. wait_on_extent_buffer_writeback(eb);
  3442. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3443. &eb->bflags))
  3444. clear_extent_buffer_dirty(eb);
  3445. free_extent_buffer_stale(eb);
  3446. }
  3447. }
  3448. return ret;
  3449. }
  3450. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3451. struct extent_io_tree *pinned_extents)
  3452. {
  3453. struct extent_io_tree *unpin;
  3454. u64 start;
  3455. u64 end;
  3456. int ret;
  3457. bool loop = true;
  3458. unpin = pinned_extents;
  3459. again:
  3460. while (1) {
  3461. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3462. EXTENT_DIRTY, NULL);
  3463. if (ret)
  3464. break;
  3465. /* opt_discard */
  3466. if (btrfs_test_opt(root, DISCARD))
  3467. ret = btrfs_error_discard_extent(root, start,
  3468. end + 1 - start,
  3469. NULL);
  3470. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3471. btrfs_error_unpin_extent_range(root, start, end);
  3472. cond_resched();
  3473. }
  3474. if (loop) {
  3475. if (unpin == &root->fs_info->freed_extents[0])
  3476. unpin = &root->fs_info->freed_extents[1];
  3477. else
  3478. unpin = &root->fs_info->freed_extents[0];
  3479. loop = false;
  3480. goto again;
  3481. }
  3482. return 0;
  3483. }
  3484. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3485. struct btrfs_root *root)
  3486. {
  3487. btrfs_destroy_ordered_operations(cur_trans, root);
  3488. btrfs_destroy_delayed_refs(cur_trans, root);
  3489. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3490. cur_trans->dirty_pages.dirty_bytes);
  3491. cur_trans->state = TRANS_STATE_COMMIT_START;
  3492. wake_up(&root->fs_info->transaction_blocked_wait);
  3493. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3494. wake_up(&root->fs_info->transaction_wait);
  3495. btrfs_destroy_delayed_inodes(root);
  3496. btrfs_assert_delayed_root_empty(root);
  3497. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3498. EXTENT_DIRTY);
  3499. btrfs_destroy_pinned_extent(root,
  3500. root->fs_info->pinned_extents);
  3501. cur_trans->state =TRANS_STATE_COMPLETED;
  3502. wake_up(&cur_trans->commit_wait);
  3503. /*
  3504. memset(cur_trans, 0, sizeof(*cur_trans));
  3505. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3506. */
  3507. }
  3508. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3509. {
  3510. struct btrfs_transaction *t;
  3511. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3512. spin_lock(&root->fs_info->trans_lock);
  3513. while (!list_empty(&root->fs_info->trans_list)) {
  3514. t = list_first_entry(&root->fs_info->trans_list,
  3515. struct btrfs_transaction, list);
  3516. if (t->state >= TRANS_STATE_COMMIT_START) {
  3517. atomic_inc(&t->use_count);
  3518. spin_unlock(&root->fs_info->trans_lock);
  3519. btrfs_wait_for_commit(root, t->transid);
  3520. btrfs_put_transaction(t);
  3521. spin_lock(&root->fs_info->trans_lock);
  3522. continue;
  3523. }
  3524. if (t == root->fs_info->running_transaction) {
  3525. t->state = TRANS_STATE_COMMIT_DOING;
  3526. spin_unlock(&root->fs_info->trans_lock);
  3527. /*
  3528. * We wait for 0 num_writers since we don't hold a trans
  3529. * handle open currently for this transaction.
  3530. */
  3531. wait_event(t->writer_wait,
  3532. atomic_read(&t->num_writers) == 0);
  3533. } else {
  3534. spin_unlock(&root->fs_info->trans_lock);
  3535. }
  3536. btrfs_cleanup_one_transaction(t, root);
  3537. spin_lock(&root->fs_info->trans_lock);
  3538. if (t == root->fs_info->running_transaction)
  3539. root->fs_info->running_transaction = NULL;
  3540. list_del_init(&t->list);
  3541. spin_unlock(&root->fs_info->trans_lock);
  3542. btrfs_put_transaction(t);
  3543. trace_btrfs_transaction_commit(root);
  3544. spin_lock(&root->fs_info->trans_lock);
  3545. }
  3546. spin_unlock(&root->fs_info->trans_lock);
  3547. btrfs_destroy_all_ordered_extents(root->fs_info);
  3548. btrfs_destroy_delayed_inodes(root);
  3549. btrfs_assert_delayed_root_empty(root);
  3550. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3551. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3552. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3553. return 0;
  3554. }
  3555. static struct extent_io_ops btree_extent_io_ops = {
  3556. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3557. .readpage_io_failed_hook = btree_io_failed_hook,
  3558. .submit_bio_hook = btree_submit_bio_hook,
  3559. /* note we're sharing with inode.c for the merge bio hook */
  3560. .merge_bio_hook = btrfs_merge_bio_hook,
  3561. };