file.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include "f2fs.h"
  23. #include "node.h"
  24. #include "segment.h"
  25. #include "xattr.h"
  26. #include "acl.h"
  27. #include <trace/events/f2fs.h>
  28. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  29. struct vm_fault *vmf)
  30. {
  31. struct page *page = vmf->page;
  32. struct inode *inode = file_inode(vma->vm_file);
  33. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  34. block_t old_blk_addr;
  35. struct dnode_of_data dn;
  36. int err, ilock;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* block allocation */
  40. ilock = mutex_lock_op(sbi);
  41. set_new_dnode(&dn, inode, NULL, NULL, 0);
  42. err = get_dnode_of_data(&dn, page->index, ALLOC_NODE);
  43. if (err) {
  44. mutex_unlock_op(sbi, ilock);
  45. goto out;
  46. }
  47. old_blk_addr = dn.data_blkaddr;
  48. if (old_blk_addr == NULL_ADDR) {
  49. err = reserve_new_block(&dn);
  50. if (err) {
  51. f2fs_put_dnode(&dn);
  52. mutex_unlock_op(sbi, ilock);
  53. goto out;
  54. }
  55. }
  56. f2fs_put_dnode(&dn);
  57. mutex_unlock_op(sbi, ilock);
  58. file_update_time(vma->vm_file);
  59. lock_page(page);
  60. if (page->mapping != inode->i_mapping ||
  61. page_offset(page) > i_size_read(inode) ||
  62. !PageUptodate(page)) {
  63. unlock_page(page);
  64. err = -EFAULT;
  65. goto out;
  66. }
  67. /*
  68. * check to see if the page is mapped already (no holes)
  69. */
  70. if (PageMappedToDisk(page))
  71. goto mapped;
  72. /* page is wholly or partially inside EOF */
  73. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  74. unsigned offset;
  75. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  76. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  77. }
  78. set_page_dirty(page);
  79. SetPageUptodate(page);
  80. mapped:
  81. /* fill the page */
  82. wait_on_page_writeback(page);
  83. out:
  84. sb_end_pagefault(inode->i_sb);
  85. return block_page_mkwrite_return(err);
  86. }
  87. static const struct vm_operations_struct f2fs_file_vm_ops = {
  88. .fault = filemap_fault,
  89. .page_mkwrite = f2fs_vm_page_mkwrite,
  90. .remap_pages = generic_file_remap_pages,
  91. };
  92. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  93. {
  94. struct inode *inode = file->f_mapping->host;
  95. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  96. int ret = 0;
  97. bool need_cp = false;
  98. struct writeback_control wbc = {
  99. .sync_mode = WB_SYNC_ALL,
  100. .nr_to_write = LONG_MAX,
  101. .for_reclaim = 0,
  102. };
  103. if (f2fs_readonly(inode->i_sb))
  104. return 0;
  105. trace_f2fs_sync_file_enter(inode);
  106. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  107. if (ret) {
  108. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  109. return ret;
  110. }
  111. /* guarantee free sections for fsync */
  112. f2fs_balance_fs(sbi);
  113. mutex_lock(&inode->i_mutex);
  114. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  115. goto out;
  116. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  117. need_cp = true;
  118. else if (is_cp_file(inode))
  119. need_cp = true;
  120. else if (!space_for_roll_forward(sbi))
  121. need_cp = true;
  122. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  123. need_cp = true;
  124. if (need_cp) {
  125. /* all the dirty node pages should be flushed for POR */
  126. ret = f2fs_sync_fs(inode->i_sb, 1);
  127. } else {
  128. /* if there is no written node page, write its inode page */
  129. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  130. ret = f2fs_write_inode(inode, NULL);
  131. if (ret)
  132. goto out;
  133. }
  134. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  135. 0, LONG_MAX);
  136. ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  137. }
  138. out:
  139. mutex_unlock(&inode->i_mutex);
  140. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  141. return ret;
  142. }
  143. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  144. {
  145. file_accessed(file);
  146. vma->vm_ops = &f2fs_file_vm_ops;
  147. return 0;
  148. }
  149. static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  150. {
  151. int nr_free = 0, ofs = dn->ofs_in_node;
  152. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  153. struct f2fs_node *raw_node;
  154. __le32 *addr;
  155. raw_node = page_address(dn->node_page);
  156. addr = blkaddr_in_node(raw_node) + ofs;
  157. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  158. block_t blkaddr = le32_to_cpu(*addr);
  159. if (blkaddr == NULL_ADDR)
  160. continue;
  161. update_extent_cache(NULL_ADDR, dn);
  162. invalidate_blocks(sbi, blkaddr);
  163. dec_valid_block_count(sbi, dn->inode, 1);
  164. nr_free++;
  165. }
  166. if (nr_free) {
  167. set_page_dirty(dn->node_page);
  168. sync_inode_page(dn);
  169. }
  170. dn->ofs_in_node = ofs;
  171. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  172. dn->ofs_in_node, nr_free);
  173. return nr_free;
  174. }
  175. void truncate_data_blocks(struct dnode_of_data *dn)
  176. {
  177. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  178. }
  179. static void truncate_partial_data_page(struct inode *inode, u64 from)
  180. {
  181. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  182. struct page *page;
  183. if (!offset)
  184. return;
  185. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  186. if (IS_ERR(page))
  187. return;
  188. lock_page(page);
  189. if (page->mapping != inode->i_mapping) {
  190. f2fs_put_page(page, 1);
  191. return;
  192. }
  193. wait_on_page_writeback(page);
  194. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  195. set_page_dirty(page);
  196. f2fs_put_page(page, 1);
  197. }
  198. static int truncate_blocks(struct inode *inode, u64 from)
  199. {
  200. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  201. unsigned int blocksize = inode->i_sb->s_blocksize;
  202. struct dnode_of_data dn;
  203. pgoff_t free_from;
  204. int count = 0, ilock = -1;
  205. int err;
  206. trace_f2fs_truncate_blocks_enter(inode, from);
  207. free_from = (pgoff_t)
  208. ((from + blocksize - 1) >> (sbi->log_blocksize));
  209. ilock = mutex_lock_op(sbi);
  210. set_new_dnode(&dn, inode, NULL, NULL, 0);
  211. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  212. if (err) {
  213. if (err == -ENOENT)
  214. goto free_next;
  215. mutex_unlock_op(sbi, ilock);
  216. trace_f2fs_truncate_blocks_exit(inode, err);
  217. return err;
  218. }
  219. if (IS_INODE(dn.node_page))
  220. count = ADDRS_PER_INODE;
  221. else
  222. count = ADDRS_PER_BLOCK;
  223. count -= dn.ofs_in_node;
  224. BUG_ON(count < 0);
  225. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  226. truncate_data_blocks_range(&dn, count);
  227. free_from += count;
  228. }
  229. f2fs_put_dnode(&dn);
  230. free_next:
  231. err = truncate_inode_blocks(inode, free_from);
  232. mutex_unlock_op(sbi, ilock);
  233. /* lastly zero out the first data page */
  234. truncate_partial_data_page(inode, from);
  235. trace_f2fs_truncate_blocks_exit(inode, err);
  236. return err;
  237. }
  238. void f2fs_truncate(struct inode *inode)
  239. {
  240. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  241. S_ISLNK(inode->i_mode)))
  242. return;
  243. trace_f2fs_truncate(inode);
  244. if (!truncate_blocks(inode, i_size_read(inode))) {
  245. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  246. mark_inode_dirty(inode);
  247. }
  248. }
  249. static int f2fs_getattr(struct vfsmount *mnt,
  250. struct dentry *dentry, struct kstat *stat)
  251. {
  252. struct inode *inode = dentry->d_inode;
  253. generic_fillattr(inode, stat);
  254. stat->blocks <<= 3;
  255. return 0;
  256. }
  257. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  258. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  259. {
  260. struct f2fs_inode_info *fi = F2FS_I(inode);
  261. unsigned int ia_valid = attr->ia_valid;
  262. if (ia_valid & ATTR_UID)
  263. inode->i_uid = attr->ia_uid;
  264. if (ia_valid & ATTR_GID)
  265. inode->i_gid = attr->ia_gid;
  266. if (ia_valid & ATTR_ATIME)
  267. inode->i_atime = timespec_trunc(attr->ia_atime,
  268. inode->i_sb->s_time_gran);
  269. if (ia_valid & ATTR_MTIME)
  270. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  271. inode->i_sb->s_time_gran);
  272. if (ia_valid & ATTR_CTIME)
  273. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  274. inode->i_sb->s_time_gran);
  275. if (ia_valid & ATTR_MODE) {
  276. umode_t mode = attr->ia_mode;
  277. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  278. mode &= ~S_ISGID;
  279. set_acl_inode(fi, mode);
  280. }
  281. }
  282. #else
  283. #define __setattr_copy setattr_copy
  284. #endif
  285. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  286. {
  287. struct inode *inode = dentry->d_inode;
  288. struct f2fs_inode_info *fi = F2FS_I(inode);
  289. int err;
  290. err = inode_change_ok(inode, attr);
  291. if (err)
  292. return err;
  293. if ((attr->ia_valid & ATTR_SIZE) &&
  294. attr->ia_size != i_size_read(inode)) {
  295. truncate_setsize(inode, attr->ia_size);
  296. f2fs_truncate(inode);
  297. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  298. }
  299. __setattr_copy(inode, attr);
  300. if (attr->ia_valid & ATTR_MODE) {
  301. err = f2fs_acl_chmod(inode);
  302. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  303. inode->i_mode = fi->i_acl_mode;
  304. clear_inode_flag(fi, FI_ACL_MODE);
  305. }
  306. }
  307. mark_inode_dirty(inode);
  308. return err;
  309. }
  310. const struct inode_operations f2fs_file_inode_operations = {
  311. .getattr = f2fs_getattr,
  312. .setattr = f2fs_setattr,
  313. .get_acl = f2fs_get_acl,
  314. #ifdef CONFIG_F2FS_FS_XATTR
  315. .setxattr = generic_setxattr,
  316. .getxattr = generic_getxattr,
  317. .listxattr = f2fs_listxattr,
  318. .removexattr = generic_removexattr,
  319. #endif
  320. };
  321. static void fill_zero(struct inode *inode, pgoff_t index,
  322. loff_t start, loff_t len)
  323. {
  324. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  325. struct page *page;
  326. int ilock;
  327. if (!len)
  328. return;
  329. f2fs_balance_fs(sbi);
  330. ilock = mutex_lock_op(sbi);
  331. page = get_new_data_page(inode, NULL, index, false);
  332. mutex_unlock_op(sbi, ilock);
  333. if (!IS_ERR(page)) {
  334. wait_on_page_writeback(page);
  335. zero_user(page, start, len);
  336. set_page_dirty(page);
  337. f2fs_put_page(page, 1);
  338. }
  339. }
  340. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  341. {
  342. pgoff_t index;
  343. int err;
  344. for (index = pg_start; index < pg_end; index++) {
  345. struct dnode_of_data dn;
  346. set_new_dnode(&dn, inode, NULL, NULL, 0);
  347. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  348. if (err) {
  349. if (err == -ENOENT)
  350. continue;
  351. return err;
  352. }
  353. if (dn.data_blkaddr != NULL_ADDR)
  354. truncate_data_blocks_range(&dn, 1);
  355. f2fs_put_dnode(&dn);
  356. }
  357. return 0;
  358. }
  359. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  360. {
  361. pgoff_t pg_start, pg_end;
  362. loff_t off_start, off_end;
  363. int ret = 0;
  364. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  365. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  366. off_start = offset & (PAGE_CACHE_SIZE - 1);
  367. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  368. if (pg_start == pg_end) {
  369. fill_zero(inode, pg_start, off_start,
  370. off_end - off_start);
  371. } else {
  372. if (off_start)
  373. fill_zero(inode, pg_start++, off_start,
  374. PAGE_CACHE_SIZE - off_start);
  375. if (off_end)
  376. fill_zero(inode, pg_end, 0, off_end);
  377. if (pg_start < pg_end) {
  378. struct address_space *mapping = inode->i_mapping;
  379. loff_t blk_start, blk_end;
  380. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  381. int ilock;
  382. f2fs_balance_fs(sbi);
  383. blk_start = pg_start << PAGE_CACHE_SHIFT;
  384. blk_end = pg_end << PAGE_CACHE_SHIFT;
  385. truncate_inode_pages_range(mapping, blk_start,
  386. blk_end - 1);
  387. ilock = mutex_lock_op(sbi);
  388. ret = truncate_hole(inode, pg_start, pg_end);
  389. mutex_unlock_op(sbi, ilock);
  390. }
  391. }
  392. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  393. i_size_read(inode) <= (offset + len)) {
  394. i_size_write(inode, offset);
  395. mark_inode_dirty(inode);
  396. }
  397. return ret;
  398. }
  399. static int expand_inode_data(struct inode *inode, loff_t offset,
  400. loff_t len, int mode)
  401. {
  402. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  403. pgoff_t index, pg_start, pg_end;
  404. loff_t new_size = i_size_read(inode);
  405. loff_t off_start, off_end;
  406. int ret = 0;
  407. ret = inode_newsize_ok(inode, (len + offset));
  408. if (ret)
  409. return ret;
  410. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  411. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  412. off_start = offset & (PAGE_CACHE_SIZE - 1);
  413. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  414. for (index = pg_start; index <= pg_end; index++) {
  415. struct dnode_of_data dn;
  416. int ilock;
  417. ilock = mutex_lock_op(sbi);
  418. set_new_dnode(&dn, inode, NULL, NULL, 0);
  419. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  420. if (ret) {
  421. mutex_unlock_op(sbi, ilock);
  422. break;
  423. }
  424. if (dn.data_blkaddr == NULL_ADDR) {
  425. ret = reserve_new_block(&dn);
  426. if (ret) {
  427. f2fs_put_dnode(&dn);
  428. mutex_unlock_op(sbi, ilock);
  429. break;
  430. }
  431. }
  432. f2fs_put_dnode(&dn);
  433. mutex_unlock_op(sbi, ilock);
  434. if (pg_start == pg_end)
  435. new_size = offset + len;
  436. else if (index == pg_start && off_start)
  437. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  438. else if (index == pg_end)
  439. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  440. else
  441. new_size += PAGE_CACHE_SIZE;
  442. }
  443. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  444. i_size_read(inode) < new_size) {
  445. i_size_write(inode, new_size);
  446. mark_inode_dirty(inode);
  447. }
  448. return ret;
  449. }
  450. static long f2fs_fallocate(struct file *file, int mode,
  451. loff_t offset, loff_t len)
  452. {
  453. struct inode *inode = file_inode(file);
  454. long ret;
  455. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  456. return -EOPNOTSUPP;
  457. if (mode & FALLOC_FL_PUNCH_HOLE)
  458. ret = punch_hole(inode, offset, len, mode);
  459. else
  460. ret = expand_inode_data(inode, offset, len, mode);
  461. if (!ret) {
  462. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  463. mark_inode_dirty(inode);
  464. }
  465. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  466. return ret;
  467. }
  468. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  469. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  470. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  471. {
  472. if (S_ISDIR(mode))
  473. return flags;
  474. else if (S_ISREG(mode))
  475. return flags & F2FS_REG_FLMASK;
  476. else
  477. return flags & F2FS_OTHER_FLMASK;
  478. }
  479. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  480. {
  481. struct inode *inode = file_inode(filp);
  482. struct f2fs_inode_info *fi = F2FS_I(inode);
  483. unsigned int flags;
  484. int ret;
  485. switch (cmd) {
  486. case FS_IOC_GETFLAGS:
  487. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  488. return put_user(flags, (int __user *) arg);
  489. case FS_IOC_SETFLAGS:
  490. {
  491. unsigned int oldflags;
  492. ret = mnt_want_write_file(filp);
  493. if (ret)
  494. return ret;
  495. if (!inode_owner_or_capable(inode)) {
  496. ret = -EACCES;
  497. goto out;
  498. }
  499. if (get_user(flags, (int __user *) arg)) {
  500. ret = -EFAULT;
  501. goto out;
  502. }
  503. flags = f2fs_mask_flags(inode->i_mode, flags);
  504. mutex_lock(&inode->i_mutex);
  505. oldflags = fi->i_flags;
  506. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  507. if (!capable(CAP_LINUX_IMMUTABLE)) {
  508. mutex_unlock(&inode->i_mutex);
  509. ret = -EPERM;
  510. goto out;
  511. }
  512. }
  513. flags = flags & FS_FL_USER_MODIFIABLE;
  514. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  515. fi->i_flags = flags;
  516. mutex_unlock(&inode->i_mutex);
  517. f2fs_set_inode_flags(inode);
  518. inode->i_ctime = CURRENT_TIME;
  519. mark_inode_dirty(inode);
  520. out:
  521. mnt_drop_write_file(filp);
  522. return ret;
  523. }
  524. default:
  525. return -ENOTTY;
  526. }
  527. }
  528. #ifdef CONFIG_COMPAT
  529. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  530. {
  531. switch (cmd) {
  532. case F2FS_IOC32_GETFLAGS:
  533. cmd = F2FS_IOC_GETFLAGS;
  534. break;
  535. case F2FS_IOC32_SETFLAGS:
  536. cmd = F2FS_IOC_SETFLAGS;
  537. break;
  538. default:
  539. return -ENOIOCTLCMD;
  540. }
  541. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  542. }
  543. #endif
  544. const struct file_operations f2fs_file_operations = {
  545. .llseek = generic_file_llseek,
  546. .read = do_sync_read,
  547. .write = do_sync_write,
  548. .aio_read = generic_file_aio_read,
  549. .aio_write = generic_file_aio_write,
  550. .open = generic_file_open,
  551. .mmap = f2fs_file_mmap,
  552. .fsync = f2fs_sync_file,
  553. .fallocate = f2fs_fallocate,
  554. .unlocked_ioctl = f2fs_ioctl,
  555. #ifdef CONFIG_COMPAT
  556. .compat_ioctl = f2fs_compat_ioctl,
  557. #endif
  558. .splice_read = generic_file_splice_read,
  559. .splice_write = generic_file_splice_write,
  560. };