disk-io.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/version.h>
  19. #include <linux/fs.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/swap.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/writeback.h>
  25. #include <linux/buffer_head.h> // for block_sync_page
  26. #include <linux/workqueue.h>
  27. #include <linux/kthread.h>
  28. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
  29. # include <linux/freezer.h>
  30. #else
  31. # include <linux/sched.h>
  32. #endif
  33. #include "crc32c.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "ref-cache.h"
  43. #if 0
  44. static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
  45. {
  46. if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
  47. printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
  48. (unsigned long long)extent_buffer_blocknr(buf),
  49. (unsigned long long)btrfs_header_blocknr(buf));
  50. return 1;
  51. }
  52. return 0;
  53. }
  54. #endif
  55. static struct extent_io_ops btree_extent_io_ops;
  56. static void end_workqueue_fn(struct btrfs_work *work);
  57. struct end_io_wq {
  58. struct bio *bio;
  59. bio_end_io_t *end_io;
  60. void *private;
  61. struct btrfs_fs_info *info;
  62. int error;
  63. int metadata;
  64. struct list_head list;
  65. struct btrfs_work work;
  66. };
  67. struct async_submit_bio {
  68. struct inode *inode;
  69. struct bio *bio;
  70. struct list_head list;
  71. extent_submit_bio_hook_t *submit_bio_hook;
  72. int rw;
  73. int mirror_num;
  74. struct btrfs_work work;
  75. };
  76. struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
  77. size_t page_offset, u64 start, u64 len,
  78. int create)
  79. {
  80. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  81. struct extent_map *em;
  82. int ret;
  83. spin_lock(&em_tree->lock);
  84. em = lookup_extent_mapping(em_tree, start, len);
  85. if (em) {
  86. em->bdev =
  87. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  88. spin_unlock(&em_tree->lock);
  89. goto out;
  90. }
  91. spin_unlock(&em_tree->lock);
  92. em = alloc_extent_map(GFP_NOFS);
  93. if (!em) {
  94. em = ERR_PTR(-ENOMEM);
  95. goto out;
  96. }
  97. em->start = 0;
  98. em->len = (u64)-1;
  99. em->block_start = 0;
  100. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  101. spin_lock(&em_tree->lock);
  102. ret = add_extent_mapping(em_tree, em);
  103. if (ret == -EEXIST) {
  104. u64 failed_start = em->start;
  105. u64 failed_len = em->len;
  106. printk("failed to insert %Lu %Lu -> %Lu into tree\n",
  107. em->start, em->len, em->block_start);
  108. free_extent_map(em);
  109. em = lookup_extent_mapping(em_tree, start, len);
  110. if (em) {
  111. printk("after failing, found %Lu %Lu %Lu\n",
  112. em->start, em->len, em->block_start);
  113. ret = 0;
  114. } else {
  115. em = lookup_extent_mapping(em_tree, failed_start,
  116. failed_len);
  117. if (em) {
  118. printk("double failure lookup gives us "
  119. "%Lu %Lu -> %Lu\n", em->start,
  120. em->len, em->block_start);
  121. free_extent_map(em);
  122. }
  123. ret = -EIO;
  124. }
  125. } else if (ret) {
  126. free_extent_map(em);
  127. em = NULL;
  128. }
  129. spin_unlock(&em_tree->lock);
  130. if (ret)
  131. em = ERR_PTR(ret);
  132. out:
  133. return em;
  134. }
  135. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  136. {
  137. return btrfs_crc32c(seed, data, len);
  138. }
  139. void btrfs_csum_final(u32 crc, char *result)
  140. {
  141. *(__le32 *)result = ~cpu_to_le32(crc);
  142. }
  143. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  144. int verify)
  145. {
  146. char result[BTRFS_CRC32_SIZE];
  147. unsigned long len;
  148. unsigned long cur_len;
  149. unsigned long offset = BTRFS_CSUM_SIZE;
  150. char *map_token = NULL;
  151. char *kaddr;
  152. unsigned long map_start;
  153. unsigned long map_len;
  154. int err;
  155. u32 crc = ~(u32)0;
  156. len = buf->len - offset;
  157. while(len > 0) {
  158. err = map_private_extent_buffer(buf, offset, 32,
  159. &map_token, &kaddr,
  160. &map_start, &map_len, KM_USER0);
  161. if (err) {
  162. printk("failed to map extent buffer! %lu\n",
  163. offset);
  164. return 1;
  165. }
  166. cur_len = min(len, map_len - (offset - map_start));
  167. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  168. crc, cur_len);
  169. len -= cur_len;
  170. offset += cur_len;
  171. unmap_extent_buffer(buf, map_token, KM_USER0);
  172. }
  173. btrfs_csum_final(crc, result);
  174. if (verify) {
  175. /* FIXME, this is not good */
  176. if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
  177. u32 val;
  178. u32 found = 0;
  179. memcpy(&found, result, BTRFS_CRC32_SIZE);
  180. read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
  181. printk("btrfs: %s checksum verify failed on %llu "
  182. "wanted %X found %X level %d\n",
  183. root->fs_info->sb->s_id,
  184. buf->start, val, found, btrfs_header_level(buf));
  185. return 1;
  186. }
  187. } else {
  188. write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
  189. }
  190. return 0;
  191. }
  192. static int verify_parent_transid(struct extent_io_tree *io_tree,
  193. struct extent_buffer *eb, u64 parent_transid)
  194. {
  195. int ret;
  196. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  197. return 0;
  198. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  199. if (extent_buffer_uptodate(io_tree, eb) &&
  200. btrfs_header_generation(eb) == parent_transid) {
  201. ret = 0;
  202. goto out;
  203. }
  204. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  205. (unsigned long long)eb->start,
  206. (unsigned long long)parent_transid,
  207. (unsigned long long)btrfs_header_generation(eb));
  208. ret = 1;
  209. clear_extent_buffer_uptodate(io_tree, eb);
  210. out:
  211. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  212. GFP_NOFS);
  213. return ret;
  214. }
  215. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  216. struct extent_buffer *eb,
  217. u64 start, u64 parent_transid)
  218. {
  219. struct extent_io_tree *io_tree;
  220. int ret;
  221. int num_copies = 0;
  222. int mirror_num = 0;
  223. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  224. while (1) {
  225. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  226. btree_get_extent, mirror_num);
  227. if (!ret &&
  228. !verify_parent_transid(io_tree, eb, parent_transid))
  229. return ret;
  230. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  231. eb->start, eb->len);
  232. if (num_copies == 1)
  233. return ret;
  234. mirror_num++;
  235. if (mirror_num > num_copies)
  236. return ret;
  237. }
  238. return -EIO;
  239. }
  240. int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  241. {
  242. struct extent_io_tree *tree;
  243. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  244. u64 found_start;
  245. int found_level;
  246. unsigned long len;
  247. struct extent_buffer *eb;
  248. int ret;
  249. tree = &BTRFS_I(page->mapping->host)->io_tree;
  250. if (page->private == EXTENT_PAGE_PRIVATE)
  251. goto out;
  252. if (!page->private)
  253. goto out;
  254. len = page->private >> 2;
  255. if (len == 0) {
  256. WARN_ON(1);
  257. }
  258. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  259. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  260. btrfs_header_generation(eb));
  261. BUG_ON(ret);
  262. found_start = btrfs_header_bytenr(eb);
  263. if (found_start != start) {
  264. printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
  265. start, found_start, len);
  266. WARN_ON(1);
  267. goto err;
  268. }
  269. if (eb->first_page != page) {
  270. printk("bad first page %lu %lu\n", eb->first_page->index,
  271. page->index);
  272. WARN_ON(1);
  273. goto err;
  274. }
  275. if (!PageUptodate(page)) {
  276. printk("csum not up to date page %lu\n", page->index);
  277. WARN_ON(1);
  278. goto err;
  279. }
  280. found_level = btrfs_header_level(eb);
  281. spin_lock(&root->fs_info->hash_lock);
  282. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  283. spin_unlock(&root->fs_info->hash_lock);
  284. csum_tree_block(root, eb, 0);
  285. err:
  286. free_extent_buffer(eb);
  287. out:
  288. return 0;
  289. }
  290. static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
  291. {
  292. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  293. csum_dirty_buffer(root, page);
  294. return 0;
  295. }
  296. int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  297. struct extent_state *state)
  298. {
  299. struct extent_io_tree *tree;
  300. u64 found_start;
  301. int found_level;
  302. unsigned long len;
  303. struct extent_buffer *eb;
  304. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  305. int ret = 0;
  306. tree = &BTRFS_I(page->mapping->host)->io_tree;
  307. if (page->private == EXTENT_PAGE_PRIVATE)
  308. goto out;
  309. if (!page->private)
  310. goto out;
  311. len = page->private >> 2;
  312. if (len == 0) {
  313. WARN_ON(1);
  314. }
  315. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  316. found_start = btrfs_header_bytenr(eb);
  317. if (found_start != start) {
  318. ret = -EIO;
  319. goto err;
  320. }
  321. if (eb->first_page != page) {
  322. printk("bad first page %lu %lu\n", eb->first_page->index,
  323. page->index);
  324. WARN_ON(1);
  325. ret = -EIO;
  326. goto err;
  327. }
  328. if (memcmp_extent_buffer(eb, root->fs_info->fsid,
  329. (unsigned long)btrfs_header_fsid(eb),
  330. BTRFS_FSID_SIZE)) {
  331. printk("bad fsid on block %Lu\n", eb->start);
  332. ret = -EIO;
  333. goto err;
  334. }
  335. found_level = btrfs_header_level(eb);
  336. ret = csum_tree_block(root, eb, 1);
  337. if (ret)
  338. ret = -EIO;
  339. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  340. end = eb->start + end - 1;
  341. err:
  342. free_extent_buffer(eb);
  343. out:
  344. return ret;
  345. }
  346. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  347. static void end_workqueue_bio(struct bio *bio, int err)
  348. #else
  349. static int end_workqueue_bio(struct bio *bio,
  350. unsigned int bytes_done, int err)
  351. #endif
  352. {
  353. struct end_io_wq *end_io_wq = bio->bi_private;
  354. struct btrfs_fs_info *fs_info;
  355. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  356. if (bio->bi_size)
  357. return 1;
  358. #endif
  359. fs_info = end_io_wq->info;
  360. end_io_wq->error = err;
  361. end_io_wq->work.func = end_workqueue_fn;
  362. end_io_wq->work.flags = 0;
  363. if (bio->bi_rw & (1 << BIO_RW))
  364. btrfs_queue_worker(&fs_info->endio_write_workers,
  365. &end_io_wq->work);
  366. else
  367. btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
  368. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  369. return 0;
  370. #endif
  371. }
  372. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  373. int metadata)
  374. {
  375. struct end_io_wq *end_io_wq;
  376. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  377. if (!end_io_wq)
  378. return -ENOMEM;
  379. end_io_wq->private = bio->bi_private;
  380. end_io_wq->end_io = bio->bi_end_io;
  381. end_io_wq->info = info;
  382. end_io_wq->error = 0;
  383. end_io_wq->bio = bio;
  384. end_io_wq->metadata = metadata;
  385. bio->bi_private = end_io_wq;
  386. bio->bi_end_io = end_workqueue_bio;
  387. return 0;
  388. }
  389. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  390. {
  391. int limit = 256 * info->fs_devices->open_devices;
  392. if (iodone)
  393. limit = (limit * 3) / 2;
  394. if (atomic_read(&info->nr_async_submits) > limit)
  395. return 1;
  396. return atomic_read(&info->nr_async_bios) > limit;
  397. }
  398. static void run_one_async_submit(struct btrfs_work *work)
  399. {
  400. struct btrfs_fs_info *fs_info;
  401. struct async_submit_bio *async;
  402. async = container_of(work, struct async_submit_bio, work);
  403. fs_info = BTRFS_I(async->inode)->root->fs_info;
  404. atomic_dec(&fs_info->nr_async_submits);
  405. if ((async->bio->bi_rw & (1 << BIO_RW)) &&
  406. !btrfs_congested_async(fs_info, 1)) {
  407. clear_bdi_congested(&fs_info->bdi, WRITE);
  408. }
  409. async->submit_bio_hook(async->inode, async->rw, async->bio,
  410. async->mirror_num);
  411. kfree(async);
  412. }
  413. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  414. int rw, struct bio *bio, int mirror_num,
  415. extent_submit_bio_hook_t *submit_bio_hook)
  416. {
  417. struct async_submit_bio *async;
  418. async = kmalloc(sizeof(*async), GFP_NOFS);
  419. if (!async)
  420. return -ENOMEM;
  421. async->inode = inode;
  422. async->rw = rw;
  423. async->bio = bio;
  424. async->mirror_num = mirror_num;
  425. async->submit_bio_hook = submit_bio_hook;
  426. async->work.func = run_one_async_submit;
  427. async->work.flags = 0;
  428. atomic_inc(&fs_info->nr_async_submits);
  429. btrfs_queue_worker(&fs_info->workers, &async->work);
  430. return 0;
  431. }
  432. static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  433. int mirror_num)
  434. {
  435. struct btrfs_root *root = BTRFS_I(inode)->root;
  436. u64 offset;
  437. int ret;
  438. offset = bio->bi_sector << 9;
  439. /*
  440. * when we're called for a write, we're already in the async
  441. * submission context. Just jump ingo btrfs_map_bio
  442. */
  443. if (rw & (1 << BIO_RW)) {
  444. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  445. mirror_num, 0);
  446. }
  447. /*
  448. * called for a read, do the setup so that checksum validation
  449. * can happen in the async kernel threads
  450. */
  451. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
  452. BUG_ON(ret);
  453. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  454. }
  455. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  456. int mirror_num)
  457. {
  458. /*
  459. * kthread helpers are used to submit writes so that checksumming
  460. * can happen in parallel across all CPUs
  461. */
  462. if (!(rw & (1 << BIO_RW))) {
  463. return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
  464. }
  465. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  466. inode, rw, bio, mirror_num,
  467. __btree_submit_bio_hook);
  468. }
  469. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  470. {
  471. struct extent_io_tree *tree;
  472. tree = &BTRFS_I(page->mapping->host)->io_tree;
  473. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  474. }
  475. static int btree_writepages(struct address_space *mapping,
  476. struct writeback_control *wbc)
  477. {
  478. struct extent_io_tree *tree;
  479. tree = &BTRFS_I(mapping->host)->io_tree;
  480. if (wbc->sync_mode == WB_SYNC_NONE) {
  481. u64 num_dirty;
  482. u64 start = 0;
  483. unsigned long thresh = 96 * 1024 * 1024;
  484. if (wbc->for_kupdate)
  485. return 0;
  486. if (current_is_pdflush()) {
  487. thresh = 96 * 1024 * 1024;
  488. } else {
  489. thresh = 8 * 1024 * 1024;
  490. }
  491. num_dirty = count_range_bits(tree, &start, (u64)-1,
  492. thresh, EXTENT_DIRTY);
  493. if (num_dirty < thresh) {
  494. return 0;
  495. }
  496. }
  497. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  498. }
  499. int btree_readpage(struct file *file, struct page *page)
  500. {
  501. struct extent_io_tree *tree;
  502. tree = &BTRFS_I(page->mapping->host)->io_tree;
  503. return extent_read_full_page(tree, page, btree_get_extent);
  504. }
  505. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  506. {
  507. struct extent_io_tree *tree;
  508. struct extent_map_tree *map;
  509. int ret;
  510. tree = &BTRFS_I(page->mapping->host)->io_tree;
  511. map = &BTRFS_I(page->mapping->host)->extent_tree;
  512. ret = try_release_extent_state(map, tree, page, gfp_flags);
  513. if (!ret) {
  514. return 0;
  515. }
  516. ret = try_release_extent_buffer(tree, page);
  517. if (ret == 1) {
  518. ClearPagePrivate(page);
  519. set_page_private(page, 0);
  520. page_cache_release(page);
  521. }
  522. return ret;
  523. }
  524. static void btree_invalidatepage(struct page *page, unsigned long offset)
  525. {
  526. struct extent_io_tree *tree;
  527. tree = &BTRFS_I(page->mapping->host)->io_tree;
  528. extent_invalidatepage(tree, page, offset);
  529. btree_releasepage(page, GFP_NOFS);
  530. if (PagePrivate(page)) {
  531. printk("warning page private not zero on page %Lu\n",
  532. page_offset(page));
  533. ClearPagePrivate(page);
  534. set_page_private(page, 0);
  535. page_cache_release(page);
  536. }
  537. }
  538. #if 0
  539. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  540. {
  541. struct buffer_head *bh;
  542. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  543. struct buffer_head *head;
  544. if (!page_has_buffers(page)) {
  545. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  546. (1 << BH_Dirty)|(1 << BH_Uptodate));
  547. }
  548. head = page_buffers(page);
  549. bh = head;
  550. do {
  551. if (buffer_dirty(bh))
  552. csum_tree_block(root, bh, 0);
  553. bh = bh->b_this_page;
  554. } while (bh != head);
  555. return block_write_full_page(page, btree_get_block, wbc);
  556. }
  557. #endif
  558. static struct address_space_operations btree_aops = {
  559. .readpage = btree_readpage,
  560. .writepage = btree_writepage,
  561. .writepages = btree_writepages,
  562. .releasepage = btree_releasepage,
  563. .invalidatepage = btree_invalidatepage,
  564. .sync_page = block_sync_page,
  565. };
  566. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  567. u64 parent_transid)
  568. {
  569. struct extent_buffer *buf = NULL;
  570. struct inode *btree_inode = root->fs_info->btree_inode;
  571. int ret = 0;
  572. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  573. if (!buf)
  574. return 0;
  575. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  576. buf, 0, 0, btree_get_extent, 0);
  577. free_extent_buffer(buf);
  578. return ret;
  579. }
  580. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  581. u64 bytenr, u32 blocksize)
  582. {
  583. struct inode *btree_inode = root->fs_info->btree_inode;
  584. struct extent_buffer *eb;
  585. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  586. bytenr, blocksize, GFP_NOFS);
  587. return eb;
  588. }
  589. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  590. u64 bytenr, u32 blocksize)
  591. {
  592. struct inode *btree_inode = root->fs_info->btree_inode;
  593. struct extent_buffer *eb;
  594. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  595. bytenr, blocksize, NULL, GFP_NOFS);
  596. return eb;
  597. }
  598. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  599. u32 blocksize, u64 parent_transid)
  600. {
  601. struct extent_buffer *buf = NULL;
  602. struct inode *btree_inode = root->fs_info->btree_inode;
  603. struct extent_io_tree *io_tree;
  604. int ret;
  605. io_tree = &BTRFS_I(btree_inode)->io_tree;
  606. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  607. if (!buf)
  608. return NULL;
  609. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  610. if (ret == 0) {
  611. buf->flags |= EXTENT_UPTODATE;
  612. }
  613. return buf;
  614. }
  615. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  616. struct extent_buffer *buf)
  617. {
  618. struct inode *btree_inode = root->fs_info->btree_inode;
  619. if (btrfs_header_generation(buf) ==
  620. root->fs_info->running_transaction->transid) {
  621. WARN_ON(!btrfs_tree_locked(buf));
  622. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  623. buf);
  624. }
  625. return 0;
  626. }
  627. int wait_on_tree_block_writeback(struct btrfs_root *root,
  628. struct extent_buffer *buf)
  629. {
  630. struct inode *btree_inode = root->fs_info->btree_inode;
  631. wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
  632. buf);
  633. return 0;
  634. }
  635. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  636. u32 stripesize, struct btrfs_root *root,
  637. struct btrfs_fs_info *fs_info,
  638. u64 objectid)
  639. {
  640. root->node = NULL;
  641. root->inode = NULL;
  642. root->commit_root = NULL;
  643. root->ref_tree = NULL;
  644. root->sectorsize = sectorsize;
  645. root->nodesize = nodesize;
  646. root->leafsize = leafsize;
  647. root->stripesize = stripesize;
  648. root->ref_cows = 0;
  649. root->track_dirty = 0;
  650. root->fs_info = fs_info;
  651. root->objectid = objectid;
  652. root->last_trans = 0;
  653. root->highest_inode = 0;
  654. root->last_inode_alloc = 0;
  655. root->name = NULL;
  656. root->in_sysfs = 0;
  657. INIT_LIST_HEAD(&root->dirty_list);
  658. INIT_LIST_HEAD(&root->orphan_list);
  659. INIT_LIST_HEAD(&root->dead_list);
  660. spin_lock_init(&root->node_lock);
  661. spin_lock_init(&root->list_lock);
  662. mutex_init(&root->objectid_mutex);
  663. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  664. root->ref_tree = &root->ref_tree_struct;
  665. memset(&root->root_key, 0, sizeof(root->root_key));
  666. memset(&root->root_item, 0, sizeof(root->root_item));
  667. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  668. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  669. root->defrag_trans_start = fs_info->generation;
  670. init_completion(&root->kobj_unregister);
  671. root->defrag_running = 0;
  672. root->defrag_level = 0;
  673. root->root_key.objectid = objectid;
  674. return 0;
  675. }
  676. static int find_and_setup_root(struct btrfs_root *tree_root,
  677. struct btrfs_fs_info *fs_info,
  678. u64 objectid,
  679. struct btrfs_root *root)
  680. {
  681. int ret;
  682. u32 blocksize;
  683. __setup_root(tree_root->nodesize, tree_root->leafsize,
  684. tree_root->sectorsize, tree_root->stripesize,
  685. root, fs_info, objectid);
  686. ret = btrfs_find_last_root(tree_root, objectid,
  687. &root->root_item, &root->root_key);
  688. BUG_ON(ret);
  689. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  690. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  691. blocksize, 0);
  692. BUG_ON(!root->node);
  693. return 0;
  694. }
  695. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
  696. struct btrfs_key *location)
  697. {
  698. struct btrfs_root *root;
  699. struct btrfs_root *tree_root = fs_info->tree_root;
  700. struct btrfs_path *path;
  701. struct extent_buffer *l;
  702. u64 highest_inode;
  703. u32 blocksize;
  704. int ret = 0;
  705. root = kzalloc(sizeof(*root), GFP_NOFS);
  706. if (!root)
  707. return ERR_PTR(-ENOMEM);
  708. if (location->offset == (u64)-1) {
  709. ret = find_and_setup_root(tree_root, fs_info,
  710. location->objectid, root);
  711. if (ret) {
  712. kfree(root);
  713. return ERR_PTR(ret);
  714. }
  715. goto insert;
  716. }
  717. __setup_root(tree_root->nodesize, tree_root->leafsize,
  718. tree_root->sectorsize, tree_root->stripesize,
  719. root, fs_info, location->objectid);
  720. path = btrfs_alloc_path();
  721. BUG_ON(!path);
  722. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  723. if (ret != 0) {
  724. if (ret > 0)
  725. ret = -ENOENT;
  726. goto out;
  727. }
  728. l = path->nodes[0];
  729. read_extent_buffer(l, &root->root_item,
  730. btrfs_item_ptr_offset(l, path->slots[0]),
  731. sizeof(root->root_item));
  732. memcpy(&root->root_key, location, sizeof(*location));
  733. ret = 0;
  734. out:
  735. btrfs_release_path(root, path);
  736. btrfs_free_path(path);
  737. if (ret) {
  738. kfree(root);
  739. return ERR_PTR(ret);
  740. }
  741. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  742. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  743. blocksize, 0);
  744. BUG_ON(!root->node);
  745. insert:
  746. root->ref_cows = 1;
  747. ret = btrfs_find_highest_inode(root, &highest_inode);
  748. if (ret == 0) {
  749. root->highest_inode = highest_inode;
  750. root->last_inode_alloc = highest_inode;
  751. }
  752. return root;
  753. }
  754. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  755. u64 root_objectid)
  756. {
  757. struct btrfs_root *root;
  758. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  759. return fs_info->tree_root;
  760. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  761. return fs_info->extent_root;
  762. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  763. (unsigned long)root_objectid);
  764. return root;
  765. }
  766. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  767. struct btrfs_key *location)
  768. {
  769. struct btrfs_root *root;
  770. int ret;
  771. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  772. return fs_info->tree_root;
  773. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  774. return fs_info->extent_root;
  775. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  776. return fs_info->chunk_root;
  777. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  778. return fs_info->dev_root;
  779. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  780. (unsigned long)location->objectid);
  781. if (root)
  782. return root;
  783. root = btrfs_read_fs_root_no_radix(fs_info, location);
  784. if (IS_ERR(root))
  785. return root;
  786. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  787. (unsigned long)root->root_key.objectid,
  788. root);
  789. if (ret) {
  790. free_extent_buffer(root->node);
  791. kfree(root);
  792. return ERR_PTR(ret);
  793. }
  794. ret = btrfs_find_dead_roots(fs_info->tree_root,
  795. root->root_key.objectid, root);
  796. BUG_ON(ret);
  797. return root;
  798. }
  799. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  800. struct btrfs_key *location,
  801. const char *name, int namelen)
  802. {
  803. struct btrfs_root *root;
  804. int ret;
  805. root = btrfs_read_fs_root_no_name(fs_info, location);
  806. if (!root)
  807. return NULL;
  808. if (root->in_sysfs)
  809. return root;
  810. ret = btrfs_set_root_name(root, name, namelen);
  811. if (ret) {
  812. free_extent_buffer(root->node);
  813. kfree(root);
  814. return ERR_PTR(ret);
  815. }
  816. ret = btrfs_sysfs_add_root(root);
  817. if (ret) {
  818. free_extent_buffer(root->node);
  819. kfree(root->name);
  820. kfree(root);
  821. return ERR_PTR(ret);
  822. }
  823. root->in_sysfs = 1;
  824. return root;
  825. }
  826. #if 0
  827. static int add_hasher(struct btrfs_fs_info *info, char *type) {
  828. struct btrfs_hasher *hasher;
  829. hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
  830. if (!hasher)
  831. return -ENOMEM;
  832. hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
  833. if (!hasher->hash_tfm) {
  834. kfree(hasher);
  835. return -EINVAL;
  836. }
  837. spin_lock(&info->hash_lock);
  838. list_add(&hasher->list, &info->hashers);
  839. spin_unlock(&info->hash_lock);
  840. return 0;
  841. }
  842. #endif
  843. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  844. {
  845. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  846. int ret = 0;
  847. struct list_head *cur;
  848. struct btrfs_device *device;
  849. struct backing_dev_info *bdi;
  850. if ((bdi_bits & (1 << BDI_write_congested)) &&
  851. btrfs_congested_async(info, 0))
  852. return 1;
  853. list_for_each(cur, &info->fs_devices->devices) {
  854. device = list_entry(cur, struct btrfs_device, dev_list);
  855. if (!device->bdev)
  856. continue;
  857. bdi = blk_get_backing_dev_info(device->bdev);
  858. if (bdi && bdi_congested(bdi, bdi_bits)) {
  859. ret = 1;
  860. break;
  861. }
  862. }
  863. return ret;
  864. }
  865. /*
  866. * this unplugs every device on the box, and it is only used when page
  867. * is null
  868. */
  869. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  870. {
  871. struct list_head *cur;
  872. struct btrfs_device *device;
  873. struct btrfs_fs_info *info;
  874. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  875. list_for_each(cur, &info->fs_devices->devices) {
  876. device = list_entry(cur, struct btrfs_device, dev_list);
  877. bdi = blk_get_backing_dev_info(device->bdev);
  878. if (bdi->unplug_io_fn) {
  879. bdi->unplug_io_fn(bdi, page);
  880. }
  881. }
  882. }
  883. void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  884. {
  885. struct inode *inode;
  886. struct extent_map_tree *em_tree;
  887. struct extent_map *em;
  888. struct address_space *mapping;
  889. u64 offset;
  890. /* the generic O_DIRECT read code does this */
  891. if (!page) {
  892. __unplug_io_fn(bdi, page);
  893. return;
  894. }
  895. /*
  896. * page->mapping may change at any time. Get a consistent copy
  897. * and use that for everything below
  898. */
  899. smp_mb();
  900. mapping = page->mapping;
  901. if (!mapping)
  902. return;
  903. inode = mapping->host;
  904. offset = page_offset(page);
  905. em_tree = &BTRFS_I(inode)->extent_tree;
  906. spin_lock(&em_tree->lock);
  907. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  908. spin_unlock(&em_tree->lock);
  909. if (!em) {
  910. __unplug_io_fn(bdi, page);
  911. return;
  912. }
  913. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  914. free_extent_map(em);
  915. __unplug_io_fn(bdi, page);
  916. return;
  917. }
  918. offset = offset - em->start;
  919. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  920. em->block_start + offset, page);
  921. free_extent_map(em);
  922. }
  923. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  924. {
  925. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  926. bdi_init(bdi);
  927. #endif
  928. bdi->ra_pages = default_backing_dev_info.ra_pages;
  929. bdi->state = 0;
  930. bdi->capabilities = default_backing_dev_info.capabilities;
  931. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  932. bdi->unplug_io_data = info;
  933. bdi->congested_fn = btrfs_congested_fn;
  934. bdi->congested_data = info;
  935. return 0;
  936. }
  937. static int bio_ready_for_csum(struct bio *bio)
  938. {
  939. u64 length = 0;
  940. u64 buf_len = 0;
  941. u64 start = 0;
  942. struct page *page;
  943. struct extent_io_tree *io_tree = NULL;
  944. struct btrfs_fs_info *info = NULL;
  945. struct bio_vec *bvec;
  946. int i;
  947. int ret;
  948. bio_for_each_segment(bvec, bio, i) {
  949. page = bvec->bv_page;
  950. if (page->private == EXTENT_PAGE_PRIVATE) {
  951. length += bvec->bv_len;
  952. continue;
  953. }
  954. if (!page->private) {
  955. length += bvec->bv_len;
  956. continue;
  957. }
  958. length = bvec->bv_len;
  959. buf_len = page->private >> 2;
  960. start = page_offset(page) + bvec->bv_offset;
  961. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  962. info = BTRFS_I(page->mapping->host)->root->fs_info;
  963. }
  964. /* are we fully contained in this bio? */
  965. if (buf_len <= length)
  966. return 1;
  967. ret = extent_range_uptodate(io_tree, start + length,
  968. start + buf_len - 1);
  969. if (ret == 1)
  970. return ret;
  971. return ret;
  972. }
  973. /*
  974. * called by the kthread helper functions to finally call the bio end_io
  975. * functions. This is where read checksum verification actually happens
  976. */
  977. static void end_workqueue_fn(struct btrfs_work *work)
  978. {
  979. struct bio *bio;
  980. struct end_io_wq *end_io_wq;
  981. struct btrfs_fs_info *fs_info;
  982. int error;
  983. end_io_wq = container_of(work, struct end_io_wq, work);
  984. bio = end_io_wq->bio;
  985. fs_info = end_io_wq->info;
  986. /* metadata bios are special because the whole tree block must
  987. * be checksummed at once. This makes sure the entire block is in
  988. * ram and up to date before trying to verify things. For
  989. * blocksize <= pagesize, it is basically a noop
  990. */
  991. if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
  992. btrfs_queue_worker(&fs_info->endio_workers,
  993. &end_io_wq->work);
  994. return;
  995. }
  996. error = end_io_wq->error;
  997. bio->bi_private = end_io_wq->private;
  998. bio->bi_end_io = end_io_wq->end_io;
  999. kfree(end_io_wq);
  1000. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  1001. bio_endio(bio, bio->bi_size, error);
  1002. #else
  1003. bio_endio(bio, error);
  1004. #endif
  1005. }
  1006. static int cleaner_kthread(void *arg)
  1007. {
  1008. struct btrfs_root *root = arg;
  1009. do {
  1010. smp_mb();
  1011. if (root->fs_info->closing)
  1012. break;
  1013. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1014. mutex_lock(&root->fs_info->cleaner_mutex);
  1015. btrfs_clean_old_snapshots(root);
  1016. mutex_unlock(&root->fs_info->cleaner_mutex);
  1017. if (freezing(current)) {
  1018. refrigerator();
  1019. } else {
  1020. smp_mb();
  1021. if (root->fs_info->closing)
  1022. break;
  1023. set_current_state(TASK_INTERRUPTIBLE);
  1024. schedule();
  1025. __set_current_state(TASK_RUNNING);
  1026. }
  1027. } while (!kthread_should_stop());
  1028. return 0;
  1029. }
  1030. static int transaction_kthread(void *arg)
  1031. {
  1032. struct btrfs_root *root = arg;
  1033. struct btrfs_trans_handle *trans;
  1034. struct btrfs_transaction *cur;
  1035. unsigned long now;
  1036. unsigned long delay;
  1037. int ret;
  1038. do {
  1039. smp_mb();
  1040. if (root->fs_info->closing)
  1041. break;
  1042. delay = HZ * 30;
  1043. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1044. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1045. if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
  1046. printk("btrfs: total reference cache size %Lu\n",
  1047. root->fs_info->total_ref_cache_size);
  1048. }
  1049. mutex_lock(&root->fs_info->trans_mutex);
  1050. cur = root->fs_info->running_transaction;
  1051. if (!cur) {
  1052. mutex_unlock(&root->fs_info->trans_mutex);
  1053. goto sleep;
  1054. }
  1055. now = get_seconds();
  1056. if (now < cur->start_time || now - cur->start_time < 30) {
  1057. mutex_unlock(&root->fs_info->trans_mutex);
  1058. delay = HZ * 5;
  1059. goto sleep;
  1060. }
  1061. mutex_unlock(&root->fs_info->trans_mutex);
  1062. trans = btrfs_start_transaction(root, 1);
  1063. ret = btrfs_commit_transaction(trans, root);
  1064. sleep:
  1065. wake_up_process(root->fs_info->cleaner_kthread);
  1066. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1067. if (freezing(current)) {
  1068. refrigerator();
  1069. } else {
  1070. if (root->fs_info->closing)
  1071. break;
  1072. set_current_state(TASK_INTERRUPTIBLE);
  1073. schedule_timeout(delay);
  1074. __set_current_state(TASK_RUNNING);
  1075. }
  1076. } while (!kthread_should_stop());
  1077. return 0;
  1078. }
  1079. struct btrfs_root *open_ctree(struct super_block *sb,
  1080. struct btrfs_fs_devices *fs_devices,
  1081. char *options)
  1082. {
  1083. u32 sectorsize;
  1084. u32 nodesize;
  1085. u32 leafsize;
  1086. u32 blocksize;
  1087. u32 stripesize;
  1088. struct buffer_head *bh;
  1089. struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
  1090. GFP_NOFS);
  1091. struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
  1092. GFP_NOFS);
  1093. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1094. GFP_NOFS);
  1095. struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
  1096. GFP_NOFS);
  1097. struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
  1098. GFP_NOFS);
  1099. int ret;
  1100. int err = -EINVAL;
  1101. struct btrfs_super_block *disk_super;
  1102. if (!extent_root || !tree_root || !fs_info) {
  1103. err = -ENOMEM;
  1104. goto fail;
  1105. }
  1106. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1107. INIT_LIST_HEAD(&fs_info->trans_list);
  1108. INIT_LIST_HEAD(&fs_info->dead_roots);
  1109. INIT_LIST_HEAD(&fs_info->hashers);
  1110. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1111. spin_lock_init(&fs_info->hash_lock);
  1112. spin_lock_init(&fs_info->delalloc_lock);
  1113. spin_lock_init(&fs_info->new_trans_lock);
  1114. spin_lock_init(&fs_info->ref_cache_lock);
  1115. init_completion(&fs_info->kobj_unregister);
  1116. fs_info->tree_root = tree_root;
  1117. fs_info->extent_root = extent_root;
  1118. fs_info->chunk_root = chunk_root;
  1119. fs_info->dev_root = dev_root;
  1120. fs_info->fs_devices = fs_devices;
  1121. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1122. INIT_LIST_HEAD(&fs_info->space_info);
  1123. btrfs_mapping_init(&fs_info->mapping_tree);
  1124. atomic_set(&fs_info->nr_async_submits, 0);
  1125. atomic_set(&fs_info->nr_async_bios, 0);
  1126. atomic_set(&fs_info->throttles, 0);
  1127. atomic_set(&fs_info->throttle_gen, 0);
  1128. fs_info->sb = sb;
  1129. fs_info->max_extent = (u64)-1;
  1130. fs_info->max_inline = 8192 * 1024;
  1131. setup_bdi(fs_info, &fs_info->bdi);
  1132. fs_info->btree_inode = new_inode(sb);
  1133. fs_info->btree_inode->i_ino = 1;
  1134. fs_info->btree_inode->i_nlink = 1;
  1135. fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
  1136. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1137. spin_lock_init(&fs_info->ordered_extent_lock);
  1138. sb->s_blocksize = 4096;
  1139. sb->s_blocksize_bits = blksize_bits(4096);
  1140. /*
  1141. * we set the i_size on the btree inode to the max possible int.
  1142. * the real end of the address space is determined by all of
  1143. * the devices in the system
  1144. */
  1145. fs_info->btree_inode->i_size = OFFSET_MAX;
  1146. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1147. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1148. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1149. fs_info->btree_inode->i_mapping,
  1150. GFP_NOFS);
  1151. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1152. GFP_NOFS);
  1153. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1154. extent_io_tree_init(&fs_info->free_space_cache,
  1155. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1156. extent_io_tree_init(&fs_info->block_group_cache,
  1157. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1158. extent_io_tree_init(&fs_info->pinned_extents,
  1159. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1160. extent_io_tree_init(&fs_info->pending_del,
  1161. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1162. extent_io_tree_init(&fs_info->extent_ins,
  1163. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1164. fs_info->do_barriers = 1;
  1165. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1166. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1167. sizeof(struct btrfs_key));
  1168. insert_inode_hash(fs_info->btree_inode);
  1169. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1170. mutex_init(&fs_info->trans_mutex);
  1171. mutex_init(&fs_info->drop_mutex);
  1172. mutex_init(&fs_info->alloc_mutex);
  1173. mutex_init(&fs_info->chunk_mutex);
  1174. mutex_init(&fs_info->transaction_kthread_mutex);
  1175. mutex_init(&fs_info->cleaner_mutex);
  1176. mutex_init(&fs_info->volume_mutex);
  1177. init_waitqueue_head(&fs_info->transaction_throttle);
  1178. init_waitqueue_head(&fs_info->transaction_wait);
  1179. #if 0
  1180. ret = add_hasher(fs_info, "crc32c");
  1181. if (ret) {
  1182. printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
  1183. err = -ENOMEM;
  1184. goto fail_iput;
  1185. }
  1186. #endif
  1187. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1188. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1189. bh = __bread(fs_devices->latest_bdev,
  1190. BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
  1191. if (!bh)
  1192. goto fail_iput;
  1193. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1194. brelse(bh);
  1195. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1196. disk_super = &fs_info->super_copy;
  1197. if (!btrfs_super_root(disk_super))
  1198. goto fail_sb_buffer;
  1199. err = btrfs_parse_options(tree_root, options);
  1200. if (err)
  1201. goto fail_sb_buffer;
  1202. /*
  1203. * we need to start all the end_io workers up front because the
  1204. * queue work function gets called at interrupt time, and so it
  1205. * cannot dynamically grow.
  1206. */
  1207. btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
  1208. btrfs_init_workers(&fs_info->submit_workers,
  1209. min_t(u64, fs_devices->num_devices,
  1210. fs_info->thread_pool_size));
  1211. /* a higher idle thresh on the submit workers makes it much more
  1212. * likely that bios will be send down in a sane order to the
  1213. * devices
  1214. */
  1215. fs_info->submit_workers.idle_thresh = 64;
  1216. btrfs_init_workers(&fs_info->fixup_workers, 1);
  1217. btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1218. btrfs_init_workers(&fs_info->endio_write_workers,
  1219. fs_info->thread_pool_size);
  1220. /*
  1221. * endios are largely parallel and should have a very
  1222. * low idle thresh
  1223. */
  1224. fs_info->endio_workers.idle_thresh = 4;
  1225. fs_info->endio_write_workers.idle_thresh = 4;
  1226. btrfs_start_workers(&fs_info->workers, 1);
  1227. btrfs_start_workers(&fs_info->submit_workers, 1);
  1228. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1229. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1230. btrfs_start_workers(&fs_info->endio_write_workers,
  1231. fs_info->thread_pool_size);
  1232. err = -EINVAL;
  1233. if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
  1234. printk("Btrfs: wanted %llu devices, but found %llu\n",
  1235. (unsigned long long)btrfs_super_num_devices(disk_super),
  1236. (unsigned long long)fs_devices->open_devices);
  1237. if (btrfs_test_opt(tree_root, DEGRADED))
  1238. printk("continuing in degraded mode\n");
  1239. else {
  1240. goto fail_sb_buffer;
  1241. }
  1242. }
  1243. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1244. nodesize = btrfs_super_nodesize(disk_super);
  1245. leafsize = btrfs_super_leafsize(disk_super);
  1246. sectorsize = btrfs_super_sectorsize(disk_super);
  1247. stripesize = btrfs_super_stripesize(disk_super);
  1248. tree_root->nodesize = nodesize;
  1249. tree_root->leafsize = leafsize;
  1250. tree_root->sectorsize = sectorsize;
  1251. tree_root->stripesize = stripesize;
  1252. sb->s_blocksize = sectorsize;
  1253. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1254. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1255. sizeof(disk_super->magic))) {
  1256. printk("btrfs: valid FS not found on %s\n", sb->s_id);
  1257. goto fail_sb_buffer;
  1258. }
  1259. mutex_lock(&fs_info->chunk_mutex);
  1260. ret = btrfs_read_sys_array(tree_root);
  1261. mutex_unlock(&fs_info->chunk_mutex);
  1262. if (ret) {
  1263. printk("btrfs: failed to read the system array on %s\n",
  1264. sb->s_id);
  1265. goto fail_sys_array;
  1266. }
  1267. blocksize = btrfs_level_size(tree_root,
  1268. btrfs_super_chunk_root_level(disk_super));
  1269. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1270. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1271. chunk_root->node = read_tree_block(chunk_root,
  1272. btrfs_super_chunk_root(disk_super),
  1273. blocksize, 0);
  1274. BUG_ON(!chunk_root->node);
  1275. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1276. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1277. BTRFS_UUID_SIZE);
  1278. mutex_lock(&fs_info->chunk_mutex);
  1279. ret = btrfs_read_chunk_tree(chunk_root);
  1280. mutex_unlock(&fs_info->chunk_mutex);
  1281. BUG_ON(ret);
  1282. btrfs_close_extra_devices(fs_devices);
  1283. blocksize = btrfs_level_size(tree_root,
  1284. btrfs_super_root_level(disk_super));
  1285. tree_root->node = read_tree_block(tree_root,
  1286. btrfs_super_root(disk_super),
  1287. blocksize, 0);
  1288. if (!tree_root->node)
  1289. goto fail_sb_buffer;
  1290. ret = find_and_setup_root(tree_root, fs_info,
  1291. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1292. if (ret)
  1293. goto fail_tree_root;
  1294. extent_root->track_dirty = 1;
  1295. ret = find_and_setup_root(tree_root, fs_info,
  1296. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1297. dev_root->track_dirty = 1;
  1298. if (ret)
  1299. goto fail_extent_root;
  1300. btrfs_read_block_groups(extent_root);
  1301. fs_info->generation = btrfs_super_generation(disk_super) + 1;
  1302. fs_info->data_alloc_profile = (u64)-1;
  1303. fs_info->metadata_alloc_profile = (u64)-1;
  1304. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1305. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1306. "btrfs-cleaner");
  1307. if (!fs_info->cleaner_kthread)
  1308. goto fail_extent_root;
  1309. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1310. tree_root,
  1311. "btrfs-transaction");
  1312. if (!fs_info->transaction_kthread)
  1313. goto fail_cleaner;
  1314. return tree_root;
  1315. fail_cleaner:
  1316. kthread_stop(fs_info->cleaner_kthread);
  1317. fail_extent_root:
  1318. free_extent_buffer(extent_root->node);
  1319. fail_tree_root:
  1320. free_extent_buffer(tree_root->node);
  1321. fail_sys_array:
  1322. fail_sb_buffer:
  1323. btrfs_stop_workers(&fs_info->fixup_workers);
  1324. btrfs_stop_workers(&fs_info->workers);
  1325. btrfs_stop_workers(&fs_info->endio_workers);
  1326. btrfs_stop_workers(&fs_info->endio_write_workers);
  1327. btrfs_stop_workers(&fs_info->submit_workers);
  1328. fail_iput:
  1329. iput(fs_info->btree_inode);
  1330. fail:
  1331. btrfs_close_devices(fs_info->fs_devices);
  1332. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1333. kfree(extent_root);
  1334. kfree(tree_root);
  1335. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  1336. bdi_destroy(&fs_info->bdi);
  1337. #endif
  1338. kfree(fs_info);
  1339. return ERR_PTR(err);
  1340. }
  1341. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1342. {
  1343. char b[BDEVNAME_SIZE];
  1344. if (uptodate) {
  1345. set_buffer_uptodate(bh);
  1346. } else {
  1347. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1348. printk(KERN_WARNING "lost page write due to "
  1349. "I/O error on %s\n",
  1350. bdevname(bh->b_bdev, b));
  1351. }
  1352. /* note, we dont' set_buffer_write_io_error because we have
  1353. * our own ways of dealing with the IO errors
  1354. */
  1355. clear_buffer_uptodate(bh);
  1356. }
  1357. unlock_buffer(bh);
  1358. put_bh(bh);
  1359. }
  1360. int write_all_supers(struct btrfs_root *root)
  1361. {
  1362. struct list_head *cur;
  1363. struct list_head *head = &root->fs_info->fs_devices->devices;
  1364. struct btrfs_device *dev;
  1365. struct btrfs_super_block *sb;
  1366. struct btrfs_dev_item *dev_item;
  1367. struct buffer_head *bh;
  1368. int ret;
  1369. int do_barriers;
  1370. int max_errors;
  1371. int total_errors = 0;
  1372. u32 crc;
  1373. u64 flags;
  1374. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1375. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1376. sb = &root->fs_info->super_for_commit;
  1377. dev_item = &sb->dev_item;
  1378. list_for_each(cur, head) {
  1379. dev = list_entry(cur, struct btrfs_device, dev_list);
  1380. if (!dev->bdev) {
  1381. total_errors++;
  1382. continue;
  1383. }
  1384. if (!dev->in_fs_metadata)
  1385. continue;
  1386. btrfs_set_stack_device_type(dev_item, dev->type);
  1387. btrfs_set_stack_device_id(dev_item, dev->devid);
  1388. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1389. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1390. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1391. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1392. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1393. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1394. flags = btrfs_super_flags(sb);
  1395. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1396. crc = ~(u32)0;
  1397. crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
  1398. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  1399. btrfs_csum_final(crc, sb->csum);
  1400. bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
  1401. BTRFS_SUPER_INFO_SIZE);
  1402. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1403. dev->pending_io = bh;
  1404. get_bh(bh);
  1405. set_buffer_uptodate(bh);
  1406. lock_buffer(bh);
  1407. bh->b_end_io = btrfs_end_buffer_write_sync;
  1408. if (do_barriers && dev->barriers) {
  1409. ret = submit_bh(WRITE_BARRIER, bh);
  1410. if (ret == -EOPNOTSUPP) {
  1411. printk("btrfs: disabling barriers on dev %s\n",
  1412. dev->name);
  1413. set_buffer_uptodate(bh);
  1414. dev->barriers = 0;
  1415. get_bh(bh);
  1416. lock_buffer(bh);
  1417. ret = submit_bh(WRITE, bh);
  1418. }
  1419. } else {
  1420. ret = submit_bh(WRITE, bh);
  1421. }
  1422. if (ret)
  1423. total_errors++;
  1424. }
  1425. if (total_errors > max_errors) {
  1426. printk("btrfs: %d errors while writing supers\n", total_errors);
  1427. BUG();
  1428. }
  1429. total_errors = 0;
  1430. list_for_each(cur, head) {
  1431. dev = list_entry(cur, struct btrfs_device, dev_list);
  1432. if (!dev->bdev)
  1433. continue;
  1434. if (!dev->in_fs_metadata)
  1435. continue;
  1436. BUG_ON(!dev->pending_io);
  1437. bh = dev->pending_io;
  1438. wait_on_buffer(bh);
  1439. if (!buffer_uptodate(dev->pending_io)) {
  1440. if (do_barriers && dev->barriers) {
  1441. printk("btrfs: disabling barriers on dev %s\n",
  1442. dev->name);
  1443. set_buffer_uptodate(bh);
  1444. get_bh(bh);
  1445. lock_buffer(bh);
  1446. dev->barriers = 0;
  1447. ret = submit_bh(WRITE, bh);
  1448. BUG_ON(ret);
  1449. wait_on_buffer(bh);
  1450. if (!buffer_uptodate(bh))
  1451. total_errors++;
  1452. } else {
  1453. total_errors++;
  1454. }
  1455. }
  1456. dev->pending_io = NULL;
  1457. brelse(bh);
  1458. }
  1459. if (total_errors > max_errors) {
  1460. printk("btrfs: %d errors while writing supers\n", total_errors);
  1461. BUG();
  1462. }
  1463. return 0;
  1464. }
  1465. int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
  1466. *root)
  1467. {
  1468. int ret;
  1469. ret = write_all_supers(root);
  1470. return ret;
  1471. }
  1472. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1473. {
  1474. radix_tree_delete(&fs_info->fs_roots_radix,
  1475. (unsigned long)root->root_key.objectid);
  1476. if (root->in_sysfs)
  1477. btrfs_sysfs_del_root(root);
  1478. if (root->inode)
  1479. iput(root->inode);
  1480. if (root->node)
  1481. free_extent_buffer(root->node);
  1482. if (root->commit_root)
  1483. free_extent_buffer(root->commit_root);
  1484. if (root->name)
  1485. kfree(root->name);
  1486. kfree(root);
  1487. return 0;
  1488. }
  1489. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1490. {
  1491. int ret;
  1492. struct btrfs_root *gang[8];
  1493. int i;
  1494. while(1) {
  1495. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1496. (void **)gang, 0,
  1497. ARRAY_SIZE(gang));
  1498. if (!ret)
  1499. break;
  1500. for (i = 0; i < ret; i++)
  1501. btrfs_free_fs_root(fs_info, gang[i]);
  1502. }
  1503. return 0;
  1504. }
  1505. int close_ctree(struct btrfs_root *root)
  1506. {
  1507. int ret;
  1508. struct btrfs_trans_handle *trans;
  1509. struct btrfs_fs_info *fs_info = root->fs_info;
  1510. fs_info->closing = 1;
  1511. smp_mb();
  1512. kthread_stop(root->fs_info->transaction_kthread);
  1513. kthread_stop(root->fs_info->cleaner_kthread);
  1514. btrfs_clean_old_snapshots(root);
  1515. trans = btrfs_start_transaction(root, 1);
  1516. ret = btrfs_commit_transaction(trans, root);
  1517. /* run commit again to drop the original snapshot */
  1518. trans = btrfs_start_transaction(root, 1);
  1519. btrfs_commit_transaction(trans, root);
  1520. ret = btrfs_write_and_wait_transaction(NULL, root);
  1521. BUG_ON(ret);
  1522. write_ctree_super(NULL, root);
  1523. if (fs_info->delalloc_bytes) {
  1524. printk("btrfs: at unmount delalloc count %Lu\n",
  1525. fs_info->delalloc_bytes);
  1526. }
  1527. if (fs_info->total_ref_cache_size) {
  1528. printk("btrfs: at umount reference cache size %Lu\n",
  1529. fs_info->total_ref_cache_size);
  1530. }
  1531. if (fs_info->extent_root->node)
  1532. free_extent_buffer(fs_info->extent_root->node);
  1533. if (fs_info->tree_root->node)
  1534. free_extent_buffer(fs_info->tree_root->node);
  1535. if (root->fs_info->chunk_root->node);
  1536. free_extent_buffer(root->fs_info->chunk_root->node);
  1537. if (root->fs_info->dev_root->node);
  1538. free_extent_buffer(root->fs_info->dev_root->node);
  1539. btrfs_free_block_groups(root->fs_info);
  1540. fs_info->closing = 2;
  1541. del_fs_roots(fs_info);
  1542. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1543. truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
  1544. btrfs_stop_workers(&fs_info->fixup_workers);
  1545. btrfs_stop_workers(&fs_info->workers);
  1546. btrfs_stop_workers(&fs_info->endio_workers);
  1547. btrfs_stop_workers(&fs_info->endio_write_workers);
  1548. btrfs_stop_workers(&fs_info->submit_workers);
  1549. iput(fs_info->btree_inode);
  1550. #if 0
  1551. while(!list_empty(&fs_info->hashers)) {
  1552. struct btrfs_hasher *hasher;
  1553. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1554. hashers);
  1555. list_del(&hasher->hashers);
  1556. crypto_free_hash(&fs_info->hash_tfm);
  1557. kfree(hasher);
  1558. }
  1559. #endif
  1560. btrfs_close_devices(fs_info->fs_devices);
  1561. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1562. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  1563. bdi_destroy(&fs_info->bdi);
  1564. #endif
  1565. kfree(fs_info->extent_root);
  1566. kfree(fs_info->tree_root);
  1567. kfree(fs_info->chunk_root);
  1568. kfree(fs_info->dev_root);
  1569. return 0;
  1570. }
  1571. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1572. {
  1573. int ret;
  1574. struct inode *btree_inode = buf->first_page->mapping->host;
  1575. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1576. if (!ret)
  1577. return ret;
  1578. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1579. parent_transid);
  1580. return !ret;
  1581. }
  1582. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1583. {
  1584. struct inode *btree_inode = buf->first_page->mapping->host;
  1585. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  1586. buf);
  1587. }
  1588. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  1589. {
  1590. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1591. u64 transid = btrfs_header_generation(buf);
  1592. struct inode *btree_inode = root->fs_info->btree_inode;
  1593. WARN_ON(!btrfs_tree_locked(buf));
  1594. if (transid != root->fs_info->generation) {
  1595. printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
  1596. (unsigned long long)buf->start,
  1597. transid, root->fs_info->generation);
  1598. WARN_ON(1);
  1599. }
  1600. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  1601. }
  1602. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  1603. {
  1604. /*
  1605. * looks as though older kernels can get into trouble with
  1606. * this code, they end up stuck in balance_dirty_pages forever
  1607. */
  1608. struct extent_io_tree *tree;
  1609. u64 num_dirty;
  1610. u64 start = 0;
  1611. unsigned long thresh = 2 * 1024 * 1024;
  1612. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  1613. if (current_is_pdflush())
  1614. return;
  1615. num_dirty = count_range_bits(tree, &start, (u64)-1,
  1616. thresh, EXTENT_DIRTY);
  1617. if (num_dirty > thresh) {
  1618. balance_dirty_pages_ratelimited_nr(
  1619. root->fs_info->btree_inode->i_mapping, 1);
  1620. }
  1621. return;
  1622. }
  1623. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  1624. {
  1625. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1626. int ret;
  1627. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1628. if (ret == 0) {
  1629. buf->flags |= EXTENT_UPTODATE;
  1630. }
  1631. return ret;
  1632. }
  1633. static struct extent_io_ops btree_extent_io_ops = {
  1634. .writepage_io_hook = btree_writepage_io_hook,
  1635. .readpage_end_io_hook = btree_readpage_end_io_hook,
  1636. .submit_bio_hook = btree_submit_bio_hook,
  1637. /* note we're sharing with inode.c for the merge bio hook */
  1638. .merge_bio_hook = btrfs_merge_bio_hook,
  1639. };