mb86a16.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779
  1. /*
  2. Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
  3. Copyright (C) 2005, 2006 Manu Abraham (abraham.manu@gmail.com)
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include "dvb_frontend.h"
  21. #include "mb86a16.h"
  22. #include "mb86a16_priv.h"
  23. unsigned int verbose = 5;
  24. module_param(verbose, int, 0644);
  25. #define ABS(x) ((x) < 0 ? (-x) : (x))
  26. struct mb86a16_state {
  27. struct i2c_adapter *i2c_adap;
  28. const struct mb86a16_config *config;
  29. struct dvb_frontend frontend;
  30. u8 signal;
  31. // tuning parameters
  32. int frequency;
  33. int srate;
  34. // Internal stuff
  35. int master_clk;
  36. int deci;
  37. int csel;
  38. int rsel;
  39. };
  40. #define MB86A16_ERROR 0
  41. #define MB86A16_NOTICE 1
  42. #define MB86A16_INFO 2
  43. #define MB86A16_DEBUG 3
  44. #define dprintk(x, y, z, format, arg...) do { \
  45. if (z) { \
  46. if ((x > MB86A16_ERROR) && (x > y)) \
  47. printk(KERN_ERR "%s: " format "\n", __func__, ##arg); \
  48. else if ((x > MB86A16_NOTICE) && (x > y)) \
  49. printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg); \
  50. else if ((x > MB86A16_INFO) && (x > y)) \
  51. printk(KERN_INFO "%s: " format "\n", __func__, ##arg); \
  52. else if ((x > MB86A16_DEBUG) && (x > y)) \
  53. printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg); \
  54. } else { \
  55. if (x > y) \
  56. printk(format, ##arg); \
  57. } \
  58. } while (0)
  59. #define TRACE_IN dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
  60. #define TRACE_OUT dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
  61. static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
  62. {
  63. int ret;
  64. u8 buf[] = { reg, val };
  65. struct i2c_msg msg = {
  66. .addr = state->config->demod_address,
  67. .flags = 0,
  68. .buf = buf,
  69. .len = 2
  70. };
  71. dprintk(verbose, MB86A16_DEBUG, 1,
  72. "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
  73. state->config->demod_address, buf[0], buf[1]);
  74. ret = i2c_transfer(state->i2c_adap, &msg, 1);
  75. return (ret != 1) ? -EREMOTEIO : 0;
  76. }
  77. static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
  78. {
  79. int ret;
  80. u8 b0[] = { reg };
  81. u8 b1[] = { 0 };
  82. struct i2c_msg msg[] = {
  83. {
  84. .addr = state->config->demod_address,
  85. .flags = 0,
  86. .buf = b0,
  87. .len = 1
  88. },{
  89. .addr = state->config->demod_address,
  90. .flags = I2C_M_RD,
  91. .buf = b1,
  92. .len = 1
  93. }
  94. };
  95. ret = i2c_transfer(state->i2c_adap, msg, 2);
  96. if (ret != 2) {
  97. dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
  98. reg, ret);
  99. return -EREMOTEIO;
  100. }
  101. *val = b1[0];
  102. return ret;
  103. }
  104. static int CNTM_set(struct mb86a16_state *state,
  105. unsigned char timint1,
  106. unsigned char timint2,
  107. unsigned char cnext)
  108. {
  109. unsigned char val;
  110. val = (timint1 << 4) | (timint2 << 2) | cnext;
  111. if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
  112. goto err;
  113. return 0;
  114. err:
  115. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  116. return -EREMOTEIO;
  117. }
  118. static int smrt_set(struct mb86a16_state *state, int rate)
  119. {
  120. int tmp ;
  121. int m ;
  122. unsigned char STOFS0, STOFS1;
  123. m = 1 << state->deci;
  124. tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
  125. STOFS0 = tmp & 0x0ff;
  126. STOFS1 = (tmp & 0xf00) >> 8;
  127. if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
  128. (state->csel << 1) |
  129. state->rsel) < 0)
  130. goto err;
  131. if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
  132. goto err;
  133. if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
  134. goto err;
  135. return 0;
  136. err:
  137. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  138. return -1;
  139. }
  140. static int srst(struct mb86a16_state *state)
  141. {
  142. if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
  143. goto err;
  144. return 0;
  145. err:
  146. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  147. return -EREMOTEIO;
  148. }
  149. static int afcex_data_set(struct mb86a16_state *state,
  150. unsigned char AFCEX_L,
  151. unsigned char AFCEX_H)
  152. {
  153. if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
  154. goto err;
  155. if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
  156. goto err;
  157. return 0;
  158. err:
  159. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  160. return -1;
  161. }
  162. static int afcofs_data_set(struct mb86a16_state *state,
  163. unsigned char AFCEX_L,
  164. unsigned char AFCEX_H)
  165. {
  166. if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
  167. goto err;
  168. if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
  169. goto err;
  170. return 0;
  171. err:
  172. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  173. return -EREMOTEIO;
  174. }
  175. static int stlp_set(struct mb86a16_state *state,
  176. unsigned char STRAS,
  177. unsigned char STRBS)
  178. {
  179. if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
  180. goto err;
  181. return 0;
  182. err:
  183. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  184. return -EREMOTEIO;
  185. }
  186. static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
  187. {
  188. if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
  189. goto err;
  190. if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
  191. goto err;
  192. return 0;
  193. err:
  194. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  195. return -EREMOTEIO;
  196. }
  197. static int initial_set(struct mb86a16_state *state)
  198. {
  199. if (stlp_set(state, 5, 7))
  200. goto err;
  201. udelay(100);
  202. if (afcex_data_set(state, 0, 0))
  203. goto err;
  204. udelay(100);
  205. if (afcofs_data_set(state, 0, 0))
  206. goto err;
  207. udelay(100);
  208. if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
  209. goto err;
  210. if (mb86a16_write(state, 0x2f, 0x21) < 0)
  211. goto err;
  212. if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
  213. goto err;
  214. if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
  215. goto err;
  216. if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
  217. goto err;
  218. if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
  219. goto err;
  220. if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
  221. goto err;
  222. if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
  223. goto err;
  224. if (mb86a16_write(state, 0x54, 0xff) < 0)
  225. goto err;
  226. if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
  227. goto err;
  228. return 0;
  229. err:
  230. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  231. return -EREMOTEIO;
  232. }
  233. static int S01T_set(struct mb86a16_state *state,
  234. unsigned char s1t,
  235. unsigned s0t)
  236. {
  237. if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
  238. goto err;
  239. return 0;
  240. err:
  241. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  242. return -EREMOTEIO;
  243. }
  244. static int EN_set(struct mb86a16_state *state,
  245. int cren,
  246. int afcen)
  247. {
  248. unsigned char val;
  249. val = 0x7a | (cren << 7) | (afcen << 2);
  250. if (mb86a16_write(state, 0x49, val) < 0)
  251. goto err;
  252. return 0;
  253. err:
  254. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  255. return -EREMOTEIO;
  256. }
  257. static int AFCEXEN_set(struct mb86a16_state *state,
  258. int afcexen,
  259. int smrt)
  260. {
  261. unsigned char AFCA ;
  262. if (smrt > 18875)
  263. AFCA = 4;
  264. else if (smrt > 9375)
  265. AFCA = 3;
  266. else if (smrt > 2250)
  267. AFCA = 2;
  268. else
  269. AFCA = 1;
  270. if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
  271. goto err;
  272. return 0;
  273. err:
  274. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  275. return -EREMOTEIO;
  276. }
  277. static int DAGC_data_set(struct mb86a16_state *state,
  278. unsigned char DAGCA,
  279. unsigned char DAGCW)
  280. {
  281. if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
  282. goto err;
  283. return 0;
  284. err:
  285. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  286. return -EREMOTEIO;
  287. }
  288. static void smrt_info_get(struct mb86a16_state *state, int rate)
  289. {
  290. if (rate >= 37501) {
  291. state->deci = 0; state->csel = 0; state->rsel = 0;
  292. } else if (rate >= 30001) {
  293. state->deci = 0; state->csel = 0; state->rsel = 1;
  294. } else if (rate >= 26251) {
  295. state->deci = 0; state->csel = 1; state->rsel = 0;
  296. } else if (rate >= 22501) {
  297. state->deci = 0; state->csel = 1; state->rsel = 1;
  298. } else if (rate >= 18751) {
  299. state->deci = 1; state->csel = 0; state->rsel = 0;
  300. } else if (rate >= 15001) {
  301. state->deci = 1; state->csel = 0; state->rsel = 1;
  302. } else if (rate >= 13126) {
  303. state->deci = 1; state->csel = 1; state->rsel = 0;
  304. } else if (rate >= 11251) {
  305. state->deci = 1; state->csel = 1; state->rsel = 1;
  306. } else if (rate >= 9376) {
  307. state->deci = 2; state->csel = 0; state->rsel = 0;
  308. } else if (rate >= 7501) {
  309. state->deci = 2; state->csel = 0; state->rsel = 1;
  310. } else if (rate >= 6563) {
  311. state->deci = 2; state->csel = 1; state->rsel = 0;
  312. } else if (rate >= 5626) {
  313. state->deci = 2; state->csel = 1; state->rsel = 1;
  314. } else if (rate >= 4688) {
  315. state->deci = 3; state->csel = 0; state->rsel = 0;
  316. } else if (rate >= 3751) {
  317. state->deci = 3; state->csel = 0; state->rsel = 1;
  318. } else if (rate >= 3282) {
  319. state->deci = 3; state->csel = 1; state->rsel = 0;
  320. } else if (rate >= 2814) {
  321. state->deci = 3; state->csel = 1; state->rsel = 1;
  322. } else if (rate >= 2344) {
  323. state->deci = 4; state->csel = 0; state->rsel = 0;
  324. } else if (rate >= 1876) {
  325. state->deci = 4; state->csel = 0; state->rsel = 1;
  326. } else if (rate >= 1641) {
  327. state->deci = 4; state->csel = 1; state->rsel = 0;
  328. } else if (rate >= 1407) {
  329. state->deci = 4; state->csel = 1; state->rsel = 1;
  330. } else if (rate >= 1172) {
  331. state->deci = 5; state->csel = 0; state->rsel = 0;
  332. } else if (rate >= 939) {
  333. state->deci = 5; state->csel = 0; state->rsel = 1;
  334. } else if (rate >= 821) {
  335. state->deci = 5; state->csel = 1; state->rsel = 0;
  336. } else {
  337. state->deci = 5; state->csel = 1; state->rsel = 1;
  338. }
  339. if (state->csel == 0)
  340. state->master_clk = 92000;
  341. else
  342. state->master_clk = 61333;
  343. }
  344. static int signal_det(struct mb86a16_state *state,
  345. int smrt,
  346. unsigned char *SIG)
  347. {
  348. int ret ;
  349. int smrtd ;
  350. int wait_sym ;
  351. u32 wait_t;
  352. unsigned char S[3] ;
  353. int i ;
  354. if (*SIG > 45) {
  355. if (CNTM_set(state, 2, 1, 2) < 0) {
  356. dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
  357. return -1;
  358. }
  359. wait_sym = 40000;
  360. } else {
  361. if (CNTM_set(state, 3, 1, 2) < 0) {
  362. dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
  363. return -1;
  364. }
  365. wait_sym = 80000;
  366. }
  367. for (i = 0; i < 3; i++) {
  368. if (i == 0 )
  369. smrtd = smrt * 98 / 100;
  370. else if (i == 1)
  371. smrtd = smrt;
  372. else
  373. smrtd = smrt * 102 / 100;
  374. smrt_info_get(state, smrtd);
  375. smrt_set(state, smrtd);
  376. srst(state);
  377. wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
  378. if (wait_t == 0)
  379. wait_t = 1;
  380. msleep_interruptible(10);
  381. if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
  382. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  383. return -EREMOTEIO;
  384. }
  385. }
  386. if ((S[1] > S[0] * 112 / 100) &&
  387. (S[1] > S[2] * 112 / 100)) {
  388. ret = 1;
  389. } else {
  390. ret = 0;
  391. }
  392. *SIG = S[1];
  393. if (CNTM_set(state, 0, 1, 2) < 0) {
  394. dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
  395. return -1;
  396. }
  397. return ret;
  398. }
  399. static int rf_val_set(struct mb86a16_state *state,
  400. int f,
  401. int smrt,
  402. unsigned char R)
  403. {
  404. unsigned char C, F, B;
  405. int M;
  406. unsigned char rf_val[5];
  407. int ack = -1;
  408. if (smrt > 37750 )
  409. C = 1;
  410. else if (smrt > 18875)
  411. C = 2;
  412. else if (smrt > 5500 )
  413. C = 3;
  414. else
  415. C = 4;
  416. if (smrt > 30500)
  417. F = 3;
  418. else if (smrt > 9375)
  419. F = 1;
  420. else if (smrt > 4625)
  421. F = 0;
  422. else
  423. F = 2;
  424. if (f < 1060)
  425. B = 0;
  426. else if (f < 1175)
  427. B = 1;
  428. else if (f < 1305)
  429. B = 2;
  430. else if (f < 1435)
  431. B = 3;
  432. else if (f < 1570)
  433. B = 4;
  434. else if (f < 1715)
  435. B = 5;
  436. else if (f < 1845)
  437. B = 6;
  438. else if (f < 1980)
  439. B = 7;
  440. else if (f < 2080)
  441. B = 8;
  442. else
  443. B = 9;
  444. M = f * (1 << R) / 2;
  445. rf_val[0] = 0x01 | (C << 3) | (F << 1);
  446. rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
  447. rf_val[2] = (M & 0x00ff0) >> 4;
  448. rf_val[3] = ((M & 0x0000f) << 4) | B;
  449. // Frequency Set
  450. if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
  451. ack = 0;
  452. if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
  453. ack = 0;
  454. if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
  455. ack = 0;
  456. if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
  457. ack = 0;
  458. if (mb86a16_write(state, 0x25, 0x01) < 0)
  459. ack = 0;
  460. if (ack == 0) {
  461. dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
  462. return -EREMOTEIO;
  463. }
  464. return 0;
  465. }
  466. static int afcerr_chk(struct mb86a16_state *state)
  467. {
  468. unsigned char AFCM_L, AFCM_H ;
  469. int AFCM ;
  470. int afcm, afcerr ;
  471. if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
  472. goto err;
  473. if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
  474. goto err;
  475. AFCM = (AFCM_H << 8) + AFCM_L;
  476. if (AFCM > 2048)
  477. afcm = AFCM - 4096;
  478. else
  479. afcm = AFCM;
  480. afcerr = afcm * state->master_clk / 8192;
  481. return afcerr;
  482. err:
  483. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  484. return -EREMOTEIO;
  485. }
  486. static int dagcm_val_get(struct mb86a16_state *state)
  487. {
  488. int DAGCM;
  489. unsigned char DAGCM_H, DAGCM_L;
  490. if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
  491. goto err;
  492. if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
  493. goto err;
  494. DAGCM = (DAGCM_H << 8) + DAGCM_L;
  495. return DAGCM;
  496. err:
  497. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  498. return -EREMOTEIO;
  499. }
  500. static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
  501. {
  502. struct mb86a16_state *state = fe->demodulator_priv;
  503. if (state->signal & 0x02)
  504. *status |= FE_HAS_VITERBI;
  505. if (state->signal & 0x01)
  506. *status |= FE_HAS_SYNC;
  507. if (state->signal & 0x03)
  508. *status |= FE_HAS_LOCK;
  509. return 0;
  510. }
  511. static int sync_chk(struct mb86a16_state *state,
  512. unsigned char *VIRM)
  513. {
  514. unsigned char val;
  515. int sync;
  516. if (mb86a16_read(state, 0x0d, &val) != 2)
  517. goto err;
  518. dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
  519. sync = val & 0x01;
  520. *VIRM = (val & 0x1c) >> 2;
  521. return sync;
  522. err:
  523. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  524. return -EREMOTEIO;
  525. }
  526. static int freqerr_chk(struct mb86a16_state *state,
  527. int fTP,
  528. int smrt,
  529. int unit)
  530. {
  531. unsigned char CRM, AFCML, AFCMH;
  532. unsigned char temp1, temp2, temp3;
  533. int crm, afcm, AFCM;
  534. int crrerr, afcerr; // [kHz]
  535. int frqerr; // [MHz]
  536. int afcen, afcexen = 0;
  537. int R, M, fOSC, fOSC_OFS;
  538. if (mb86a16_read(state, 0x43, &CRM) != 2)
  539. goto err;
  540. if (CRM > 127)
  541. crm = CRM - 256;
  542. else
  543. crm = CRM;
  544. crrerr = smrt * crm / 256;
  545. if (mb86a16_read(state, 0x49, &temp1) != 2)
  546. goto err;
  547. afcen = (temp1 & 0x04) >> 2;
  548. if (afcen == 0) {
  549. if (mb86a16_read(state, 0x2a, &temp1) != 2)
  550. goto err;
  551. afcexen = (temp1 & 0x20) >> 5;
  552. }
  553. if (afcen == 1) {
  554. if (mb86a16_read(state, 0x0e, &AFCML) != 2)
  555. goto err;
  556. if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
  557. goto err;
  558. } else if (afcexen == 1) {
  559. if (mb86a16_read(state, 0x2b, &AFCML) != 2)
  560. goto err;
  561. if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
  562. goto err;
  563. }
  564. if ((afcen == 1) || (afcexen == 1)) {
  565. smrt_info_get(state, smrt);
  566. AFCM = ((AFCMH & 0x01) << 8) + AFCML;
  567. if (AFCM > 255)
  568. afcm = AFCM - 512;
  569. else
  570. afcm = AFCM;
  571. afcerr = afcm * state->master_clk / 8192;
  572. } else
  573. afcerr = 0;
  574. if (mb86a16_read(state, 0x22, &temp1) != 2)
  575. goto err;
  576. if (mb86a16_read(state, 0x23, &temp2) != 2)
  577. goto err;
  578. if (mb86a16_read(state, 0x24, &temp3) != 2)
  579. goto err;
  580. R = (temp1 & 0xe0) >> 5;
  581. M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
  582. if (R == 0)
  583. fOSC = 2 * M;
  584. else
  585. fOSC = M;
  586. fOSC_OFS = fOSC - fTP;
  587. if (unit == 0) { //[MHz]
  588. if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
  589. frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
  590. else
  591. frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
  592. } else { //[kHz]
  593. frqerr = crrerr + afcerr + fOSC_OFS * 1000;
  594. }
  595. return frqerr;
  596. err:
  597. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  598. return -EREMOTEIO;
  599. }
  600. static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
  601. {
  602. unsigned char R;
  603. if (smrt > 9375)
  604. R = 0;
  605. else
  606. R = 1;
  607. return R;
  608. }
  609. static void swp_info_get(struct mb86a16_state *state,
  610. int fOSC_start,
  611. int smrt,
  612. int v, int R,
  613. int swp_ofs,
  614. int *fOSC,
  615. int *afcex_freq,
  616. unsigned char *AFCEX_L,
  617. unsigned char *AFCEX_H)
  618. {
  619. int AFCEX ;
  620. int crnt_swp_freq ;
  621. crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
  622. if (R == 0 )
  623. *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
  624. else
  625. *fOSC = (crnt_swp_freq + 500) / 1000;
  626. if (*fOSC >= crnt_swp_freq)
  627. *afcex_freq = *fOSC *1000 - crnt_swp_freq;
  628. else
  629. *afcex_freq = crnt_swp_freq - *fOSC * 1000;
  630. AFCEX = *afcex_freq * 8192 / state->master_clk;
  631. *AFCEX_L = AFCEX & 0x00ff;
  632. *AFCEX_H = (AFCEX & 0x0f00) >> 8;
  633. }
  634. static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vmin,
  635. int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
  636. {
  637. int swp_freq ;
  638. if ((i % 2 == 1) && (v <= vmax)) {
  639. // positive v (case 1)
  640. if ((v - 1 == vmin) &&
  641. (*(V + 30 + v) >= 0) &&
  642. (*(V + 30 + v - 1) >= 0) &&
  643. (*(V + 30 + v - 1) > *(V + 30 + v)) &&
  644. (*(V + 30 + v - 1) > SIGMIN)) {
  645. swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
  646. *SIG1 = *(V + 30 + v - 1);
  647. } else if ((v == vmax) &&
  648. (*(V + 30 + v) >= 0) &&
  649. (*(V + 30 + v - 1) >= 0) &&
  650. (*(V + 30 + v) > *(V + 30 + v - 1)) &&
  651. (*(V + 30 + v) > SIGMIN)) {
  652. // (case 2)
  653. swp_freq = fOSC * 1000 + afcex_freq;
  654. *SIG1 = *(V + 30 + v);
  655. } else if ((*(V + 30 + v) > 0) &&
  656. (*(V + 30 + v - 1) > 0) &&
  657. (*(V + 30 + v - 2) > 0) &&
  658. (*(V + 30 + v - 3) > 0) &&
  659. (*(V + 30 + v - 1) > *(V + 30 + v)) &&
  660. (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
  661. ((*(V + 30 + v - 1) > SIGMIN) ||
  662. (*(V + 30 + v - 2) > SIGMIN))) {
  663. // (case 3)
  664. if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
  665. swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
  666. *SIG1 = *(V + 30 + v - 1);
  667. } else {
  668. swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
  669. *SIG1 = *(V + 30 + v - 2);
  670. }
  671. } else if ((v == vmax) &&
  672. (*(V + 30 + v) >= 0) &&
  673. (*(V + 30 + v - 1) >= 0) &&
  674. (*(V + 30 + v - 2) >= 0) &&
  675. (*(V + 30 + v) > *(V + 30 + v - 2)) &&
  676. (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
  677. ((*(V + 30 + v) > SIGMIN) ||
  678. (*(V + 30 + v - 1) > SIGMIN))) {
  679. // (case 4)
  680. if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
  681. swp_freq = fOSC * 1000 + afcex_freq;
  682. *SIG1 = *(V + 30 + v);
  683. } else {
  684. swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
  685. *SIG1 = *(V + 30 + v - 1);
  686. }
  687. } else {
  688. swp_freq = -1 ;
  689. }
  690. } else if ((i % 2 == 0) && (v >= vmin)) {
  691. // Negative v (case 1)
  692. if ((*(V + 30 + v) > 0) &&
  693. (*(V + 30 + v + 1) > 0) &&
  694. (*(V + 30 + v + 2) > 0) &&
  695. (*(V + 30 + v + 1) > *(V + 30 + v)) &&
  696. (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
  697. (*(V + 30 + v + 1) > SIGMIN)) {
  698. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  699. *SIG1 = *(V + 30 + v + 1);
  700. } else if ((v + 1 == vmax) &&
  701. (*(V + 30 + v) >= 0) &&
  702. (*(V + 30 + v + 1) >= 0) &&
  703. (*(V + 30 + v + 1) > *(V + 30 + v)) &&
  704. (*(V + 30 + v + 1) > SIGMIN)) {
  705. // (case 2)
  706. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  707. *SIG1 = *(V + 30 + v);
  708. } else if ((v == vmin) &&
  709. (*(V + 30 + v) > 0) &&
  710. (*(V + 30 + v + 1) > 0) &&
  711. (*(V + 30 + v + 2) > 0) &&
  712. (*(V + 30 + v) > *(V + 30 + v + 1)) &&
  713. (*(V + 30 + v) > *(V + 30 + v + 2)) &&
  714. (*(V + 30 + v) > SIGMIN)) {
  715. // (case 3)
  716. swp_freq = fOSC * 1000 + afcex_freq;
  717. *SIG1 = *(V + 30 + v);
  718. } else if ((*(V + 30 + v) >= 0) &&
  719. (*(V + 30 + v + 1) >= 0) &&
  720. (*(V + 30 + v + 2) >= 0) &&
  721. (*(V +30 + v + 3) >= 0) &&
  722. (*(V + 30 + v + 1) > *(V + 30 + v)) &&
  723. (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
  724. ((*(V + 30 + v + 1) > SIGMIN) ||
  725. (*(V + 30 + v + 2) > SIGMIN))) {
  726. // (case 4)
  727. if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
  728. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  729. *SIG1 = *(V + 30 + v + 1);
  730. } else {
  731. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
  732. *SIG1 = *(V + 30 + v + 2);
  733. }
  734. } else if ((*(V + 30 + v) >= 0) &&
  735. (*(V + 30 + v + 1) >= 0) &&
  736. (*(V + 30 + v + 2) >= 0) &&
  737. (*(V + 30 + v + 3) >= 0) &&
  738. (*(V + 30 + v) > *(V + 30 + v + 2)) &&
  739. (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
  740. (*(V + 30 + v) > *(V + 30 + v + 3)) &&
  741. (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
  742. ((*(V + 30 + v) > SIGMIN) ||
  743. (*(V + 30 + v + 1) > SIGMIN))) {
  744. // (case 5)
  745. if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
  746. swp_freq = fOSC * 1000 + afcex_freq;
  747. *SIG1 = *(V + 30 + v);
  748. } else {
  749. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  750. *SIG1 = *(V + 30 + v + 1);
  751. }
  752. } else if ((v + 2 == vmin) &&
  753. (*(V + 30 + v) >= 0) &&
  754. (*(V + 30 + v + 1) >= 0) &&
  755. (*(V + 30 + v + 2) >= 0) &&
  756. (*(V + 30 + v + 1) > *(V + 30 + v)) &&
  757. (*(V + 30 + v + 2) > *(V + 30 + v)) &&
  758. ((*(V + 30 + v + 1) > SIGMIN) ||
  759. (*(V + 30 + v + 2) > SIGMIN))) {
  760. // (case 6)
  761. if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
  762. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  763. *SIG1 = *(V + 30 + v + 1);
  764. } else {
  765. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
  766. *SIG1 = *(V + 30 + v + 2);
  767. }
  768. } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
  769. swp_freq = fOSC * 1000;
  770. *SIG1 = *(V + 30 + v);
  771. } else swp_freq = -1;
  772. } else swp_freq = -1;
  773. return swp_freq;
  774. }
  775. static void swp_info_get2(struct mb86a16_state *state,
  776. int smrt,
  777. int R,
  778. int swp_freq,
  779. int *afcex_freq,
  780. int *fOSC,
  781. unsigned char *AFCEX_L,
  782. unsigned char *AFCEX_H)
  783. {
  784. int AFCEX ;
  785. if (R == 0)
  786. *fOSC = (swp_freq + 1000) / 2000 * 2;
  787. else
  788. *fOSC = (swp_freq + 500) / 1000;
  789. if (*fOSC >= swp_freq)
  790. *afcex_freq = *fOSC * 1000 - swp_freq;
  791. else
  792. *afcex_freq = swp_freq - *fOSC * 1000;
  793. AFCEX = *afcex_freq * 8192 / state->master_clk;
  794. *AFCEX_L = AFCEX & 0x00ff;
  795. *AFCEX_H = (AFCEX & 0x0f00) >> 8;
  796. }
  797. static void afcex_info_get(struct mb86a16_state *state,
  798. int afcex_freq,
  799. unsigned char *AFCEX_L,
  800. unsigned char *AFCEX_H)
  801. {
  802. int AFCEX ;
  803. AFCEX = afcex_freq * 8192 / state->master_clk;
  804. *AFCEX_L = AFCEX & 0x00ff;
  805. *AFCEX_H = (AFCEX & 0x0f00) >> 8;
  806. }
  807. static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
  808. {
  809. // SLOCK0 = 0
  810. if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
  811. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  812. return -EREMOTEIO;
  813. }
  814. return 0;
  815. }
  816. static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
  817. {
  818. // Viterbi Rate, IQ Settings
  819. if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
  820. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  821. return -EREMOTEIO;
  822. }
  823. return 0;
  824. }
  825. static int FEC_srst(struct mb86a16_state *state)
  826. {
  827. if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
  828. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  829. return -EREMOTEIO;
  830. }
  831. return 0;
  832. }
  833. static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
  834. {
  835. if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
  836. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  837. return -EREMOTEIO;
  838. }
  839. return 0;
  840. }
  841. static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
  842. {
  843. if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
  844. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  845. return -EREMOTEIO;
  846. }
  847. return 0;
  848. }
  849. static int mb86a16_set_fe(struct mb86a16_state *state)
  850. {
  851. u8 agcval, cnmval;
  852. int i, j;
  853. int fOSC = 0;
  854. int fOSC_start = 0;
  855. int wait_t;
  856. int fcp;
  857. int swp_ofs;
  858. int V[60];
  859. u8 SIG1MIN;
  860. unsigned char CREN, AFCEN, AFCEXEN;
  861. unsigned char SIG1;
  862. unsigned char TIMINT1, TIMINT2, TIMEXT;
  863. unsigned char S0T, S1T;
  864. unsigned char S2T;
  865. // unsigned char S2T, S3T;
  866. unsigned char S4T, S5T;
  867. unsigned char AFCEX_L, AFCEX_H;
  868. unsigned char R;
  869. unsigned char VIRM;
  870. unsigned char ETH, VIA;
  871. unsigned char junk;
  872. int loop;
  873. int ftemp;
  874. int v, vmax, vmin;
  875. int vmax_his, vmin_his;
  876. int swp_freq, prev_swp_freq[20];
  877. int prev_freq_num;
  878. int signal_dupl;
  879. int afcex_freq;
  880. int signal;
  881. int afcerr;
  882. int temp_freq, delta_freq;
  883. int dagcm[4];
  884. int smrt_d;
  885. // int freq_err;
  886. int n;
  887. int ret = -1;
  888. int sync;
  889. dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
  890. fcp = 3000;
  891. swp_ofs = state->srate / 4;
  892. for (i = 0; i < 60; i++)
  893. V[i] = -1;
  894. for (i = 0; i < 20; i++)
  895. prev_swp_freq[i] = 0;
  896. SIG1MIN = 25;
  897. for (n = 0; ((n < 3) && (ret == -1)); n++) {
  898. SEQ_set(state, 0);
  899. iq_vt_set(state, 0);
  900. CREN = 0;
  901. AFCEN = 0;
  902. AFCEXEN = 1;
  903. TIMINT1 = 0;
  904. TIMINT2 = 1;
  905. TIMEXT = 2;
  906. S1T = 0;
  907. S0T = 0;
  908. if (initial_set(state) < 0) {
  909. dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
  910. return -1;
  911. }
  912. if (DAGC_data_set(state, 3, 2) < 0) {
  913. dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
  914. return -1;
  915. }
  916. if (EN_set(state, CREN, AFCEN) < 0) {
  917. dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
  918. return -1; // (0, 0)
  919. }
  920. if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
  921. dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
  922. return -1; // (1, smrt) = (1, symbolrate)
  923. }
  924. if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
  925. dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
  926. return -1; // (0, 1, 2)
  927. }
  928. if (S01T_set(state, S1T, S0T) < 0) {
  929. dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
  930. return -1; // (0, 0)
  931. }
  932. smrt_info_get(state, state->srate);
  933. if (smrt_set(state, state->srate) < 0) {
  934. dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
  935. return -1;
  936. }
  937. R = vco_dev_get(state, state->srate);
  938. if (R == 1)
  939. fOSC_start = state->frequency;
  940. else if (R == 0) {
  941. if (state->frequency % 2 == 0) {
  942. fOSC_start = state->frequency;
  943. } else {
  944. fOSC_start = state->frequency + 1;
  945. if (fOSC_start > 2150)
  946. fOSC_start = state->frequency - 1;
  947. }
  948. }
  949. loop = 1;
  950. ftemp = fOSC_start * 1000;
  951. vmax = 0 ;
  952. while (loop == 1) {
  953. ftemp = ftemp + swp_ofs;
  954. vmax++;
  955. // Upper bound
  956. if (ftemp > 2150000) {
  957. loop = 0;
  958. vmax--;
  959. }
  960. else if ((ftemp == 2150000) || (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
  961. loop = 0;
  962. }
  963. loop = 1;
  964. ftemp = fOSC_start * 1000;
  965. vmin = 0 ;
  966. while (loop == 1) {
  967. ftemp = ftemp - swp_ofs;
  968. vmin--;
  969. // Lower bound
  970. if (ftemp < 950000) {
  971. loop = 0;
  972. vmin++;
  973. }
  974. else if ((ftemp == 950000) || (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
  975. loop = 0;
  976. }
  977. wait_t = (8000 + state->srate / 2) / state->srate;
  978. if (wait_t == 0)
  979. wait_t = 1;
  980. i = 0;
  981. j = 0;
  982. prev_freq_num = 0;
  983. loop = 1;
  984. signal = 0;
  985. vmax_his = 0;
  986. vmin_his = 0;
  987. v = 0;
  988. while (loop == 1) {
  989. swp_info_get(state, fOSC_start, state->srate,
  990. v, R, swp_ofs, &fOSC,
  991. &afcex_freq, &AFCEX_L, &AFCEX_H);
  992. udelay(100);
  993. if (rf_val_set(state, fOSC, state->srate, R) < 0) {
  994. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  995. return -1;
  996. }
  997. udelay(100);
  998. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  999. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
  1000. return -1;
  1001. }
  1002. if (srst(state) < 0) {
  1003. dprintk(verbose, MB86A16_ERROR, 1, "srst error");
  1004. return -1;
  1005. }
  1006. msleep_interruptible(wait_t);
  1007. if (mb86a16_read(state, 0x37, &SIG1) != 2) {
  1008. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1009. return -1;
  1010. }
  1011. V[30 + v] = SIG1 ;
  1012. swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
  1013. SIG1MIN, fOSC, afcex_freq,
  1014. swp_ofs, &SIG1); //changed
  1015. signal_dupl = 0;
  1016. for (j = 0; j < prev_freq_num; j++) {
  1017. if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
  1018. signal_dupl = 1;
  1019. dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
  1020. }
  1021. }
  1022. if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
  1023. dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
  1024. prev_swp_freq[prev_freq_num] = swp_freq;
  1025. prev_freq_num++;
  1026. swp_info_get2(state, state->srate, R, swp_freq,
  1027. &afcex_freq, &fOSC,
  1028. &AFCEX_L, &AFCEX_H);
  1029. if (rf_val_set(state, fOSC, state->srate, R) < 0) {
  1030. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1031. return -1;
  1032. }
  1033. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1034. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
  1035. return -1;
  1036. }
  1037. signal = signal_det(state, state->srate, &SIG1);
  1038. if (signal == 1) {
  1039. dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
  1040. loop = 0;
  1041. } else {
  1042. dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
  1043. smrt_info_get(state, state->srate);
  1044. if (smrt_set(state, state->srate) < 0) {
  1045. dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
  1046. return -1;
  1047. }
  1048. }
  1049. }
  1050. if (v > vmax)
  1051. vmax_his = 1 ;
  1052. if (v < vmin)
  1053. vmin_his = 1 ;
  1054. i++;
  1055. if ((i % 2 == 1) && (vmax_his == 1))
  1056. i++;
  1057. if ((i % 2 == 0) && (vmin_his == 1))
  1058. i++;
  1059. if (i % 2 == 1)
  1060. v = (i + 1) / 2;
  1061. else
  1062. v = -i / 2;
  1063. if ((vmax_his == 1) && (vmin_his == 1))
  1064. loop = 0 ;
  1065. }
  1066. if (signal == 1) {
  1067. dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
  1068. S1T = 7 ;
  1069. S0T = 1 ;
  1070. CREN = 0 ;
  1071. AFCEN = 1 ;
  1072. AFCEXEN = 0 ;
  1073. if (S01T_set(state, S1T, S0T) < 0) {
  1074. dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
  1075. return -1;
  1076. }
  1077. smrt_info_get(state, state->srate);
  1078. if (smrt_set(state, state->srate) < 0) {
  1079. dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
  1080. return -1;
  1081. }
  1082. if (EN_set(state, CREN, AFCEN) < 0) {
  1083. dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
  1084. return -1;
  1085. }
  1086. if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
  1087. dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
  1088. return -1;
  1089. }
  1090. afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
  1091. if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1092. dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
  1093. return -1;
  1094. }
  1095. if (srst(state) < 0) {
  1096. dprintk(verbose, MB86A16_ERROR, 1, "srst error");
  1097. return -1;
  1098. }
  1099. // delay 4~200
  1100. wait_t = 200000 / state->master_clk + 200000 / state->srate;
  1101. msleep(wait_t);
  1102. afcerr = afcerr_chk(state);
  1103. if (afcerr == -1)
  1104. return -1;
  1105. swp_freq = fOSC * 1000 + afcerr ;
  1106. AFCEXEN = 1 ;
  1107. if (state->srate >= 1500)
  1108. smrt_d = state->srate / 3;
  1109. else
  1110. smrt_d = state->srate / 2;
  1111. smrt_info_get(state, smrt_d);
  1112. if (smrt_set(state, smrt_d) < 0) {
  1113. dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
  1114. return -1;
  1115. }
  1116. if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
  1117. dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
  1118. return -1;
  1119. }
  1120. R = vco_dev_get(state, smrt_d);
  1121. if (DAGC_data_set(state, 2, 0) < 0) {
  1122. dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
  1123. return -1;
  1124. }
  1125. for (i = 0; i < 3; i++) {
  1126. temp_freq = swp_freq + (i - 1) * state->srate / 8;
  1127. swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
  1128. if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
  1129. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1130. return -1;
  1131. }
  1132. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1133. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
  1134. return -1;
  1135. }
  1136. wait_t = 200000 / state->master_clk + 40000 / smrt_d;
  1137. msleep(wait_t);
  1138. dagcm[i] = dagcm_val_get(state);
  1139. }
  1140. if ((dagcm[0] > dagcm[1]) &&
  1141. (dagcm[0] > dagcm[2]) &&
  1142. (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
  1143. temp_freq = swp_freq - 2 * state->srate / 8;
  1144. swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
  1145. if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
  1146. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1147. return -1;
  1148. }
  1149. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1150. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
  1151. return -1;
  1152. }
  1153. wait_t = 200000 / state->master_clk + 40000 / smrt_d;
  1154. msleep(wait_t);
  1155. dagcm[3] = dagcm_val_get(state);
  1156. if (dagcm[3] > dagcm[1])
  1157. delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
  1158. else
  1159. delta_freq = 0;
  1160. } else if ((dagcm[2] > dagcm[1]) &&
  1161. (dagcm[2] > dagcm[0]) &&
  1162. (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
  1163. temp_freq = swp_freq + 2 * state->srate / 8;
  1164. swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
  1165. if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
  1166. dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
  1167. return -1;
  1168. }
  1169. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1170. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
  1171. return -1;
  1172. }
  1173. wait_t = 200000 / state->master_clk + 40000 / smrt_d;
  1174. msleep(wait_t);
  1175. dagcm[3] = dagcm_val_get(state);
  1176. if (dagcm[3] > dagcm[1])
  1177. delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
  1178. else
  1179. delta_freq = 0 ;
  1180. } else {
  1181. delta_freq = 0 ;
  1182. }
  1183. dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
  1184. swp_freq += delta_freq;
  1185. dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
  1186. if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
  1187. dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL !");
  1188. } else {
  1189. S1T = 0;
  1190. S0T = 3;
  1191. CREN = 1;
  1192. AFCEN = 0;
  1193. AFCEXEN = 1;
  1194. if (S01T_set(state, S1T, S0T) < 0) {
  1195. dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
  1196. return -1;
  1197. }
  1198. if (DAGC_data_set(state, 0, 0) < 0) {
  1199. dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
  1200. return -1;
  1201. }
  1202. R = vco_dev_get(state, state->srate);
  1203. smrt_info_get(state, state->srate);
  1204. if (smrt_set(state, state->srate) < 0) {
  1205. dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
  1206. return -1;
  1207. }
  1208. if (EN_set(state, CREN, AFCEN) < 0) {
  1209. dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
  1210. return -1;
  1211. }
  1212. if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
  1213. dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
  1214. return -1;
  1215. }
  1216. swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
  1217. if (rf_val_set(state, fOSC, state->srate, R) < 0) {
  1218. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1219. return -1;
  1220. }
  1221. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1222. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
  1223. return -1;
  1224. }
  1225. if (srst(state) < 0) {
  1226. dprintk(verbose, MB86A16_ERROR, 1, "srst error");
  1227. return -1;
  1228. }
  1229. wait_t = 7 + (10000 + state->srate / 2) / state->srate;
  1230. if (wait_t == 0)
  1231. wait_t = 1;
  1232. msleep_interruptible(wait_t);
  1233. if (mb86a16_read(state, 0x37, &SIG1) != 2) {
  1234. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1235. return -EREMOTEIO;
  1236. }
  1237. if (SIG1 > 110) {
  1238. S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
  1239. wait_t = 7 + (917504 + state->srate / 2) / state->srate;
  1240. } else if (SIG1 > 105) {
  1241. S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
  1242. wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
  1243. } else if (SIG1 > 85) {
  1244. S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
  1245. wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
  1246. } else if (SIG1 > 65) {
  1247. S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
  1248. wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
  1249. } else {
  1250. S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
  1251. wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
  1252. }
  1253. wait_t *= 2; /* FOS */
  1254. S2T_set(state, S2T);
  1255. S45T_set(state, S4T, S5T);
  1256. Vi_set(state, ETH, VIA);
  1257. srst(state);
  1258. msleep_interruptible(wait_t);
  1259. sync = sync_chk(state, &VIRM);
  1260. dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
  1261. if (mb86a16_read(state, 0x0d, &state->signal) != 2) {
  1262. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1263. return -EREMOTEIO;
  1264. }
  1265. if (VIRM) {
  1266. if (VIRM == 4) { // 5/6
  1267. if (SIG1 > 110)
  1268. wait_t = ( 786432 + state->srate / 2) / state->srate;
  1269. else
  1270. wait_t = (1572864 + state->srate / 2) / state->srate;
  1271. if (state->srate < 5000)
  1272. // FIXME ! , should be a long wait !
  1273. msleep_interruptible(wait_t);
  1274. else
  1275. msleep_interruptible(wait_t);
  1276. if (sync_chk(state, &junk) == 0) {
  1277. iq_vt_set(state, 1);
  1278. FEC_srst(state);
  1279. }
  1280. if (SIG1 > 110)
  1281. wait_t = ( 786432 + state->srate / 2) / state->srate;
  1282. else
  1283. wait_t = (1572864 + state->srate / 2) / state->srate;
  1284. msleep_interruptible(wait_t);
  1285. SEQ_set(state, 1);
  1286. } else { // 1/2, 2/3, 3/4, 7/8
  1287. if (SIG1 > 110)
  1288. wait_t = ( 786432 + state->srate / 2) / state->srate;
  1289. else
  1290. wait_t = (1572864 + state->srate / 2) / state->srate;
  1291. msleep_interruptible(wait_t);
  1292. SEQ_set(state, 1);
  1293. }
  1294. } else {
  1295. dprintk(verbose, MB86A16_INFO, 1, "NO -- SYNC");
  1296. SEQ_set(state, 1);
  1297. }
  1298. }
  1299. } else {
  1300. dprintk (verbose, MB86A16_INFO, 1, "NO -- SIGNAL");
  1301. }
  1302. sync = sync_chk(state, &junk);
  1303. if (sync) {
  1304. dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
  1305. freqerr_chk(state, state->frequency, state->srate, 1);
  1306. }
  1307. }
  1308. mb86a16_read(state, 0x15, &agcval);
  1309. mb86a16_read(state, 0x26, &cnmval);
  1310. dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
  1311. return ret;
  1312. }
  1313. static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
  1314. struct dvb_diseqc_master_cmd *cmd)
  1315. {
  1316. struct mb86a16_state *state = fe->demodulator_priv;
  1317. int i;
  1318. u8 regs;
  1319. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
  1320. goto err;
  1321. if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
  1322. goto err;
  1323. if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
  1324. goto err;
  1325. regs = 0x18;
  1326. if (cmd->msg_len > 5 || cmd->msg_len < 4)
  1327. return -EINVAL;
  1328. for (i = 0; i < cmd->msg_len; i++) {
  1329. if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
  1330. goto err;
  1331. regs++;
  1332. }
  1333. i += 0x90;
  1334. msleep_interruptible(10);
  1335. if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
  1336. goto err;
  1337. if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
  1338. goto err;
  1339. return 0;
  1340. err:
  1341. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1342. return -EREMOTEIO;
  1343. }
  1344. static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
  1345. {
  1346. struct mb86a16_state *state = fe->demodulator_priv;
  1347. switch (burst) {
  1348. case SEC_MINI_A:
  1349. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
  1350. MB86A16_DCC1_TBEN |
  1351. MB86A16_DCC1_TBO) < 0)
  1352. goto err;
  1353. if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
  1354. goto err;
  1355. break;
  1356. case SEC_MINI_B:
  1357. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
  1358. MB86A16_DCC1_TBEN) < 0)
  1359. goto err;
  1360. if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
  1361. goto err;
  1362. break;
  1363. }
  1364. return 0;
  1365. err:
  1366. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1367. return -EREMOTEIO;
  1368. }
  1369. static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
  1370. {
  1371. struct mb86a16_state *state = fe->demodulator_priv;
  1372. switch (tone) {
  1373. case SEC_TONE_ON:
  1374. if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
  1375. goto err;
  1376. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
  1377. MB86A16_DCC1_CTOE) < 0)
  1378. goto err;
  1379. if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
  1380. goto err;
  1381. break;
  1382. case SEC_TONE_OFF:
  1383. if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
  1384. goto err;
  1385. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
  1386. goto err;
  1387. if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
  1388. goto err;
  1389. break;
  1390. default:
  1391. return -EINVAL;
  1392. }
  1393. return 0;
  1394. err:
  1395. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1396. return -EREMOTEIO;
  1397. }
  1398. #define MB86A16_FE_ALGO 1
  1399. static int mb86a16_frontend_algo(struct dvb_frontend *fe)
  1400. {
  1401. return MB86A16_FE_ALGO;
  1402. }
  1403. static int mb86a16_set_frontend(struct dvb_frontend *fe,
  1404. struct dvb_frontend_parameters *p,
  1405. unsigned int mode_flags,
  1406. int *delay,
  1407. fe_status_t *status)
  1408. {
  1409. int ret = 0;
  1410. struct mb86a16_state *state = fe->demodulator_priv;
  1411. if (p != NULL) {
  1412. state->frequency = p->frequency / 1000;
  1413. state->srate = p->u.qpsk.symbol_rate / 1000;
  1414. ret = mb86a16_set_fe(state);
  1415. }
  1416. if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
  1417. mb86a16_read_status(fe, status);
  1418. *delay = HZ/3000;
  1419. return ret;
  1420. }
  1421. static void mb86a16_release(struct dvb_frontend *fe)
  1422. {
  1423. struct mb86a16_state *state = fe->demodulator_priv;
  1424. kfree(state);
  1425. }
  1426. static int mb86a16_init(struct dvb_frontend *fe)
  1427. {
  1428. return 0;
  1429. }
  1430. static int mb86a16_sleep(struct dvb_frontend *fe)
  1431. {
  1432. return 0;
  1433. }
  1434. static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
  1435. {
  1436. return 0;
  1437. }
  1438. static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  1439. {
  1440. *strength = 0;
  1441. return 0;
  1442. }
  1443. struct cnr {
  1444. u8 cn_reg;
  1445. u8 cn_val;
  1446. };
  1447. static const struct cnr cnr_tab[] = {
  1448. { 35, 2 },
  1449. { 40, 3 },
  1450. { 50, 4 },
  1451. { 60, 5 },
  1452. { 70, 6 },
  1453. { 80, 7 },
  1454. { 92, 8 },
  1455. { 103, 9 },
  1456. { 115, 10 },
  1457. { 138, 12 },
  1458. { 162, 15 },
  1459. { 180, 18 },
  1460. { 185, 19 },
  1461. { 189, 20 },
  1462. { 195, 22 },
  1463. { 199, 24 },
  1464. { 201, 25 },
  1465. { 202, 26 },
  1466. { 203, 27 },
  1467. { 205, 28 },
  1468. { 208, 30 }
  1469. };
  1470. static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
  1471. {
  1472. struct mb86a16_state *state = fe->demodulator_priv;
  1473. int i = 0;
  1474. int low_tide = 2, high_tide = 30, q_level;
  1475. u8 cn;
  1476. if (mb86a16_read(state, 0x26, &cn) != 2) {
  1477. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1478. return -EREMOTEIO;
  1479. }
  1480. for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
  1481. if (cn < cnr_tab[i].cn_reg) {
  1482. *snr = cnr_tab[i].cn_val;
  1483. break;
  1484. }
  1485. }
  1486. q_level = (*snr * 100) / (high_tide - low_tide);
  1487. dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
  1488. return 0;
  1489. }
  1490. static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  1491. {
  1492. return 0;
  1493. }
  1494. static struct dvb_frontend_ops mb86a16_ops = {
  1495. .info = {
  1496. .name = "Fujitsu MB86A16 DVB-S",
  1497. .type = FE_QPSK,
  1498. .frequency_min = 950000,
  1499. .frequency_max = 2150000,
  1500. .frequency_stepsize = 125,
  1501. .frequency_tolerance = 0,
  1502. .symbol_rate_min = 1000000,
  1503. .symbol_rate_max = 45000000,
  1504. .symbol_rate_tolerance = 500,
  1505. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
  1506. FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
  1507. FE_CAN_FEC_7_8 | FE_CAN_QPSK |
  1508. FE_CAN_FEC_AUTO
  1509. },
  1510. .release = mb86a16_release,
  1511. .tune = mb86a16_set_frontend,
  1512. .read_status = mb86a16_read_status,
  1513. .get_frontend_algo = mb86a16_frontend_algo,
  1514. .init = mb86a16_init,
  1515. .sleep = mb86a16_sleep,
  1516. .read_status = mb86a16_read_status,
  1517. .read_ber = mb86a16_read_ber,
  1518. .read_signal_strength = mb86a16_read_signal_strength,
  1519. .read_snr = mb86a16_read_snr,
  1520. .read_ucblocks = mb86a16_read_ucblocks,
  1521. .diseqc_send_master_cmd = mb86a16_send_diseqc_msg,
  1522. .diseqc_send_burst = mb86a16_send_diseqc_burst,
  1523. .set_tone = mb86a16_set_tone,
  1524. };
  1525. struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
  1526. struct i2c_adapter *i2c_adap)
  1527. {
  1528. u8 dev_id = 0;
  1529. struct mb86a16_state *state = NULL;
  1530. state = kmalloc(sizeof (struct mb86a16_state), GFP_KERNEL);
  1531. if (state == NULL)
  1532. goto error;
  1533. state->config = config;
  1534. state->i2c_adap = i2c_adap;
  1535. mb86a16_read(state, 0x7f, &dev_id);
  1536. if (dev_id != 0xfe)
  1537. goto error;
  1538. memcpy(&state->frontend.ops, &mb86a16_ops, sizeof (struct dvb_frontend_ops));
  1539. state->frontend.demodulator_priv = state;
  1540. state->frontend.ops.set_voltage = state->config->set_voltage;
  1541. return &state->frontend;
  1542. error:
  1543. kfree(state);
  1544. return NULL;
  1545. }
  1546. EXPORT_SYMBOL(mb86a16_attach);
  1547. MODULE_LICENSE("GPL");
  1548. MODULE_AUTHOR("Manu Abraham");