nouveau_mem.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. /*
  2. * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
  3. * Copyright 2005 Stephane Marchesin
  4. *
  5. * The Weather Channel (TM) funded Tungsten Graphics to develop the
  6. * initial release of the Radeon 8500 driver under the XFree86 license.
  7. * This notice must be preserved.
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a
  10. * copy of this software and associated documentation files (the "Software"),
  11. * to deal in the Software without restriction, including without limitation
  12. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  13. * and/or sell copies of the Software, and to permit persons to whom the
  14. * Software is furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice (including the next
  17. * paragraph) shall be included in all copies or substantial portions of the
  18. * Software.
  19. *
  20. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  21. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  22. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  23. * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  24. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  25. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  26. * DEALINGS IN THE SOFTWARE.
  27. *
  28. * Authors:
  29. * Keith Whitwell <keith@tungstengraphics.com>
  30. */
  31. #include "drmP.h"
  32. #include "drm.h"
  33. #include "drm_sarea.h"
  34. #include "nouveau_drv.h"
  35. /*
  36. * NV10-NV40 tiling helpers
  37. */
  38. static void
  39. nv10_mem_set_region_tiling(struct drm_device *dev, int i, uint32_t addr,
  40. uint32_t size, uint32_t pitch)
  41. {
  42. struct drm_nouveau_private *dev_priv = dev->dev_private;
  43. struct nouveau_fifo_engine *pfifo = &dev_priv->engine.fifo;
  44. struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
  45. struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph;
  46. struct nouveau_tile_reg *tile = &dev_priv->tile[i];
  47. tile->addr = addr;
  48. tile->size = size;
  49. tile->used = !!pitch;
  50. nouveau_fence_unref((void **)&tile->fence);
  51. pfifo->reassign(dev, false);
  52. pfifo->cache_pull(dev, false);
  53. nouveau_wait_for_idle(dev);
  54. pgraph->set_region_tiling(dev, i, addr, size, pitch);
  55. pfb->set_region_tiling(dev, i, addr, size, pitch);
  56. pfifo->cache_pull(dev, true);
  57. pfifo->reassign(dev, true);
  58. }
  59. struct nouveau_tile_reg *
  60. nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size,
  61. uint32_t pitch)
  62. {
  63. struct drm_nouveau_private *dev_priv = dev->dev_private;
  64. struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
  65. struct nouveau_tile_reg *found = NULL;
  66. unsigned long i, flags;
  67. spin_lock_irqsave(&dev_priv->context_switch_lock, flags);
  68. for (i = 0; i < pfb->num_tiles; i++) {
  69. struct nouveau_tile_reg *tile = &dev_priv->tile[i];
  70. if (tile->used)
  71. /* Tile region in use. */
  72. continue;
  73. if (tile->fence &&
  74. !nouveau_fence_signalled(tile->fence, NULL))
  75. /* Pending tile region. */
  76. continue;
  77. if (max(tile->addr, addr) <
  78. min(tile->addr + tile->size, addr + size))
  79. /* Kill an intersecting tile region. */
  80. nv10_mem_set_region_tiling(dev, i, 0, 0, 0);
  81. if (pitch && !found) {
  82. /* Free tile region. */
  83. nv10_mem_set_region_tiling(dev, i, addr, size, pitch);
  84. found = tile;
  85. }
  86. }
  87. spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags);
  88. return found;
  89. }
  90. void
  91. nv10_mem_expire_tiling(struct drm_device *dev, struct nouveau_tile_reg *tile,
  92. struct nouveau_fence *fence)
  93. {
  94. if (fence) {
  95. /* Mark it as pending. */
  96. tile->fence = fence;
  97. nouveau_fence_ref(fence);
  98. }
  99. tile->used = false;
  100. }
  101. /*
  102. * NV50 VM helpers
  103. */
  104. int
  105. nv50_mem_vm_bind_linear(struct drm_device *dev, uint64_t virt, uint32_t size,
  106. uint32_t flags, uint64_t phys)
  107. {
  108. struct drm_nouveau_private *dev_priv = dev->dev_private;
  109. struct nouveau_gpuobj *pgt;
  110. unsigned block;
  111. int i;
  112. virt = ((virt - dev_priv->vm_vram_base) >> 16) << 1;
  113. size = (size >> 16) << 1;
  114. phys |= ((uint64_t)flags << 32);
  115. phys |= 1;
  116. if (dev_priv->vram_sys_base) {
  117. phys += dev_priv->vram_sys_base;
  118. phys |= 0x30;
  119. }
  120. while (size) {
  121. unsigned offset_h = upper_32_bits(phys);
  122. unsigned offset_l = lower_32_bits(phys);
  123. unsigned pte, end;
  124. for (i = 7; i >= 0; i--) {
  125. block = 1 << (i + 1);
  126. if (size >= block && !(virt & (block - 1)))
  127. break;
  128. }
  129. offset_l |= (i << 7);
  130. phys += block << 15;
  131. size -= block;
  132. while (block) {
  133. pgt = dev_priv->vm_vram_pt[virt >> 14];
  134. pte = virt & 0x3ffe;
  135. end = pte + block;
  136. if (end > 16384)
  137. end = 16384;
  138. block -= (end - pte);
  139. virt += (end - pte);
  140. while (pte < end) {
  141. nv_wo32(pgt, (pte * 4) + 0, offset_l);
  142. nv_wo32(pgt, (pte * 4) + 4, offset_h);
  143. pte += 2;
  144. }
  145. }
  146. }
  147. dev_priv->engine.instmem.flush(dev);
  148. nv50_vm_flush(dev, 5);
  149. nv50_vm_flush(dev, 0);
  150. nv50_vm_flush(dev, 4);
  151. nv50_vm_flush(dev, 6);
  152. return 0;
  153. }
  154. void
  155. nv50_mem_vm_unbind(struct drm_device *dev, uint64_t virt, uint32_t size)
  156. {
  157. struct drm_nouveau_private *dev_priv = dev->dev_private;
  158. struct nouveau_gpuobj *pgt;
  159. unsigned pages, pte, end;
  160. virt -= dev_priv->vm_vram_base;
  161. pages = (size >> 16) << 1;
  162. while (pages) {
  163. pgt = dev_priv->vm_vram_pt[virt >> 29];
  164. pte = (virt & 0x1ffe0000ULL) >> 15;
  165. end = pte + pages;
  166. if (end > 16384)
  167. end = 16384;
  168. pages -= (end - pte);
  169. virt += (end - pte) << 15;
  170. while (pte < end) {
  171. nv_wo32(pgt, (pte * 4), 0);
  172. pte++;
  173. }
  174. }
  175. dev_priv->engine.instmem.flush(dev);
  176. nv50_vm_flush(dev, 5);
  177. nv50_vm_flush(dev, 0);
  178. nv50_vm_flush(dev, 4);
  179. nv50_vm_flush(dev, 6);
  180. }
  181. /*
  182. * Cleanup everything
  183. */
  184. void
  185. nouveau_mem_vram_fini(struct drm_device *dev)
  186. {
  187. struct drm_nouveau_private *dev_priv = dev->dev_private;
  188. nouveau_bo_unpin(dev_priv->vga_ram);
  189. nouveau_bo_ref(NULL, &dev_priv->vga_ram);
  190. ttm_bo_device_release(&dev_priv->ttm.bdev);
  191. nouveau_ttm_global_release(dev_priv);
  192. if (dev_priv->fb_mtrr >= 0) {
  193. drm_mtrr_del(dev_priv->fb_mtrr,
  194. pci_resource_start(dev->pdev, 1),
  195. pci_resource_len(dev->pdev, 1), DRM_MTRR_WC);
  196. dev_priv->fb_mtrr = -1;
  197. }
  198. }
  199. void
  200. nouveau_mem_gart_fini(struct drm_device *dev)
  201. {
  202. nouveau_sgdma_takedown(dev);
  203. if (drm_core_has_AGP(dev) && dev->agp) {
  204. struct drm_agp_mem *entry, *tempe;
  205. /* Remove AGP resources, but leave dev->agp
  206. intact until drv_cleanup is called. */
  207. list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) {
  208. if (entry->bound)
  209. drm_unbind_agp(entry->memory);
  210. drm_free_agp(entry->memory, entry->pages);
  211. kfree(entry);
  212. }
  213. INIT_LIST_HEAD(&dev->agp->memory);
  214. if (dev->agp->acquired)
  215. drm_agp_release(dev);
  216. dev->agp->acquired = 0;
  217. dev->agp->enabled = 0;
  218. }
  219. }
  220. static uint32_t
  221. nouveau_mem_detect_nv04(struct drm_device *dev)
  222. {
  223. uint32_t boot0 = nv_rd32(dev, NV04_PFB_BOOT_0);
  224. if (boot0 & 0x00000100)
  225. return (((boot0 >> 12) & 0xf) * 2 + 2) * 1024 * 1024;
  226. switch (boot0 & NV04_PFB_BOOT_0_RAM_AMOUNT) {
  227. case NV04_PFB_BOOT_0_RAM_AMOUNT_32MB:
  228. return 32 * 1024 * 1024;
  229. case NV04_PFB_BOOT_0_RAM_AMOUNT_16MB:
  230. return 16 * 1024 * 1024;
  231. case NV04_PFB_BOOT_0_RAM_AMOUNT_8MB:
  232. return 8 * 1024 * 1024;
  233. case NV04_PFB_BOOT_0_RAM_AMOUNT_4MB:
  234. return 4 * 1024 * 1024;
  235. }
  236. return 0;
  237. }
  238. static uint32_t
  239. nouveau_mem_detect_nforce(struct drm_device *dev)
  240. {
  241. struct drm_nouveau_private *dev_priv = dev->dev_private;
  242. struct pci_dev *bridge;
  243. uint32_t mem;
  244. bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 1));
  245. if (!bridge) {
  246. NV_ERROR(dev, "no bridge device\n");
  247. return 0;
  248. }
  249. if (dev_priv->flags & NV_NFORCE) {
  250. pci_read_config_dword(bridge, 0x7C, &mem);
  251. return (uint64_t)(((mem >> 6) & 31) + 1)*1024*1024;
  252. } else
  253. if (dev_priv->flags & NV_NFORCE2) {
  254. pci_read_config_dword(bridge, 0x84, &mem);
  255. return (uint64_t)(((mem >> 4) & 127) + 1)*1024*1024;
  256. }
  257. NV_ERROR(dev, "impossible!\n");
  258. return 0;
  259. }
  260. static void
  261. nv50_vram_preinit(struct drm_device *dev)
  262. {
  263. struct drm_nouveau_private *dev_priv = dev->dev_private;
  264. int i, parts, colbits, rowbitsa, rowbitsb, banks;
  265. u64 rowsize, predicted;
  266. u32 r0, r4, rt, ru;
  267. r0 = nv_rd32(dev, 0x100200);
  268. r4 = nv_rd32(dev, 0x100204);
  269. rt = nv_rd32(dev, 0x100250);
  270. ru = nv_rd32(dev, 0x001540);
  271. NV_DEBUG(dev, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n", r0, r4, rt, ru);
  272. for (i = 0, parts = 0; i < 8; i++) {
  273. if (ru & (0x00010000 << i))
  274. parts++;
  275. }
  276. colbits = (r4 & 0x0000f000) >> 12;
  277. rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
  278. rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
  279. banks = ((r4 & 0x01000000) ? 8 : 4);
  280. rowsize = parts * banks * (1 << colbits) * 8;
  281. predicted = rowsize << rowbitsa;
  282. if (r0 & 0x00000004)
  283. predicted += rowsize << rowbitsb;
  284. if (predicted != dev_priv->vram_size) {
  285. NV_WARN(dev, "memory controller reports %dMiB VRAM\n",
  286. (u32)(dev_priv->vram_size >> 20));
  287. NV_WARN(dev, "we calculated %dMiB VRAM\n",
  288. (u32)(predicted >> 20));
  289. }
  290. dev_priv->vram_rblock_size = rowsize >> 12;
  291. if (rt & 1)
  292. dev_priv->vram_rblock_size *= 3;
  293. NV_DEBUG(dev, "rblock %lld bytes\n",
  294. (u64)dev_priv->vram_rblock_size << 12);
  295. }
  296. static void
  297. nvaa_vram_preinit(struct drm_device *dev)
  298. {
  299. struct drm_nouveau_private *dev_priv = dev->dev_private;
  300. /* To our knowledge, there's no large scale reordering of pages
  301. * that occurs on IGP chipsets.
  302. */
  303. dev_priv->vram_rblock_size = 1;
  304. }
  305. static int
  306. nouveau_mem_detect(struct drm_device *dev)
  307. {
  308. struct drm_nouveau_private *dev_priv = dev->dev_private;
  309. if (dev_priv->card_type == NV_04) {
  310. dev_priv->vram_size = nouveau_mem_detect_nv04(dev);
  311. } else
  312. if (dev_priv->flags & (NV_NFORCE | NV_NFORCE2)) {
  313. dev_priv->vram_size = nouveau_mem_detect_nforce(dev);
  314. } else
  315. if (dev_priv->card_type < NV_50) {
  316. dev_priv->vram_size = nv_rd32(dev, NV04_PFB_FIFO_DATA);
  317. dev_priv->vram_size &= NV10_PFB_FIFO_DATA_RAM_AMOUNT_MB_MASK;
  318. } else
  319. if (dev_priv->card_type < NV_C0) {
  320. dev_priv->vram_size = nv_rd32(dev, NV04_PFB_FIFO_DATA);
  321. dev_priv->vram_size |= (dev_priv->vram_size & 0xff) << 32;
  322. dev_priv->vram_size &= 0xffffffff00ll;
  323. switch (dev_priv->chipset) {
  324. case 0xaa:
  325. case 0xac:
  326. case 0xaf:
  327. dev_priv->vram_sys_base = nv_rd32(dev, 0x100e10);
  328. dev_priv->vram_sys_base <<= 12;
  329. nvaa_vram_preinit(dev);
  330. break;
  331. default:
  332. nv50_vram_preinit(dev);
  333. break;
  334. }
  335. } else {
  336. dev_priv->vram_size = nv_rd32(dev, 0x10f20c) << 20;
  337. dev_priv->vram_size *= nv_rd32(dev, 0x121c74);
  338. }
  339. NV_INFO(dev, "Detected %dMiB VRAM\n", (int)(dev_priv->vram_size >> 20));
  340. if (dev_priv->vram_sys_base) {
  341. NV_INFO(dev, "Stolen system memory at: 0x%010llx\n",
  342. dev_priv->vram_sys_base);
  343. }
  344. if (dev_priv->vram_size)
  345. return 0;
  346. return -ENOMEM;
  347. }
  348. #if __OS_HAS_AGP
  349. static unsigned long
  350. get_agp_mode(struct drm_device *dev, unsigned long mode)
  351. {
  352. struct drm_nouveau_private *dev_priv = dev->dev_private;
  353. /*
  354. * FW seems to be broken on nv18, it makes the card lock up
  355. * randomly.
  356. */
  357. if (dev_priv->chipset == 0x18)
  358. mode &= ~PCI_AGP_COMMAND_FW;
  359. /*
  360. * AGP mode set in the command line.
  361. */
  362. if (nouveau_agpmode > 0) {
  363. bool agpv3 = mode & 0x8;
  364. int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode;
  365. mode = (mode & ~0x7) | (rate & 0x7);
  366. }
  367. return mode;
  368. }
  369. #endif
  370. int
  371. nouveau_mem_reset_agp(struct drm_device *dev)
  372. {
  373. #if __OS_HAS_AGP
  374. uint32_t saved_pci_nv_1, pmc_enable;
  375. int ret;
  376. /* First of all, disable fast writes, otherwise if it's
  377. * already enabled in the AGP bridge and we disable the card's
  378. * AGP controller we might be locking ourselves out of it. */
  379. if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) |
  380. dev->agp->mode) & PCI_AGP_COMMAND_FW) {
  381. struct drm_agp_info info;
  382. struct drm_agp_mode mode;
  383. ret = drm_agp_info(dev, &info);
  384. if (ret)
  385. return ret;
  386. mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW;
  387. ret = drm_agp_enable(dev, mode);
  388. if (ret)
  389. return ret;
  390. }
  391. saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1);
  392. /* clear busmaster bit */
  393. nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4);
  394. /* disable AGP */
  395. nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0);
  396. /* power cycle pgraph, if enabled */
  397. pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE);
  398. if (pmc_enable & NV_PMC_ENABLE_PGRAPH) {
  399. nv_wr32(dev, NV03_PMC_ENABLE,
  400. pmc_enable & ~NV_PMC_ENABLE_PGRAPH);
  401. nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) |
  402. NV_PMC_ENABLE_PGRAPH);
  403. }
  404. /* and restore (gives effect of resetting AGP) */
  405. nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1);
  406. #endif
  407. return 0;
  408. }
  409. int
  410. nouveau_mem_init_agp(struct drm_device *dev)
  411. {
  412. #if __OS_HAS_AGP
  413. struct drm_nouveau_private *dev_priv = dev->dev_private;
  414. struct drm_agp_info info;
  415. struct drm_agp_mode mode;
  416. int ret;
  417. if (!dev->agp->acquired) {
  418. ret = drm_agp_acquire(dev);
  419. if (ret) {
  420. NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret);
  421. return ret;
  422. }
  423. }
  424. nouveau_mem_reset_agp(dev);
  425. ret = drm_agp_info(dev, &info);
  426. if (ret) {
  427. NV_ERROR(dev, "Unable to get AGP info: %d\n", ret);
  428. return ret;
  429. }
  430. /* see agp.h for the AGPSTAT_* modes available */
  431. mode.mode = get_agp_mode(dev, info.mode);
  432. ret = drm_agp_enable(dev, mode);
  433. if (ret) {
  434. NV_ERROR(dev, "Unable to enable AGP: %d\n", ret);
  435. return ret;
  436. }
  437. dev_priv->gart_info.type = NOUVEAU_GART_AGP;
  438. dev_priv->gart_info.aper_base = info.aperture_base;
  439. dev_priv->gart_info.aper_size = info.aperture_size;
  440. #endif
  441. return 0;
  442. }
  443. int
  444. nouveau_mem_vram_init(struct drm_device *dev)
  445. {
  446. struct drm_nouveau_private *dev_priv = dev->dev_private;
  447. struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
  448. int ret, dma_bits;
  449. if (dev_priv->card_type >= NV_50 &&
  450. pci_dma_supported(dev->pdev, DMA_BIT_MASK(40)))
  451. dma_bits = 40;
  452. else
  453. dma_bits = 32;
  454. ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
  455. if (ret)
  456. return ret;
  457. ret = nouveau_mem_detect(dev);
  458. if (ret)
  459. return ret;
  460. dev_priv->fb_phys = pci_resource_start(dev->pdev, 1);
  461. ret = nouveau_ttm_global_init(dev_priv);
  462. if (ret)
  463. return ret;
  464. ret = ttm_bo_device_init(&dev_priv->ttm.bdev,
  465. dev_priv->ttm.bo_global_ref.ref.object,
  466. &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET,
  467. dma_bits <= 32 ? true : false);
  468. if (ret) {
  469. NV_ERROR(dev, "Error initialising bo driver: %d\n", ret);
  470. return ret;
  471. }
  472. dev_priv->fb_available_size = dev_priv->vram_size;
  473. dev_priv->fb_mappable_pages = dev_priv->fb_available_size;
  474. if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1))
  475. dev_priv->fb_mappable_pages =
  476. pci_resource_len(dev->pdev, 1);
  477. dev_priv->fb_mappable_pages >>= PAGE_SHIFT;
  478. /* reserve space at end of VRAM for PRAMIN */
  479. if (dev_priv->chipset == 0x40 || dev_priv->chipset == 0x47 ||
  480. dev_priv->chipset == 0x49 || dev_priv->chipset == 0x4b)
  481. dev_priv->ramin_rsvd_vram = (2 * 1024 * 1024);
  482. else
  483. if (dev_priv->card_type >= NV_40)
  484. dev_priv->ramin_rsvd_vram = (1 * 1024 * 1024);
  485. else
  486. dev_priv->ramin_rsvd_vram = (512 * 1024);
  487. dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram;
  488. dev_priv->fb_aper_free = dev_priv->fb_available_size;
  489. /* mappable vram */
  490. ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM,
  491. dev_priv->fb_available_size >> PAGE_SHIFT);
  492. if (ret) {
  493. NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret);
  494. return ret;
  495. }
  496. ret = nouveau_bo_new(dev, NULL, 256*1024, 0, TTM_PL_FLAG_VRAM,
  497. 0, 0, true, true, &dev_priv->vga_ram);
  498. if (ret == 0)
  499. ret = nouveau_bo_pin(dev_priv->vga_ram, TTM_PL_FLAG_VRAM);
  500. if (ret) {
  501. NV_WARN(dev, "failed to reserve VGA memory\n");
  502. nouveau_bo_ref(NULL, &dev_priv->vga_ram);
  503. }
  504. dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1),
  505. pci_resource_len(dev->pdev, 1),
  506. DRM_MTRR_WC);
  507. return 0;
  508. }
  509. int
  510. nouveau_mem_gart_init(struct drm_device *dev)
  511. {
  512. struct drm_nouveau_private *dev_priv = dev->dev_private;
  513. struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
  514. int ret;
  515. dev_priv->gart_info.type = NOUVEAU_GART_NONE;
  516. #if !defined(__powerpc__) && !defined(__ia64__)
  517. if (drm_device_is_agp(dev) && dev->agp && nouveau_agpmode) {
  518. ret = nouveau_mem_init_agp(dev);
  519. if (ret)
  520. NV_ERROR(dev, "Error initialising AGP: %d\n", ret);
  521. }
  522. #endif
  523. if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) {
  524. ret = nouveau_sgdma_init(dev);
  525. if (ret) {
  526. NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret);
  527. return ret;
  528. }
  529. }
  530. NV_INFO(dev, "%d MiB GART (aperture)\n",
  531. (int)(dev_priv->gart_info.aper_size >> 20));
  532. dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size;
  533. ret = ttm_bo_init_mm(bdev, TTM_PL_TT,
  534. dev_priv->gart_info.aper_size >> PAGE_SHIFT);
  535. if (ret) {
  536. NV_ERROR(dev, "Failed TT mm init: %d\n", ret);
  537. return ret;
  538. }
  539. return 0;
  540. }
  541. void
  542. nouveau_mem_timing_init(struct drm_device *dev)
  543. {
  544. struct drm_nouveau_private *dev_priv = dev->dev_private;
  545. struct nouveau_pm_engine *pm = &dev_priv->engine.pm;
  546. struct nouveau_pm_memtimings *memtimings = &pm->memtimings;
  547. struct nvbios *bios = &dev_priv->vbios;
  548. struct bit_entry P;
  549. u8 tUNK_0, tUNK_1, tUNK_2;
  550. u8 tRP; /* Byte 3 */
  551. u8 tRAS; /* Byte 5 */
  552. u8 tRFC; /* Byte 7 */
  553. u8 tRC; /* Byte 9 */
  554. u8 tUNK_10, tUNK_11, tUNK_12, tUNK_13, tUNK_14;
  555. u8 tUNK_18, tUNK_19, tUNK_20, tUNK_21;
  556. u8 *mem = NULL, *entry;
  557. int i, recordlen, entries;
  558. if (bios->type == NVBIOS_BIT) {
  559. if (bit_table(dev, 'P', &P))
  560. return;
  561. if (P.version == 1)
  562. mem = ROMPTR(bios, P.data[4]);
  563. else
  564. if (P.version == 2)
  565. mem = ROMPTR(bios, P.data[8]);
  566. else {
  567. NV_WARN(dev, "unknown mem for BIT P %d\n", P.version);
  568. }
  569. } else {
  570. NV_DEBUG(dev, "BMP version too old for memory\n");
  571. return;
  572. }
  573. if (!mem) {
  574. NV_DEBUG(dev, "memory timing table pointer invalid\n");
  575. return;
  576. }
  577. if (mem[0] != 0x10) {
  578. NV_WARN(dev, "memory timing table 0x%02x unknown\n", mem[0]);
  579. return;
  580. }
  581. /* validate record length */
  582. entries = mem[2];
  583. recordlen = mem[3];
  584. if (recordlen < 15) {
  585. NV_ERROR(dev, "mem timing table length unknown: %d\n", mem[3]);
  586. return;
  587. }
  588. /* parse vbios entries into common format */
  589. memtimings->timing =
  590. kcalloc(entries, sizeof(*memtimings->timing), GFP_KERNEL);
  591. if (!memtimings->timing)
  592. return;
  593. entry = mem + mem[1];
  594. for (i = 0; i < entries; i++, entry += recordlen) {
  595. struct nouveau_pm_memtiming *timing = &pm->memtimings.timing[i];
  596. if (entry[0] == 0)
  597. continue;
  598. tUNK_18 = 1;
  599. tUNK_19 = 1;
  600. tUNK_20 = 0;
  601. tUNK_21 = 0;
  602. switch (recordlen) {
  603. case 0x21:
  604. tUNK_21 = entry[21];
  605. case 0x20:
  606. tUNK_20 = entry[20];
  607. case 0x19:
  608. tUNK_19 = entry[19];
  609. case 0x18:
  610. tUNK_18 = entry[18];
  611. default:
  612. tUNK_0 = entry[0];
  613. tUNK_1 = entry[1];
  614. tUNK_2 = entry[2];
  615. tRP = entry[3];
  616. tRAS = entry[5];
  617. tRFC = entry[7];
  618. tRC = entry[9];
  619. tUNK_10 = entry[10];
  620. tUNK_11 = entry[11];
  621. tUNK_12 = entry[12];
  622. tUNK_13 = entry[13];
  623. tUNK_14 = entry[14];
  624. break;
  625. }
  626. timing->reg_100220 = (tRC << 24 | tRFC << 16 | tRAS << 8 | tRP);
  627. /* XXX: I don't trust the -1's and +1's... they must come
  628. * from somewhere! */
  629. timing->reg_100224 = ((tUNK_0 + tUNK_19 + 1) << 24 |
  630. tUNK_18 << 16 |
  631. (tUNK_1 + tUNK_19 + 1) << 8 |
  632. (tUNK_2 - 1));
  633. timing->reg_100228 = (tUNK_12 << 16 | tUNK_11 << 8 | tUNK_10);
  634. if(recordlen > 19) {
  635. timing->reg_100228 += (tUNK_19 - 1) << 24;
  636. } else {
  637. timing->reg_100228 += tUNK_12 << 24;
  638. }
  639. /* XXX: reg_10022c */
  640. timing->reg_100230 = (tUNK_20 << 24 | tUNK_21 << 16 |
  641. tUNK_13 << 8 | tUNK_13);
  642. /* XXX: +6? */
  643. timing->reg_100234 = (tRAS << 24 | (tUNK_19 + 6) << 8 | tRC);
  644. if(tUNK_10 > tUNK_11) {
  645. timing->reg_100234 += tUNK_10 << 16;
  646. } else {
  647. timing->reg_100234 += tUNK_11 << 16;
  648. }
  649. /* XXX; reg_100238, reg_10023c */
  650. NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", i,
  651. timing->reg_100220, timing->reg_100224,
  652. timing->reg_100228, timing->reg_10022c);
  653. NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n",
  654. timing->reg_100230, timing->reg_100234,
  655. timing->reg_100238, timing->reg_10023c);
  656. }
  657. memtimings->nr_timing = entries;
  658. memtimings->supported = true;
  659. }
  660. void
  661. nouveau_mem_timing_fini(struct drm_device *dev)
  662. {
  663. struct drm_nouveau_private *dev_priv = dev->dev_private;
  664. struct nouveau_pm_memtimings *mem = &dev_priv->engine.pm.memtimings;
  665. kfree(mem->timing);
  666. }