dma_v3.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280
  1. /*
  2. * This file is provided under a dual BSD/GPLv2 license. When using or
  3. * redistributing this file, you may do so under either license.
  4. *
  5. * GPL LICENSE SUMMARY
  6. *
  7. * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms and conditions of the GNU General Public License,
  11. * version 2, as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc.,
  20. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21. *
  22. * The full GNU General Public License is included in this distribution in
  23. * the file called "COPYING".
  24. *
  25. * BSD LICENSE
  26. *
  27. * Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
  28. *
  29. * Redistribution and use in source and binary forms, with or without
  30. * modification, are permitted provided that the following conditions are met:
  31. *
  32. * * Redistributions of source code must retain the above copyright
  33. * notice, this list of conditions and the following disclaimer.
  34. * * Redistributions in binary form must reproduce the above copyright
  35. * notice, this list of conditions and the following disclaimer in
  36. * the documentation and/or other materials provided with the
  37. * distribution.
  38. * * Neither the name of Intel Corporation nor the names of its
  39. * contributors may be used to endorse or promote products derived
  40. * from this software without specific prior written permission.
  41. *
  42. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  43. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  44. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  45. * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  46. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  47. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  48. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  49. * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  50. * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  51. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  52. * POSSIBILITY OF SUCH DAMAGE.
  53. */
  54. /*
  55. * Support routines for v3+ hardware
  56. */
  57. #include <linux/pci.h>
  58. #include <linux/dmaengine.h>
  59. #include <linux/dma-mapping.h>
  60. #include "registers.h"
  61. #include "hw.h"
  62. #include "dma.h"
  63. #include "dma_v2.h"
  64. /* ioat hardware assumes at least two sources for raid operations */
  65. #define src_cnt_to_sw(x) ((x) + 2)
  66. #define src_cnt_to_hw(x) ((x) - 2)
  67. /* provide a lookup table for setting the source address in the base or
  68. * extended descriptor of an xor or pq descriptor
  69. */
  70. static const u8 xor_idx_to_desc __read_mostly = 0xd0;
  71. static const u8 xor_idx_to_field[] __read_mostly = { 1, 4, 5, 6, 7, 0, 1, 2 };
  72. static const u8 pq_idx_to_desc __read_mostly = 0xf8;
  73. static const u8 pq_idx_to_field[] __read_mostly = { 1, 4, 5, 0, 1, 2, 4, 5 };
  74. static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx)
  75. {
  76. struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
  77. return raw->field[xor_idx_to_field[idx]];
  78. }
  79. static void xor_set_src(struct ioat_raw_descriptor *descs[2],
  80. dma_addr_t addr, u32 offset, int idx)
  81. {
  82. struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
  83. raw->field[xor_idx_to_field[idx]] = addr + offset;
  84. }
  85. static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
  86. {
  87. struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
  88. return raw->field[pq_idx_to_field[idx]];
  89. }
  90. static void pq_set_src(struct ioat_raw_descriptor *descs[2],
  91. dma_addr_t addr, u32 offset, u8 coef, int idx)
  92. {
  93. struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
  94. struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
  95. raw->field[pq_idx_to_field[idx]] = addr + offset;
  96. pq->coef[idx] = coef;
  97. }
  98. static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat,
  99. struct ioat_ring_ent *desc, int idx)
  100. {
  101. struct ioat_chan_common *chan = &ioat->base;
  102. struct pci_dev *pdev = chan->device->pdev;
  103. size_t len = desc->len;
  104. size_t offset = len - desc->hw->size;
  105. struct dma_async_tx_descriptor *tx = &desc->txd;
  106. enum dma_ctrl_flags flags = tx->flags;
  107. switch (desc->hw->ctl_f.op) {
  108. case IOAT_OP_COPY:
  109. if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */
  110. ioat_dma_unmap(chan, flags, len, desc->hw);
  111. break;
  112. case IOAT_OP_FILL: {
  113. struct ioat_fill_descriptor *hw = desc->fill;
  114. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
  115. ioat_unmap(pdev, hw->dst_addr - offset, len,
  116. PCI_DMA_FROMDEVICE, flags, 1);
  117. break;
  118. }
  119. case IOAT_OP_XOR_VAL:
  120. case IOAT_OP_XOR: {
  121. struct ioat_xor_descriptor *xor = desc->xor;
  122. struct ioat_ring_ent *ext;
  123. struct ioat_xor_ext_descriptor *xor_ex = NULL;
  124. int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt);
  125. struct ioat_raw_descriptor *descs[2];
  126. int i;
  127. if (src_cnt > 5) {
  128. ext = ioat2_get_ring_ent(ioat, idx + 1);
  129. xor_ex = ext->xor_ex;
  130. }
  131. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  132. descs[0] = (struct ioat_raw_descriptor *) xor;
  133. descs[1] = (struct ioat_raw_descriptor *) xor_ex;
  134. for (i = 0; i < src_cnt; i++) {
  135. dma_addr_t src = xor_get_src(descs, i);
  136. ioat_unmap(pdev, src - offset, len,
  137. PCI_DMA_TODEVICE, flags, 0);
  138. }
  139. /* dest is a source in xor validate operations */
  140. if (xor->ctl_f.op == IOAT_OP_XOR_VAL) {
  141. ioat_unmap(pdev, xor->dst_addr - offset, len,
  142. PCI_DMA_TODEVICE, flags, 1);
  143. break;
  144. }
  145. }
  146. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
  147. ioat_unmap(pdev, xor->dst_addr - offset, len,
  148. PCI_DMA_FROMDEVICE, flags, 1);
  149. break;
  150. }
  151. case IOAT_OP_PQ_VAL:
  152. case IOAT_OP_PQ: {
  153. struct ioat_pq_descriptor *pq = desc->pq;
  154. struct ioat_ring_ent *ext;
  155. struct ioat_pq_ext_descriptor *pq_ex = NULL;
  156. int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
  157. struct ioat_raw_descriptor *descs[2];
  158. int i;
  159. if (src_cnt > 3) {
  160. ext = ioat2_get_ring_ent(ioat, idx + 1);
  161. pq_ex = ext->pq_ex;
  162. }
  163. /* in the 'continue' case don't unmap the dests as sources */
  164. if (dmaf_p_disabled_continue(flags))
  165. src_cnt--;
  166. else if (dmaf_continue(flags))
  167. src_cnt -= 3;
  168. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  169. descs[0] = (struct ioat_raw_descriptor *) pq;
  170. descs[1] = (struct ioat_raw_descriptor *) pq_ex;
  171. for (i = 0; i < src_cnt; i++) {
  172. dma_addr_t src = pq_get_src(descs, i);
  173. ioat_unmap(pdev, src - offset, len,
  174. PCI_DMA_TODEVICE, flags, 0);
  175. }
  176. /* the dests are sources in pq validate operations */
  177. if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
  178. if (!(flags & DMA_PREP_PQ_DISABLE_P))
  179. ioat_unmap(pdev, pq->p_addr - offset,
  180. len, PCI_DMA_TODEVICE, flags, 0);
  181. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  182. ioat_unmap(pdev, pq->q_addr - offset,
  183. len, PCI_DMA_TODEVICE, flags, 0);
  184. break;
  185. }
  186. }
  187. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  188. if (!(flags & DMA_PREP_PQ_DISABLE_P))
  189. ioat_unmap(pdev, pq->p_addr - offset, len,
  190. PCI_DMA_BIDIRECTIONAL, flags, 1);
  191. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  192. ioat_unmap(pdev, pq->q_addr - offset, len,
  193. PCI_DMA_BIDIRECTIONAL, flags, 1);
  194. }
  195. break;
  196. }
  197. default:
  198. dev_err(&pdev->dev, "%s: unknown op type: %#x\n",
  199. __func__, desc->hw->ctl_f.op);
  200. }
  201. }
  202. static bool desc_has_ext(struct ioat_ring_ent *desc)
  203. {
  204. struct ioat_dma_descriptor *hw = desc->hw;
  205. if (hw->ctl_f.op == IOAT_OP_XOR ||
  206. hw->ctl_f.op == IOAT_OP_XOR_VAL) {
  207. struct ioat_xor_descriptor *xor = desc->xor;
  208. if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
  209. return true;
  210. } else if (hw->ctl_f.op == IOAT_OP_PQ ||
  211. hw->ctl_f.op == IOAT_OP_PQ_VAL) {
  212. struct ioat_pq_descriptor *pq = desc->pq;
  213. if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
  214. return true;
  215. }
  216. return false;
  217. }
  218. /**
  219. * __cleanup - reclaim used descriptors
  220. * @ioat: channel (ring) to clean
  221. *
  222. * The difference from the dma_v2.c __cleanup() is that this routine
  223. * handles extended descriptors and dma-unmapping raid operations.
  224. */
  225. static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
  226. {
  227. struct ioat_chan_common *chan = &ioat->base;
  228. struct ioat_ring_ent *desc;
  229. bool seen_current = false;
  230. u16 active;
  231. int i;
  232. dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
  233. __func__, ioat->head, ioat->tail, ioat->issued);
  234. active = ioat2_ring_active(ioat);
  235. for (i = 0; i < active && !seen_current; i++) {
  236. struct dma_async_tx_descriptor *tx;
  237. prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1));
  238. desc = ioat2_get_ring_ent(ioat, ioat->tail + i);
  239. dump_desc_dbg(ioat, desc);
  240. tx = &desc->txd;
  241. if (tx->cookie) {
  242. chan->completed_cookie = tx->cookie;
  243. ioat3_dma_unmap(ioat, desc, ioat->tail + i);
  244. tx->cookie = 0;
  245. if (tx->callback) {
  246. tx->callback(tx->callback_param);
  247. tx->callback = NULL;
  248. }
  249. }
  250. if (tx->phys == phys_complete)
  251. seen_current = true;
  252. /* skip extended descriptors */
  253. if (desc_has_ext(desc)) {
  254. BUG_ON(i + 1 >= active);
  255. i++;
  256. }
  257. }
  258. ioat->tail += i;
  259. BUG_ON(!seen_current); /* no active descs have written a completion? */
  260. chan->last_completion = phys_complete;
  261. if (ioat->head == ioat->tail) {
  262. dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
  263. __func__);
  264. clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
  265. mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
  266. }
  267. }
  268. static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
  269. {
  270. struct ioat_chan_common *chan = &ioat->base;
  271. unsigned long phys_complete;
  272. prefetch(chan->completion);
  273. if (!spin_trylock_bh(&chan->cleanup_lock))
  274. return;
  275. if (!ioat_cleanup_preamble(chan, &phys_complete)) {
  276. spin_unlock_bh(&chan->cleanup_lock);
  277. return;
  278. }
  279. if (!spin_trylock_bh(&ioat->ring_lock)) {
  280. spin_unlock_bh(&chan->cleanup_lock);
  281. return;
  282. }
  283. __cleanup(ioat, phys_complete);
  284. spin_unlock_bh(&ioat->ring_lock);
  285. spin_unlock_bh(&chan->cleanup_lock);
  286. }
  287. static void ioat3_cleanup_tasklet(unsigned long data)
  288. {
  289. struct ioat2_dma_chan *ioat = (void *) data;
  290. ioat3_cleanup(ioat);
  291. writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
  292. }
  293. static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
  294. {
  295. struct ioat_chan_common *chan = &ioat->base;
  296. unsigned long phys_complete;
  297. u32 status;
  298. status = ioat_chansts(chan);
  299. if (is_ioat_active(status) || is_ioat_idle(status))
  300. ioat_suspend(chan);
  301. while (is_ioat_active(status) || is_ioat_idle(status)) {
  302. status = ioat_chansts(chan);
  303. cpu_relax();
  304. }
  305. if (ioat_cleanup_preamble(chan, &phys_complete))
  306. __cleanup(ioat, phys_complete);
  307. __ioat2_restart_chan(ioat);
  308. }
  309. static void ioat3_timer_event(unsigned long data)
  310. {
  311. struct ioat2_dma_chan *ioat = (void *) data;
  312. struct ioat_chan_common *chan = &ioat->base;
  313. spin_lock_bh(&chan->cleanup_lock);
  314. if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
  315. unsigned long phys_complete;
  316. u64 status;
  317. spin_lock_bh(&ioat->ring_lock);
  318. status = ioat_chansts(chan);
  319. /* when halted due to errors check for channel
  320. * programming errors before advancing the completion state
  321. */
  322. if (is_ioat_halted(status)) {
  323. u32 chanerr;
  324. chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
  325. dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
  326. __func__, chanerr);
  327. BUG_ON(is_ioat_bug(chanerr));
  328. }
  329. /* if we haven't made progress and we have already
  330. * acknowledged a pending completion once, then be more
  331. * forceful with a restart
  332. */
  333. if (ioat_cleanup_preamble(chan, &phys_complete))
  334. __cleanup(ioat, phys_complete);
  335. else if (test_bit(IOAT_COMPLETION_ACK, &chan->state))
  336. ioat3_restart_channel(ioat);
  337. else {
  338. set_bit(IOAT_COMPLETION_ACK, &chan->state);
  339. mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
  340. }
  341. spin_unlock_bh(&ioat->ring_lock);
  342. } else {
  343. u16 active;
  344. /* if the ring is idle, empty, and oversized try to step
  345. * down the size
  346. */
  347. spin_lock_bh(&ioat->ring_lock);
  348. active = ioat2_ring_active(ioat);
  349. if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
  350. reshape_ring(ioat, ioat->alloc_order-1);
  351. spin_unlock_bh(&ioat->ring_lock);
  352. /* keep shrinking until we get back to our minimum
  353. * default size
  354. */
  355. if (ioat->alloc_order > ioat_get_alloc_order())
  356. mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
  357. }
  358. spin_unlock_bh(&chan->cleanup_lock);
  359. }
  360. static enum dma_status
  361. ioat3_is_complete(struct dma_chan *c, dma_cookie_t cookie,
  362. dma_cookie_t *done, dma_cookie_t *used)
  363. {
  364. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  365. if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS)
  366. return DMA_SUCCESS;
  367. ioat3_cleanup(ioat);
  368. return ioat_is_complete(c, cookie, done, used);
  369. }
  370. static struct dma_async_tx_descriptor *
  371. ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value,
  372. size_t len, unsigned long flags)
  373. {
  374. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  375. struct ioat_ring_ent *desc;
  376. size_t total_len = len;
  377. struct ioat_fill_descriptor *fill;
  378. int num_descs;
  379. u64 src_data = (0x0101010101010101ULL) * (value & 0xff);
  380. u16 idx;
  381. int i;
  382. num_descs = ioat2_xferlen_to_descs(ioat, len);
  383. if (likely(num_descs) &&
  384. ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0)
  385. /* pass */;
  386. else
  387. return NULL;
  388. i = 0;
  389. do {
  390. size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
  391. desc = ioat2_get_ring_ent(ioat, idx + i);
  392. fill = desc->fill;
  393. fill->size = xfer_size;
  394. fill->src_data = src_data;
  395. fill->dst_addr = dest;
  396. fill->ctl = 0;
  397. fill->ctl_f.op = IOAT_OP_FILL;
  398. len -= xfer_size;
  399. dest += xfer_size;
  400. dump_desc_dbg(ioat, desc);
  401. } while (++i < num_descs);
  402. desc->txd.flags = flags;
  403. desc->len = total_len;
  404. fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
  405. fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
  406. fill->ctl_f.compl_write = 1;
  407. dump_desc_dbg(ioat, desc);
  408. /* we leave the channel locked to ensure in order submission */
  409. return &desc->txd;
  410. }
  411. static struct dma_async_tx_descriptor *
  412. __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
  413. dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
  414. size_t len, unsigned long flags)
  415. {
  416. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  417. struct ioat_ring_ent *compl_desc;
  418. struct ioat_ring_ent *desc;
  419. struct ioat_ring_ent *ext;
  420. size_t total_len = len;
  421. struct ioat_xor_descriptor *xor;
  422. struct ioat_xor_ext_descriptor *xor_ex = NULL;
  423. struct ioat_dma_descriptor *hw;
  424. u32 offset = 0;
  425. int num_descs;
  426. int with_ext;
  427. int i;
  428. u16 idx;
  429. u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
  430. BUG_ON(src_cnt < 2);
  431. num_descs = ioat2_xferlen_to_descs(ioat, len);
  432. /* we need 2x the number of descriptors to cover greater than 5
  433. * sources
  434. */
  435. if (src_cnt > 5) {
  436. with_ext = 1;
  437. num_descs *= 2;
  438. } else
  439. with_ext = 0;
  440. /* completion writes from the raid engine may pass completion
  441. * writes from the legacy engine, so we need one extra null
  442. * (legacy) descriptor to ensure all completion writes arrive in
  443. * order.
  444. */
  445. if (likely(num_descs) &&
  446. ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
  447. /* pass */;
  448. else
  449. return NULL;
  450. i = 0;
  451. do {
  452. struct ioat_raw_descriptor *descs[2];
  453. size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
  454. int s;
  455. desc = ioat2_get_ring_ent(ioat, idx + i);
  456. xor = desc->xor;
  457. /* save a branch by unconditionally retrieving the
  458. * extended descriptor xor_set_src() knows to not write
  459. * to it in the single descriptor case
  460. */
  461. ext = ioat2_get_ring_ent(ioat, idx + i + 1);
  462. xor_ex = ext->xor_ex;
  463. descs[0] = (struct ioat_raw_descriptor *) xor;
  464. descs[1] = (struct ioat_raw_descriptor *) xor_ex;
  465. for (s = 0; s < src_cnt; s++)
  466. xor_set_src(descs, src[s], offset, s);
  467. xor->size = xfer_size;
  468. xor->dst_addr = dest + offset;
  469. xor->ctl = 0;
  470. xor->ctl_f.op = op;
  471. xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
  472. len -= xfer_size;
  473. offset += xfer_size;
  474. dump_desc_dbg(ioat, desc);
  475. } while ((i += 1 + with_ext) < num_descs);
  476. /* last xor descriptor carries the unmap parameters and fence bit */
  477. desc->txd.flags = flags;
  478. desc->len = total_len;
  479. if (result)
  480. desc->result = result;
  481. xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
  482. /* completion descriptor carries interrupt bit */
  483. compl_desc = ioat2_get_ring_ent(ioat, idx + i);
  484. compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
  485. hw = compl_desc->hw;
  486. hw->ctl = 0;
  487. hw->ctl_f.null = 1;
  488. hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
  489. hw->ctl_f.compl_write = 1;
  490. hw->size = NULL_DESC_BUFFER_SIZE;
  491. dump_desc_dbg(ioat, compl_desc);
  492. /* we leave the channel locked to ensure in order submission */
  493. return &compl_desc->txd;
  494. }
  495. static struct dma_async_tx_descriptor *
  496. ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  497. unsigned int src_cnt, size_t len, unsigned long flags)
  498. {
  499. return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
  500. }
  501. struct dma_async_tx_descriptor *
  502. ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
  503. unsigned int src_cnt, size_t len,
  504. enum sum_check_flags *result, unsigned long flags)
  505. {
  506. /* the cleanup routine only sets bits on validate failure, it
  507. * does not clear bits on validate success... so clear it here
  508. */
  509. *result = 0;
  510. return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
  511. src_cnt - 1, len, flags);
  512. }
  513. static void
  514. dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
  515. {
  516. struct device *dev = to_dev(&ioat->base);
  517. struct ioat_pq_descriptor *pq = desc->pq;
  518. struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
  519. struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
  520. int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
  521. int i;
  522. dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
  523. " sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n",
  524. desc_id(desc), (unsigned long long) desc->txd.phys,
  525. (unsigned long long) (pq_ex ? pq_ex->next : pq->next),
  526. desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
  527. pq->ctl_f.compl_write,
  528. pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
  529. pq->ctl_f.src_cnt);
  530. for (i = 0; i < src_cnt; i++)
  531. dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
  532. (unsigned long long) pq_get_src(descs, i), pq->coef[i]);
  533. dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
  534. dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
  535. }
  536. static struct dma_async_tx_descriptor *
  537. __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
  538. const dma_addr_t *dst, const dma_addr_t *src,
  539. unsigned int src_cnt, const unsigned char *scf,
  540. size_t len, unsigned long flags)
  541. {
  542. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  543. struct ioat_chan_common *chan = &ioat->base;
  544. struct ioat_ring_ent *compl_desc;
  545. struct ioat_ring_ent *desc;
  546. struct ioat_ring_ent *ext;
  547. size_t total_len = len;
  548. struct ioat_pq_descriptor *pq;
  549. struct ioat_pq_ext_descriptor *pq_ex = NULL;
  550. struct ioat_dma_descriptor *hw;
  551. u32 offset = 0;
  552. int num_descs;
  553. int with_ext;
  554. int i, s;
  555. u16 idx;
  556. u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
  557. dev_dbg(to_dev(chan), "%s\n", __func__);
  558. /* the engine requires at least two sources (we provide
  559. * at least 1 implied source in the DMA_PREP_CONTINUE case)
  560. */
  561. BUG_ON(src_cnt + dmaf_continue(flags) < 2);
  562. num_descs = ioat2_xferlen_to_descs(ioat, len);
  563. /* we need 2x the number of descriptors to cover greater than 3
  564. * sources (we need 1 extra source in the q-only continuation
  565. * case and 3 extra sources in the p+q continuation case.
  566. */
  567. if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
  568. (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
  569. with_ext = 1;
  570. num_descs *= 2;
  571. } else
  572. with_ext = 0;
  573. /* completion writes from the raid engine may pass completion
  574. * writes from the legacy engine, so we need one extra null
  575. * (legacy) descriptor to ensure all completion writes arrive in
  576. * order.
  577. */
  578. if (likely(num_descs) &&
  579. ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
  580. /* pass */;
  581. else
  582. return NULL;
  583. i = 0;
  584. do {
  585. struct ioat_raw_descriptor *descs[2];
  586. size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
  587. desc = ioat2_get_ring_ent(ioat, idx + i);
  588. pq = desc->pq;
  589. /* save a branch by unconditionally retrieving the
  590. * extended descriptor pq_set_src() knows to not write
  591. * to it in the single descriptor case
  592. */
  593. ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
  594. pq_ex = ext->pq_ex;
  595. descs[0] = (struct ioat_raw_descriptor *) pq;
  596. descs[1] = (struct ioat_raw_descriptor *) pq_ex;
  597. for (s = 0; s < src_cnt; s++)
  598. pq_set_src(descs, src[s], offset, scf[s], s);
  599. /* see the comment for dma_maxpq in include/linux/dmaengine.h */
  600. if (dmaf_p_disabled_continue(flags))
  601. pq_set_src(descs, dst[1], offset, 1, s++);
  602. else if (dmaf_continue(flags)) {
  603. pq_set_src(descs, dst[0], offset, 0, s++);
  604. pq_set_src(descs, dst[1], offset, 1, s++);
  605. pq_set_src(descs, dst[1], offset, 0, s++);
  606. }
  607. pq->size = xfer_size;
  608. pq->p_addr = dst[0] + offset;
  609. pq->q_addr = dst[1] + offset;
  610. pq->ctl = 0;
  611. pq->ctl_f.op = op;
  612. pq->ctl_f.src_cnt = src_cnt_to_hw(s);
  613. pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
  614. pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
  615. len -= xfer_size;
  616. offset += xfer_size;
  617. } while ((i += 1 + with_ext) < num_descs);
  618. /* last pq descriptor carries the unmap parameters and fence bit */
  619. desc->txd.flags = flags;
  620. desc->len = total_len;
  621. if (result)
  622. desc->result = result;
  623. pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
  624. dump_pq_desc_dbg(ioat, desc, ext);
  625. /* completion descriptor carries interrupt bit */
  626. compl_desc = ioat2_get_ring_ent(ioat, idx + i);
  627. compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
  628. hw = compl_desc->hw;
  629. hw->ctl = 0;
  630. hw->ctl_f.null = 1;
  631. hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
  632. hw->ctl_f.compl_write = 1;
  633. hw->size = NULL_DESC_BUFFER_SIZE;
  634. dump_desc_dbg(ioat, compl_desc);
  635. /* we leave the channel locked to ensure in order submission */
  636. return &compl_desc->txd;
  637. }
  638. static struct dma_async_tx_descriptor *
  639. ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  640. unsigned int src_cnt, const unsigned char *scf, size_t len,
  641. unsigned long flags)
  642. {
  643. /* specify valid address for disabled result */
  644. if (flags & DMA_PREP_PQ_DISABLE_P)
  645. dst[0] = dst[1];
  646. if (flags & DMA_PREP_PQ_DISABLE_Q)
  647. dst[1] = dst[0];
  648. /* handle the single source multiply case from the raid6
  649. * recovery path
  650. */
  651. if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
  652. dma_addr_t single_source[2];
  653. unsigned char single_source_coef[2];
  654. BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
  655. single_source[0] = src[0];
  656. single_source[1] = src[0];
  657. single_source_coef[0] = scf[0];
  658. single_source_coef[1] = 0;
  659. return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
  660. single_source_coef, len, flags);
  661. } else
  662. return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf,
  663. len, flags);
  664. }
  665. struct dma_async_tx_descriptor *
  666. ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  667. unsigned int src_cnt, const unsigned char *scf, size_t len,
  668. enum sum_check_flags *pqres, unsigned long flags)
  669. {
  670. /* specify valid address for disabled result */
  671. if (flags & DMA_PREP_PQ_DISABLE_P)
  672. pq[0] = pq[1];
  673. if (flags & DMA_PREP_PQ_DISABLE_Q)
  674. pq[1] = pq[0];
  675. /* the cleanup routine only sets bits on validate failure, it
  676. * does not clear bits on validate success... so clear it here
  677. */
  678. *pqres = 0;
  679. return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
  680. flags);
  681. }
  682. static struct dma_async_tx_descriptor *
  683. ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
  684. unsigned int src_cnt, size_t len, unsigned long flags)
  685. {
  686. unsigned char scf[src_cnt];
  687. dma_addr_t pq[2];
  688. memset(scf, 0, src_cnt);
  689. pq[0] = dst;
  690. flags |= DMA_PREP_PQ_DISABLE_Q;
  691. pq[1] = dst; /* specify valid address for disabled result */
  692. return __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
  693. flags);
  694. }
  695. struct dma_async_tx_descriptor *
  696. ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
  697. unsigned int src_cnt, size_t len,
  698. enum sum_check_flags *result, unsigned long flags)
  699. {
  700. unsigned char scf[src_cnt];
  701. dma_addr_t pq[2];
  702. /* the cleanup routine only sets bits on validate failure, it
  703. * does not clear bits on validate success... so clear it here
  704. */
  705. *result = 0;
  706. memset(scf, 0, src_cnt);
  707. pq[0] = src[0];
  708. flags |= DMA_PREP_PQ_DISABLE_Q;
  709. pq[1] = pq[0]; /* specify valid address for disabled result */
  710. return __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1, scf,
  711. len, flags);
  712. }
  713. static struct dma_async_tx_descriptor *
  714. ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
  715. {
  716. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  717. struct ioat_ring_ent *desc;
  718. struct ioat_dma_descriptor *hw;
  719. u16 idx;
  720. if (ioat2_alloc_and_lock(&idx, ioat, 1) == 0)
  721. desc = ioat2_get_ring_ent(ioat, idx);
  722. else
  723. return NULL;
  724. hw = desc->hw;
  725. hw->ctl = 0;
  726. hw->ctl_f.null = 1;
  727. hw->ctl_f.int_en = 1;
  728. hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
  729. hw->ctl_f.compl_write = 1;
  730. hw->size = NULL_DESC_BUFFER_SIZE;
  731. hw->src_addr = 0;
  732. hw->dst_addr = 0;
  733. desc->txd.flags = flags;
  734. desc->len = 1;
  735. dump_desc_dbg(ioat, desc);
  736. /* we leave the channel locked to ensure in order submission */
  737. return &desc->txd;
  738. }
  739. static void __devinit ioat3_dma_test_callback(void *dma_async_param)
  740. {
  741. struct completion *cmp = dma_async_param;
  742. complete(cmp);
  743. }
  744. #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
  745. static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
  746. {
  747. int i, src_idx;
  748. struct page *dest;
  749. struct page *xor_srcs[IOAT_NUM_SRC_TEST];
  750. struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
  751. dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
  752. dma_addr_t dma_addr, dest_dma;
  753. struct dma_async_tx_descriptor *tx;
  754. struct dma_chan *dma_chan;
  755. dma_cookie_t cookie;
  756. u8 cmp_byte = 0;
  757. u32 cmp_word;
  758. u32 xor_val_result;
  759. int err = 0;
  760. struct completion cmp;
  761. unsigned long tmo;
  762. struct device *dev = &device->pdev->dev;
  763. struct dma_device *dma = &device->common;
  764. dev_dbg(dev, "%s\n", __func__);
  765. if (!dma_has_cap(DMA_XOR, dma->cap_mask))
  766. return 0;
  767. for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
  768. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  769. if (!xor_srcs[src_idx]) {
  770. while (src_idx--)
  771. __free_page(xor_srcs[src_idx]);
  772. return -ENOMEM;
  773. }
  774. }
  775. dest = alloc_page(GFP_KERNEL);
  776. if (!dest) {
  777. while (src_idx--)
  778. __free_page(xor_srcs[src_idx]);
  779. return -ENOMEM;
  780. }
  781. /* Fill in src buffers */
  782. for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
  783. u8 *ptr = page_address(xor_srcs[src_idx]);
  784. for (i = 0; i < PAGE_SIZE; i++)
  785. ptr[i] = (1 << src_idx);
  786. }
  787. for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
  788. cmp_byte ^= (u8) (1 << src_idx);
  789. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  790. (cmp_byte << 8) | cmp_byte;
  791. memset(page_address(dest), 0, PAGE_SIZE);
  792. dma_chan = container_of(dma->channels.next, struct dma_chan,
  793. device_node);
  794. if (dma->device_alloc_chan_resources(dma_chan) < 1) {
  795. err = -ENODEV;
  796. goto out;
  797. }
  798. /* test xor */
  799. dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  800. for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
  801. dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
  802. DMA_TO_DEVICE);
  803. tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  804. IOAT_NUM_SRC_TEST, PAGE_SIZE,
  805. DMA_PREP_INTERRUPT);
  806. if (!tx) {
  807. dev_err(dev, "Self-test xor prep failed\n");
  808. err = -ENODEV;
  809. goto free_resources;
  810. }
  811. async_tx_ack(tx);
  812. init_completion(&cmp);
  813. tx->callback = ioat3_dma_test_callback;
  814. tx->callback_param = &cmp;
  815. cookie = tx->tx_submit(tx);
  816. if (cookie < 0) {
  817. dev_err(dev, "Self-test xor setup failed\n");
  818. err = -ENODEV;
  819. goto free_resources;
  820. }
  821. dma->device_issue_pending(dma_chan);
  822. tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
  823. if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  824. dev_err(dev, "Self-test xor timed out\n");
  825. err = -ENODEV;
  826. goto free_resources;
  827. }
  828. dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
  829. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  830. u32 *ptr = page_address(dest);
  831. if (ptr[i] != cmp_word) {
  832. dev_err(dev, "Self-test xor failed compare\n");
  833. err = -ENODEV;
  834. goto free_resources;
  835. }
  836. }
  837. dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE);
  838. /* skip validate if the capability is not present */
  839. if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
  840. goto free_resources;
  841. /* validate the sources with the destintation page */
  842. for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
  843. xor_val_srcs[i] = xor_srcs[i];
  844. xor_val_srcs[i] = dest;
  845. xor_val_result = 1;
  846. for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
  847. dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
  848. DMA_TO_DEVICE);
  849. tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
  850. IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
  851. &xor_val_result, DMA_PREP_INTERRUPT);
  852. if (!tx) {
  853. dev_err(dev, "Self-test zero prep failed\n");
  854. err = -ENODEV;
  855. goto free_resources;
  856. }
  857. async_tx_ack(tx);
  858. init_completion(&cmp);
  859. tx->callback = ioat3_dma_test_callback;
  860. tx->callback_param = &cmp;
  861. cookie = tx->tx_submit(tx);
  862. if (cookie < 0) {
  863. dev_err(dev, "Self-test zero setup failed\n");
  864. err = -ENODEV;
  865. goto free_resources;
  866. }
  867. dma->device_issue_pending(dma_chan);
  868. tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
  869. if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  870. dev_err(dev, "Self-test validate timed out\n");
  871. err = -ENODEV;
  872. goto free_resources;
  873. }
  874. if (xor_val_result != 0) {
  875. dev_err(dev, "Self-test validate failed compare\n");
  876. err = -ENODEV;
  877. goto free_resources;
  878. }
  879. /* skip memset if the capability is not present */
  880. if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask))
  881. goto free_resources;
  882. /* test memset */
  883. dma_addr = dma_map_page(dev, dest, 0,
  884. PAGE_SIZE, DMA_FROM_DEVICE);
  885. tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
  886. DMA_PREP_INTERRUPT);
  887. if (!tx) {
  888. dev_err(dev, "Self-test memset prep failed\n");
  889. err = -ENODEV;
  890. goto free_resources;
  891. }
  892. async_tx_ack(tx);
  893. init_completion(&cmp);
  894. tx->callback = ioat3_dma_test_callback;
  895. tx->callback_param = &cmp;
  896. cookie = tx->tx_submit(tx);
  897. if (cookie < 0) {
  898. dev_err(dev, "Self-test memset setup failed\n");
  899. err = -ENODEV;
  900. goto free_resources;
  901. }
  902. dma->device_issue_pending(dma_chan);
  903. tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
  904. if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  905. dev_err(dev, "Self-test memset timed out\n");
  906. err = -ENODEV;
  907. goto free_resources;
  908. }
  909. for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
  910. u32 *ptr = page_address(dest);
  911. if (ptr[i]) {
  912. dev_err(dev, "Self-test memset failed compare\n");
  913. err = -ENODEV;
  914. goto free_resources;
  915. }
  916. }
  917. /* test for non-zero parity sum */
  918. xor_val_result = 0;
  919. for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
  920. dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
  921. DMA_TO_DEVICE);
  922. tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
  923. IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
  924. &xor_val_result, DMA_PREP_INTERRUPT);
  925. if (!tx) {
  926. dev_err(dev, "Self-test 2nd zero prep failed\n");
  927. err = -ENODEV;
  928. goto free_resources;
  929. }
  930. async_tx_ack(tx);
  931. init_completion(&cmp);
  932. tx->callback = ioat3_dma_test_callback;
  933. tx->callback_param = &cmp;
  934. cookie = tx->tx_submit(tx);
  935. if (cookie < 0) {
  936. dev_err(dev, "Self-test 2nd zero setup failed\n");
  937. err = -ENODEV;
  938. goto free_resources;
  939. }
  940. dma->device_issue_pending(dma_chan);
  941. tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
  942. if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  943. dev_err(dev, "Self-test 2nd validate timed out\n");
  944. err = -ENODEV;
  945. goto free_resources;
  946. }
  947. if (xor_val_result != SUM_CHECK_P_RESULT) {
  948. dev_err(dev, "Self-test validate failed compare\n");
  949. err = -ENODEV;
  950. goto free_resources;
  951. }
  952. free_resources:
  953. dma->device_free_chan_resources(dma_chan);
  954. out:
  955. src_idx = IOAT_NUM_SRC_TEST;
  956. while (src_idx--)
  957. __free_page(xor_srcs[src_idx]);
  958. __free_page(dest);
  959. return err;
  960. }
  961. static int __devinit ioat3_dma_self_test(struct ioatdma_device *device)
  962. {
  963. int rc = ioat_dma_self_test(device);
  964. if (rc)
  965. return rc;
  966. rc = ioat_xor_val_self_test(device);
  967. if (rc)
  968. return rc;
  969. return 0;
  970. }
  971. static int ioat3_reset_hw(struct ioat_chan_common *chan)
  972. {
  973. /* throw away whatever the channel was doing and get it
  974. * initialized, with ioat3 specific workarounds
  975. */
  976. struct ioatdma_device *device = chan->device;
  977. struct pci_dev *pdev = device->pdev;
  978. u32 chanerr;
  979. u16 dev_id;
  980. int err;
  981. ioat2_quiesce(chan, msecs_to_jiffies(100));
  982. chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
  983. writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
  984. /* -= IOAT ver.3 workarounds =- */
  985. /* Write CHANERRMSK_INT with 3E07h to mask out the errors
  986. * that can cause stability issues for IOAT ver.3, and clear any
  987. * pending errors
  988. */
  989. pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07);
  990. err = pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
  991. if (err) {
  992. dev_err(&pdev->dev, "channel error register unreachable\n");
  993. return err;
  994. }
  995. pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
  996. /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
  997. * (workaround for spurious config parity error after restart)
  998. */
  999. pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
  1000. if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0)
  1001. pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10);
  1002. return ioat2_reset_sync(chan, msecs_to_jiffies(200));
  1003. }
  1004. int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
  1005. {
  1006. struct pci_dev *pdev = device->pdev;
  1007. int dca_en = system_has_dca_enabled(pdev);
  1008. struct dma_device *dma;
  1009. struct dma_chan *c;
  1010. struct ioat_chan_common *chan;
  1011. bool is_raid_device = false;
  1012. int err;
  1013. u32 cap;
  1014. device->enumerate_channels = ioat2_enumerate_channels;
  1015. device->reset_hw = ioat3_reset_hw;
  1016. device->self_test = ioat3_dma_self_test;
  1017. dma = &device->common;
  1018. dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
  1019. dma->device_issue_pending = ioat2_issue_pending;
  1020. dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
  1021. dma->device_free_chan_resources = ioat2_free_chan_resources;
  1022. dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
  1023. dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
  1024. cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
  1025. /* dca is incompatible with raid operations */
  1026. if (dca_en && (cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
  1027. cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
  1028. if (cap & IOAT_CAP_XOR) {
  1029. is_raid_device = true;
  1030. dma->max_xor = 8;
  1031. dma->xor_align = 2;
  1032. dma_cap_set(DMA_XOR, dma->cap_mask);
  1033. dma->device_prep_dma_xor = ioat3_prep_xor;
  1034. dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
  1035. dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
  1036. }
  1037. if (cap & IOAT_CAP_PQ) {
  1038. is_raid_device = true;
  1039. dma_set_maxpq(dma, 8, 0);
  1040. dma->pq_align = 2;
  1041. dma_cap_set(DMA_PQ, dma->cap_mask);
  1042. dma->device_prep_dma_pq = ioat3_prep_pq;
  1043. dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
  1044. dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
  1045. if (!(cap & IOAT_CAP_XOR)) {
  1046. dma->max_xor = 8;
  1047. dma->xor_align = 2;
  1048. dma_cap_set(DMA_XOR, dma->cap_mask);
  1049. dma->device_prep_dma_xor = ioat3_prep_pqxor;
  1050. dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
  1051. dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
  1052. }
  1053. }
  1054. if (is_raid_device && (cap & IOAT_CAP_FILL_BLOCK)) {
  1055. dma_cap_set(DMA_MEMSET, dma->cap_mask);
  1056. dma->device_prep_dma_memset = ioat3_prep_memset_lock;
  1057. }
  1058. if (is_raid_device) {
  1059. dma->device_is_tx_complete = ioat3_is_complete;
  1060. device->cleanup_tasklet = ioat3_cleanup_tasklet;
  1061. device->timer_fn = ioat3_timer_event;
  1062. } else {
  1063. dma->device_is_tx_complete = ioat2_is_complete;
  1064. device->cleanup_tasklet = ioat2_cleanup_tasklet;
  1065. device->timer_fn = ioat2_timer_event;
  1066. }
  1067. #ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
  1068. dma_cap_clear(DMA_PQ_VAL, dma->cap_mask);
  1069. dma->device_prep_dma_pq_val = NULL;
  1070. #endif
  1071. #ifdef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
  1072. dma_cap_clear(DMA_XOR_VAL, dma->cap_mask);
  1073. dma->device_prep_dma_xor_val = NULL;
  1074. #endif
  1075. err = ioat_probe(device);
  1076. if (err)
  1077. return err;
  1078. ioat_set_tcp_copy_break(262144);
  1079. list_for_each_entry(c, &dma->channels, device_node) {
  1080. chan = to_chan_common(c);
  1081. writel(IOAT_DMA_DCA_ANY_CPU,
  1082. chan->reg_base + IOAT_DCACTRL_OFFSET);
  1083. }
  1084. err = ioat_register(device);
  1085. if (err)
  1086. return err;
  1087. ioat_kobject_add(device, &ioat2_ktype);
  1088. if (dca)
  1089. device->dca = ioat3_dca_init(pdev, device->reg_base);
  1090. return 0;
  1091. }