vmx.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <asm/io.h>
  24. #include <asm/desc.h>
  25. #include "segment_descriptor.h"
  26. #define MSR_IA32_FEATURE_CONTROL 0x03a
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  30. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  31. #ifdef CONFIG_X86_64
  32. #define HOST_IS_64 1
  33. #else
  34. #define HOST_IS_64 0
  35. #endif
  36. static struct vmcs_descriptor {
  37. int size;
  38. int order;
  39. u32 revision_id;
  40. } vmcs_descriptor;
  41. #define VMX_SEGMENT_FIELD(seg) \
  42. [VCPU_SREG_##seg] = { \
  43. .selector = GUEST_##seg##_SELECTOR, \
  44. .base = GUEST_##seg##_BASE, \
  45. .limit = GUEST_##seg##_LIMIT, \
  46. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  47. }
  48. static struct kvm_vmx_segment_field {
  49. unsigned selector;
  50. unsigned base;
  51. unsigned limit;
  52. unsigned ar_bytes;
  53. } kvm_vmx_segment_fields[] = {
  54. VMX_SEGMENT_FIELD(CS),
  55. VMX_SEGMENT_FIELD(DS),
  56. VMX_SEGMENT_FIELD(ES),
  57. VMX_SEGMENT_FIELD(FS),
  58. VMX_SEGMENT_FIELD(GS),
  59. VMX_SEGMENT_FIELD(SS),
  60. VMX_SEGMENT_FIELD(TR),
  61. VMX_SEGMENT_FIELD(LDTR),
  62. };
  63. static const u32 vmx_msr_index[] = {
  64. #ifdef CONFIG_X86_64
  65. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  66. #endif
  67. MSR_EFER, MSR_K6_STAR,
  68. };
  69. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  70. static inline int is_page_fault(u32 intr_info)
  71. {
  72. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  73. INTR_INFO_VALID_MASK)) ==
  74. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  75. }
  76. static inline int is_external_interrupt(u32 intr_info)
  77. {
  78. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  79. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  80. }
  81. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  82. {
  83. int i;
  84. for (i = 0; i < vcpu->nmsrs; ++i)
  85. if (vcpu->guest_msrs[i].index == msr)
  86. return &vcpu->guest_msrs[i];
  87. return 0;
  88. }
  89. static void vmcs_clear(struct vmcs *vmcs)
  90. {
  91. u64 phys_addr = __pa(vmcs);
  92. u8 error;
  93. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  94. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  95. : "cc", "memory");
  96. if (error)
  97. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  98. vmcs, phys_addr);
  99. }
  100. static void __vcpu_clear(void *arg)
  101. {
  102. struct kvm_vcpu *vcpu = arg;
  103. int cpu = smp_processor_id();
  104. if (vcpu->cpu == cpu)
  105. vmcs_clear(vcpu->vmcs);
  106. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  107. per_cpu(current_vmcs, cpu) = NULL;
  108. }
  109. static unsigned long vmcs_readl(unsigned long field)
  110. {
  111. unsigned long value;
  112. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  113. : "=a"(value) : "d"(field) : "cc");
  114. return value;
  115. }
  116. static u16 vmcs_read16(unsigned long field)
  117. {
  118. return vmcs_readl(field);
  119. }
  120. static u32 vmcs_read32(unsigned long field)
  121. {
  122. return vmcs_readl(field);
  123. }
  124. static u64 vmcs_read64(unsigned long field)
  125. {
  126. #ifdef CONFIG_X86_64
  127. return vmcs_readl(field);
  128. #else
  129. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  130. #endif
  131. }
  132. static void vmcs_writel(unsigned long field, unsigned long value)
  133. {
  134. u8 error;
  135. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  136. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  137. if (error)
  138. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  139. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  140. }
  141. static void vmcs_write16(unsigned long field, u16 value)
  142. {
  143. vmcs_writel(field, value);
  144. }
  145. static void vmcs_write32(unsigned long field, u32 value)
  146. {
  147. vmcs_writel(field, value);
  148. }
  149. static void vmcs_write64(unsigned long field, u64 value)
  150. {
  151. #ifdef CONFIG_X86_64
  152. vmcs_writel(field, value);
  153. #else
  154. vmcs_writel(field, value);
  155. asm volatile ("");
  156. vmcs_writel(field+1, value >> 32);
  157. #endif
  158. }
  159. /*
  160. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  161. * vcpu mutex is already taken.
  162. */
  163. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  164. {
  165. u64 phys_addr = __pa(vcpu->vmcs);
  166. int cpu;
  167. cpu = get_cpu();
  168. if (vcpu->cpu != cpu) {
  169. smp_call_function(__vcpu_clear, vcpu, 0, 1);
  170. vcpu->launched = 0;
  171. }
  172. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  173. u8 error;
  174. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  175. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  176. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  177. : "cc");
  178. if (error)
  179. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  180. vcpu->vmcs, phys_addr);
  181. }
  182. if (vcpu->cpu != cpu) {
  183. struct descriptor_table dt;
  184. unsigned long sysenter_esp;
  185. vcpu->cpu = cpu;
  186. /*
  187. * Linux uses per-cpu TSS and GDT, so set these when switching
  188. * processors.
  189. */
  190. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  191. get_gdt(&dt);
  192. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  193. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  194. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  195. }
  196. return vcpu;
  197. }
  198. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  199. {
  200. put_cpu();
  201. }
  202. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  203. {
  204. return vmcs_readl(GUEST_RFLAGS);
  205. }
  206. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  207. {
  208. vmcs_writel(GUEST_RFLAGS, rflags);
  209. }
  210. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  211. {
  212. unsigned long rip;
  213. u32 interruptibility;
  214. rip = vmcs_readl(GUEST_RIP);
  215. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  216. vmcs_writel(GUEST_RIP, rip);
  217. /*
  218. * We emulated an instruction, so temporary interrupt blocking
  219. * should be removed, if set.
  220. */
  221. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  222. if (interruptibility & 3)
  223. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  224. interruptibility & ~3);
  225. }
  226. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  227. {
  228. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  229. vmcs_readl(GUEST_RIP));
  230. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  231. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  232. GP_VECTOR |
  233. INTR_TYPE_EXCEPTION |
  234. INTR_INFO_DELIEVER_CODE_MASK |
  235. INTR_INFO_VALID_MASK);
  236. }
  237. /*
  238. * reads and returns guest's timestamp counter "register"
  239. * guest_tsc = host_tsc + tsc_offset -- 21.3
  240. */
  241. static u64 guest_read_tsc(void)
  242. {
  243. u64 host_tsc, tsc_offset;
  244. rdtscll(host_tsc);
  245. tsc_offset = vmcs_read64(TSC_OFFSET);
  246. return host_tsc + tsc_offset;
  247. }
  248. /*
  249. * writes 'guest_tsc' into guest's timestamp counter "register"
  250. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  251. */
  252. static void guest_write_tsc(u64 guest_tsc)
  253. {
  254. u64 host_tsc;
  255. rdtscll(host_tsc);
  256. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  257. }
  258. static void reload_tss(void)
  259. {
  260. #ifndef CONFIG_X86_64
  261. /*
  262. * VT restores TR but not its size. Useless.
  263. */
  264. struct descriptor_table gdt;
  265. struct segment_descriptor *descs;
  266. get_gdt(&gdt);
  267. descs = (void *)gdt.base;
  268. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  269. load_TR_desc();
  270. #endif
  271. }
  272. /*
  273. * Reads an msr value (of 'msr_index') into 'pdata'.
  274. * Returns 0 on success, non-0 otherwise.
  275. * Assumes vcpu_load() was already called.
  276. */
  277. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  278. {
  279. u64 data;
  280. struct vmx_msr_entry *msr;
  281. if (!pdata) {
  282. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  283. return -EINVAL;
  284. }
  285. switch (msr_index) {
  286. #ifdef CONFIG_X86_64
  287. case MSR_FS_BASE:
  288. data = vmcs_readl(GUEST_FS_BASE);
  289. break;
  290. case MSR_GS_BASE:
  291. data = vmcs_readl(GUEST_GS_BASE);
  292. break;
  293. case MSR_EFER:
  294. data = vcpu->shadow_efer;
  295. break;
  296. #endif
  297. case MSR_IA32_TIME_STAMP_COUNTER:
  298. data = guest_read_tsc();
  299. break;
  300. case MSR_IA32_SYSENTER_CS:
  301. data = vmcs_read32(GUEST_SYSENTER_CS);
  302. break;
  303. case MSR_IA32_SYSENTER_EIP:
  304. data = vmcs_read32(GUEST_SYSENTER_EIP);
  305. break;
  306. case MSR_IA32_SYSENTER_ESP:
  307. data = vmcs_read32(GUEST_SYSENTER_ESP);
  308. break;
  309. case MSR_IA32_MC0_CTL:
  310. case MSR_IA32_MCG_STATUS:
  311. case MSR_IA32_MCG_CAP:
  312. case MSR_IA32_MC0_MISC:
  313. case MSR_IA32_MC0_MISC+4:
  314. case MSR_IA32_MC0_MISC+8:
  315. case MSR_IA32_MC0_MISC+12:
  316. case MSR_IA32_MC0_MISC+16:
  317. case MSR_IA32_UCODE_REV:
  318. /* MTRR registers */
  319. case 0xfe:
  320. case 0x200 ... 0x2ff:
  321. data = 0;
  322. break;
  323. case MSR_IA32_APICBASE:
  324. data = vcpu->apic_base;
  325. break;
  326. default:
  327. msr = find_msr_entry(vcpu, msr_index);
  328. if (!msr) {
  329. printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
  330. return 1;
  331. }
  332. data = msr->data;
  333. break;
  334. }
  335. *pdata = data;
  336. return 0;
  337. }
  338. /*
  339. * Writes msr value into into the appropriate "register".
  340. * Returns 0 on success, non-0 otherwise.
  341. * Assumes vcpu_load() was already called.
  342. */
  343. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  344. {
  345. struct vmx_msr_entry *msr;
  346. switch (msr_index) {
  347. #ifdef CONFIG_X86_64
  348. case MSR_FS_BASE:
  349. vmcs_writel(GUEST_FS_BASE, data);
  350. break;
  351. case MSR_GS_BASE:
  352. vmcs_writel(GUEST_GS_BASE, data);
  353. break;
  354. #endif
  355. case MSR_IA32_SYSENTER_CS:
  356. vmcs_write32(GUEST_SYSENTER_CS, data);
  357. break;
  358. case MSR_IA32_SYSENTER_EIP:
  359. vmcs_write32(GUEST_SYSENTER_EIP, data);
  360. break;
  361. case MSR_IA32_SYSENTER_ESP:
  362. vmcs_write32(GUEST_SYSENTER_ESP, data);
  363. break;
  364. #ifdef __x86_64
  365. case MSR_EFER:
  366. set_efer(vcpu, data);
  367. break;
  368. case MSR_IA32_MC0_STATUS:
  369. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
  370. , __FUNCTION__, data);
  371. break;
  372. #endif
  373. case MSR_IA32_TIME_STAMP_COUNTER: {
  374. guest_write_tsc(data);
  375. break;
  376. }
  377. case MSR_IA32_UCODE_REV:
  378. case MSR_IA32_UCODE_WRITE:
  379. case 0x200 ... 0x2ff: /* MTRRs */
  380. break;
  381. case MSR_IA32_APICBASE:
  382. vcpu->apic_base = data;
  383. break;
  384. default:
  385. msr = find_msr_entry(vcpu, msr_index);
  386. if (!msr) {
  387. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
  388. return 1;
  389. }
  390. msr->data = data;
  391. break;
  392. }
  393. return 0;
  394. }
  395. /*
  396. * Sync the rsp and rip registers into the vcpu structure. This allows
  397. * registers to be accessed by indexing vcpu->regs.
  398. */
  399. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  400. {
  401. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  402. vcpu->rip = vmcs_readl(GUEST_RIP);
  403. }
  404. /*
  405. * Syncs rsp and rip back into the vmcs. Should be called after possible
  406. * modification.
  407. */
  408. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  409. {
  410. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  411. vmcs_writel(GUEST_RIP, vcpu->rip);
  412. }
  413. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  414. {
  415. unsigned long dr7 = 0x400;
  416. u32 exception_bitmap;
  417. int old_singlestep;
  418. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  419. old_singlestep = vcpu->guest_debug.singlestep;
  420. vcpu->guest_debug.enabled = dbg->enabled;
  421. if (vcpu->guest_debug.enabled) {
  422. int i;
  423. dr7 |= 0x200; /* exact */
  424. for (i = 0; i < 4; ++i) {
  425. if (!dbg->breakpoints[i].enabled)
  426. continue;
  427. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  428. dr7 |= 2 << (i*2); /* global enable */
  429. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  430. }
  431. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  432. vcpu->guest_debug.singlestep = dbg->singlestep;
  433. } else {
  434. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  435. vcpu->guest_debug.singlestep = 0;
  436. }
  437. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  438. unsigned long flags;
  439. flags = vmcs_readl(GUEST_RFLAGS);
  440. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  441. vmcs_writel(GUEST_RFLAGS, flags);
  442. }
  443. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  444. vmcs_writel(GUEST_DR7, dr7);
  445. return 0;
  446. }
  447. static __init int cpu_has_kvm_support(void)
  448. {
  449. unsigned long ecx = cpuid_ecx(1);
  450. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  451. }
  452. static __init int vmx_disabled_by_bios(void)
  453. {
  454. u64 msr;
  455. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  456. return (msr & 5) == 1; /* locked but not enabled */
  457. }
  458. static __init void hardware_enable(void *garbage)
  459. {
  460. int cpu = raw_smp_processor_id();
  461. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  462. u64 old;
  463. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  464. if ((old & 5) == 0)
  465. /* enable and lock */
  466. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  467. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  468. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  469. : "memory", "cc");
  470. }
  471. static void hardware_disable(void *garbage)
  472. {
  473. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  474. }
  475. static __init void setup_vmcs_descriptor(void)
  476. {
  477. u32 vmx_msr_low, vmx_msr_high;
  478. rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
  479. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  480. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  481. vmcs_descriptor.revision_id = vmx_msr_low;
  482. };
  483. static struct vmcs *alloc_vmcs_cpu(int cpu)
  484. {
  485. int node = cpu_to_node(cpu);
  486. struct page *pages;
  487. struct vmcs *vmcs;
  488. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  489. if (!pages)
  490. return NULL;
  491. vmcs = page_address(pages);
  492. memset(vmcs, 0, vmcs_descriptor.size);
  493. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  494. return vmcs;
  495. }
  496. static struct vmcs *alloc_vmcs(void)
  497. {
  498. return alloc_vmcs_cpu(smp_processor_id());
  499. }
  500. static void free_vmcs(struct vmcs *vmcs)
  501. {
  502. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  503. }
  504. static __exit void free_kvm_area(void)
  505. {
  506. int cpu;
  507. for_each_online_cpu(cpu)
  508. free_vmcs(per_cpu(vmxarea, cpu));
  509. }
  510. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  511. static __init int alloc_kvm_area(void)
  512. {
  513. int cpu;
  514. for_each_online_cpu(cpu) {
  515. struct vmcs *vmcs;
  516. vmcs = alloc_vmcs_cpu(cpu);
  517. if (!vmcs) {
  518. free_kvm_area();
  519. return -ENOMEM;
  520. }
  521. per_cpu(vmxarea, cpu) = vmcs;
  522. }
  523. return 0;
  524. }
  525. static __init int hardware_setup(void)
  526. {
  527. setup_vmcs_descriptor();
  528. return alloc_kvm_area();
  529. }
  530. static __exit void hardware_unsetup(void)
  531. {
  532. free_kvm_area();
  533. }
  534. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  535. {
  536. if (vcpu->rmode.active)
  537. vmcs_write32(EXCEPTION_BITMAP, ~0);
  538. else
  539. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  540. }
  541. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  542. {
  543. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  544. if (vmcs_readl(sf->base) == save->base) {
  545. vmcs_write16(sf->selector, save->selector);
  546. vmcs_writel(sf->base, save->base);
  547. vmcs_write32(sf->limit, save->limit);
  548. vmcs_write32(sf->ar_bytes, save->ar);
  549. } else {
  550. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  551. << AR_DPL_SHIFT;
  552. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  553. }
  554. }
  555. static void enter_pmode(struct kvm_vcpu *vcpu)
  556. {
  557. unsigned long flags;
  558. vcpu->rmode.active = 0;
  559. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  560. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  561. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  562. flags = vmcs_readl(GUEST_RFLAGS);
  563. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  564. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  565. vmcs_writel(GUEST_RFLAGS, flags);
  566. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  567. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  568. update_exception_bitmap(vcpu);
  569. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  570. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  571. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  572. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  573. vmcs_write16(GUEST_SS_SELECTOR, 0);
  574. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  575. vmcs_write16(GUEST_CS_SELECTOR,
  576. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  577. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  578. }
  579. static int rmode_tss_base(struct kvm* kvm)
  580. {
  581. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  582. return base_gfn << PAGE_SHIFT;
  583. }
  584. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  585. {
  586. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  587. save->selector = vmcs_read16(sf->selector);
  588. save->base = vmcs_readl(sf->base);
  589. save->limit = vmcs_read32(sf->limit);
  590. save->ar = vmcs_read32(sf->ar_bytes);
  591. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  592. vmcs_write32(sf->limit, 0xffff);
  593. vmcs_write32(sf->ar_bytes, 0xf3);
  594. }
  595. static void enter_rmode(struct kvm_vcpu *vcpu)
  596. {
  597. unsigned long flags;
  598. vcpu->rmode.active = 1;
  599. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  600. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  601. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  602. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  603. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  604. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  605. flags = vmcs_readl(GUEST_RFLAGS);
  606. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  607. flags |= IOPL_MASK | X86_EFLAGS_VM;
  608. vmcs_writel(GUEST_RFLAGS, flags);
  609. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  610. update_exception_bitmap(vcpu);
  611. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  612. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  613. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  614. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  615. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  616. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  617. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  618. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  619. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  620. }
  621. #ifdef CONFIG_X86_64
  622. static void enter_lmode(struct kvm_vcpu *vcpu)
  623. {
  624. u32 guest_tr_ar;
  625. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  626. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  627. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  628. __FUNCTION__);
  629. vmcs_write32(GUEST_TR_AR_BYTES,
  630. (guest_tr_ar & ~AR_TYPE_MASK)
  631. | AR_TYPE_BUSY_64_TSS);
  632. }
  633. vcpu->shadow_efer |= EFER_LMA;
  634. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  635. vmcs_write32(VM_ENTRY_CONTROLS,
  636. vmcs_read32(VM_ENTRY_CONTROLS)
  637. | VM_ENTRY_CONTROLS_IA32E_MASK);
  638. }
  639. static void exit_lmode(struct kvm_vcpu *vcpu)
  640. {
  641. vcpu->shadow_efer &= ~EFER_LMA;
  642. vmcs_write32(VM_ENTRY_CONTROLS,
  643. vmcs_read32(VM_ENTRY_CONTROLS)
  644. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  645. }
  646. #endif
  647. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  648. {
  649. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  650. enter_pmode(vcpu);
  651. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  652. enter_rmode(vcpu);
  653. #ifdef CONFIG_X86_64
  654. if (vcpu->shadow_efer & EFER_LME) {
  655. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  656. enter_lmode(vcpu);
  657. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  658. exit_lmode(vcpu);
  659. }
  660. #endif
  661. vmcs_writel(CR0_READ_SHADOW, cr0);
  662. vmcs_writel(GUEST_CR0,
  663. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  664. vcpu->cr0 = cr0;
  665. }
  666. /*
  667. * Used when restoring the VM to avoid corrupting segment registers
  668. */
  669. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  670. {
  671. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  672. update_exception_bitmap(vcpu);
  673. vmcs_writel(CR0_READ_SHADOW, cr0);
  674. vmcs_writel(GUEST_CR0,
  675. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  676. vcpu->cr0 = cr0;
  677. }
  678. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  679. {
  680. vmcs_writel(GUEST_CR3, cr3);
  681. }
  682. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  683. {
  684. vmcs_writel(CR4_READ_SHADOW, cr4);
  685. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  686. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  687. vcpu->cr4 = cr4;
  688. }
  689. #ifdef CONFIG_X86_64
  690. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  691. {
  692. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  693. vcpu->shadow_efer = efer;
  694. if (efer & EFER_LMA) {
  695. vmcs_write32(VM_ENTRY_CONTROLS,
  696. vmcs_read32(VM_ENTRY_CONTROLS) |
  697. VM_ENTRY_CONTROLS_IA32E_MASK);
  698. msr->data = efer;
  699. } else {
  700. vmcs_write32(VM_ENTRY_CONTROLS,
  701. vmcs_read32(VM_ENTRY_CONTROLS) &
  702. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  703. msr->data = efer & ~EFER_LME;
  704. }
  705. }
  706. #endif
  707. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  708. {
  709. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  710. return vmcs_readl(sf->base);
  711. }
  712. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  713. struct kvm_segment *var, int seg)
  714. {
  715. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  716. u32 ar;
  717. var->base = vmcs_readl(sf->base);
  718. var->limit = vmcs_read32(sf->limit);
  719. var->selector = vmcs_read16(sf->selector);
  720. ar = vmcs_read32(sf->ar_bytes);
  721. if (ar & AR_UNUSABLE_MASK)
  722. ar = 0;
  723. var->type = ar & 15;
  724. var->s = (ar >> 4) & 1;
  725. var->dpl = (ar >> 5) & 3;
  726. var->present = (ar >> 7) & 1;
  727. var->avl = (ar >> 12) & 1;
  728. var->l = (ar >> 13) & 1;
  729. var->db = (ar >> 14) & 1;
  730. var->g = (ar >> 15) & 1;
  731. var->unusable = (ar >> 16) & 1;
  732. }
  733. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  734. struct kvm_segment *var, int seg)
  735. {
  736. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  737. u32 ar;
  738. vmcs_writel(sf->base, var->base);
  739. vmcs_write32(sf->limit, var->limit);
  740. vmcs_write16(sf->selector, var->selector);
  741. if (var->unusable)
  742. ar = 1 << 16;
  743. else {
  744. ar = var->type & 15;
  745. ar |= (var->s & 1) << 4;
  746. ar |= (var->dpl & 3) << 5;
  747. ar |= (var->present & 1) << 7;
  748. ar |= (var->avl & 1) << 12;
  749. ar |= (var->l & 1) << 13;
  750. ar |= (var->db & 1) << 14;
  751. ar |= (var->g & 1) << 15;
  752. }
  753. if (ar == 0) /* a 0 value means unusable */
  754. ar = AR_UNUSABLE_MASK;
  755. vmcs_write32(sf->ar_bytes, ar);
  756. }
  757. static int vmx_is_long_mode(struct kvm_vcpu *vcpu)
  758. {
  759. return vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_CONTROLS_IA32E_MASK;
  760. }
  761. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  762. {
  763. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  764. *db = (ar >> 14) & 1;
  765. *l = (ar >> 13) & 1;
  766. }
  767. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  768. {
  769. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  770. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  771. }
  772. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  773. {
  774. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  775. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  776. }
  777. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  778. {
  779. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  780. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  781. }
  782. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  783. {
  784. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  785. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  786. }
  787. static int init_rmode_tss(struct kvm* kvm)
  788. {
  789. struct page *p1, *p2, *p3;
  790. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  791. char *page;
  792. p1 = _gfn_to_page(kvm, fn++);
  793. p2 = _gfn_to_page(kvm, fn++);
  794. p3 = _gfn_to_page(kvm, fn);
  795. if (!p1 || !p2 || !p3) {
  796. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  797. return 0;
  798. }
  799. page = kmap_atomic(p1, KM_USER0);
  800. memset(page, 0, PAGE_SIZE);
  801. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  802. kunmap_atomic(page, KM_USER0);
  803. page = kmap_atomic(p2, KM_USER0);
  804. memset(page, 0, PAGE_SIZE);
  805. kunmap_atomic(page, KM_USER0);
  806. page = kmap_atomic(p3, KM_USER0);
  807. memset(page, 0, PAGE_SIZE);
  808. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  809. kunmap_atomic(page, KM_USER0);
  810. return 1;
  811. }
  812. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  813. {
  814. u32 msr_high, msr_low;
  815. rdmsr(msr, msr_low, msr_high);
  816. val &= msr_high;
  817. val |= msr_low;
  818. vmcs_write32(vmcs_field, val);
  819. }
  820. static void seg_setup(int seg)
  821. {
  822. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  823. vmcs_write16(sf->selector, 0);
  824. vmcs_writel(sf->base, 0);
  825. vmcs_write32(sf->limit, 0xffff);
  826. vmcs_write32(sf->ar_bytes, 0x93);
  827. }
  828. /*
  829. * Sets up the vmcs for emulated real mode.
  830. */
  831. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  832. {
  833. u32 host_sysenter_cs;
  834. u32 junk;
  835. unsigned long a;
  836. struct descriptor_table dt;
  837. int i;
  838. int ret = 0;
  839. int nr_good_msrs;
  840. extern asmlinkage void kvm_vmx_return(void);
  841. if (!init_rmode_tss(vcpu->kvm)) {
  842. ret = -ENOMEM;
  843. goto out;
  844. }
  845. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  846. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  847. vcpu->cr8 = 0;
  848. vcpu->apic_base = 0xfee00000 |
  849. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  850. MSR_IA32_APICBASE_ENABLE;
  851. fx_init(vcpu);
  852. /*
  853. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  854. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  855. */
  856. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  857. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  858. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  859. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  860. seg_setup(VCPU_SREG_DS);
  861. seg_setup(VCPU_SREG_ES);
  862. seg_setup(VCPU_SREG_FS);
  863. seg_setup(VCPU_SREG_GS);
  864. seg_setup(VCPU_SREG_SS);
  865. vmcs_write16(GUEST_TR_SELECTOR, 0);
  866. vmcs_writel(GUEST_TR_BASE, 0);
  867. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  868. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  869. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  870. vmcs_writel(GUEST_LDTR_BASE, 0);
  871. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  872. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  873. vmcs_write32(GUEST_SYSENTER_CS, 0);
  874. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  875. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  876. vmcs_writel(GUEST_RFLAGS, 0x02);
  877. vmcs_writel(GUEST_RIP, 0xfff0);
  878. vmcs_writel(GUEST_RSP, 0);
  879. vmcs_writel(GUEST_CR3, 0);
  880. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  881. vmcs_writel(GUEST_DR7, 0x400);
  882. vmcs_writel(GUEST_GDTR_BASE, 0);
  883. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  884. vmcs_writel(GUEST_IDTR_BASE, 0);
  885. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  886. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  887. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  888. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  889. /* I/O */
  890. vmcs_write64(IO_BITMAP_A, 0);
  891. vmcs_write64(IO_BITMAP_B, 0);
  892. guest_write_tsc(0);
  893. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  894. /* Special registers */
  895. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  896. /* Control */
  897. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
  898. PIN_BASED_VM_EXEC_CONTROL,
  899. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  900. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  901. );
  902. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
  903. CPU_BASED_VM_EXEC_CONTROL,
  904. CPU_BASED_HLT_EXITING /* 20.6.2 */
  905. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  906. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  907. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  908. | CPU_BASED_INVDPG_EXITING
  909. | CPU_BASED_MOV_DR_EXITING
  910. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  911. );
  912. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  913. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  914. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  915. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  916. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  917. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  918. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  919. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  920. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  921. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  922. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  923. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  924. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  925. #ifdef CONFIG_X86_64
  926. rdmsrl(MSR_FS_BASE, a);
  927. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  928. rdmsrl(MSR_GS_BASE, a);
  929. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  930. #else
  931. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  932. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  933. #endif
  934. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  935. get_idt(&dt);
  936. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  937. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  938. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  939. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  940. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  941. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  942. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  943. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  944. ret = -ENOMEM;
  945. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  946. if (!vcpu->guest_msrs)
  947. goto out;
  948. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  949. if (!vcpu->host_msrs)
  950. goto out_free_guest_msrs;
  951. for (i = 0; i < NR_VMX_MSR; ++i) {
  952. u32 index = vmx_msr_index[i];
  953. u32 data_low, data_high;
  954. u64 data;
  955. int j = vcpu->nmsrs;
  956. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  957. continue;
  958. data = data_low | ((u64)data_high << 32);
  959. vcpu->host_msrs[j].index = index;
  960. vcpu->host_msrs[j].reserved = 0;
  961. vcpu->host_msrs[j].data = data;
  962. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  963. ++vcpu->nmsrs;
  964. }
  965. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  966. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  967. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  968. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  969. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  970. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  971. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  972. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  973. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
  974. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  975. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  976. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  977. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  978. /* 22.2.1, 20.8.1 */
  979. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
  980. VM_ENTRY_CONTROLS, 0);
  981. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  982. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  983. vmcs_writel(TPR_THRESHOLD, 0);
  984. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  985. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  986. vcpu->cr0 = 0x60000010;
  987. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  988. vmx_set_cr4(vcpu, 0);
  989. #ifdef CONFIG_X86_64
  990. vmx_set_efer(vcpu, 0);
  991. #endif
  992. return 0;
  993. out_free_guest_msrs:
  994. kfree(vcpu->guest_msrs);
  995. out:
  996. return ret;
  997. }
  998. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  999. {
  1000. u16 ent[2];
  1001. u16 cs;
  1002. u16 ip;
  1003. unsigned long flags;
  1004. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1005. u16 sp = vmcs_readl(GUEST_RSP);
  1006. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1007. if (sp > ss_limit || sp - 6 > sp) {
  1008. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1009. __FUNCTION__,
  1010. vmcs_readl(GUEST_RSP),
  1011. vmcs_readl(GUEST_SS_BASE),
  1012. vmcs_read32(GUEST_SS_LIMIT));
  1013. return;
  1014. }
  1015. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1016. sizeof(ent)) {
  1017. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1018. return;
  1019. }
  1020. flags = vmcs_readl(GUEST_RFLAGS);
  1021. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1022. ip = vmcs_readl(GUEST_RIP);
  1023. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1024. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1025. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1026. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1027. return;
  1028. }
  1029. vmcs_writel(GUEST_RFLAGS, flags &
  1030. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1031. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1032. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1033. vmcs_writel(GUEST_RIP, ent[0]);
  1034. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1035. }
  1036. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1037. {
  1038. int word_index = __ffs(vcpu->irq_summary);
  1039. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1040. int irq = word_index * BITS_PER_LONG + bit_index;
  1041. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1042. if (!vcpu->irq_pending[word_index])
  1043. clear_bit(word_index, &vcpu->irq_summary);
  1044. if (vcpu->rmode.active) {
  1045. inject_rmode_irq(vcpu, irq);
  1046. return;
  1047. }
  1048. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1049. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1050. }
  1051. static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
  1052. {
  1053. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
  1054. && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
  1055. /*
  1056. * Interrupts enabled, and not blocked by sti or mov ss. Good.
  1057. */
  1058. kvm_do_inject_irq(vcpu);
  1059. else
  1060. /*
  1061. * Interrupts blocked. Wait for unblock.
  1062. */
  1063. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1064. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1065. | CPU_BASED_VIRTUAL_INTR_PENDING);
  1066. }
  1067. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1068. {
  1069. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1070. set_debugreg(dbg->bp[0], 0);
  1071. set_debugreg(dbg->bp[1], 1);
  1072. set_debugreg(dbg->bp[2], 2);
  1073. set_debugreg(dbg->bp[3], 3);
  1074. if (dbg->singlestep) {
  1075. unsigned long flags;
  1076. flags = vmcs_readl(GUEST_RFLAGS);
  1077. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1078. vmcs_writel(GUEST_RFLAGS, flags);
  1079. }
  1080. }
  1081. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1082. int vec, u32 err_code)
  1083. {
  1084. if (!vcpu->rmode.active)
  1085. return 0;
  1086. if (vec == GP_VECTOR && err_code == 0)
  1087. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1088. return 1;
  1089. return 0;
  1090. }
  1091. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1092. {
  1093. u32 intr_info, error_code;
  1094. unsigned long cr2, rip;
  1095. u32 vect_info;
  1096. enum emulation_result er;
  1097. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1098. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1099. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1100. !is_page_fault(intr_info)) {
  1101. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1102. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1103. }
  1104. if (is_external_interrupt(vect_info)) {
  1105. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1106. set_bit(irq, vcpu->irq_pending);
  1107. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1108. }
  1109. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1110. asm ("int $2");
  1111. return 1;
  1112. }
  1113. error_code = 0;
  1114. rip = vmcs_readl(GUEST_RIP);
  1115. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1116. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1117. if (is_page_fault(intr_info)) {
  1118. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1119. spin_lock(&vcpu->kvm->lock);
  1120. if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
  1121. spin_unlock(&vcpu->kvm->lock);
  1122. return 1;
  1123. }
  1124. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1125. spin_unlock(&vcpu->kvm->lock);
  1126. switch (er) {
  1127. case EMULATE_DONE:
  1128. return 1;
  1129. case EMULATE_DO_MMIO:
  1130. ++kvm_stat.mmio_exits;
  1131. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1132. return 0;
  1133. case EMULATE_FAIL:
  1134. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1135. break;
  1136. default:
  1137. BUG();
  1138. }
  1139. }
  1140. if (vcpu->rmode.active &&
  1141. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1142. error_code))
  1143. return 1;
  1144. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1145. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1146. return 0;
  1147. }
  1148. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1149. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1150. kvm_run->ex.error_code = error_code;
  1151. return 0;
  1152. }
  1153. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1154. struct kvm_run *kvm_run)
  1155. {
  1156. ++kvm_stat.irq_exits;
  1157. return 1;
  1158. }
  1159. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1160. {
  1161. u64 inst;
  1162. gva_t rip;
  1163. int countr_size;
  1164. int i, n;
  1165. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1166. countr_size = 2;
  1167. } else {
  1168. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1169. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1170. (cs_ar & AR_DB_MASK) ? 4: 2;
  1171. }
  1172. rip = vmcs_readl(GUEST_RIP);
  1173. if (countr_size != 8)
  1174. rip += vmcs_readl(GUEST_CS_BASE);
  1175. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1176. for (i = 0; i < n; i++) {
  1177. switch (((u8*)&inst)[i]) {
  1178. case 0xf0:
  1179. case 0xf2:
  1180. case 0xf3:
  1181. case 0x2e:
  1182. case 0x36:
  1183. case 0x3e:
  1184. case 0x26:
  1185. case 0x64:
  1186. case 0x65:
  1187. case 0x66:
  1188. break;
  1189. case 0x67:
  1190. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1191. default:
  1192. goto done;
  1193. }
  1194. }
  1195. return 0;
  1196. done:
  1197. countr_size *= 8;
  1198. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1199. return 1;
  1200. }
  1201. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1202. {
  1203. u64 exit_qualification;
  1204. ++kvm_stat.io_exits;
  1205. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1206. kvm_run->exit_reason = KVM_EXIT_IO;
  1207. if (exit_qualification & 8)
  1208. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1209. else
  1210. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1211. kvm_run->io.size = (exit_qualification & 7) + 1;
  1212. kvm_run->io.string = (exit_qualification & 16) != 0;
  1213. kvm_run->io.string_down
  1214. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1215. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1216. kvm_run->io.port = exit_qualification >> 16;
  1217. if (kvm_run->io.string) {
  1218. if (!get_io_count(vcpu, &kvm_run->io.count))
  1219. return 1;
  1220. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1221. } else
  1222. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1223. return 0;
  1224. }
  1225. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1226. {
  1227. u64 address = vmcs_read64(EXIT_QUALIFICATION);
  1228. int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1229. spin_lock(&vcpu->kvm->lock);
  1230. vcpu->mmu.inval_page(vcpu, address);
  1231. spin_unlock(&vcpu->kvm->lock);
  1232. vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
  1233. return 1;
  1234. }
  1235. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1236. {
  1237. u64 exit_qualification;
  1238. int cr;
  1239. int reg;
  1240. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1241. cr = exit_qualification & 15;
  1242. reg = (exit_qualification >> 8) & 15;
  1243. switch ((exit_qualification >> 4) & 3) {
  1244. case 0: /* mov to cr */
  1245. switch (cr) {
  1246. case 0:
  1247. vcpu_load_rsp_rip(vcpu);
  1248. set_cr0(vcpu, vcpu->regs[reg]);
  1249. skip_emulated_instruction(vcpu);
  1250. return 1;
  1251. case 3:
  1252. vcpu_load_rsp_rip(vcpu);
  1253. set_cr3(vcpu, vcpu->regs[reg]);
  1254. skip_emulated_instruction(vcpu);
  1255. return 1;
  1256. case 4:
  1257. vcpu_load_rsp_rip(vcpu);
  1258. set_cr4(vcpu, vcpu->regs[reg]);
  1259. skip_emulated_instruction(vcpu);
  1260. return 1;
  1261. case 8:
  1262. vcpu_load_rsp_rip(vcpu);
  1263. set_cr8(vcpu, vcpu->regs[reg]);
  1264. skip_emulated_instruction(vcpu);
  1265. return 1;
  1266. };
  1267. break;
  1268. case 1: /*mov from cr*/
  1269. switch (cr) {
  1270. case 3:
  1271. vcpu_load_rsp_rip(vcpu);
  1272. vcpu->regs[reg] = vcpu->cr3;
  1273. vcpu_put_rsp_rip(vcpu);
  1274. skip_emulated_instruction(vcpu);
  1275. return 1;
  1276. case 8:
  1277. printk(KERN_DEBUG "handle_cr: read CR8 "
  1278. "cpu erratum AA15\n");
  1279. vcpu_load_rsp_rip(vcpu);
  1280. vcpu->regs[reg] = vcpu->cr8;
  1281. vcpu_put_rsp_rip(vcpu);
  1282. skip_emulated_instruction(vcpu);
  1283. return 1;
  1284. }
  1285. break;
  1286. case 3: /* lmsw */
  1287. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1288. skip_emulated_instruction(vcpu);
  1289. return 1;
  1290. default:
  1291. break;
  1292. }
  1293. kvm_run->exit_reason = 0;
  1294. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1295. (int)(exit_qualification >> 4) & 3, cr);
  1296. return 0;
  1297. }
  1298. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1299. {
  1300. u64 exit_qualification;
  1301. unsigned long val;
  1302. int dr, reg;
  1303. /*
  1304. * FIXME: this code assumes the host is debugging the guest.
  1305. * need to deal with guest debugging itself too.
  1306. */
  1307. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1308. dr = exit_qualification & 7;
  1309. reg = (exit_qualification >> 8) & 15;
  1310. vcpu_load_rsp_rip(vcpu);
  1311. if (exit_qualification & 16) {
  1312. /* mov from dr */
  1313. switch (dr) {
  1314. case 6:
  1315. val = 0xffff0ff0;
  1316. break;
  1317. case 7:
  1318. val = 0x400;
  1319. break;
  1320. default:
  1321. val = 0;
  1322. }
  1323. vcpu->regs[reg] = val;
  1324. } else {
  1325. /* mov to dr */
  1326. }
  1327. vcpu_put_rsp_rip(vcpu);
  1328. skip_emulated_instruction(vcpu);
  1329. return 1;
  1330. }
  1331. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1332. {
  1333. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1334. return 0;
  1335. }
  1336. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1337. {
  1338. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1339. u64 data;
  1340. if (vmx_get_msr(vcpu, ecx, &data)) {
  1341. vmx_inject_gp(vcpu, 0);
  1342. return 1;
  1343. }
  1344. /* FIXME: handling of bits 32:63 of rax, rdx */
  1345. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1346. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1347. skip_emulated_instruction(vcpu);
  1348. return 1;
  1349. }
  1350. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1351. {
  1352. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1353. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1354. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1355. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1356. vmx_inject_gp(vcpu, 0);
  1357. return 1;
  1358. }
  1359. skip_emulated_instruction(vcpu);
  1360. return 1;
  1361. }
  1362. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1363. struct kvm_run *kvm_run)
  1364. {
  1365. /* Turn off interrupt window reporting. */
  1366. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1367. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1368. & ~CPU_BASED_VIRTUAL_INTR_PENDING);
  1369. return 1;
  1370. }
  1371. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1372. {
  1373. skip_emulated_instruction(vcpu);
  1374. if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
  1375. return 1;
  1376. kvm_run->exit_reason = KVM_EXIT_HLT;
  1377. return 0;
  1378. }
  1379. /*
  1380. * The exit handlers return 1 if the exit was handled fully and guest execution
  1381. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1382. * to be done to userspace and return 0.
  1383. */
  1384. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1385. struct kvm_run *kvm_run) = {
  1386. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1387. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1388. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1389. [EXIT_REASON_INVLPG] = handle_invlpg,
  1390. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1391. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1392. [EXIT_REASON_CPUID] = handle_cpuid,
  1393. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1394. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1395. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1396. [EXIT_REASON_HLT] = handle_halt,
  1397. };
  1398. static const int kvm_vmx_max_exit_handlers =
  1399. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1400. /*
  1401. * The guest has exited. See if we can fix it or if we need userspace
  1402. * assistance.
  1403. */
  1404. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1405. {
  1406. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1407. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1408. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1409. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1410. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1411. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1412. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1413. if (exit_reason < kvm_vmx_max_exit_handlers
  1414. && kvm_vmx_exit_handlers[exit_reason])
  1415. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1416. else {
  1417. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1418. kvm_run->hw.hardware_exit_reason = exit_reason;
  1419. }
  1420. return 0;
  1421. }
  1422. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1423. {
  1424. u8 fail;
  1425. u16 fs_sel, gs_sel, ldt_sel;
  1426. int fs_gs_ldt_reload_needed;
  1427. again:
  1428. /*
  1429. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1430. * allow segment selectors with cpl > 0 or ti == 1.
  1431. */
  1432. fs_sel = read_fs();
  1433. gs_sel = read_gs();
  1434. ldt_sel = read_ldt();
  1435. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1436. if (!fs_gs_ldt_reload_needed) {
  1437. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1438. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1439. } else {
  1440. vmcs_write16(HOST_FS_SELECTOR, 0);
  1441. vmcs_write16(HOST_GS_SELECTOR, 0);
  1442. }
  1443. #ifdef CONFIG_X86_64
  1444. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1445. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1446. #else
  1447. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1448. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1449. #endif
  1450. if (vcpu->irq_summary &&
  1451. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1452. kvm_try_inject_irq(vcpu);
  1453. if (vcpu->guest_debug.enabled)
  1454. kvm_guest_debug_pre(vcpu);
  1455. fx_save(vcpu->host_fx_image);
  1456. fx_restore(vcpu->guest_fx_image);
  1457. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1458. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1459. asm (
  1460. /* Store host registers */
  1461. "pushf \n\t"
  1462. #ifdef CONFIG_X86_64
  1463. "push %%rax; push %%rbx; push %%rdx;"
  1464. "push %%rsi; push %%rdi; push %%rbp;"
  1465. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1466. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1467. "push %%rcx \n\t"
  1468. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1469. #else
  1470. "pusha; push %%ecx \n\t"
  1471. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1472. #endif
  1473. /* Check if vmlaunch of vmresume is needed */
  1474. "cmp $0, %1 \n\t"
  1475. /* Load guest registers. Don't clobber flags. */
  1476. #ifdef CONFIG_X86_64
  1477. "mov %c[cr2](%3), %%rax \n\t"
  1478. "mov %%rax, %%cr2 \n\t"
  1479. "mov %c[rax](%3), %%rax \n\t"
  1480. "mov %c[rbx](%3), %%rbx \n\t"
  1481. "mov %c[rdx](%3), %%rdx \n\t"
  1482. "mov %c[rsi](%3), %%rsi \n\t"
  1483. "mov %c[rdi](%3), %%rdi \n\t"
  1484. "mov %c[rbp](%3), %%rbp \n\t"
  1485. "mov %c[r8](%3), %%r8 \n\t"
  1486. "mov %c[r9](%3), %%r9 \n\t"
  1487. "mov %c[r10](%3), %%r10 \n\t"
  1488. "mov %c[r11](%3), %%r11 \n\t"
  1489. "mov %c[r12](%3), %%r12 \n\t"
  1490. "mov %c[r13](%3), %%r13 \n\t"
  1491. "mov %c[r14](%3), %%r14 \n\t"
  1492. "mov %c[r15](%3), %%r15 \n\t"
  1493. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1494. #else
  1495. "mov %c[cr2](%3), %%eax \n\t"
  1496. "mov %%eax, %%cr2 \n\t"
  1497. "mov %c[rax](%3), %%eax \n\t"
  1498. "mov %c[rbx](%3), %%ebx \n\t"
  1499. "mov %c[rdx](%3), %%edx \n\t"
  1500. "mov %c[rsi](%3), %%esi \n\t"
  1501. "mov %c[rdi](%3), %%edi \n\t"
  1502. "mov %c[rbp](%3), %%ebp \n\t"
  1503. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1504. #endif
  1505. /* Enter guest mode */
  1506. "jne launched \n\t"
  1507. ASM_VMX_VMLAUNCH "\n\t"
  1508. "jmp kvm_vmx_return \n\t"
  1509. "launched: " ASM_VMX_VMRESUME "\n\t"
  1510. ".globl kvm_vmx_return \n\t"
  1511. "kvm_vmx_return: "
  1512. /* Save guest registers, load host registers, keep flags */
  1513. #ifdef CONFIG_X86_64
  1514. "xchg %3, 0(%%rsp) \n\t"
  1515. "mov %%rax, %c[rax](%3) \n\t"
  1516. "mov %%rbx, %c[rbx](%3) \n\t"
  1517. "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
  1518. "mov %%rdx, %c[rdx](%3) \n\t"
  1519. "mov %%rsi, %c[rsi](%3) \n\t"
  1520. "mov %%rdi, %c[rdi](%3) \n\t"
  1521. "mov %%rbp, %c[rbp](%3) \n\t"
  1522. "mov %%r8, %c[r8](%3) \n\t"
  1523. "mov %%r9, %c[r9](%3) \n\t"
  1524. "mov %%r10, %c[r10](%3) \n\t"
  1525. "mov %%r11, %c[r11](%3) \n\t"
  1526. "mov %%r12, %c[r12](%3) \n\t"
  1527. "mov %%r13, %c[r13](%3) \n\t"
  1528. "mov %%r14, %c[r14](%3) \n\t"
  1529. "mov %%r15, %c[r15](%3) \n\t"
  1530. "mov %%cr2, %%rax \n\t"
  1531. "mov %%rax, %c[cr2](%3) \n\t"
  1532. "mov 0(%%rsp), %3 \n\t"
  1533. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1534. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1535. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1536. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1537. #else
  1538. "xchg %3, 0(%%esp) \n\t"
  1539. "mov %%eax, %c[rax](%3) \n\t"
  1540. "mov %%ebx, %c[rbx](%3) \n\t"
  1541. "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
  1542. "mov %%edx, %c[rdx](%3) \n\t"
  1543. "mov %%esi, %c[rsi](%3) \n\t"
  1544. "mov %%edi, %c[rdi](%3) \n\t"
  1545. "mov %%ebp, %c[rbp](%3) \n\t"
  1546. "mov %%cr2, %%eax \n\t"
  1547. "mov %%eax, %c[cr2](%3) \n\t"
  1548. "mov 0(%%esp), %3 \n\t"
  1549. "pop %%ecx; popa \n\t"
  1550. #endif
  1551. "setbe %0 \n\t"
  1552. "popf \n\t"
  1553. : "=g" (fail)
  1554. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1555. "c"(vcpu),
  1556. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1557. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1558. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1559. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1560. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1561. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1562. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1563. #ifdef CONFIG_X86_64
  1564. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1565. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1566. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1567. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1568. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1569. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1570. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1571. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1572. #endif
  1573. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1574. : "cc", "memory" );
  1575. ++kvm_stat.exits;
  1576. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1577. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1578. fx_save(vcpu->guest_fx_image);
  1579. fx_restore(vcpu->host_fx_image);
  1580. #ifndef CONFIG_X86_64
  1581. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1582. #endif
  1583. kvm_run->exit_type = 0;
  1584. if (fail) {
  1585. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1586. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1587. } else {
  1588. if (fs_gs_ldt_reload_needed) {
  1589. load_ldt(ldt_sel);
  1590. load_fs(fs_sel);
  1591. /*
  1592. * If we have to reload gs, we must take care to
  1593. * preserve our gs base.
  1594. */
  1595. local_irq_disable();
  1596. load_gs(gs_sel);
  1597. #ifdef CONFIG_X86_64
  1598. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1599. #endif
  1600. local_irq_enable();
  1601. reload_tss();
  1602. }
  1603. vcpu->launched = 1;
  1604. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1605. if (kvm_handle_exit(kvm_run, vcpu)) {
  1606. /* Give scheduler a change to reschedule. */
  1607. if (signal_pending(current)) {
  1608. ++kvm_stat.signal_exits;
  1609. return -EINTR;
  1610. }
  1611. kvm_resched(vcpu);
  1612. goto again;
  1613. }
  1614. }
  1615. return 0;
  1616. }
  1617. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1618. {
  1619. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1620. }
  1621. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1622. unsigned long addr,
  1623. u32 err_code)
  1624. {
  1625. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1626. ++kvm_stat.pf_guest;
  1627. if (is_page_fault(vect_info)) {
  1628. printk(KERN_DEBUG "inject_page_fault: "
  1629. "double fault 0x%lx @ 0x%lx\n",
  1630. addr, vmcs_readl(GUEST_RIP));
  1631. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1632. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1633. DF_VECTOR |
  1634. INTR_TYPE_EXCEPTION |
  1635. INTR_INFO_DELIEVER_CODE_MASK |
  1636. INTR_INFO_VALID_MASK);
  1637. return;
  1638. }
  1639. vcpu->cr2 = addr;
  1640. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1641. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1642. PF_VECTOR |
  1643. INTR_TYPE_EXCEPTION |
  1644. INTR_INFO_DELIEVER_CODE_MASK |
  1645. INTR_INFO_VALID_MASK);
  1646. }
  1647. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1648. {
  1649. if (vcpu->vmcs) {
  1650. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1651. free_vmcs(vcpu->vmcs);
  1652. vcpu->vmcs = NULL;
  1653. }
  1654. }
  1655. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1656. {
  1657. vmx_free_vmcs(vcpu);
  1658. }
  1659. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1660. {
  1661. struct vmcs *vmcs;
  1662. vmcs = alloc_vmcs();
  1663. if (!vmcs)
  1664. return -ENOMEM;
  1665. vmcs_clear(vmcs);
  1666. vcpu->vmcs = vmcs;
  1667. vcpu->launched = 0;
  1668. return 0;
  1669. }
  1670. static struct kvm_arch_ops vmx_arch_ops = {
  1671. .cpu_has_kvm_support = cpu_has_kvm_support,
  1672. .disabled_by_bios = vmx_disabled_by_bios,
  1673. .hardware_setup = hardware_setup,
  1674. .hardware_unsetup = hardware_unsetup,
  1675. .hardware_enable = hardware_enable,
  1676. .hardware_disable = hardware_disable,
  1677. .vcpu_create = vmx_create_vcpu,
  1678. .vcpu_free = vmx_free_vcpu,
  1679. .vcpu_load = vmx_vcpu_load,
  1680. .vcpu_put = vmx_vcpu_put,
  1681. .set_guest_debug = set_guest_debug,
  1682. .get_msr = vmx_get_msr,
  1683. .set_msr = vmx_set_msr,
  1684. .get_segment_base = vmx_get_segment_base,
  1685. .get_segment = vmx_get_segment,
  1686. .set_segment = vmx_set_segment,
  1687. .is_long_mode = vmx_is_long_mode,
  1688. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1689. .set_cr0 = vmx_set_cr0,
  1690. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1691. .set_cr3 = vmx_set_cr3,
  1692. .set_cr4 = vmx_set_cr4,
  1693. #ifdef CONFIG_X86_64
  1694. .set_efer = vmx_set_efer,
  1695. #endif
  1696. .get_idt = vmx_get_idt,
  1697. .set_idt = vmx_set_idt,
  1698. .get_gdt = vmx_get_gdt,
  1699. .set_gdt = vmx_set_gdt,
  1700. .cache_regs = vcpu_load_rsp_rip,
  1701. .decache_regs = vcpu_put_rsp_rip,
  1702. .get_rflags = vmx_get_rflags,
  1703. .set_rflags = vmx_set_rflags,
  1704. .tlb_flush = vmx_flush_tlb,
  1705. .inject_page_fault = vmx_inject_page_fault,
  1706. .inject_gp = vmx_inject_gp,
  1707. .run = vmx_vcpu_run,
  1708. .skip_emulated_instruction = skip_emulated_instruction,
  1709. .vcpu_setup = vmx_vcpu_setup,
  1710. };
  1711. static int __init vmx_init(void)
  1712. {
  1713. kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1714. return 0;
  1715. }
  1716. static void __exit vmx_exit(void)
  1717. {
  1718. kvm_exit_arch();
  1719. }
  1720. module_init(vmx_init)
  1721. module_exit(vmx_exit)