disk-io.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/version.h>
  19. #include <linux/fs.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/swap.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/writeback.h>
  25. #include <linux/buffer_head.h> // for block_sync_page
  26. #include <linux/workqueue.h>
  27. #include <linux/kthread.h>
  28. # include <linux/freezer.h>
  29. #include "crc32c.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "ref-cache.h"
  39. #include "tree-log.h"
  40. #if 0
  41. static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
  42. {
  43. if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
  44. printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
  45. (unsigned long long)extent_buffer_blocknr(buf),
  46. (unsigned long long)btrfs_header_blocknr(buf));
  47. return 1;
  48. }
  49. return 0;
  50. }
  51. #endif
  52. static struct extent_io_ops btree_extent_io_ops;
  53. static void end_workqueue_fn(struct btrfs_work *work);
  54. /*
  55. * end_io_wq structs are used to do processing in task context when an IO is
  56. * complete. This is used during reads to verify checksums, and it is used
  57. * by writes to insert metadata for new file extents after IO is complete.
  58. */
  59. struct end_io_wq {
  60. struct bio *bio;
  61. bio_end_io_t *end_io;
  62. void *private;
  63. struct btrfs_fs_info *info;
  64. int error;
  65. int metadata;
  66. struct list_head list;
  67. struct btrfs_work work;
  68. };
  69. /*
  70. * async submit bios are used to offload expensive checksumming
  71. * onto the worker threads. They checksum file and metadata bios
  72. * just before they are sent down the IO stack.
  73. */
  74. struct async_submit_bio {
  75. struct inode *inode;
  76. struct bio *bio;
  77. struct list_head list;
  78. extent_submit_bio_hook_t *submit_bio_start;
  79. extent_submit_bio_hook_t *submit_bio_done;
  80. int rw;
  81. int mirror_num;
  82. unsigned long bio_flags;
  83. struct btrfs_work work;
  84. };
  85. /*
  86. * extents on the btree inode are pretty simple, there's one extent
  87. * that covers the entire device
  88. */
  89. struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
  90. size_t page_offset, u64 start, u64 len,
  91. int create)
  92. {
  93. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  94. struct extent_map *em;
  95. int ret;
  96. spin_lock(&em_tree->lock);
  97. em = lookup_extent_mapping(em_tree, start, len);
  98. if (em) {
  99. em->bdev =
  100. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  101. spin_unlock(&em_tree->lock);
  102. goto out;
  103. }
  104. spin_unlock(&em_tree->lock);
  105. em = alloc_extent_map(GFP_NOFS);
  106. if (!em) {
  107. em = ERR_PTR(-ENOMEM);
  108. goto out;
  109. }
  110. em->start = 0;
  111. em->len = (u64)-1;
  112. em->block_len = (u64)-1;
  113. em->block_start = 0;
  114. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  115. spin_lock(&em_tree->lock);
  116. ret = add_extent_mapping(em_tree, em);
  117. if (ret == -EEXIST) {
  118. u64 failed_start = em->start;
  119. u64 failed_len = em->len;
  120. printk("failed to insert %Lu %Lu -> %Lu into tree\n",
  121. em->start, em->len, em->block_start);
  122. free_extent_map(em);
  123. em = lookup_extent_mapping(em_tree, start, len);
  124. if (em) {
  125. printk("after failing, found %Lu %Lu %Lu\n",
  126. em->start, em->len, em->block_start);
  127. ret = 0;
  128. } else {
  129. em = lookup_extent_mapping(em_tree, failed_start,
  130. failed_len);
  131. if (em) {
  132. printk("double failure lookup gives us "
  133. "%Lu %Lu -> %Lu\n", em->start,
  134. em->len, em->block_start);
  135. free_extent_map(em);
  136. }
  137. ret = -EIO;
  138. }
  139. } else if (ret) {
  140. free_extent_map(em);
  141. em = NULL;
  142. }
  143. spin_unlock(&em_tree->lock);
  144. if (ret)
  145. em = ERR_PTR(ret);
  146. out:
  147. return em;
  148. }
  149. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  150. {
  151. return btrfs_crc32c(seed, data, len);
  152. }
  153. void btrfs_csum_final(u32 crc, char *result)
  154. {
  155. *(__le32 *)result = ~cpu_to_le32(crc);
  156. }
  157. /*
  158. * compute the csum for a btree block, and either verify it or write it
  159. * into the csum field of the block.
  160. */
  161. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  162. int verify)
  163. {
  164. char result[BTRFS_CRC32_SIZE];
  165. unsigned long len;
  166. unsigned long cur_len;
  167. unsigned long offset = BTRFS_CSUM_SIZE;
  168. char *map_token = NULL;
  169. char *kaddr;
  170. unsigned long map_start;
  171. unsigned long map_len;
  172. int err;
  173. u32 crc = ~(u32)0;
  174. len = buf->len - offset;
  175. while(len > 0) {
  176. err = map_private_extent_buffer(buf, offset, 32,
  177. &map_token, &kaddr,
  178. &map_start, &map_len, KM_USER0);
  179. if (err) {
  180. printk("failed to map extent buffer! %lu\n",
  181. offset);
  182. return 1;
  183. }
  184. cur_len = min(len, map_len - (offset - map_start));
  185. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  186. crc, cur_len);
  187. len -= cur_len;
  188. offset += cur_len;
  189. unmap_extent_buffer(buf, map_token, KM_USER0);
  190. }
  191. btrfs_csum_final(crc, result);
  192. if (verify) {
  193. /* FIXME, this is not good */
  194. if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
  195. u32 val;
  196. u32 found = 0;
  197. memcpy(&found, result, BTRFS_CRC32_SIZE);
  198. read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
  199. printk("btrfs: %s checksum verify failed on %llu "
  200. "wanted %X found %X level %d\n",
  201. root->fs_info->sb->s_id,
  202. buf->start, val, found, btrfs_header_level(buf));
  203. return 1;
  204. }
  205. } else {
  206. write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
  207. }
  208. return 0;
  209. }
  210. /*
  211. * we can't consider a given block up to date unless the transid of the
  212. * block matches the transid in the parent node's pointer. This is how we
  213. * detect blocks that either didn't get written at all or got written
  214. * in the wrong place.
  215. */
  216. static int verify_parent_transid(struct extent_io_tree *io_tree,
  217. struct extent_buffer *eb, u64 parent_transid)
  218. {
  219. int ret;
  220. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  221. return 0;
  222. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  223. if (extent_buffer_uptodate(io_tree, eb) &&
  224. btrfs_header_generation(eb) == parent_transid) {
  225. ret = 0;
  226. goto out;
  227. }
  228. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  229. (unsigned long long)eb->start,
  230. (unsigned long long)parent_transid,
  231. (unsigned long long)btrfs_header_generation(eb));
  232. ret = 1;
  233. clear_extent_buffer_uptodate(io_tree, eb);
  234. out:
  235. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  236. GFP_NOFS);
  237. return ret;
  238. }
  239. /*
  240. * helper to read a given tree block, doing retries as required when
  241. * the checksums don't match and we have alternate mirrors to try.
  242. */
  243. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  244. struct extent_buffer *eb,
  245. u64 start, u64 parent_transid)
  246. {
  247. struct extent_io_tree *io_tree;
  248. int ret;
  249. int num_copies = 0;
  250. int mirror_num = 0;
  251. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  252. while (1) {
  253. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  254. btree_get_extent, mirror_num);
  255. if (!ret &&
  256. !verify_parent_transid(io_tree, eb, parent_transid))
  257. return ret;
  258. printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
  259. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  260. eb->start, eb->len);
  261. if (num_copies == 1)
  262. return ret;
  263. mirror_num++;
  264. if (mirror_num > num_copies)
  265. return ret;
  266. }
  267. return -EIO;
  268. }
  269. /*
  270. * checksum a dirty tree block before IO. This has extra checks to make
  271. * sure we only fill in the checksum field in the first page of a multi-page block
  272. */
  273. int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  274. {
  275. struct extent_io_tree *tree;
  276. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  277. u64 found_start;
  278. int found_level;
  279. unsigned long len;
  280. struct extent_buffer *eb;
  281. int ret;
  282. tree = &BTRFS_I(page->mapping->host)->io_tree;
  283. if (page->private == EXTENT_PAGE_PRIVATE)
  284. goto out;
  285. if (!page->private)
  286. goto out;
  287. len = page->private >> 2;
  288. if (len == 0) {
  289. WARN_ON(1);
  290. }
  291. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  292. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  293. btrfs_header_generation(eb));
  294. BUG_ON(ret);
  295. found_start = btrfs_header_bytenr(eb);
  296. if (found_start != start) {
  297. printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
  298. start, found_start, len);
  299. WARN_ON(1);
  300. goto err;
  301. }
  302. if (eb->first_page != page) {
  303. printk("bad first page %lu %lu\n", eb->first_page->index,
  304. page->index);
  305. WARN_ON(1);
  306. goto err;
  307. }
  308. if (!PageUptodate(page)) {
  309. printk("csum not up to date page %lu\n", page->index);
  310. WARN_ON(1);
  311. goto err;
  312. }
  313. found_level = btrfs_header_level(eb);
  314. csum_tree_block(root, eb, 0);
  315. err:
  316. free_extent_buffer(eb);
  317. out:
  318. return 0;
  319. }
  320. int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  321. struct extent_state *state)
  322. {
  323. struct extent_io_tree *tree;
  324. u64 found_start;
  325. int found_level;
  326. unsigned long len;
  327. struct extent_buffer *eb;
  328. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  329. int ret = 0;
  330. tree = &BTRFS_I(page->mapping->host)->io_tree;
  331. if (page->private == EXTENT_PAGE_PRIVATE)
  332. goto out;
  333. if (!page->private)
  334. goto out;
  335. len = page->private >> 2;
  336. if (len == 0) {
  337. WARN_ON(1);
  338. }
  339. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  340. found_start = btrfs_header_bytenr(eb);
  341. if (found_start != start) {
  342. printk("bad tree block start %llu %llu\n",
  343. (unsigned long long)found_start,
  344. (unsigned long long)eb->start);
  345. ret = -EIO;
  346. goto err;
  347. }
  348. if (eb->first_page != page) {
  349. printk("bad first page %lu %lu\n", eb->first_page->index,
  350. page->index);
  351. WARN_ON(1);
  352. ret = -EIO;
  353. goto err;
  354. }
  355. if (memcmp_extent_buffer(eb, root->fs_info->fsid,
  356. (unsigned long)btrfs_header_fsid(eb),
  357. BTRFS_FSID_SIZE)) {
  358. printk("bad fsid on block %Lu\n", eb->start);
  359. ret = -EIO;
  360. goto err;
  361. }
  362. found_level = btrfs_header_level(eb);
  363. ret = csum_tree_block(root, eb, 1);
  364. if (ret)
  365. ret = -EIO;
  366. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  367. end = eb->start + end - 1;
  368. err:
  369. free_extent_buffer(eb);
  370. out:
  371. return ret;
  372. }
  373. static void end_workqueue_bio(struct bio *bio, int err)
  374. {
  375. struct end_io_wq *end_io_wq = bio->bi_private;
  376. struct btrfs_fs_info *fs_info;
  377. fs_info = end_io_wq->info;
  378. end_io_wq->error = err;
  379. end_io_wq->work.func = end_workqueue_fn;
  380. end_io_wq->work.flags = 0;
  381. if (bio->bi_rw & (1 << BIO_RW))
  382. btrfs_queue_worker(&fs_info->endio_write_workers,
  383. &end_io_wq->work);
  384. else
  385. btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
  386. }
  387. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  388. int metadata)
  389. {
  390. struct end_io_wq *end_io_wq;
  391. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  392. if (!end_io_wq)
  393. return -ENOMEM;
  394. end_io_wq->private = bio->bi_private;
  395. end_io_wq->end_io = bio->bi_end_io;
  396. end_io_wq->info = info;
  397. end_io_wq->error = 0;
  398. end_io_wq->bio = bio;
  399. end_io_wq->metadata = metadata;
  400. bio->bi_private = end_io_wq;
  401. bio->bi_end_io = end_workqueue_bio;
  402. return 0;
  403. }
  404. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  405. {
  406. unsigned long limit = min_t(unsigned long,
  407. info->workers.max_workers,
  408. info->fs_devices->open_devices);
  409. return 256 * limit;
  410. }
  411. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  412. {
  413. return atomic_read(&info->nr_async_bios) >
  414. btrfs_async_submit_limit(info);
  415. }
  416. static void run_one_async_start(struct btrfs_work *work)
  417. {
  418. struct btrfs_fs_info *fs_info;
  419. struct async_submit_bio *async;
  420. async = container_of(work, struct async_submit_bio, work);
  421. fs_info = BTRFS_I(async->inode)->root->fs_info;
  422. async->submit_bio_start(async->inode, async->rw, async->bio,
  423. async->mirror_num, async->bio_flags);
  424. }
  425. static void run_one_async_done(struct btrfs_work *work)
  426. {
  427. struct btrfs_fs_info *fs_info;
  428. struct async_submit_bio *async;
  429. int limit;
  430. async = container_of(work, struct async_submit_bio, work);
  431. fs_info = BTRFS_I(async->inode)->root->fs_info;
  432. limit = btrfs_async_submit_limit(fs_info);
  433. limit = limit * 2 / 3;
  434. atomic_dec(&fs_info->nr_async_submits);
  435. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  436. waitqueue_active(&fs_info->async_submit_wait))
  437. wake_up(&fs_info->async_submit_wait);
  438. async->submit_bio_done(async->inode, async->rw, async->bio,
  439. async->mirror_num, async->bio_flags);
  440. }
  441. static void run_one_async_free(struct btrfs_work *work)
  442. {
  443. struct async_submit_bio *async;
  444. async = container_of(work, struct async_submit_bio, work);
  445. kfree(async);
  446. }
  447. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  448. int rw, struct bio *bio, int mirror_num,
  449. unsigned long bio_flags,
  450. extent_submit_bio_hook_t *submit_bio_start,
  451. extent_submit_bio_hook_t *submit_bio_done)
  452. {
  453. struct async_submit_bio *async;
  454. int limit = btrfs_async_submit_limit(fs_info);
  455. async = kmalloc(sizeof(*async), GFP_NOFS);
  456. if (!async)
  457. return -ENOMEM;
  458. async->inode = inode;
  459. async->rw = rw;
  460. async->bio = bio;
  461. async->mirror_num = mirror_num;
  462. async->submit_bio_start = submit_bio_start;
  463. async->submit_bio_done = submit_bio_done;
  464. async->work.func = run_one_async_start;
  465. async->work.ordered_func = run_one_async_done;
  466. async->work.ordered_free = run_one_async_free;
  467. async->work.flags = 0;
  468. async->bio_flags = bio_flags;
  469. while(atomic_read(&fs_info->async_submit_draining) &&
  470. atomic_read(&fs_info->nr_async_submits)) {
  471. wait_event(fs_info->async_submit_wait,
  472. (atomic_read(&fs_info->nr_async_submits) == 0));
  473. }
  474. atomic_inc(&fs_info->nr_async_submits);
  475. btrfs_queue_worker(&fs_info->workers, &async->work);
  476. if (atomic_read(&fs_info->nr_async_submits) > limit) {
  477. wait_event_timeout(fs_info->async_submit_wait,
  478. (atomic_read(&fs_info->nr_async_submits) < limit),
  479. HZ/10);
  480. wait_event_timeout(fs_info->async_submit_wait,
  481. (atomic_read(&fs_info->nr_async_bios) < limit),
  482. HZ/10);
  483. }
  484. while(atomic_read(&fs_info->async_submit_draining) &&
  485. atomic_read(&fs_info->nr_async_submits)) {
  486. wait_event(fs_info->async_submit_wait,
  487. (atomic_read(&fs_info->nr_async_submits) == 0));
  488. }
  489. return 0;
  490. }
  491. static int btree_csum_one_bio(struct bio *bio)
  492. {
  493. struct bio_vec *bvec = bio->bi_io_vec;
  494. int bio_index = 0;
  495. struct btrfs_root *root;
  496. WARN_ON(bio->bi_vcnt <= 0);
  497. while(bio_index < bio->bi_vcnt) {
  498. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  499. csum_dirty_buffer(root, bvec->bv_page);
  500. bio_index++;
  501. bvec++;
  502. }
  503. return 0;
  504. }
  505. static int __btree_submit_bio_start(struct inode *inode, int rw,
  506. struct bio *bio, int mirror_num,
  507. unsigned long bio_flags)
  508. {
  509. /*
  510. * when we're called for a write, we're already in the async
  511. * submission context. Just jump into btrfs_map_bio
  512. */
  513. btree_csum_one_bio(bio);
  514. return 0;
  515. }
  516. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  517. int mirror_num, unsigned long bio_flags)
  518. {
  519. /*
  520. * when we're called for a write, we're already in the async
  521. * submission context. Just jump into btrfs_map_bio
  522. */
  523. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  524. }
  525. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  526. int mirror_num, unsigned long bio_flags)
  527. {
  528. /*
  529. * kthread helpers are used to submit writes so that checksumming
  530. * can happen in parallel across all CPUs
  531. */
  532. if (!(rw & (1 << BIO_RW))) {
  533. int ret;
  534. /*
  535. * called for a read, do the setup so that checksum validation
  536. * can happen in the async kernel threads
  537. */
  538. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  539. bio, 1);
  540. BUG_ON(ret);
  541. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  542. mirror_num, 1);
  543. }
  544. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  545. inode, rw, bio, mirror_num, 0,
  546. __btree_submit_bio_start,
  547. __btree_submit_bio_done);
  548. }
  549. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  550. {
  551. struct extent_io_tree *tree;
  552. tree = &BTRFS_I(page->mapping->host)->io_tree;
  553. if (current->flags & PF_MEMALLOC) {
  554. redirty_page_for_writepage(wbc, page);
  555. unlock_page(page);
  556. return 0;
  557. }
  558. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  559. }
  560. static int btree_writepages(struct address_space *mapping,
  561. struct writeback_control *wbc)
  562. {
  563. struct extent_io_tree *tree;
  564. tree = &BTRFS_I(mapping->host)->io_tree;
  565. if (wbc->sync_mode == WB_SYNC_NONE) {
  566. u64 num_dirty;
  567. u64 start = 0;
  568. unsigned long thresh = 32 * 1024 * 1024;
  569. if (wbc->for_kupdate)
  570. return 0;
  571. num_dirty = count_range_bits(tree, &start, (u64)-1,
  572. thresh, EXTENT_DIRTY);
  573. if (num_dirty < thresh) {
  574. return 0;
  575. }
  576. }
  577. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  578. }
  579. int btree_readpage(struct file *file, struct page *page)
  580. {
  581. struct extent_io_tree *tree;
  582. tree = &BTRFS_I(page->mapping->host)->io_tree;
  583. return extent_read_full_page(tree, page, btree_get_extent);
  584. }
  585. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  586. {
  587. struct extent_io_tree *tree;
  588. struct extent_map_tree *map;
  589. int ret;
  590. if (PageWriteback(page) || PageDirty(page))
  591. return 0;
  592. tree = &BTRFS_I(page->mapping->host)->io_tree;
  593. map = &BTRFS_I(page->mapping->host)->extent_tree;
  594. ret = try_release_extent_state(map, tree, page, gfp_flags);
  595. if (!ret) {
  596. return 0;
  597. }
  598. ret = try_release_extent_buffer(tree, page);
  599. if (ret == 1) {
  600. ClearPagePrivate(page);
  601. set_page_private(page, 0);
  602. page_cache_release(page);
  603. }
  604. return ret;
  605. }
  606. static void btree_invalidatepage(struct page *page, unsigned long offset)
  607. {
  608. struct extent_io_tree *tree;
  609. tree = &BTRFS_I(page->mapping->host)->io_tree;
  610. extent_invalidatepage(tree, page, offset);
  611. btree_releasepage(page, GFP_NOFS);
  612. if (PagePrivate(page)) {
  613. printk("warning page private not zero on page %Lu\n",
  614. page_offset(page));
  615. ClearPagePrivate(page);
  616. set_page_private(page, 0);
  617. page_cache_release(page);
  618. }
  619. }
  620. #if 0
  621. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  622. {
  623. struct buffer_head *bh;
  624. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  625. struct buffer_head *head;
  626. if (!page_has_buffers(page)) {
  627. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  628. (1 << BH_Dirty)|(1 << BH_Uptodate));
  629. }
  630. head = page_buffers(page);
  631. bh = head;
  632. do {
  633. if (buffer_dirty(bh))
  634. csum_tree_block(root, bh, 0);
  635. bh = bh->b_this_page;
  636. } while (bh != head);
  637. return block_write_full_page(page, btree_get_block, wbc);
  638. }
  639. #endif
  640. static struct address_space_operations btree_aops = {
  641. .readpage = btree_readpage,
  642. .writepage = btree_writepage,
  643. .writepages = btree_writepages,
  644. .releasepage = btree_releasepage,
  645. .invalidatepage = btree_invalidatepage,
  646. .sync_page = block_sync_page,
  647. };
  648. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  649. u64 parent_transid)
  650. {
  651. struct extent_buffer *buf = NULL;
  652. struct inode *btree_inode = root->fs_info->btree_inode;
  653. int ret = 0;
  654. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  655. if (!buf)
  656. return 0;
  657. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  658. buf, 0, 0, btree_get_extent, 0);
  659. free_extent_buffer(buf);
  660. return ret;
  661. }
  662. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  663. u64 bytenr, u32 blocksize)
  664. {
  665. struct inode *btree_inode = root->fs_info->btree_inode;
  666. struct extent_buffer *eb;
  667. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  668. bytenr, blocksize, GFP_NOFS);
  669. return eb;
  670. }
  671. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  672. u64 bytenr, u32 blocksize)
  673. {
  674. struct inode *btree_inode = root->fs_info->btree_inode;
  675. struct extent_buffer *eb;
  676. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  677. bytenr, blocksize, NULL, GFP_NOFS);
  678. return eb;
  679. }
  680. int btrfs_write_tree_block(struct extent_buffer *buf)
  681. {
  682. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  683. buf->start + buf->len - 1, WB_SYNC_ALL);
  684. }
  685. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  686. {
  687. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  688. buf->start, buf->start + buf->len -1);
  689. }
  690. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  691. u32 blocksize, u64 parent_transid)
  692. {
  693. struct extent_buffer *buf = NULL;
  694. struct inode *btree_inode = root->fs_info->btree_inode;
  695. struct extent_io_tree *io_tree;
  696. int ret;
  697. io_tree = &BTRFS_I(btree_inode)->io_tree;
  698. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  699. if (!buf)
  700. return NULL;
  701. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  702. if (ret == 0) {
  703. buf->flags |= EXTENT_UPTODATE;
  704. } else {
  705. WARN_ON(1);
  706. }
  707. return buf;
  708. }
  709. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  710. struct extent_buffer *buf)
  711. {
  712. struct inode *btree_inode = root->fs_info->btree_inode;
  713. if (btrfs_header_generation(buf) ==
  714. root->fs_info->running_transaction->transid) {
  715. WARN_ON(!btrfs_tree_locked(buf));
  716. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  717. buf);
  718. }
  719. return 0;
  720. }
  721. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  722. u32 stripesize, struct btrfs_root *root,
  723. struct btrfs_fs_info *fs_info,
  724. u64 objectid)
  725. {
  726. root->node = NULL;
  727. root->inode = NULL;
  728. root->commit_root = NULL;
  729. root->ref_tree = NULL;
  730. root->sectorsize = sectorsize;
  731. root->nodesize = nodesize;
  732. root->leafsize = leafsize;
  733. root->stripesize = stripesize;
  734. root->ref_cows = 0;
  735. root->track_dirty = 0;
  736. root->fs_info = fs_info;
  737. root->objectid = objectid;
  738. root->last_trans = 0;
  739. root->highest_inode = 0;
  740. root->last_inode_alloc = 0;
  741. root->name = NULL;
  742. root->in_sysfs = 0;
  743. INIT_LIST_HEAD(&root->dirty_list);
  744. INIT_LIST_HEAD(&root->orphan_list);
  745. INIT_LIST_HEAD(&root->dead_list);
  746. spin_lock_init(&root->node_lock);
  747. spin_lock_init(&root->list_lock);
  748. mutex_init(&root->objectid_mutex);
  749. mutex_init(&root->log_mutex);
  750. extent_io_tree_init(&root->dirty_log_pages,
  751. fs_info->btree_inode->i_mapping, GFP_NOFS);
  752. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  753. root->ref_tree = &root->ref_tree_struct;
  754. memset(&root->root_key, 0, sizeof(root->root_key));
  755. memset(&root->root_item, 0, sizeof(root->root_item));
  756. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  757. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  758. root->defrag_trans_start = fs_info->generation;
  759. init_completion(&root->kobj_unregister);
  760. root->defrag_running = 0;
  761. root->defrag_level = 0;
  762. root->root_key.objectid = objectid;
  763. return 0;
  764. }
  765. static int find_and_setup_root(struct btrfs_root *tree_root,
  766. struct btrfs_fs_info *fs_info,
  767. u64 objectid,
  768. struct btrfs_root *root)
  769. {
  770. int ret;
  771. u32 blocksize;
  772. u64 generation;
  773. __setup_root(tree_root->nodesize, tree_root->leafsize,
  774. tree_root->sectorsize, tree_root->stripesize,
  775. root, fs_info, objectid);
  776. ret = btrfs_find_last_root(tree_root, objectid,
  777. &root->root_item, &root->root_key);
  778. BUG_ON(ret);
  779. generation = btrfs_root_generation(&root->root_item);
  780. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  781. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  782. blocksize, generation);
  783. BUG_ON(!root->node);
  784. return 0;
  785. }
  786. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  787. struct btrfs_fs_info *fs_info)
  788. {
  789. struct extent_buffer *eb;
  790. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  791. u64 start = 0;
  792. u64 end = 0;
  793. int ret;
  794. if (!log_root_tree)
  795. return 0;
  796. while(1) {
  797. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  798. 0, &start, &end, EXTENT_DIRTY);
  799. if (ret)
  800. break;
  801. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  802. start, end, GFP_NOFS);
  803. }
  804. eb = fs_info->log_root_tree->node;
  805. WARN_ON(btrfs_header_level(eb) != 0);
  806. WARN_ON(btrfs_header_nritems(eb) != 0);
  807. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  808. eb->start, eb->len);
  809. BUG_ON(ret);
  810. free_extent_buffer(eb);
  811. kfree(fs_info->log_root_tree);
  812. fs_info->log_root_tree = NULL;
  813. return 0;
  814. }
  815. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  816. struct btrfs_fs_info *fs_info)
  817. {
  818. struct btrfs_root *root;
  819. struct btrfs_root *tree_root = fs_info->tree_root;
  820. root = kzalloc(sizeof(*root), GFP_NOFS);
  821. if (!root)
  822. return -ENOMEM;
  823. __setup_root(tree_root->nodesize, tree_root->leafsize,
  824. tree_root->sectorsize, tree_root->stripesize,
  825. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  826. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  827. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  828. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  829. root->ref_cows = 0;
  830. root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
  831. 0, BTRFS_TREE_LOG_OBJECTID,
  832. trans->transid, 0, 0, 0);
  833. btrfs_set_header_nritems(root->node, 0);
  834. btrfs_set_header_level(root->node, 0);
  835. btrfs_set_header_bytenr(root->node, root->node->start);
  836. btrfs_set_header_generation(root->node, trans->transid);
  837. btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
  838. write_extent_buffer(root->node, root->fs_info->fsid,
  839. (unsigned long)btrfs_header_fsid(root->node),
  840. BTRFS_FSID_SIZE);
  841. btrfs_mark_buffer_dirty(root->node);
  842. btrfs_tree_unlock(root->node);
  843. fs_info->log_root_tree = root;
  844. return 0;
  845. }
  846. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  847. struct btrfs_key *location)
  848. {
  849. struct btrfs_root *root;
  850. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  851. struct btrfs_path *path;
  852. struct extent_buffer *l;
  853. u64 highest_inode;
  854. u64 generation;
  855. u32 blocksize;
  856. int ret = 0;
  857. root = kzalloc(sizeof(*root), GFP_NOFS);
  858. if (!root)
  859. return ERR_PTR(-ENOMEM);
  860. if (location->offset == (u64)-1) {
  861. ret = find_and_setup_root(tree_root, fs_info,
  862. location->objectid, root);
  863. if (ret) {
  864. kfree(root);
  865. return ERR_PTR(ret);
  866. }
  867. goto insert;
  868. }
  869. __setup_root(tree_root->nodesize, tree_root->leafsize,
  870. tree_root->sectorsize, tree_root->stripesize,
  871. root, fs_info, location->objectid);
  872. path = btrfs_alloc_path();
  873. BUG_ON(!path);
  874. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  875. if (ret != 0) {
  876. if (ret > 0)
  877. ret = -ENOENT;
  878. goto out;
  879. }
  880. l = path->nodes[0];
  881. read_extent_buffer(l, &root->root_item,
  882. btrfs_item_ptr_offset(l, path->slots[0]),
  883. sizeof(root->root_item));
  884. memcpy(&root->root_key, location, sizeof(*location));
  885. ret = 0;
  886. out:
  887. btrfs_release_path(root, path);
  888. btrfs_free_path(path);
  889. if (ret) {
  890. kfree(root);
  891. return ERR_PTR(ret);
  892. }
  893. generation = btrfs_root_generation(&root->root_item);
  894. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  895. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  896. blocksize, generation);
  897. BUG_ON(!root->node);
  898. insert:
  899. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  900. root->ref_cows = 1;
  901. ret = btrfs_find_highest_inode(root, &highest_inode);
  902. if (ret == 0) {
  903. root->highest_inode = highest_inode;
  904. root->last_inode_alloc = highest_inode;
  905. }
  906. }
  907. return root;
  908. }
  909. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  910. u64 root_objectid)
  911. {
  912. struct btrfs_root *root;
  913. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  914. return fs_info->tree_root;
  915. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  916. return fs_info->extent_root;
  917. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  918. (unsigned long)root_objectid);
  919. return root;
  920. }
  921. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  922. struct btrfs_key *location)
  923. {
  924. struct btrfs_root *root;
  925. int ret;
  926. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  927. return fs_info->tree_root;
  928. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  929. return fs_info->extent_root;
  930. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  931. return fs_info->chunk_root;
  932. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  933. return fs_info->dev_root;
  934. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  935. (unsigned long)location->objectid);
  936. if (root)
  937. return root;
  938. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  939. if (IS_ERR(root))
  940. return root;
  941. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  942. (unsigned long)root->root_key.objectid,
  943. root);
  944. if (ret) {
  945. free_extent_buffer(root->node);
  946. kfree(root);
  947. return ERR_PTR(ret);
  948. }
  949. ret = btrfs_find_dead_roots(fs_info->tree_root,
  950. root->root_key.objectid, root);
  951. BUG_ON(ret);
  952. return root;
  953. }
  954. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  955. struct btrfs_key *location,
  956. const char *name, int namelen)
  957. {
  958. struct btrfs_root *root;
  959. int ret;
  960. root = btrfs_read_fs_root_no_name(fs_info, location);
  961. if (!root)
  962. return NULL;
  963. if (root->in_sysfs)
  964. return root;
  965. ret = btrfs_set_root_name(root, name, namelen);
  966. if (ret) {
  967. free_extent_buffer(root->node);
  968. kfree(root);
  969. return ERR_PTR(ret);
  970. }
  971. ret = btrfs_sysfs_add_root(root);
  972. if (ret) {
  973. free_extent_buffer(root->node);
  974. kfree(root->name);
  975. kfree(root);
  976. return ERR_PTR(ret);
  977. }
  978. root->in_sysfs = 1;
  979. return root;
  980. }
  981. #if 0
  982. static int add_hasher(struct btrfs_fs_info *info, char *type) {
  983. struct btrfs_hasher *hasher;
  984. hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
  985. if (!hasher)
  986. return -ENOMEM;
  987. hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
  988. if (!hasher->hash_tfm) {
  989. kfree(hasher);
  990. return -EINVAL;
  991. }
  992. spin_lock(&info->hash_lock);
  993. list_add(&hasher->list, &info->hashers);
  994. spin_unlock(&info->hash_lock);
  995. return 0;
  996. }
  997. #endif
  998. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  999. {
  1000. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1001. int ret = 0;
  1002. struct list_head *cur;
  1003. struct btrfs_device *device;
  1004. struct backing_dev_info *bdi;
  1005. if ((bdi_bits & (1 << BDI_write_congested)) &&
  1006. btrfs_congested_async(info, 0))
  1007. return 1;
  1008. list_for_each(cur, &info->fs_devices->devices) {
  1009. device = list_entry(cur, struct btrfs_device, dev_list);
  1010. if (!device->bdev)
  1011. continue;
  1012. bdi = blk_get_backing_dev_info(device->bdev);
  1013. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1014. ret = 1;
  1015. break;
  1016. }
  1017. }
  1018. return ret;
  1019. }
  1020. /*
  1021. * this unplugs every device on the box, and it is only used when page
  1022. * is null
  1023. */
  1024. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1025. {
  1026. struct list_head *cur;
  1027. struct btrfs_device *device;
  1028. struct btrfs_fs_info *info;
  1029. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1030. list_for_each(cur, &info->fs_devices->devices) {
  1031. device = list_entry(cur, struct btrfs_device, dev_list);
  1032. bdi = blk_get_backing_dev_info(device->bdev);
  1033. if (bdi->unplug_io_fn) {
  1034. bdi->unplug_io_fn(bdi, page);
  1035. }
  1036. }
  1037. }
  1038. void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1039. {
  1040. struct inode *inode;
  1041. struct extent_map_tree *em_tree;
  1042. struct extent_map *em;
  1043. struct address_space *mapping;
  1044. u64 offset;
  1045. /* the generic O_DIRECT read code does this */
  1046. if (!page) {
  1047. __unplug_io_fn(bdi, page);
  1048. return;
  1049. }
  1050. /*
  1051. * page->mapping may change at any time. Get a consistent copy
  1052. * and use that for everything below
  1053. */
  1054. smp_mb();
  1055. mapping = page->mapping;
  1056. if (!mapping)
  1057. return;
  1058. inode = mapping->host;
  1059. offset = page_offset(page);
  1060. em_tree = &BTRFS_I(inode)->extent_tree;
  1061. spin_lock(&em_tree->lock);
  1062. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1063. spin_unlock(&em_tree->lock);
  1064. if (!em) {
  1065. __unplug_io_fn(bdi, page);
  1066. return;
  1067. }
  1068. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1069. free_extent_map(em);
  1070. __unplug_io_fn(bdi, page);
  1071. return;
  1072. }
  1073. offset = offset - em->start;
  1074. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1075. em->block_start + offset, page);
  1076. free_extent_map(em);
  1077. }
  1078. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1079. {
  1080. bdi_init(bdi);
  1081. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1082. bdi->state = 0;
  1083. bdi->capabilities = default_backing_dev_info.capabilities;
  1084. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1085. bdi->unplug_io_data = info;
  1086. bdi->congested_fn = btrfs_congested_fn;
  1087. bdi->congested_data = info;
  1088. return 0;
  1089. }
  1090. static int bio_ready_for_csum(struct bio *bio)
  1091. {
  1092. u64 length = 0;
  1093. u64 buf_len = 0;
  1094. u64 start = 0;
  1095. struct page *page;
  1096. struct extent_io_tree *io_tree = NULL;
  1097. struct btrfs_fs_info *info = NULL;
  1098. struct bio_vec *bvec;
  1099. int i;
  1100. int ret;
  1101. bio_for_each_segment(bvec, bio, i) {
  1102. page = bvec->bv_page;
  1103. if (page->private == EXTENT_PAGE_PRIVATE) {
  1104. length += bvec->bv_len;
  1105. continue;
  1106. }
  1107. if (!page->private) {
  1108. length += bvec->bv_len;
  1109. continue;
  1110. }
  1111. length = bvec->bv_len;
  1112. buf_len = page->private >> 2;
  1113. start = page_offset(page) + bvec->bv_offset;
  1114. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1115. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1116. }
  1117. /* are we fully contained in this bio? */
  1118. if (buf_len <= length)
  1119. return 1;
  1120. ret = extent_range_uptodate(io_tree, start + length,
  1121. start + buf_len - 1);
  1122. if (ret == 1)
  1123. return ret;
  1124. return ret;
  1125. }
  1126. /*
  1127. * called by the kthread helper functions to finally call the bio end_io
  1128. * functions. This is where read checksum verification actually happens
  1129. */
  1130. static void end_workqueue_fn(struct btrfs_work *work)
  1131. {
  1132. struct bio *bio;
  1133. struct end_io_wq *end_io_wq;
  1134. struct btrfs_fs_info *fs_info;
  1135. int error;
  1136. end_io_wq = container_of(work, struct end_io_wq, work);
  1137. bio = end_io_wq->bio;
  1138. fs_info = end_io_wq->info;
  1139. /* metadata bios are special because the whole tree block must
  1140. * be checksummed at once. This makes sure the entire block is in
  1141. * ram and up to date before trying to verify things. For
  1142. * blocksize <= pagesize, it is basically a noop
  1143. */
  1144. if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
  1145. btrfs_queue_worker(&fs_info->endio_workers,
  1146. &end_io_wq->work);
  1147. return;
  1148. }
  1149. error = end_io_wq->error;
  1150. bio->bi_private = end_io_wq->private;
  1151. bio->bi_end_io = end_io_wq->end_io;
  1152. kfree(end_io_wq);
  1153. bio_endio(bio, error);
  1154. }
  1155. static int cleaner_kthread(void *arg)
  1156. {
  1157. struct btrfs_root *root = arg;
  1158. do {
  1159. smp_mb();
  1160. if (root->fs_info->closing)
  1161. break;
  1162. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1163. mutex_lock(&root->fs_info->cleaner_mutex);
  1164. btrfs_clean_old_snapshots(root);
  1165. mutex_unlock(&root->fs_info->cleaner_mutex);
  1166. if (freezing(current)) {
  1167. refrigerator();
  1168. } else {
  1169. smp_mb();
  1170. if (root->fs_info->closing)
  1171. break;
  1172. set_current_state(TASK_INTERRUPTIBLE);
  1173. schedule();
  1174. __set_current_state(TASK_RUNNING);
  1175. }
  1176. } while (!kthread_should_stop());
  1177. return 0;
  1178. }
  1179. static int transaction_kthread(void *arg)
  1180. {
  1181. struct btrfs_root *root = arg;
  1182. struct btrfs_trans_handle *trans;
  1183. struct btrfs_transaction *cur;
  1184. unsigned long now;
  1185. unsigned long delay;
  1186. int ret;
  1187. do {
  1188. smp_mb();
  1189. if (root->fs_info->closing)
  1190. break;
  1191. delay = HZ * 30;
  1192. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1193. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1194. if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
  1195. printk("btrfs: total reference cache size %Lu\n",
  1196. root->fs_info->total_ref_cache_size);
  1197. }
  1198. mutex_lock(&root->fs_info->trans_mutex);
  1199. cur = root->fs_info->running_transaction;
  1200. if (!cur) {
  1201. mutex_unlock(&root->fs_info->trans_mutex);
  1202. goto sleep;
  1203. }
  1204. now = get_seconds();
  1205. if (now < cur->start_time || now - cur->start_time < 30) {
  1206. mutex_unlock(&root->fs_info->trans_mutex);
  1207. delay = HZ * 5;
  1208. goto sleep;
  1209. }
  1210. mutex_unlock(&root->fs_info->trans_mutex);
  1211. trans = btrfs_start_transaction(root, 1);
  1212. ret = btrfs_commit_transaction(trans, root);
  1213. sleep:
  1214. wake_up_process(root->fs_info->cleaner_kthread);
  1215. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1216. if (freezing(current)) {
  1217. refrigerator();
  1218. } else {
  1219. if (root->fs_info->closing)
  1220. break;
  1221. set_current_state(TASK_INTERRUPTIBLE);
  1222. schedule_timeout(delay);
  1223. __set_current_state(TASK_RUNNING);
  1224. }
  1225. } while (!kthread_should_stop());
  1226. return 0;
  1227. }
  1228. struct btrfs_root *open_ctree(struct super_block *sb,
  1229. struct btrfs_fs_devices *fs_devices,
  1230. char *options)
  1231. {
  1232. u32 sectorsize;
  1233. u32 nodesize;
  1234. u32 leafsize;
  1235. u32 blocksize;
  1236. u32 stripesize;
  1237. u64 generation;
  1238. struct buffer_head *bh;
  1239. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1240. GFP_NOFS);
  1241. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1242. GFP_NOFS);
  1243. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1244. GFP_NOFS);
  1245. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1246. GFP_NOFS);
  1247. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1248. GFP_NOFS);
  1249. struct btrfs_root *log_tree_root;
  1250. int ret;
  1251. int err = -EINVAL;
  1252. struct btrfs_super_block *disk_super;
  1253. if (!extent_root || !tree_root || !fs_info ||
  1254. !chunk_root || !dev_root) {
  1255. err = -ENOMEM;
  1256. goto fail;
  1257. }
  1258. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1259. INIT_LIST_HEAD(&fs_info->trans_list);
  1260. INIT_LIST_HEAD(&fs_info->dead_roots);
  1261. INIT_LIST_HEAD(&fs_info->hashers);
  1262. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1263. spin_lock_init(&fs_info->hash_lock);
  1264. spin_lock_init(&fs_info->delalloc_lock);
  1265. spin_lock_init(&fs_info->new_trans_lock);
  1266. spin_lock_init(&fs_info->ref_cache_lock);
  1267. init_completion(&fs_info->kobj_unregister);
  1268. fs_info->tree_root = tree_root;
  1269. fs_info->extent_root = extent_root;
  1270. fs_info->chunk_root = chunk_root;
  1271. fs_info->dev_root = dev_root;
  1272. fs_info->fs_devices = fs_devices;
  1273. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1274. INIT_LIST_HEAD(&fs_info->space_info);
  1275. btrfs_mapping_init(&fs_info->mapping_tree);
  1276. atomic_set(&fs_info->nr_async_submits, 0);
  1277. atomic_set(&fs_info->async_delalloc_pages, 0);
  1278. atomic_set(&fs_info->async_submit_draining, 0);
  1279. atomic_set(&fs_info->nr_async_bios, 0);
  1280. atomic_set(&fs_info->throttles, 0);
  1281. atomic_set(&fs_info->throttle_gen, 0);
  1282. fs_info->sb = sb;
  1283. fs_info->max_extent = (u64)-1;
  1284. fs_info->max_inline = 8192 * 1024;
  1285. setup_bdi(fs_info, &fs_info->bdi);
  1286. fs_info->btree_inode = new_inode(sb);
  1287. fs_info->btree_inode->i_ino = 1;
  1288. fs_info->btree_inode->i_nlink = 1;
  1289. fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
  1290. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1291. spin_lock_init(&fs_info->ordered_extent_lock);
  1292. sb->s_blocksize = 4096;
  1293. sb->s_blocksize_bits = blksize_bits(4096);
  1294. /*
  1295. * we set the i_size on the btree inode to the max possible int.
  1296. * the real end of the address space is determined by all of
  1297. * the devices in the system
  1298. */
  1299. fs_info->btree_inode->i_size = OFFSET_MAX;
  1300. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1301. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1302. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1303. fs_info->btree_inode->i_mapping,
  1304. GFP_NOFS);
  1305. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1306. GFP_NOFS);
  1307. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1308. spin_lock_init(&fs_info->block_group_cache_lock);
  1309. fs_info->block_group_cache_tree.rb_node = NULL;
  1310. extent_io_tree_init(&fs_info->pinned_extents,
  1311. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1312. extent_io_tree_init(&fs_info->pending_del,
  1313. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1314. extent_io_tree_init(&fs_info->extent_ins,
  1315. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1316. fs_info->do_barriers = 1;
  1317. INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
  1318. btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
  1319. btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
  1320. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1321. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1322. sizeof(struct btrfs_key));
  1323. insert_inode_hash(fs_info->btree_inode);
  1324. mutex_init(&fs_info->trans_mutex);
  1325. mutex_init(&fs_info->tree_log_mutex);
  1326. mutex_init(&fs_info->drop_mutex);
  1327. mutex_init(&fs_info->extent_ins_mutex);
  1328. mutex_init(&fs_info->pinned_mutex);
  1329. mutex_init(&fs_info->chunk_mutex);
  1330. mutex_init(&fs_info->transaction_kthread_mutex);
  1331. mutex_init(&fs_info->cleaner_mutex);
  1332. mutex_init(&fs_info->volume_mutex);
  1333. mutex_init(&fs_info->tree_reloc_mutex);
  1334. init_waitqueue_head(&fs_info->transaction_throttle);
  1335. init_waitqueue_head(&fs_info->transaction_wait);
  1336. init_waitqueue_head(&fs_info->async_submit_wait);
  1337. init_waitqueue_head(&fs_info->tree_log_wait);
  1338. atomic_set(&fs_info->tree_log_commit, 0);
  1339. atomic_set(&fs_info->tree_log_writers, 0);
  1340. fs_info->tree_log_transid = 0;
  1341. #if 0
  1342. ret = add_hasher(fs_info, "crc32c");
  1343. if (ret) {
  1344. printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
  1345. err = -ENOMEM;
  1346. goto fail_iput;
  1347. }
  1348. #endif
  1349. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1350. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1351. bh = __bread(fs_devices->latest_bdev,
  1352. BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
  1353. if (!bh)
  1354. goto fail_iput;
  1355. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1356. brelse(bh);
  1357. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1358. disk_super = &fs_info->super_copy;
  1359. if (!btrfs_super_root(disk_super))
  1360. goto fail_sb_buffer;
  1361. err = btrfs_parse_options(tree_root, options);
  1362. if (err)
  1363. goto fail_sb_buffer;
  1364. /*
  1365. * we need to start all the end_io workers up front because the
  1366. * queue work function gets called at interrupt time, and so it
  1367. * cannot dynamically grow.
  1368. */
  1369. btrfs_init_workers(&fs_info->workers, "worker",
  1370. fs_info->thread_pool_size);
  1371. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1372. fs_info->thread_pool_size);
  1373. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1374. min_t(u64, fs_devices->num_devices,
  1375. fs_info->thread_pool_size));
  1376. /* a higher idle thresh on the submit workers makes it much more
  1377. * likely that bios will be send down in a sane order to the
  1378. * devices
  1379. */
  1380. fs_info->submit_workers.idle_thresh = 64;
  1381. fs_info->workers.idle_thresh = 16;
  1382. fs_info->workers.ordered = 1;
  1383. fs_info->delalloc_workers.idle_thresh = 2;
  1384. fs_info->delalloc_workers.ordered = 1;
  1385. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1386. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1387. fs_info->thread_pool_size);
  1388. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1389. fs_info->thread_pool_size);
  1390. /*
  1391. * endios are largely parallel and should have a very
  1392. * low idle thresh
  1393. */
  1394. fs_info->endio_workers.idle_thresh = 4;
  1395. fs_info->endio_write_workers.idle_thresh = 64;
  1396. btrfs_start_workers(&fs_info->workers, 1);
  1397. btrfs_start_workers(&fs_info->submit_workers, 1);
  1398. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1399. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1400. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1401. btrfs_start_workers(&fs_info->endio_write_workers,
  1402. fs_info->thread_pool_size);
  1403. err = -EINVAL;
  1404. if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
  1405. printk("Btrfs: wanted %llu devices, but found %llu\n",
  1406. (unsigned long long)btrfs_super_num_devices(disk_super),
  1407. (unsigned long long)fs_devices->open_devices);
  1408. if (btrfs_test_opt(tree_root, DEGRADED))
  1409. printk("continuing in degraded mode\n");
  1410. else {
  1411. goto fail_sb_buffer;
  1412. }
  1413. }
  1414. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1415. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1416. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1417. nodesize = btrfs_super_nodesize(disk_super);
  1418. leafsize = btrfs_super_leafsize(disk_super);
  1419. sectorsize = btrfs_super_sectorsize(disk_super);
  1420. stripesize = btrfs_super_stripesize(disk_super);
  1421. tree_root->nodesize = nodesize;
  1422. tree_root->leafsize = leafsize;
  1423. tree_root->sectorsize = sectorsize;
  1424. tree_root->stripesize = stripesize;
  1425. sb->s_blocksize = sectorsize;
  1426. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1427. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1428. sizeof(disk_super->magic))) {
  1429. printk("btrfs: valid FS not found on %s\n", sb->s_id);
  1430. goto fail_sb_buffer;
  1431. }
  1432. mutex_lock(&fs_info->chunk_mutex);
  1433. ret = btrfs_read_sys_array(tree_root);
  1434. mutex_unlock(&fs_info->chunk_mutex);
  1435. if (ret) {
  1436. printk("btrfs: failed to read the system array on %s\n",
  1437. sb->s_id);
  1438. goto fail_sys_array;
  1439. }
  1440. blocksize = btrfs_level_size(tree_root,
  1441. btrfs_super_chunk_root_level(disk_super));
  1442. generation = btrfs_super_chunk_root_generation(disk_super);
  1443. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1444. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1445. chunk_root->node = read_tree_block(chunk_root,
  1446. btrfs_super_chunk_root(disk_super),
  1447. blocksize, generation);
  1448. BUG_ON(!chunk_root->node);
  1449. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1450. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1451. BTRFS_UUID_SIZE);
  1452. mutex_lock(&fs_info->chunk_mutex);
  1453. ret = btrfs_read_chunk_tree(chunk_root);
  1454. mutex_unlock(&fs_info->chunk_mutex);
  1455. BUG_ON(ret);
  1456. btrfs_close_extra_devices(fs_devices);
  1457. blocksize = btrfs_level_size(tree_root,
  1458. btrfs_super_root_level(disk_super));
  1459. generation = btrfs_super_generation(disk_super);
  1460. tree_root->node = read_tree_block(tree_root,
  1461. btrfs_super_root(disk_super),
  1462. blocksize, generation);
  1463. if (!tree_root->node)
  1464. goto fail_sb_buffer;
  1465. ret = find_and_setup_root(tree_root, fs_info,
  1466. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1467. if (ret)
  1468. goto fail_tree_root;
  1469. extent_root->track_dirty = 1;
  1470. ret = find_and_setup_root(tree_root, fs_info,
  1471. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1472. dev_root->track_dirty = 1;
  1473. if (ret)
  1474. goto fail_extent_root;
  1475. btrfs_read_block_groups(extent_root);
  1476. fs_info->generation = btrfs_super_generation(disk_super) + 1;
  1477. fs_info->data_alloc_profile = (u64)-1;
  1478. fs_info->metadata_alloc_profile = (u64)-1;
  1479. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1480. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1481. "btrfs-cleaner");
  1482. if (!fs_info->cleaner_kthread)
  1483. goto fail_extent_root;
  1484. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1485. tree_root,
  1486. "btrfs-transaction");
  1487. if (!fs_info->transaction_kthread)
  1488. goto fail_cleaner;
  1489. if (btrfs_super_log_root(disk_super) != 0) {
  1490. u32 blocksize;
  1491. u64 bytenr = btrfs_super_log_root(disk_super);
  1492. blocksize =
  1493. btrfs_level_size(tree_root,
  1494. btrfs_super_log_root_level(disk_super));
  1495. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1496. GFP_NOFS);
  1497. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1498. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1499. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1500. blocksize,
  1501. generation + 1);
  1502. ret = btrfs_recover_log_trees(log_tree_root);
  1503. BUG_ON(ret);
  1504. }
  1505. fs_info->last_trans_committed = btrfs_super_generation(disk_super);
  1506. ret = btrfs_cleanup_reloc_trees(tree_root);
  1507. BUG_ON(ret);
  1508. return tree_root;
  1509. fail_cleaner:
  1510. kthread_stop(fs_info->cleaner_kthread);
  1511. fail_extent_root:
  1512. free_extent_buffer(extent_root->node);
  1513. fail_tree_root:
  1514. free_extent_buffer(tree_root->node);
  1515. fail_sys_array:
  1516. fail_sb_buffer:
  1517. btrfs_stop_workers(&fs_info->fixup_workers);
  1518. btrfs_stop_workers(&fs_info->delalloc_workers);
  1519. btrfs_stop_workers(&fs_info->workers);
  1520. btrfs_stop_workers(&fs_info->endio_workers);
  1521. btrfs_stop_workers(&fs_info->endio_write_workers);
  1522. btrfs_stop_workers(&fs_info->submit_workers);
  1523. fail_iput:
  1524. iput(fs_info->btree_inode);
  1525. fail:
  1526. btrfs_close_devices(fs_info->fs_devices);
  1527. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1528. kfree(extent_root);
  1529. kfree(tree_root);
  1530. bdi_destroy(&fs_info->bdi);
  1531. kfree(fs_info);
  1532. kfree(chunk_root);
  1533. kfree(dev_root);
  1534. return ERR_PTR(err);
  1535. }
  1536. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1537. {
  1538. char b[BDEVNAME_SIZE];
  1539. if (uptodate) {
  1540. set_buffer_uptodate(bh);
  1541. } else {
  1542. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1543. printk(KERN_WARNING "lost page write due to "
  1544. "I/O error on %s\n",
  1545. bdevname(bh->b_bdev, b));
  1546. }
  1547. /* note, we dont' set_buffer_write_io_error because we have
  1548. * our own ways of dealing with the IO errors
  1549. */
  1550. clear_buffer_uptodate(bh);
  1551. }
  1552. unlock_buffer(bh);
  1553. put_bh(bh);
  1554. }
  1555. int write_all_supers(struct btrfs_root *root)
  1556. {
  1557. struct list_head *cur;
  1558. struct list_head *head = &root->fs_info->fs_devices->devices;
  1559. struct btrfs_device *dev;
  1560. struct btrfs_super_block *sb;
  1561. struct btrfs_dev_item *dev_item;
  1562. struct buffer_head *bh;
  1563. int ret;
  1564. int do_barriers;
  1565. int max_errors;
  1566. int total_errors = 0;
  1567. u32 crc;
  1568. u64 flags;
  1569. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1570. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1571. sb = &root->fs_info->super_for_commit;
  1572. dev_item = &sb->dev_item;
  1573. list_for_each(cur, head) {
  1574. dev = list_entry(cur, struct btrfs_device, dev_list);
  1575. if (!dev->bdev) {
  1576. total_errors++;
  1577. continue;
  1578. }
  1579. if (!dev->in_fs_metadata)
  1580. continue;
  1581. btrfs_set_stack_device_type(dev_item, dev->type);
  1582. btrfs_set_stack_device_id(dev_item, dev->devid);
  1583. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1584. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1585. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1586. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1587. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1588. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1589. flags = btrfs_super_flags(sb);
  1590. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1591. crc = ~(u32)0;
  1592. crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
  1593. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  1594. btrfs_csum_final(crc, sb->csum);
  1595. bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
  1596. BTRFS_SUPER_INFO_SIZE);
  1597. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1598. dev->pending_io = bh;
  1599. get_bh(bh);
  1600. set_buffer_uptodate(bh);
  1601. lock_buffer(bh);
  1602. bh->b_end_io = btrfs_end_buffer_write_sync;
  1603. if (do_barriers && dev->barriers) {
  1604. ret = submit_bh(WRITE_BARRIER, bh);
  1605. if (ret == -EOPNOTSUPP) {
  1606. printk("btrfs: disabling barriers on dev %s\n",
  1607. dev->name);
  1608. set_buffer_uptodate(bh);
  1609. dev->barriers = 0;
  1610. get_bh(bh);
  1611. lock_buffer(bh);
  1612. ret = submit_bh(WRITE, bh);
  1613. }
  1614. } else {
  1615. ret = submit_bh(WRITE, bh);
  1616. }
  1617. if (ret)
  1618. total_errors++;
  1619. }
  1620. if (total_errors > max_errors) {
  1621. printk("btrfs: %d errors while writing supers\n", total_errors);
  1622. BUG();
  1623. }
  1624. total_errors = 0;
  1625. list_for_each(cur, head) {
  1626. dev = list_entry(cur, struct btrfs_device, dev_list);
  1627. if (!dev->bdev)
  1628. continue;
  1629. if (!dev->in_fs_metadata)
  1630. continue;
  1631. BUG_ON(!dev->pending_io);
  1632. bh = dev->pending_io;
  1633. wait_on_buffer(bh);
  1634. if (!buffer_uptodate(dev->pending_io)) {
  1635. if (do_barriers && dev->barriers) {
  1636. printk("btrfs: disabling barriers on dev %s\n",
  1637. dev->name);
  1638. set_buffer_uptodate(bh);
  1639. get_bh(bh);
  1640. lock_buffer(bh);
  1641. dev->barriers = 0;
  1642. ret = submit_bh(WRITE, bh);
  1643. BUG_ON(ret);
  1644. wait_on_buffer(bh);
  1645. if (!buffer_uptodate(bh))
  1646. total_errors++;
  1647. } else {
  1648. total_errors++;
  1649. }
  1650. }
  1651. dev->pending_io = NULL;
  1652. brelse(bh);
  1653. }
  1654. if (total_errors > max_errors) {
  1655. printk("btrfs: %d errors while writing supers\n", total_errors);
  1656. BUG();
  1657. }
  1658. return 0;
  1659. }
  1660. int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
  1661. *root)
  1662. {
  1663. int ret;
  1664. ret = write_all_supers(root);
  1665. return ret;
  1666. }
  1667. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1668. {
  1669. radix_tree_delete(&fs_info->fs_roots_radix,
  1670. (unsigned long)root->root_key.objectid);
  1671. if (root->in_sysfs)
  1672. btrfs_sysfs_del_root(root);
  1673. if (root->inode)
  1674. iput(root->inode);
  1675. if (root->node)
  1676. free_extent_buffer(root->node);
  1677. if (root->commit_root)
  1678. free_extent_buffer(root->commit_root);
  1679. if (root->name)
  1680. kfree(root->name);
  1681. kfree(root);
  1682. return 0;
  1683. }
  1684. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1685. {
  1686. int ret;
  1687. struct btrfs_root *gang[8];
  1688. int i;
  1689. while(1) {
  1690. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1691. (void **)gang, 0,
  1692. ARRAY_SIZE(gang));
  1693. if (!ret)
  1694. break;
  1695. for (i = 0; i < ret; i++)
  1696. btrfs_free_fs_root(fs_info, gang[i]);
  1697. }
  1698. return 0;
  1699. }
  1700. int close_ctree(struct btrfs_root *root)
  1701. {
  1702. int ret;
  1703. struct btrfs_trans_handle *trans;
  1704. struct btrfs_fs_info *fs_info = root->fs_info;
  1705. fs_info->closing = 1;
  1706. smp_mb();
  1707. kthread_stop(root->fs_info->transaction_kthread);
  1708. kthread_stop(root->fs_info->cleaner_kthread);
  1709. btrfs_clean_old_snapshots(root);
  1710. trans = btrfs_start_transaction(root, 1);
  1711. ret = btrfs_commit_transaction(trans, root);
  1712. /* run commit again to drop the original snapshot */
  1713. trans = btrfs_start_transaction(root, 1);
  1714. btrfs_commit_transaction(trans, root);
  1715. ret = btrfs_write_and_wait_transaction(NULL, root);
  1716. BUG_ON(ret);
  1717. write_ctree_super(NULL, root);
  1718. if (fs_info->delalloc_bytes) {
  1719. printk("btrfs: at unmount delalloc count %Lu\n",
  1720. fs_info->delalloc_bytes);
  1721. }
  1722. if (fs_info->total_ref_cache_size) {
  1723. printk("btrfs: at umount reference cache size %Lu\n",
  1724. fs_info->total_ref_cache_size);
  1725. }
  1726. if (fs_info->extent_root->node)
  1727. free_extent_buffer(fs_info->extent_root->node);
  1728. if (fs_info->tree_root->node)
  1729. free_extent_buffer(fs_info->tree_root->node);
  1730. if (root->fs_info->chunk_root->node);
  1731. free_extent_buffer(root->fs_info->chunk_root->node);
  1732. if (root->fs_info->dev_root->node);
  1733. free_extent_buffer(root->fs_info->dev_root->node);
  1734. btrfs_free_block_groups(root->fs_info);
  1735. fs_info->closing = 2;
  1736. del_fs_roots(fs_info);
  1737. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1738. truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
  1739. btrfs_stop_workers(&fs_info->fixup_workers);
  1740. btrfs_stop_workers(&fs_info->delalloc_workers);
  1741. btrfs_stop_workers(&fs_info->workers);
  1742. btrfs_stop_workers(&fs_info->endio_workers);
  1743. btrfs_stop_workers(&fs_info->endio_write_workers);
  1744. btrfs_stop_workers(&fs_info->submit_workers);
  1745. iput(fs_info->btree_inode);
  1746. #if 0
  1747. while(!list_empty(&fs_info->hashers)) {
  1748. struct btrfs_hasher *hasher;
  1749. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1750. hashers);
  1751. list_del(&hasher->hashers);
  1752. crypto_free_hash(&fs_info->hash_tfm);
  1753. kfree(hasher);
  1754. }
  1755. #endif
  1756. btrfs_close_devices(fs_info->fs_devices);
  1757. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1758. bdi_destroy(&fs_info->bdi);
  1759. kfree(fs_info->extent_root);
  1760. kfree(fs_info->tree_root);
  1761. kfree(fs_info->chunk_root);
  1762. kfree(fs_info->dev_root);
  1763. return 0;
  1764. }
  1765. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1766. {
  1767. int ret;
  1768. struct inode *btree_inode = buf->first_page->mapping->host;
  1769. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1770. if (!ret)
  1771. return ret;
  1772. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1773. parent_transid);
  1774. return !ret;
  1775. }
  1776. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1777. {
  1778. struct inode *btree_inode = buf->first_page->mapping->host;
  1779. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  1780. buf);
  1781. }
  1782. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  1783. {
  1784. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1785. u64 transid = btrfs_header_generation(buf);
  1786. struct inode *btree_inode = root->fs_info->btree_inode;
  1787. WARN_ON(!btrfs_tree_locked(buf));
  1788. if (transid != root->fs_info->generation) {
  1789. printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
  1790. (unsigned long long)buf->start,
  1791. transid, root->fs_info->generation);
  1792. WARN_ON(1);
  1793. }
  1794. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  1795. }
  1796. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  1797. {
  1798. /*
  1799. * looks as though older kernels can get into trouble with
  1800. * this code, they end up stuck in balance_dirty_pages forever
  1801. */
  1802. struct extent_io_tree *tree;
  1803. u64 num_dirty;
  1804. u64 start = 0;
  1805. unsigned long thresh = 32 * 1024 * 1024;
  1806. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  1807. if (current_is_pdflush() || current->flags & PF_MEMALLOC)
  1808. return;
  1809. num_dirty = count_range_bits(tree, &start, (u64)-1,
  1810. thresh, EXTENT_DIRTY);
  1811. if (num_dirty > thresh) {
  1812. balance_dirty_pages_ratelimited_nr(
  1813. root->fs_info->btree_inode->i_mapping, 1);
  1814. }
  1815. return;
  1816. }
  1817. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  1818. {
  1819. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1820. int ret;
  1821. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1822. if (ret == 0) {
  1823. buf->flags |= EXTENT_UPTODATE;
  1824. }
  1825. return ret;
  1826. }
  1827. int btree_lock_page_hook(struct page *page)
  1828. {
  1829. struct inode *inode = page->mapping->host;
  1830. struct btrfs_root *root = BTRFS_I(inode)->root;
  1831. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  1832. struct extent_buffer *eb;
  1833. unsigned long len;
  1834. u64 bytenr = page_offset(page);
  1835. if (page->private == EXTENT_PAGE_PRIVATE)
  1836. goto out;
  1837. len = page->private >> 2;
  1838. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  1839. if (!eb)
  1840. goto out;
  1841. btrfs_tree_lock(eb);
  1842. spin_lock(&root->fs_info->hash_lock);
  1843. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  1844. spin_unlock(&root->fs_info->hash_lock);
  1845. btrfs_tree_unlock(eb);
  1846. free_extent_buffer(eb);
  1847. out:
  1848. lock_page(page);
  1849. return 0;
  1850. }
  1851. static struct extent_io_ops btree_extent_io_ops = {
  1852. .write_cache_pages_lock_hook = btree_lock_page_hook,
  1853. .readpage_end_io_hook = btree_readpage_end_io_hook,
  1854. .submit_bio_hook = btree_submit_bio_hook,
  1855. /* note we're sharing with inode.c for the merge bio hook */
  1856. .merge_bio_hook = btrfs_merge_bio_hook,
  1857. };