eeprom_4k.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9002_phy.h"
  18. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  19. {
  20. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  21. }
  22. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  23. {
  24. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  25. }
  26. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  27. {
  28. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  29. struct ath_common *common = ath9k_hw_common(ah);
  30. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  31. int addr, eep_start_loc = 0;
  32. eep_start_loc = 64;
  33. if (!ath9k_hw_use_flash(ah)) {
  34. ath_print(common, ATH_DBG_EEPROM,
  35. "Reading from EEPROM, not flash\n");
  36. }
  37. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  38. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
  39. ath_print(common, ATH_DBG_EEPROM,
  40. "Unable to read eeprom region\n");
  41. return false;
  42. }
  43. eep_data++;
  44. }
  45. return true;
  46. #undef SIZE_EEPROM_4K
  47. }
  48. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  49. {
  50. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  51. struct ath_common *common = ath9k_hw_common(ah);
  52. struct ar5416_eeprom_4k *eep =
  53. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  54. u16 *eepdata, temp, magic, magic2;
  55. u32 sum = 0, el;
  56. bool need_swap = false;
  57. int i, addr;
  58. if (!ath9k_hw_use_flash(ah)) {
  59. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  60. &magic)) {
  61. ath_print(common, ATH_DBG_FATAL,
  62. "Reading Magic # failed\n");
  63. return false;
  64. }
  65. ath_print(common, ATH_DBG_EEPROM,
  66. "Read Magic = 0x%04X\n", magic);
  67. if (magic != AR5416_EEPROM_MAGIC) {
  68. magic2 = swab16(magic);
  69. if (magic2 == AR5416_EEPROM_MAGIC) {
  70. need_swap = true;
  71. eepdata = (u16 *) (&ah->eeprom);
  72. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  73. temp = swab16(*eepdata);
  74. *eepdata = temp;
  75. eepdata++;
  76. }
  77. } else {
  78. ath_print(common, ATH_DBG_FATAL,
  79. "Invalid EEPROM Magic. "
  80. "endianness mismatch.\n");
  81. return -EINVAL;
  82. }
  83. }
  84. }
  85. ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  86. need_swap ? "True" : "False");
  87. if (need_swap)
  88. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  89. else
  90. el = ah->eeprom.map4k.baseEepHeader.length;
  91. if (el > sizeof(struct ar5416_eeprom_4k))
  92. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  93. else
  94. el = el / sizeof(u16);
  95. eepdata = (u16 *)(&ah->eeprom);
  96. for (i = 0; i < el; i++)
  97. sum ^= *eepdata++;
  98. if (need_swap) {
  99. u32 integer;
  100. u16 word;
  101. ath_print(common, ATH_DBG_EEPROM,
  102. "EEPROM Endianness is not native.. Changing\n");
  103. word = swab16(eep->baseEepHeader.length);
  104. eep->baseEepHeader.length = word;
  105. word = swab16(eep->baseEepHeader.checksum);
  106. eep->baseEepHeader.checksum = word;
  107. word = swab16(eep->baseEepHeader.version);
  108. eep->baseEepHeader.version = word;
  109. word = swab16(eep->baseEepHeader.regDmn[0]);
  110. eep->baseEepHeader.regDmn[0] = word;
  111. word = swab16(eep->baseEepHeader.regDmn[1]);
  112. eep->baseEepHeader.regDmn[1] = word;
  113. word = swab16(eep->baseEepHeader.rfSilent);
  114. eep->baseEepHeader.rfSilent = word;
  115. word = swab16(eep->baseEepHeader.blueToothOptions);
  116. eep->baseEepHeader.blueToothOptions = word;
  117. word = swab16(eep->baseEepHeader.deviceCap);
  118. eep->baseEepHeader.deviceCap = word;
  119. integer = swab32(eep->modalHeader.antCtrlCommon);
  120. eep->modalHeader.antCtrlCommon = integer;
  121. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  122. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  123. eep->modalHeader.antCtrlChain[i] = integer;
  124. }
  125. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  126. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  127. eep->modalHeader.spurChans[i].spurChan = word;
  128. }
  129. }
  130. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  131. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  132. ath_print(common, ATH_DBG_FATAL,
  133. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  134. sum, ah->eep_ops->get_eeprom_ver(ah));
  135. return -EINVAL;
  136. }
  137. return 0;
  138. #undef EEPROM_4K_SIZE
  139. }
  140. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  141. enum eeprom_param param)
  142. {
  143. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  144. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  145. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  146. u16 ver_minor;
  147. ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
  148. switch (param) {
  149. case EEP_NFTHRESH_2:
  150. return pModal->noiseFloorThreshCh[0];
  151. case EEP_MAC_LSW:
  152. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  153. case EEP_MAC_MID:
  154. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  155. case EEP_MAC_MSW:
  156. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  157. case EEP_REG_0:
  158. return pBase->regDmn[0];
  159. case EEP_REG_1:
  160. return pBase->regDmn[1];
  161. case EEP_OP_CAP:
  162. return pBase->deviceCap;
  163. case EEP_OP_MODE:
  164. return pBase->opCapFlags;
  165. case EEP_RF_SILENT:
  166. return pBase->rfSilent;
  167. case EEP_OB_2:
  168. return pModal->ob_0;
  169. case EEP_DB_2:
  170. return pModal->db1_1;
  171. case EEP_MINOR_REV:
  172. return ver_minor;
  173. case EEP_TX_MASK:
  174. return pBase->txMask;
  175. case EEP_RX_MASK:
  176. return pBase->rxMask;
  177. case EEP_FRAC_N_5G:
  178. return 0;
  179. case EEP_PWR_TABLE_OFFSET:
  180. return AR5416_PWR_TABLE_OFFSET_DB;
  181. case EEP_MODAL_VER:
  182. return pModal->version;
  183. case EEP_ANT_DIV_CTL1:
  184. return pModal->antdiv_ctl1;
  185. case EEP_TXGAIN_TYPE:
  186. if (ver_minor >= AR5416_EEP_MINOR_VER_19)
  187. return pBase->txGainType;
  188. else
  189. return AR5416_EEP_TXGAIN_ORIGINAL;
  190. default:
  191. return 0;
  192. }
  193. }
  194. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  195. struct ath9k_channel *chan,
  196. struct cal_data_per_freq_4k *pRawDataSet,
  197. u8 *bChans, u16 availPiers,
  198. u16 tPdGainOverlap,
  199. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  200. u16 numXpdGains)
  201. {
  202. #define TMP_VAL_VPD_TABLE \
  203. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  204. int i, j, k;
  205. int16_t ss;
  206. u16 idxL = 0, idxR = 0, numPiers;
  207. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  208. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  209. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  210. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  211. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  212. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  213. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  214. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  215. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  216. int16_t vpdStep;
  217. int16_t tmpVal;
  218. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  219. bool match;
  220. int16_t minDelta = 0;
  221. struct chan_centers centers;
  222. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  223. memset(&minPwrT4, 0, AR9287_NUM_PD_GAINS);
  224. ath9k_hw_get_channel_centers(ah, chan, &centers);
  225. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  226. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  227. break;
  228. }
  229. match = ath9k_hw_get_lower_upper_index(
  230. (u8)FREQ2FBIN(centers.synth_center,
  231. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  232. &idxL, &idxR);
  233. if (match) {
  234. for (i = 0; i < numXpdGains; i++) {
  235. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  236. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  237. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  238. pRawDataSet[idxL].pwrPdg[i],
  239. pRawDataSet[idxL].vpdPdg[i],
  240. AR5416_EEP4K_PD_GAIN_ICEPTS,
  241. vpdTableI[i]);
  242. }
  243. } else {
  244. for (i = 0; i < numXpdGains; i++) {
  245. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  246. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  247. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  248. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  249. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  250. maxPwrT4[i] =
  251. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  252. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  253. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  254. pPwrL, pVpdL,
  255. AR5416_EEP4K_PD_GAIN_ICEPTS,
  256. vpdTableL[i]);
  257. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  258. pPwrR, pVpdR,
  259. AR5416_EEP4K_PD_GAIN_ICEPTS,
  260. vpdTableR[i]);
  261. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  262. vpdTableI[i][j] =
  263. (u8)(ath9k_hw_interpolate((u16)
  264. FREQ2FBIN(centers.
  265. synth_center,
  266. IS_CHAN_2GHZ
  267. (chan)),
  268. bChans[idxL], bChans[idxR],
  269. vpdTableL[i][j], vpdTableR[i][j]));
  270. }
  271. }
  272. }
  273. k = 0;
  274. for (i = 0; i < numXpdGains; i++) {
  275. if (i == (numXpdGains - 1))
  276. pPdGainBoundaries[i] =
  277. (u16)(maxPwrT4[i] / 2);
  278. else
  279. pPdGainBoundaries[i] =
  280. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  281. pPdGainBoundaries[i] =
  282. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  283. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  284. minDelta = pPdGainBoundaries[0] - 23;
  285. pPdGainBoundaries[0] = 23;
  286. } else {
  287. minDelta = 0;
  288. }
  289. if (i == 0) {
  290. if (AR_SREV_9280_20_OR_LATER(ah))
  291. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  292. else
  293. ss = 0;
  294. } else {
  295. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  296. (minPwrT4[i] / 2)) -
  297. tPdGainOverlap + 1 + minDelta);
  298. }
  299. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  300. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  301. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  302. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  303. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  304. ss++;
  305. }
  306. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  307. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  308. (minPwrT4[i] / 2));
  309. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  310. tgtIndex : sizeCurrVpdTable;
  311. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  312. pPDADCValues[k++] = vpdTableI[i][ss++];
  313. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  314. vpdTableI[i][sizeCurrVpdTable - 2]);
  315. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  316. if (tgtIndex >= maxIndex) {
  317. while ((ss <= tgtIndex) &&
  318. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  319. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  320. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  321. 255 : tmpVal);
  322. ss++;
  323. }
  324. }
  325. }
  326. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  327. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  328. i++;
  329. }
  330. while (k < AR5416_NUM_PDADC_VALUES) {
  331. pPDADCValues[k] = pPDADCValues[k - 1];
  332. k++;
  333. }
  334. return;
  335. #undef TMP_VAL_VPD_TABLE
  336. }
  337. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  338. struct ath9k_channel *chan,
  339. int16_t *pTxPowerIndexOffset)
  340. {
  341. struct ath_common *common = ath9k_hw_common(ah);
  342. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  343. struct cal_data_per_freq_4k *pRawDataset;
  344. u8 *pCalBChans = NULL;
  345. u16 pdGainOverlap_t2;
  346. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  347. u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
  348. u16 numPiers, i, j;
  349. u16 numXpdGain, xpdMask;
  350. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  351. u32 reg32, regOffset, regChainOffset;
  352. xpdMask = pEepData->modalHeader.xpdGain;
  353. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  354. AR5416_EEP_MINOR_VER_2) {
  355. pdGainOverlap_t2 =
  356. pEepData->modalHeader.pdGainOverlap;
  357. } else {
  358. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  359. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  360. }
  361. pCalBChans = pEepData->calFreqPier2G;
  362. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  363. numXpdGain = 0;
  364. for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
  365. if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
  366. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  367. break;
  368. xpdGainValues[numXpdGain] =
  369. (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
  370. numXpdGain++;
  371. }
  372. }
  373. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  374. (numXpdGain - 1) & 0x3);
  375. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  376. xpdGainValues[0]);
  377. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  378. xpdGainValues[1]);
  379. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  380. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  381. if (AR_SREV_5416_20_OR_LATER(ah) &&
  382. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  383. (i != 0)) {
  384. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  385. } else
  386. regChainOffset = i * 0x1000;
  387. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  388. pRawDataset = pEepData->calPierData2G[i];
  389. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  390. pRawDataset, pCalBChans,
  391. numPiers, pdGainOverlap_t2,
  392. gainBoundaries,
  393. pdadcValues, numXpdGain);
  394. ENABLE_REGWRITE_BUFFER(ah);
  395. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  396. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  397. SM(pdGainOverlap_t2,
  398. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  399. | SM(gainBoundaries[0],
  400. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  401. | SM(gainBoundaries[1],
  402. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  403. | SM(gainBoundaries[2],
  404. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  405. | SM(gainBoundaries[3],
  406. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  407. }
  408. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  409. for (j = 0; j < 32; j++) {
  410. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  411. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  412. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  413. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  414. REG_WRITE(ah, regOffset, reg32);
  415. ath_print(common, ATH_DBG_EEPROM,
  416. "PDADC (%d,%4x): %4.4x %8.8x\n",
  417. i, regChainOffset, regOffset,
  418. reg32);
  419. ath_print(common, ATH_DBG_EEPROM,
  420. "PDADC: Chain %d | "
  421. "PDADC %3d Value %3d | "
  422. "PDADC %3d Value %3d | "
  423. "PDADC %3d Value %3d | "
  424. "PDADC %3d Value %3d |\n",
  425. i, 4 * j, pdadcValues[4 * j],
  426. 4 * j + 1, pdadcValues[4 * j + 1],
  427. 4 * j + 2, pdadcValues[4 * j + 2],
  428. 4 * j + 3,
  429. pdadcValues[4 * j + 3]);
  430. regOffset += 4;
  431. }
  432. REGWRITE_BUFFER_FLUSH(ah);
  433. }
  434. }
  435. *pTxPowerIndexOffset = 0;
  436. }
  437. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  438. struct ath9k_channel *chan,
  439. int16_t *ratesArray,
  440. u16 cfgCtl,
  441. u16 AntennaReduction,
  442. u16 twiceMaxRegulatoryPower,
  443. u16 powerLimit)
  444. {
  445. #define CMP_TEST_GRP \
  446. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  447. pEepData->ctlIndex[i]) \
  448. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  449. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  450. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  451. int i;
  452. int16_t twiceLargestAntenna;
  453. u16 twiceMinEdgePower;
  454. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  455. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  456. u16 numCtlModes;
  457. const u16 *pCtlMode;
  458. u16 ctlMode, freq;
  459. struct chan_centers centers;
  460. struct cal_ctl_data_4k *rep;
  461. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  462. static const u16 tpScaleReductionTable[5] =
  463. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  464. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  465. 0, { 0, 0, 0, 0}
  466. };
  467. struct cal_target_power_leg targetPowerOfdmExt = {
  468. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  469. 0, { 0, 0, 0, 0 }
  470. };
  471. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  472. 0, {0, 0, 0, 0}
  473. };
  474. static const u16 ctlModesFor11g[] = {
  475. CTL_11B, CTL_11G, CTL_2GHT20,
  476. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  477. };
  478. ath9k_hw_get_channel_centers(ah, chan, &centers);
  479. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  480. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  481. twiceLargestAntenna, 0);
  482. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  483. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
  484. maxRegAllowedPower -=
  485. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  486. }
  487. scaledPower = min(powerLimit, maxRegAllowedPower);
  488. scaledPower = max((u16)0, scaledPower);
  489. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  490. pCtlMode = ctlModesFor11g;
  491. ath9k_hw_get_legacy_target_powers(ah, chan,
  492. pEepData->calTargetPowerCck,
  493. AR5416_NUM_2G_CCK_TARGET_POWERS,
  494. &targetPowerCck, 4, false);
  495. ath9k_hw_get_legacy_target_powers(ah, chan,
  496. pEepData->calTargetPower2G,
  497. AR5416_NUM_2G_20_TARGET_POWERS,
  498. &targetPowerOfdm, 4, false);
  499. ath9k_hw_get_target_powers(ah, chan,
  500. pEepData->calTargetPower2GHT20,
  501. AR5416_NUM_2G_20_TARGET_POWERS,
  502. &targetPowerHt20, 8, false);
  503. if (IS_CHAN_HT40(chan)) {
  504. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  505. ath9k_hw_get_target_powers(ah, chan,
  506. pEepData->calTargetPower2GHT40,
  507. AR5416_NUM_2G_40_TARGET_POWERS,
  508. &targetPowerHt40, 8, true);
  509. ath9k_hw_get_legacy_target_powers(ah, chan,
  510. pEepData->calTargetPowerCck,
  511. AR5416_NUM_2G_CCK_TARGET_POWERS,
  512. &targetPowerCckExt, 4, true);
  513. ath9k_hw_get_legacy_target_powers(ah, chan,
  514. pEepData->calTargetPower2G,
  515. AR5416_NUM_2G_20_TARGET_POWERS,
  516. &targetPowerOfdmExt, 4, true);
  517. }
  518. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  519. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  520. (pCtlMode[ctlMode] == CTL_2GHT40);
  521. if (isHt40CtlMode)
  522. freq = centers.synth_center;
  523. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  524. freq = centers.ext_center;
  525. else
  526. freq = centers.ctl_center;
  527. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  528. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  529. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  530. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  531. pEepData->ctlIndex[i]; i++) {
  532. if (CMP_TEST_GRP) {
  533. rep = &(pEepData->ctlData[i]);
  534. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  535. freq,
  536. rep->ctlEdges[
  537. ar5416_get_ntxchains(ah->txchainmask) - 1],
  538. IS_CHAN_2GHZ(chan),
  539. AR5416_EEP4K_NUM_BAND_EDGES);
  540. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  541. twiceMaxEdgePower =
  542. min(twiceMaxEdgePower,
  543. twiceMinEdgePower);
  544. } else {
  545. twiceMaxEdgePower = twiceMinEdgePower;
  546. break;
  547. }
  548. }
  549. }
  550. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  551. switch (pCtlMode[ctlMode]) {
  552. case CTL_11B:
  553. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  554. targetPowerCck.tPow2x[i] =
  555. min((u16)targetPowerCck.tPow2x[i],
  556. minCtlPower);
  557. }
  558. break;
  559. case CTL_11G:
  560. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  561. targetPowerOfdm.tPow2x[i] =
  562. min((u16)targetPowerOfdm.tPow2x[i],
  563. minCtlPower);
  564. }
  565. break;
  566. case CTL_2GHT20:
  567. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  568. targetPowerHt20.tPow2x[i] =
  569. min((u16)targetPowerHt20.tPow2x[i],
  570. minCtlPower);
  571. }
  572. break;
  573. case CTL_11B_EXT:
  574. targetPowerCckExt.tPow2x[0] =
  575. min((u16)targetPowerCckExt.tPow2x[0],
  576. minCtlPower);
  577. break;
  578. case CTL_11G_EXT:
  579. targetPowerOfdmExt.tPow2x[0] =
  580. min((u16)targetPowerOfdmExt.tPow2x[0],
  581. minCtlPower);
  582. break;
  583. case CTL_2GHT40:
  584. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  585. targetPowerHt40.tPow2x[i] =
  586. min((u16)targetPowerHt40.tPow2x[i],
  587. minCtlPower);
  588. }
  589. break;
  590. default:
  591. break;
  592. }
  593. }
  594. ratesArray[rate6mb] =
  595. ratesArray[rate9mb] =
  596. ratesArray[rate12mb] =
  597. ratesArray[rate18mb] =
  598. ratesArray[rate24mb] =
  599. targetPowerOfdm.tPow2x[0];
  600. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  601. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  602. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  603. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  604. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  605. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  606. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  607. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  608. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  609. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  610. if (IS_CHAN_HT40(chan)) {
  611. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  612. ratesArray[rateHt40_0 + i] =
  613. targetPowerHt40.tPow2x[i];
  614. }
  615. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  616. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  617. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  618. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  619. }
  620. #undef CMP_TEST_GRP
  621. }
  622. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  623. struct ath9k_channel *chan,
  624. u16 cfgCtl,
  625. u8 twiceAntennaReduction,
  626. u8 twiceMaxRegulatoryPower,
  627. u8 powerLimit, bool test)
  628. {
  629. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  630. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  631. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  632. int16_t ratesArray[Ar5416RateSize];
  633. int16_t txPowerIndexOffset = 0;
  634. u8 ht40PowerIncForPdadc = 2;
  635. int i;
  636. memset(ratesArray, 0, sizeof(ratesArray));
  637. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  638. AR5416_EEP_MINOR_VER_2) {
  639. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  640. }
  641. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  642. &ratesArray[0], cfgCtl,
  643. twiceAntennaReduction,
  644. twiceMaxRegulatoryPower,
  645. powerLimit);
  646. ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
  647. regulatory->max_power_level = 0;
  648. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  649. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  650. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  651. ratesArray[i] = AR5416_MAX_RATE_POWER;
  652. if (ratesArray[i] > regulatory->max_power_level)
  653. regulatory->max_power_level = ratesArray[i];
  654. }
  655. if (test)
  656. return;
  657. /* Update regulatory */
  658. i = rate6mb;
  659. if (IS_CHAN_HT40(chan))
  660. i = rateHt40_0;
  661. else if (IS_CHAN_HT20(chan))
  662. i = rateHt20_0;
  663. regulatory->max_power_level = ratesArray[i];
  664. if (AR_SREV_9280_20_OR_LATER(ah)) {
  665. for (i = 0; i < Ar5416RateSize; i++)
  666. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  667. }
  668. ENABLE_REGWRITE_BUFFER(ah);
  669. /* OFDM power per rate */
  670. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  671. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  672. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  673. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  674. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  675. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  676. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  677. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  678. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  679. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  680. /* CCK power per rate */
  681. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  682. ATH9K_POW_SM(ratesArray[rate2s], 24)
  683. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  684. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  685. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  686. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  687. ATH9K_POW_SM(ratesArray[rate11s], 24)
  688. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  689. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  690. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  691. /* HT20 power per rate */
  692. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  693. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  694. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  695. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  696. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  697. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  698. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  699. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  700. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  701. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  702. /* HT40 power per rate */
  703. if (IS_CHAN_HT40(chan)) {
  704. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  705. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  706. ht40PowerIncForPdadc, 24)
  707. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  708. ht40PowerIncForPdadc, 16)
  709. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  710. ht40PowerIncForPdadc, 8)
  711. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  712. ht40PowerIncForPdadc, 0));
  713. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  714. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  715. ht40PowerIncForPdadc, 24)
  716. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  717. ht40PowerIncForPdadc, 16)
  718. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  719. ht40PowerIncForPdadc, 8)
  720. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  721. ht40PowerIncForPdadc, 0));
  722. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  723. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  724. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  725. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  726. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  727. }
  728. REGWRITE_BUFFER_FLUSH(ah);
  729. }
  730. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  731. struct ath9k_channel *chan)
  732. {
  733. struct modal_eep_4k_header *pModal;
  734. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  735. u8 biaslevel;
  736. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  737. return;
  738. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  739. return;
  740. pModal = &eep->modalHeader;
  741. if (pModal->xpaBiasLvl != 0xff) {
  742. biaslevel = pModal->xpaBiasLvl;
  743. INI_RA(&ah->iniAddac, 7, 1) =
  744. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  745. }
  746. }
  747. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  748. struct modal_eep_4k_header *pModal,
  749. struct ar5416_eeprom_4k *eep,
  750. u8 txRxAttenLocal)
  751. {
  752. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  753. pModal->antCtrlChain[0]);
  754. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
  755. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  756. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  757. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  758. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  759. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  760. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  761. AR5416_EEP_MINOR_VER_3) {
  762. txRxAttenLocal = pModal->txRxAttenCh[0];
  763. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  764. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  765. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  766. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  767. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  768. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  769. pModal->xatten2Margin[0]);
  770. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  771. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  772. /* Set the block 1 value to block 0 value */
  773. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  774. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  775. pModal->bswMargin[0]);
  776. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  777. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  778. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  779. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  780. pModal->xatten2Margin[0]);
  781. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  782. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  783. pModal->xatten2Db[0]);
  784. }
  785. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  786. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  787. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  788. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  789. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  790. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  791. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  792. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  793. }
  794. /*
  795. * Read EEPROM header info and program the device for correct operation
  796. * given the channel value.
  797. */
  798. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  799. struct ath9k_channel *chan)
  800. {
  801. struct modal_eep_4k_header *pModal;
  802. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  803. u8 txRxAttenLocal;
  804. u8 ob[5], db1[5], db2[5];
  805. u8 ant_div_control1, ant_div_control2;
  806. u32 regVal;
  807. pModal = &eep->modalHeader;
  808. txRxAttenLocal = 23;
  809. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  810. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  811. /* Single chain for 4K EEPROM*/
  812. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  813. /* Initialize Ant Diversity settings from EEPROM */
  814. if (pModal->version >= 3) {
  815. ant_div_control1 = pModal->antdiv_ctl1;
  816. ant_div_control2 = pModal->antdiv_ctl2;
  817. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  818. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  819. regVal |= SM(ant_div_control1,
  820. AR_PHY_9285_ANT_DIV_CTL);
  821. regVal |= SM(ant_div_control2,
  822. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  823. regVal |= SM((ant_div_control2 >> 2),
  824. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  825. regVal |= SM((ant_div_control1 >> 1),
  826. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  827. regVal |= SM((ant_div_control1 >> 2),
  828. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  829. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  830. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  831. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  832. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  833. regVal |= SM((ant_div_control1 >> 3),
  834. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  835. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  836. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  837. }
  838. if (pModal->version >= 2) {
  839. ob[0] = pModal->ob_0;
  840. ob[1] = pModal->ob_1;
  841. ob[2] = pModal->ob_2;
  842. ob[3] = pModal->ob_3;
  843. ob[4] = pModal->ob_4;
  844. db1[0] = pModal->db1_0;
  845. db1[1] = pModal->db1_1;
  846. db1[2] = pModal->db1_2;
  847. db1[3] = pModal->db1_3;
  848. db1[4] = pModal->db1_4;
  849. db2[0] = pModal->db2_0;
  850. db2[1] = pModal->db2_1;
  851. db2[2] = pModal->db2_2;
  852. db2[3] = pModal->db2_3;
  853. db2[4] = pModal->db2_4;
  854. } else if (pModal->version == 1) {
  855. ob[0] = pModal->ob_0;
  856. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  857. db1[0] = pModal->db1_0;
  858. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  859. db2[0] = pModal->db2_0;
  860. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  861. } else {
  862. int i;
  863. for (i = 0; i < 5; i++) {
  864. ob[i] = pModal->ob_0;
  865. db1[i] = pModal->db1_0;
  866. db2[i] = pModal->db1_0;
  867. }
  868. }
  869. if (AR_SREV_9271(ah)) {
  870. ath9k_hw_analog_shift_rmw(ah,
  871. AR9285_AN_RF2G3,
  872. AR9271_AN_RF2G3_OB_cck,
  873. AR9271_AN_RF2G3_OB_cck_S,
  874. ob[0]);
  875. ath9k_hw_analog_shift_rmw(ah,
  876. AR9285_AN_RF2G3,
  877. AR9271_AN_RF2G3_OB_psk,
  878. AR9271_AN_RF2G3_OB_psk_S,
  879. ob[1]);
  880. ath9k_hw_analog_shift_rmw(ah,
  881. AR9285_AN_RF2G3,
  882. AR9271_AN_RF2G3_OB_qam,
  883. AR9271_AN_RF2G3_OB_qam_S,
  884. ob[2]);
  885. ath9k_hw_analog_shift_rmw(ah,
  886. AR9285_AN_RF2G3,
  887. AR9271_AN_RF2G3_DB_1,
  888. AR9271_AN_RF2G3_DB_1_S,
  889. db1[0]);
  890. ath9k_hw_analog_shift_rmw(ah,
  891. AR9285_AN_RF2G4,
  892. AR9271_AN_RF2G4_DB_2,
  893. AR9271_AN_RF2G4_DB_2_S,
  894. db2[0]);
  895. } else {
  896. ath9k_hw_analog_shift_rmw(ah,
  897. AR9285_AN_RF2G3,
  898. AR9285_AN_RF2G3_OB_0,
  899. AR9285_AN_RF2G3_OB_0_S,
  900. ob[0]);
  901. ath9k_hw_analog_shift_rmw(ah,
  902. AR9285_AN_RF2G3,
  903. AR9285_AN_RF2G3_OB_1,
  904. AR9285_AN_RF2G3_OB_1_S,
  905. ob[1]);
  906. ath9k_hw_analog_shift_rmw(ah,
  907. AR9285_AN_RF2G3,
  908. AR9285_AN_RF2G3_OB_2,
  909. AR9285_AN_RF2G3_OB_2_S,
  910. ob[2]);
  911. ath9k_hw_analog_shift_rmw(ah,
  912. AR9285_AN_RF2G3,
  913. AR9285_AN_RF2G3_OB_3,
  914. AR9285_AN_RF2G3_OB_3_S,
  915. ob[3]);
  916. ath9k_hw_analog_shift_rmw(ah,
  917. AR9285_AN_RF2G3,
  918. AR9285_AN_RF2G3_OB_4,
  919. AR9285_AN_RF2G3_OB_4_S,
  920. ob[4]);
  921. ath9k_hw_analog_shift_rmw(ah,
  922. AR9285_AN_RF2G3,
  923. AR9285_AN_RF2G3_DB1_0,
  924. AR9285_AN_RF2G3_DB1_0_S,
  925. db1[0]);
  926. ath9k_hw_analog_shift_rmw(ah,
  927. AR9285_AN_RF2G3,
  928. AR9285_AN_RF2G3_DB1_1,
  929. AR9285_AN_RF2G3_DB1_1_S,
  930. db1[1]);
  931. ath9k_hw_analog_shift_rmw(ah,
  932. AR9285_AN_RF2G3,
  933. AR9285_AN_RF2G3_DB1_2,
  934. AR9285_AN_RF2G3_DB1_2_S,
  935. db1[2]);
  936. ath9k_hw_analog_shift_rmw(ah,
  937. AR9285_AN_RF2G4,
  938. AR9285_AN_RF2G4_DB1_3,
  939. AR9285_AN_RF2G4_DB1_3_S,
  940. db1[3]);
  941. ath9k_hw_analog_shift_rmw(ah,
  942. AR9285_AN_RF2G4,
  943. AR9285_AN_RF2G4_DB1_4,
  944. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  945. ath9k_hw_analog_shift_rmw(ah,
  946. AR9285_AN_RF2G4,
  947. AR9285_AN_RF2G4_DB2_0,
  948. AR9285_AN_RF2G4_DB2_0_S,
  949. db2[0]);
  950. ath9k_hw_analog_shift_rmw(ah,
  951. AR9285_AN_RF2G4,
  952. AR9285_AN_RF2G4_DB2_1,
  953. AR9285_AN_RF2G4_DB2_1_S,
  954. db2[1]);
  955. ath9k_hw_analog_shift_rmw(ah,
  956. AR9285_AN_RF2G4,
  957. AR9285_AN_RF2G4_DB2_2,
  958. AR9285_AN_RF2G4_DB2_2_S,
  959. db2[2]);
  960. ath9k_hw_analog_shift_rmw(ah,
  961. AR9285_AN_RF2G4,
  962. AR9285_AN_RF2G4_DB2_3,
  963. AR9285_AN_RF2G4_DB2_3_S,
  964. db2[3]);
  965. ath9k_hw_analog_shift_rmw(ah,
  966. AR9285_AN_RF2G4,
  967. AR9285_AN_RF2G4_DB2_4,
  968. AR9285_AN_RF2G4_DB2_4_S,
  969. db2[4]);
  970. }
  971. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  972. pModal->switchSettling);
  973. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  974. pModal->adcDesiredSize);
  975. REG_WRITE(ah, AR_PHY_RF_CTL4,
  976. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  977. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  978. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  979. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  980. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  981. pModal->txEndToRxOn);
  982. if (AR_SREV_9271_10(ah))
  983. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  984. pModal->txEndToRxOn);
  985. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  986. pModal->thresh62);
  987. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  988. pModal->thresh62);
  989. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  990. AR5416_EEP_MINOR_VER_2) {
  991. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  992. pModal->txFrameToDataStart);
  993. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  994. pModal->txFrameToPaOn);
  995. }
  996. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  997. AR5416_EEP_MINOR_VER_3) {
  998. if (IS_CHAN_HT40(chan))
  999. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  1000. AR_PHY_SETTLING_SWITCH,
  1001. pModal->swSettleHt40);
  1002. }
  1003. }
  1004. static u32 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  1005. struct ath9k_channel *chan)
  1006. {
  1007. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  1008. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  1009. return pModal->antCtrlCommon;
  1010. }
  1011. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  1012. enum ath9k_hal_freq_band freq_band)
  1013. {
  1014. return 1;
  1015. }
  1016. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  1017. {
  1018. #define EEP_MAP4K_SPURCHAN \
  1019. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  1020. struct ath_common *common = ath9k_hw_common(ah);
  1021. u16 spur_val = AR_NO_SPUR;
  1022. ath_print(common, ATH_DBG_ANI,
  1023. "Getting spur idx %d is2Ghz. %d val %x\n",
  1024. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1025. switch (ah->config.spurmode) {
  1026. case SPUR_DISABLE:
  1027. break;
  1028. case SPUR_ENABLE_IOCTL:
  1029. spur_val = ah->config.spurchans[i][is2GHz];
  1030. ath_print(common, ATH_DBG_ANI,
  1031. "Getting spur val from new loc. %d\n", spur_val);
  1032. break;
  1033. case SPUR_ENABLE_EEPROM:
  1034. spur_val = EEP_MAP4K_SPURCHAN;
  1035. break;
  1036. }
  1037. return spur_val;
  1038. #undef EEP_MAP4K_SPURCHAN
  1039. }
  1040. const struct eeprom_ops eep_4k_ops = {
  1041. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1042. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1043. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1044. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1045. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1046. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1047. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1048. .set_board_values = ath9k_hw_4k_set_board_values,
  1049. .set_addac = ath9k_hw_4k_set_addac,
  1050. .set_txpower = ath9k_hw_4k_set_txpower,
  1051. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1052. };