page_alloc.c 168 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/div64.h>
  62. #include "internal.h"
  63. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  64. DEFINE_PER_CPU(int, numa_node);
  65. EXPORT_PER_CPU_SYMBOL(numa_node);
  66. #endif
  67. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  68. /*
  69. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  70. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  71. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  72. * defined in <linux/topology.h>.
  73. */
  74. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  75. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  76. #endif
  77. /*
  78. * Array of node states.
  79. */
  80. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  81. [N_POSSIBLE] = NODE_MASK_ALL,
  82. [N_ONLINE] = { { [0] = 1UL } },
  83. #ifndef CONFIG_NUMA
  84. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  85. #ifdef CONFIG_HIGHMEM
  86. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  87. #endif
  88. [N_CPU] = { { [0] = 1UL } },
  89. #endif /* NUMA */
  90. };
  91. EXPORT_SYMBOL(node_states);
  92. unsigned long totalram_pages __read_mostly;
  93. unsigned long totalreserve_pages __read_mostly;
  94. /*
  95. * When calculating the number of globally allowed dirty pages, there
  96. * is a certain number of per-zone reserves that should not be
  97. * considered dirtyable memory. This is the sum of those reserves
  98. * over all existing zones that contribute dirtyable memory.
  99. */
  100. unsigned long dirty_balance_reserve __read_mostly;
  101. int percpu_pagelist_fraction;
  102. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  103. #ifdef CONFIG_PM_SLEEP
  104. /*
  105. * The following functions are used by the suspend/hibernate code to temporarily
  106. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  107. * while devices are suspended. To avoid races with the suspend/hibernate code,
  108. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  109. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  110. * guaranteed not to run in parallel with that modification).
  111. */
  112. static gfp_t saved_gfp_mask;
  113. void pm_restore_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. if (saved_gfp_mask) {
  117. gfp_allowed_mask = saved_gfp_mask;
  118. saved_gfp_mask = 0;
  119. }
  120. }
  121. void pm_restrict_gfp_mask(void)
  122. {
  123. WARN_ON(!mutex_is_locked(&pm_mutex));
  124. WARN_ON(saved_gfp_mask);
  125. saved_gfp_mask = gfp_allowed_mask;
  126. gfp_allowed_mask &= ~GFP_IOFS;
  127. }
  128. bool pm_suspended_storage(void)
  129. {
  130. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  131. return false;
  132. return true;
  133. }
  134. #endif /* CONFIG_PM_SLEEP */
  135. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  136. int pageblock_order __read_mostly;
  137. #endif
  138. static void __free_pages_ok(struct page *page, unsigned int order);
  139. /*
  140. * results with 256, 32 in the lowmem_reserve sysctl:
  141. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  142. * 1G machine -> (16M dma, 784M normal, 224M high)
  143. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  144. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  145. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  146. *
  147. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  148. * don't need any ZONE_NORMAL reservation
  149. */
  150. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  151. #ifdef CONFIG_ZONE_DMA
  152. 256,
  153. #endif
  154. #ifdef CONFIG_ZONE_DMA32
  155. 256,
  156. #endif
  157. #ifdef CONFIG_HIGHMEM
  158. 32,
  159. #endif
  160. 32,
  161. };
  162. EXPORT_SYMBOL(totalram_pages);
  163. static char * const zone_names[MAX_NR_ZONES] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. "DMA",
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. "DMA32",
  169. #endif
  170. "Normal",
  171. #ifdef CONFIG_HIGHMEM
  172. "HighMem",
  173. #endif
  174. "Movable",
  175. };
  176. int min_free_kbytes = 1024;
  177. static unsigned long __meminitdata nr_kernel_pages;
  178. static unsigned long __meminitdata nr_all_pages;
  179. static unsigned long __meminitdata dma_reserve;
  180. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  181. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  182. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  183. static unsigned long __initdata required_kernelcore;
  184. static unsigned long __initdata required_movablecore;
  185. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  186. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  187. int movable_zone;
  188. EXPORT_SYMBOL(movable_zone);
  189. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  190. #if MAX_NUMNODES > 1
  191. int nr_node_ids __read_mostly = MAX_NUMNODES;
  192. int nr_online_nodes __read_mostly = 1;
  193. EXPORT_SYMBOL(nr_node_ids);
  194. EXPORT_SYMBOL(nr_online_nodes);
  195. #endif
  196. int page_group_by_mobility_disabled __read_mostly;
  197. /*
  198. * NOTE:
  199. * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
  200. * Instead, use {un}set_pageblock_isolate.
  201. */
  202. void set_pageblock_migratetype(struct page *page, int migratetype)
  203. {
  204. if (unlikely(page_group_by_mobility_disabled))
  205. migratetype = MIGRATE_UNMOVABLE;
  206. set_pageblock_flags_group(page, (unsigned long)migratetype,
  207. PB_migrate, PB_migrate_end);
  208. }
  209. bool oom_killer_disabled __read_mostly;
  210. #ifdef CONFIG_DEBUG_VM
  211. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  212. {
  213. int ret = 0;
  214. unsigned seq;
  215. unsigned long pfn = page_to_pfn(page);
  216. do {
  217. seq = zone_span_seqbegin(zone);
  218. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  219. ret = 1;
  220. else if (pfn < zone->zone_start_pfn)
  221. ret = 1;
  222. } while (zone_span_seqretry(zone, seq));
  223. return ret;
  224. }
  225. static int page_is_consistent(struct zone *zone, struct page *page)
  226. {
  227. if (!pfn_valid_within(page_to_pfn(page)))
  228. return 0;
  229. if (zone != page_zone(page))
  230. return 0;
  231. return 1;
  232. }
  233. /*
  234. * Temporary debugging check for pages not lying within a given zone.
  235. */
  236. static int bad_range(struct zone *zone, struct page *page)
  237. {
  238. if (page_outside_zone_boundaries(zone, page))
  239. return 1;
  240. if (!page_is_consistent(zone, page))
  241. return 1;
  242. return 0;
  243. }
  244. #else
  245. static inline int bad_range(struct zone *zone, struct page *page)
  246. {
  247. return 0;
  248. }
  249. #endif
  250. static void bad_page(struct page *page)
  251. {
  252. static unsigned long resume;
  253. static unsigned long nr_shown;
  254. static unsigned long nr_unshown;
  255. /* Don't complain about poisoned pages */
  256. if (PageHWPoison(page)) {
  257. reset_page_mapcount(page); /* remove PageBuddy */
  258. return;
  259. }
  260. /*
  261. * Allow a burst of 60 reports, then keep quiet for that minute;
  262. * or allow a steady drip of one report per second.
  263. */
  264. if (nr_shown == 60) {
  265. if (time_before(jiffies, resume)) {
  266. nr_unshown++;
  267. goto out;
  268. }
  269. if (nr_unshown) {
  270. printk(KERN_ALERT
  271. "BUG: Bad page state: %lu messages suppressed\n",
  272. nr_unshown);
  273. nr_unshown = 0;
  274. }
  275. nr_shown = 0;
  276. }
  277. if (nr_shown++ == 0)
  278. resume = jiffies + 60 * HZ;
  279. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  280. current->comm, page_to_pfn(page));
  281. dump_page(page);
  282. print_modules();
  283. dump_stack();
  284. out:
  285. /* Leave bad fields for debug, except PageBuddy could make trouble */
  286. reset_page_mapcount(page); /* remove PageBuddy */
  287. add_taint(TAINT_BAD_PAGE);
  288. }
  289. /*
  290. * Higher-order pages are called "compound pages". They are structured thusly:
  291. *
  292. * The first PAGE_SIZE page is called the "head page".
  293. *
  294. * The remaining PAGE_SIZE pages are called "tail pages".
  295. *
  296. * All pages have PG_compound set. All tail pages have their ->first_page
  297. * pointing at the head page.
  298. *
  299. * The first tail page's ->lru.next holds the address of the compound page's
  300. * put_page() function. Its ->lru.prev holds the order of allocation.
  301. * This usage means that zero-order pages may not be compound.
  302. */
  303. static void free_compound_page(struct page *page)
  304. {
  305. __free_pages_ok(page, compound_order(page));
  306. }
  307. void prep_compound_page(struct page *page, unsigned long order)
  308. {
  309. int i;
  310. int nr_pages = 1 << order;
  311. set_compound_page_dtor(page, free_compound_page);
  312. set_compound_order(page, order);
  313. __SetPageHead(page);
  314. for (i = 1; i < nr_pages; i++) {
  315. struct page *p = page + i;
  316. __SetPageTail(p);
  317. set_page_count(p, 0);
  318. p->first_page = page;
  319. }
  320. }
  321. /* update __split_huge_page_refcount if you change this function */
  322. static int destroy_compound_page(struct page *page, unsigned long order)
  323. {
  324. int i;
  325. int nr_pages = 1 << order;
  326. int bad = 0;
  327. if (unlikely(compound_order(page) != order) ||
  328. unlikely(!PageHead(page))) {
  329. bad_page(page);
  330. bad++;
  331. }
  332. __ClearPageHead(page);
  333. for (i = 1; i < nr_pages; i++) {
  334. struct page *p = page + i;
  335. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  336. bad_page(page);
  337. bad++;
  338. }
  339. __ClearPageTail(p);
  340. }
  341. return bad;
  342. }
  343. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  344. {
  345. int i;
  346. /*
  347. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  348. * and __GFP_HIGHMEM from hard or soft interrupt context.
  349. */
  350. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  351. for (i = 0; i < (1 << order); i++)
  352. clear_highpage(page + i);
  353. }
  354. #ifdef CONFIG_DEBUG_PAGEALLOC
  355. unsigned int _debug_guardpage_minorder;
  356. static int __init debug_guardpage_minorder_setup(char *buf)
  357. {
  358. unsigned long res;
  359. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  360. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  361. return 0;
  362. }
  363. _debug_guardpage_minorder = res;
  364. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  365. return 0;
  366. }
  367. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  368. static inline void set_page_guard_flag(struct page *page)
  369. {
  370. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  371. }
  372. static inline void clear_page_guard_flag(struct page *page)
  373. {
  374. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  375. }
  376. #else
  377. static inline void set_page_guard_flag(struct page *page) { }
  378. static inline void clear_page_guard_flag(struct page *page) { }
  379. #endif
  380. static inline void set_page_order(struct page *page, int order)
  381. {
  382. set_page_private(page, order);
  383. __SetPageBuddy(page);
  384. }
  385. static inline void rmv_page_order(struct page *page)
  386. {
  387. __ClearPageBuddy(page);
  388. set_page_private(page, 0);
  389. }
  390. /*
  391. * Locate the struct page for both the matching buddy in our
  392. * pair (buddy1) and the combined O(n+1) page they form (page).
  393. *
  394. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  395. * the following equation:
  396. * B2 = B1 ^ (1 << O)
  397. * For example, if the starting buddy (buddy2) is #8 its order
  398. * 1 buddy is #10:
  399. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  400. *
  401. * 2) Any buddy B will have an order O+1 parent P which
  402. * satisfies the following equation:
  403. * P = B & ~(1 << O)
  404. *
  405. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  406. */
  407. static inline unsigned long
  408. __find_buddy_index(unsigned long page_idx, unsigned int order)
  409. {
  410. return page_idx ^ (1 << order);
  411. }
  412. /*
  413. * This function checks whether a page is free && is the buddy
  414. * we can do coalesce a page and its buddy if
  415. * (a) the buddy is not in a hole &&
  416. * (b) the buddy is in the buddy system &&
  417. * (c) a page and its buddy have the same order &&
  418. * (d) a page and its buddy are in the same zone.
  419. *
  420. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  421. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  422. *
  423. * For recording page's order, we use page_private(page).
  424. */
  425. static inline int page_is_buddy(struct page *page, struct page *buddy,
  426. int order)
  427. {
  428. if (!pfn_valid_within(page_to_pfn(buddy)))
  429. return 0;
  430. if (page_zone_id(page) != page_zone_id(buddy))
  431. return 0;
  432. if (page_is_guard(buddy) && page_order(buddy) == order) {
  433. VM_BUG_ON(page_count(buddy) != 0);
  434. return 1;
  435. }
  436. if (PageBuddy(buddy) && page_order(buddy) == order) {
  437. VM_BUG_ON(page_count(buddy) != 0);
  438. return 1;
  439. }
  440. return 0;
  441. }
  442. /*
  443. * Freeing function for a buddy system allocator.
  444. *
  445. * The concept of a buddy system is to maintain direct-mapped table
  446. * (containing bit values) for memory blocks of various "orders".
  447. * The bottom level table contains the map for the smallest allocatable
  448. * units of memory (here, pages), and each level above it describes
  449. * pairs of units from the levels below, hence, "buddies".
  450. * At a high level, all that happens here is marking the table entry
  451. * at the bottom level available, and propagating the changes upward
  452. * as necessary, plus some accounting needed to play nicely with other
  453. * parts of the VM system.
  454. * At each level, we keep a list of pages, which are heads of continuous
  455. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  456. * order is recorded in page_private(page) field.
  457. * So when we are allocating or freeing one, we can derive the state of the
  458. * other. That is, if we allocate a small block, and both were
  459. * free, the remainder of the region must be split into blocks.
  460. * If a block is freed, and its buddy is also free, then this
  461. * triggers coalescing into a block of larger size.
  462. *
  463. * -- wli
  464. */
  465. static inline void __free_one_page(struct page *page,
  466. struct zone *zone, unsigned int order,
  467. int migratetype)
  468. {
  469. unsigned long page_idx;
  470. unsigned long combined_idx;
  471. unsigned long uninitialized_var(buddy_idx);
  472. struct page *buddy;
  473. if (unlikely(PageCompound(page)))
  474. if (unlikely(destroy_compound_page(page, order)))
  475. return;
  476. VM_BUG_ON(migratetype == -1);
  477. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  478. VM_BUG_ON(page_idx & ((1 << order) - 1));
  479. VM_BUG_ON(bad_range(zone, page));
  480. while (order < MAX_ORDER-1) {
  481. buddy_idx = __find_buddy_index(page_idx, order);
  482. buddy = page + (buddy_idx - page_idx);
  483. if (!page_is_buddy(page, buddy, order))
  484. break;
  485. /*
  486. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  487. * merge with it and move up one order.
  488. */
  489. if (page_is_guard(buddy)) {
  490. clear_page_guard_flag(buddy);
  491. set_page_private(page, 0);
  492. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  493. } else {
  494. list_del(&buddy->lru);
  495. zone->free_area[order].nr_free--;
  496. rmv_page_order(buddy);
  497. }
  498. combined_idx = buddy_idx & page_idx;
  499. page = page + (combined_idx - page_idx);
  500. page_idx = combined_idx;
  501. order++;
  502. }
  503. set_page_order(page, order);
  504. /*
  505. * If this is not the largest possible page, check if the buddy
  506. * of the next-highest order is free. If it is, it's possible
  507. * that pages are being freed that will coalesce soon. In case,
  508. * that is happening, add the free page to the tail of the list
  509. * so it's less likely to be used soon and more likely to be merged
  510. * as a higher order page
  511. */
  512. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  513. struct page *higher_page, *higher_buddy;
  514. combined_idx = buddy_idx & page_idx;
  515. higher_page = page + (combined_idx - page_idx);
  516. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  517. higher_buddy = higher_page + (buddy_idx - combined_idx);
  518. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  519. list_add_tail(&page->lru,
  520. &zone->free_area[order].free_list[migratetype]);
  521. goto out;
  522. }
  523. }
  524. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  525. out:
  526. zone->free_area[order].nr_free++;
  527. }
  528. /*
  529. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  530. * Page should not be on lru, so no need to fix that up.
  531. * free_pages_check() will verify...
  532. */
  533. static inline void free_page_mlock(struct page *page)
  534. {
  535. __dec_zone_page_state(page, NR_MLOCK);
  536. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  537. }
  538. static inline int free_pages_check(struct page *page)
  539. {
  540. if (unlikely(page_mapcount(page) |
  541. (page->mapping != NULL) |
  542. (atomic_read(&page->_count) != 0) |
  543. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  544. (mem_cgroup_bad_page_check(page)))) {
  545. bad_page(page);
  546. return 1;
  547. }
  548. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  549. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  550. return 0;
  551. }
  552. /*
  553. * Frees a number of pages from the PCP lists
  554. * Assumes all pages on list are in same zone, and of same order.
  555. * count is the number of pages to free.
  556. *
  557. * If the zone was previously in an "all pages pinned" state then look to
  558. * see if this freeing clears that state.
  559. *
  560. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  561. * pinned" detection logic.
  562. */
  563. static void free_pcppages_bulk(struct zone *zone, int count,
  564. struct per_cpu_pages *pcp)
  565. {
  566. int migratetype = 0;
  567. int batch_free = 0;
  568. int to_free = count;
  569. spin_lock(&zone->lock);
  570. zone->all_unreclaimable = 0;
  571. zone->pages_scanned = 0;
  572. while (to_free) {
  573. struct page *page;
  574. struct list_head *list;
  575. /*
  576. * Remove pages from lists in a round-robin fashion. A
  577. * batch_free count is maintained that is incremented when an
  578. * empty list is encountered. This is so more pages are freed
  579. * off fuller lists instead of spinning excessively around empty
  580. * lists
  581. */
  582. do {
  583. batch_free++;
  584. if (++migratetype == MIGRATE_PCPTYPES)
  585. migratetype = 0;
  586. list = &pcp->lists[migratetype];
  587. } while (list_empty(list));
  588. /* This is the only non-empty list. Free them all. */
  589. if (batch_free == MIGRATE_PCPTYPES)
  590. batch_free = to_free;
  591. do {
  592. int mt; /* migratetype of the to-be-freed page */
  593. page = list_entry(list->prev, struct page, lru);
  594. /* must delete as __free_one_page list manipulates */
  595. list_del(&page->lru);
  596. mt = page_private(page);
  597. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  598. __free_one_page(page, zone, 0, mt);
  599. trace_mm_page_pcpu_drain(page, 0, mt);
  600. } while (--to_free && --batch_free && !list_empty(list));
  601. }
  602. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  603. spin_unlock(&zone->lock);
  604. }
  605. static void free_one_page(struct zone *zone, struct page *page, int order,
  606. int migratetype)
  607. {
  608. spin_lock(&zone->lock);
  609. zone->all_unreclaimable = 0;
  610. zone->pages_scanned = 0;
  611. __free_one_page(page, zone, order, migratetype);
  612. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  613. spin_unlock(&zone->lock);
  614. }
  615. static bool free_pages_prepare(struct page *page, unsigned int order)
  616. {
  617. int i;
  618. int bad = 0;
  619. trace_mm_page_free(page, order);
  620. kmemcheck_free_shadow(page, order);
  621. if (PageAnon(page))
  622. page->mapping = NULL;
  623. for (i = 0; i < (1 << order); i++)
  624. bad += free_pages_check(page + i);
  625. if (bad)
  626. return false;
  627. if (!PageHighMem(page)) {
  628. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  629. debug_check_no_obj_freed(page_address(page),
  630. PAGE_SIZE << order);
  631. }
  632. arch_free_page(page, order);
  633. kernel_map_pages(page, 1 << order, 0);
  634. return true;
  635. }
  636. static void __free_pages_ok(struct page *page, unsigned int order)
  637. {
  638. unsigned long flags;
  639. int wasMlocked = __TestClearPageMlocked(page);
  640. if (!free_pages_prepare(page, order))
  641. return;
  642. local_irq_save(flags);
  643. if (unlikely(wasMlocked))
  644. free_page_mlock(page);
  645. __count_vm_events(PGFREE, 1 << order);
  646. free_one_page(page_zone(page), page, order,
  647. get_pageblock_migratetype(page));
  648. local_irq_restore(flags);
  649. }
  650. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  651. {
  652. unsigned int nr_pages = 1 << order;
  653. unsigned int loop;
  654. prefetchw(page);
  655. for (loop = 0; loop < nr_pages; loop++) {
  656. struct page *p = &page[loop];
  657. if (loop + 1 < nr_pages)
  658. prefetchw(p + 1);
  659. __ClearPageReserved(p);
  660. set_page_count(p, 0);
  661. }
  662. set_page_refcounted(page);
  663. __free_pages(page, order);
  664. }
  665. #ifdef CONFIG_CMA
  666. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  667. void __init init_cma_reserved_pageblock(struct page *page)
  668. {
  669. unsigned i = pageblock_nr_pages;
  670. struct page *p = page;
  671. do {
  672. __ClearPageReserved(p);
  673. set_page_count(p, 0);
  674. } while (++p, --i);
  675. set_page_refcounted(page);
  676. set_pageblock_migratetype(page, MIGRATE_CMA);
  677. __free_pages(page, pageblock_order);
  678. totalram_pages += pageblock_nr_pages;
  679. }
  680. #endif
  681. /*
  682. * The order of subdivision here is critical for the IO subsystem.
  683. * Please do not alter this order without good reasons and regression
  684. * testing. Specifically, as large blocks of memory are subdivided,
  685. * the order in which smaller blocks are delivered depends on the order
  686. * they're subdivided in this function. This is the primary factor
  687. * influencing the order in which pages are delivered to the IO
  688. * subsystem according to empirical testing, and this is also justified
  689. * by considering the behavior of a buddy system containing a single
  690. * large block of memory acted on by a series of small allocations.
  691. * This behavior is a critical factor in sglist merging's success.
  692. *
  693. * -- wli
  694. */
  695. static inline void expand(struct zone *zone, struct page *page,
  696. int low, int high, struct free_area *area,
  697. int migratetype)
  698. {
  699. unsigned long size = 1 << high;
  700. while (high > low) {
  701. area--;
  702. high--;
  703. size >>= 1;
  704. VM_BUG_ON(bad_range(zone, &page[size]));
  705. #ifdef CONFIG_DEBUG_PAGEALLOC
  706. if (high < debug_guardpage_minorder()) {
  707. /*
  708. * Mark as guard pages (or page), that will allow to
  709. * merge back to allocator when buddy will be freed.
  710. * Corresponding page table entries will not be touched,
  711. * pages will stay not present in virtual address space
  712. */
  713. INIT_LIST_HEAD(&page[size].lru);
  714. set_page_guard_flag(&page[size]);
  715. set_page_private(&page[size], high);
  716. /* Guard pages are not available for any usage */
  717. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
  718. continue;
  719. }
  720. #endif
  721. list_add(&page[size].lru, &area->free_list[migratetype]);
  722. area->nr_free++;
  723. set_page_order(&page[size], high);
  724. }
  725. }
  726. /*
  727. * This page is about to be returned from the page allocator
  728. */
  729. static inline int check_new_page(struct page *page)
  730. {
  731. if (unlikely(page_mapcount(page) |
  732. (page->mapping != NULL) |
  733. (atomic_read(&page->_count) != 0) |
  734. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  735. (mem_cgroup_bad_page_check(page)))) {
  736. bad_page(page);
  737. return 1;
  738. }
  739. return 0;
  740. }
  741. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  742. {
  743. int i;
  744. for (i = 0; i < (1 << order); i++) {
  745. struct page *p = page + i;
  746. if (unlikely(check_new_page(p)))
  747. return 1;
  748. }
  749. set_page_private(page, 0);
  750. set_page_refcounted(page);
  751. arch_alloc_page(page, order);
  752. kernel_map_pages(page, 1 << order, 1);
  753. if (gfp_flags & __GFP_ZERO)
  754. prep_zero_page(page, order, gfp_flags);
  755. if (order && (gfp_flags & __GFP_COMP))
  756. prep_compound_page(page, order);
  757. return 0;
  758. }
  759. /*
  760. * Go through the free lists for the given migratetype and remove
  761. * the smallest available page from the freelists
  762. */
  763. static inline
  764. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  765. int migratetype)
  766. {
  767. unsigned int current_order;
  768. struct free_area * area;
  769. struct page *page;
  770. /* Find a page of the appropriate size in the preferred list */
  771. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  772. area = &(zone->free_area[current_order]);
  773. if (list_empty(&area->free_list[migratetype]))
  774. continue;
  775. page = list_entry(area->free_list[migratetype].next,
  776. struct page, lru);
  777. list_del(&page->lru);
  778. rmv_page_order(page);
  779. area->nr_free--;
  780. expand(zone, page, order, current_order, area, migratetype);
  781. return page;
  782. }
  783. return NULL;
  784. }
  785. /*
  786. * This array describes the order lists are fallen back to when
  787. * the free lists for the desirable migrate type are depleted
  788. */
  789. static int fallbacks[MIGRATE_TYPES][4] = {
  790. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  791. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  792. #ifdef CONFIG_CMA
  793. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  794. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  795. #else
  796. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  797. #endif
  798. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  799. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  800. };
  801. /*
  802. * Move the free pages in a range to the free lists of the requested type.
  803. * Note that start_page and end_pages are not aligned on a pageblock
  804. * boundary. If alignment is required, use move_freepages_block()
  805. */
  806. static int move_freepages(struct zone *zone,
  807. struct page *start_page, struct page *end_page,
  808. int migratetype)
  809. {
  810. struct page *page;
  811. unsigned long order;
  812. int pages_moved = 0;
  813. #ifndef CONFIG_HOLES_IN_ZONE
  814. /*
  815. * page_zone is not safe to call in this context when
  816. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  817. * anyway as we check zone boundaries in move_freepages_block().
  818. * Remove at a later date when no bug reports exist related to
  819. * grouping pages by mobility
  820. */
  821. BUG_ON(page_zone(start_page) != page_zone(end_page));
  822. #endif
  823. for (page = start_page; page <= end_page;) {
  824. /* Make sure we are not inadvertently changing nodes */
  825. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  826. if (!pfn_valid_within(page_to_pfn(page))) {
  827. page++;
  828. continue;
  829. }
  830. if (!PageBuddy(page)) {
  831. page++;
  832. continue;
  833. }
  834. order = page_order(page);
  835. list_move(&page->lru,
  836. &zone->free_area[order].free_list[migratetype]);
  837. page += 1 << order;
  838. pages_moved += 1 << order;
  839. }
  840. return pages_moved;
  841. }
  842. int move_freepages_block(struct zone *zone, struct page *page,
  843. int migratetype)
  844. {
  845. unsigned long start_pfn, end_pfn;
  846. struct page *start_page, *end_page;
  847. start_pfn = page_to_pfn(page);
  848. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  849. start_page = pfn_to_page(start_pfn);
  850. end_page = start_page + pageblock_nr_pages - 1;
  851. end_pfn = start_pfn + pageblock_nr_pages - 1;
  852. /* Do not cross zone boundaries */
  853. if (start_pfn < zone->zone_start_pfn)
  854. start_page = page;
  855. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  856. return 0;
  857. return move_freepages(zone, start_page, end_page, migratetype);
  858. }
  859. static void change_pageblock_range(struct page *pageblock_page,
  860. int start_order, int migratetype)
  861. {
  862. int nr_pageblocks = 1 << (start_order - pageblock_order);
  863. while (nr_pageblocks--) {
  864. set_pageblock_migratetype(pageblock_page, migratetype);
  865. pageblock_page += pageblock_nr_pages;
  866. }
  867. }
  868. /* Remove an element from the buddy allocator from the fallback list */
  869. static inline struct page *
  870. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  871. {
  872. struct free_area * area;
  873. int current_order;
  874. struct page *page;
  875. int migratetype, i;
  876. /* Find the largest possible block of pages in the other list */
  877. for (current_order = MAX_ORDER-1; current_order >= order;
  878. --current_order) {
  879. for (i = 0;; i++) {
  880. migratetype = fallbacks[start_migratetype][i];
  881. /* MIGRATE_RESERVE handled later if necessary */
  882. if (migratetype == MIGRATE_RESERVE)
  883. break;
  884. area = &(zone->free_area[current_order]);
  885. if (list_empty(&area->free_list[migratetype]))
  886. continue;
  887. page = list_entry(area->free_list[migratetype].next,
  888. struct page, lru);
  889. area->nr_free--;
  890. /*
  891. * If breaking a large block of pages, move all free
  892. * pages to the preferred allocation list. If falling
  893. * back for a reclaimable kernel allocation, be more
  894. * aggressive about taking ownership of free pages
  895. *
  896. * On the other hand, never change migration
  897. * type of MIGRATE_CMA pageblocks nor move CMA
  898. * pages on different free lists. We don't
  899. * want unmovable pages to be allocated from
  900. * MIGRATE_CMA areas.
  901. */
  902. if (!is_migrate_cma(migratetype) &&
  903. (unlikely(current_order >= pageblock_order / 2) ||
  904. start_migratetype == MIGRATE_RECLAIMABLE ||
  905. page_group_by_mobility_disabled)) {
  906. int pages;
  907. pages = move_freepages_block(zone, page,
  908. start_migratetype);
  909. /* Claim the whole block if over half of it is free */
  910. if (pages >= (1 << (pageblock_order-1)) ||
  911. page_group_by_mobility_disabled)
  912. set_pageblock_migratetype(page,
  913. start_migratetype);
  914. migratetype = start_migratetype;
  915. }
  916. /* Remove the page from the freelists */
  917. list_del(&page->lru);
  918. rmv_page_order(page);
  919. /* Take ownership for orders >= pageblock_order */
  920. if (current_order >= pageblock_order &&
  921. !is_migrate_cma(migratetype))
  922. change_pageblock_range(page, current_order,
  923. start_migratetype);
  924. expand(zone, page, order, current_order, area,
  925. is_migrate_cma(migratetype)
  926. ? migratetype : start_migratetype);
  927. trace_mm_page_alloc_extfrag(page, order, current_order,
  928. start_migratetype, migratetype);
  929. return page;
  930. }
  931. }
  932. return NULL;
  933. }
  934. /*
  935. * Do the hard work of removing an element from the buddy allocator.
  936. * Call me with the zone->lock already held.
  937. */
  938. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  939. int migratetype)
  940. {
  941. struct page *page;
  942. retry_reserve:
  943. page = __rmqueue_smallest(zone, order, migratetype);
  944. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  945. page = __rmqueue_fallback(zone, order, migratetype);
  946. /*
  947. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  948. * is used because __rmqueue_smallest is an inline function
  949. * and we want just one call site
  950. */
  951. if (!page) {
  952. migratetype = MIGRATE_RESERVE;
  953. goto retry_reserve;
  954. }
  955. }
  956. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  957. return page;
  958. }
  959. /*
  960. * Obtain a specified number of elements from the buddy allocator, all under
  961. * a single hold of the lock, for efficiency. Add them to the supplied list.
  962. * Returns the number of new pages which were placed at *list.
  963. */
  964. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  965. unsigned long count, struct list_head *list,
  966. int migratetype, int cold)
  967. {
  968. int mt = migratetype, i;
  969. spin_lock(&zone->lock);
  970. for (i = 0; i < count; ++i) {
  971. struct page *page = __rmqueue(zone, order, migratetype);
  972. if (unlikely(page == NULL))
  973. break;
  974. /*
  975. * Split buddy pages returned by expand() are received here
  976. * in physical page order. The page is added to the callers and
  977. * list and the list head then moves forward. From the callers
  978. * perspective, the linked list is ordered by page number in
  979. * some conditions. This is useful for IO devices that can
  980. * merge IO requests if the physical pages are ordered
  981. * properly.
  982. */
  983. if (likely(cold == 0))
  984. list_add(&page->lru, list);
  985. else
  986. list_add_tail(&page->lru, list);
  987. if (IS_ENABLED(CONFIG_CMA)) {
  988. mt = get_pageblock_migratetype(page);
  989. if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
  990. mt = migratetype;
  991. }
  992. set_page_private(page, mt);
  993. list = &page->lru;
  994. }
  995. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  996. spin_unlock(&zone->lock);
  997. return i;
  998. }
  999. #ifdef CONFIG_NUMA
  1000. /*
  1001. * Called from the vmstat counter updater to drain pagesets of this
  1002. * currently executing processor on remote nodes after they have
  1003. * expired.
  1004. *
  1005. * Note that this function must be called with the thread pinned to
  1006. * a single processor.
  1007. */
  1008. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1009. {
  1010. unsigned long flags;
  1011. int to_drain;
  1012. local_irq_save(flags);
  1013. if (pcp->count >= pcp->batch)
  1014. to_drain = pcp->batch;
  1015. else
  1016. to_drain = pcp->count;
  1017. if (to_drain > 0) {
  1018. free_pcppages_bulk(zone, to_drain, pcp);
  1019. pcp->count -= to_drain;
  1020. }
  1021. local_irq_restore(flags);
  1022. }
  1023. #endif
  1024. /*
  1025. * Drain pages of the indicated processor.
  1026. *
  1027. * The processor must either be the current processor and the
  1028. * thread pinned to the current processor or a processor that
  1029. * is not online.
  1030. */
  1031. static void drain_pages(unsigned int cpu)
  1032. {
  1033. unsigned long flags;
  1034. struct zone *zone;
  1035. for_each_populated_zone(zone) {
  1036. struct per_cpu_pageset *pset;
  1037. struct per_cpu_pages *pcp;
  1038. local_irq_save(flags);
  1039. pset = per_cpu_ptr(zone->pageset, cpu);
  1040. pcp = &pset->pcp;
  1041. if (pcp->count) {
  1042. free_pcppages_bulk(zone, pcp->count, pcp);
  1043. pcp->count = 0;
  1044. }
  1045. local_irq_restore(flags);
  1046. }
  1047. }
  1048. /*
  1049. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1050. */
  1051. void drain_local_pages(void *arg)
  1052. {
  1053. drain_pages(smp_processor_id());
  1054. }
  1055. /*
  1056. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1057. *
  1058. * Note that this code is protected against sending an IPI to an offline
  1059. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1060. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1061. * nothing keeps CPUs from showing up after we populated the cpumask and
  1062. * before the call to on_each_cpu_mask().
  1063. */
  1064. void drain_all_pages(void)
  1065. {
  1066. int cpu;
  1067. struct per_cpu_pageset *pcp;
  1068. struct zone *zone;
  1069. /*
  1070. * Allocate in the BSS so we wont require allocation in
  1071. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1072. */
  1073. static cpumask_t cpus_with_pcps;
  1074. /*
  1075. * We don't care about racing with CPU hotplug event
  1076. * as offline notification will cause the notified
  1077. * cpu to drain that CPU pcps and on_each_cpu_mask
  1078. * disables preemption as part of its processing
  1079. */
  1080. for_each_online_cpu(cpu) {
  1081. bool has_pcps = false;
  1082. for_each_populated_zone(zone) {
  1083. pcp = per_cpu_ptr(zone->pageset, cpu);
  1084. if (pcp->pcp.count) {
  1085. has_pcps = true;
  1086. break;
  1087. }
  1088. }
  1089. if (has_pcps)
  1090. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1091. else
  1092. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1093. }
  1094. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1095. }
  1096. #ifdef CONFIG_HIBERNATION
  1097. void mark_free_pages(struct zone *zone)
  1098. {
  1099. unsigned long pfn, max_zone_pfn;
  1100. unsigned long flags;
  1101. int order, t;
  1102. struct list_head *curr;
  1103. if (!zone->spanned_pages)
  1104. return;
  1105. spin_lock_irqsave(&zone->lock, flags);
  1106. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1107. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1108. if (pfn_valid(pfn)) {
  1109. struct page *page = pfn_to_page(pfn);
  1110. if (!swsusp_page_is_forbidden(page))
  1111. swsusp_unset_page_free(page);
  1112. }
  1113. for_each_migratetype_order(order, t) {
  1114. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1115. unsigned long i;
  1116. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1117. for (i = 0; i < (1UL << order); i++)
  1118. swsusp_set_page_free(pfn_to_page(pfn + i));
  1119. }
  1120. }
  1121. spin_unlock_irqrestore(&zone->lock, flags);
  1122. }
  1123. #endif /* CONFIG_PM */
  1124. /*
  1125. * Free a 0-order page
  1126. * cold == 1 ? free a cold page : free a hot page
  1127. */
  1128. void free_hot_cold_page(struct page *page, int cold)
  1129. {
  1130. struct zone *zone = page_zone(page);
  1131. struct per_cpu_pages *pcp;
  1132. unsigned long flags;
  1133. int migratetype;
  1134. int wasMlocked = __TestClearPageMlocked(page);
  1135. if (!free_pages_prepare(page, 0))
  1136. return;
  1137. migratetype = get_pageblock_migratetype(page);
  1138. set_page_private(page, migratetype);
  1139. local_irq_save(flags);
  1140. if (unlikely(wasMlocked))
  1141. free_page_mlock(page);
  1142. __count_vm_event(PGFREE);
  1143. /*
  1144. * We only track unmovable, reclaimable and movable on pcp lists.
  1145. * Free ISOLATE pages back to the allocator because they are being
  1146. * offlined but treat RESERVE as movable pages so we can get those
  1147. * areas back if necessary. Otherwise, we may have to free
  1148. * excessively into the page allocator
  1149. */
  1150. if (migratetype >= MIGRATE_PCPTYPES) {
  1151. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1152. free_one_page(zone, page, 0, migratetype);
  1153. goto out;
  1154. }
  1155. migratetype = MIGRATE_MOVABLE;
  1156. }
  1157. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1158. if (cold)
  1159. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1160. else
  1161. list_add(&page->lru, &pcp->lists[migratetype]);
  1162. pcp->count++;
  1163. if (pcp->count >= pcp->high) {
  1164. free_pcppages_bulk(zone, pcp->batch, pcp);
  1165. pcp->count -= pcp->batch;
  1166. }
  1167. out:
  1168. local_irq_restore(flags);
  1169. }
  1170. /*
  1171. * Free a list of 0-order pages
  1172. */
  1173. void free_hot_cold_page_list(struct list_head *list, int cold)
  1174. {
  1175. struct page *page, *next;
  1176. list_for_each_entry_safe(page, next, list, lru) {
  1177. trace_mm_page_free_batched(page, cold);
  1178. free_hot_cold_page(page, cold);
  1179. }
  1180. }
  1181. /*
  1182. * split_page takes a non-compound higher-order page, and splits it into
  1183. * n (1<<order) sub-pages: page[0..n]
  1184. * Each sub-page must be freed individually.
  1185. *
  1186. * Note: this is probably too low level an operation for use in drivers.
  1187. * Please consult with lkml before using this in your driver.
  1188. */
  1189. void split_page(struct page *page, unsigned int order)
  1190. {
  1191. int i;
  1192. VM_BUG_ON(PageCompound(page));
  1193. VM_BUG_ON(!page_count(page));
  1194. #ifdef CONFIG_KMEMCHECK
  1195. /*
  1196. * Split shadow pages too, because free(page[0]) would
  1197. * otherwise free the whole shadow.
  1198. */
  1199. if (kmemcheck_page_is_tracked(page))
  1200. split_page(virt_to_page(page[0].shadow), order);
  1201. #endif
  1202. for (i = 1; i < (1 << order); i++)
  1203. set_page_refcounted(page + i);
  1204. }
  1205. /*
  1206. * Similar to the split_page family of functions except that the page
  1207. * required at the given order and being isolated now to prevent races
  1208. * with parallel allocators
  1209. */
  1210. int capture_free_page(struct page *page, int alloc_order, int migratetype)
  1211. {
  1212. unsigned int order;
  1213. unsigned long watermark;
  1214. struct zone *zone;
  1215. BUG_ON(!PageBuddy(page));
  1216. zone = page_zone(page);
  1217. order = page_order(page);
  1218. /* Obey watermarks as if the page was being allocated */
  1219. watermark = low_wmark_pages(zone) + (1 << order);
  1220. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1221. return 0;
  1222. /* Remove page from free list */
  1223. list_del(&page->lru);
  1224. zone->free_area[order].nr_free--;
  1225. rmv_page_order(page);
  1226. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1227. if (alloc_order != order)
  1228. expand(zone, page, alloc_order, order,
  1229. &zone->free_area[order], migratetype);
  1230. /* Set the pageblock if the captured page is at least a pageblock */
  1231. if (order >= pageblock_order - 1) {
  1232. struct page *endpage = page + (1 << order) - 1;
  1233. for (; page < endpage; page += pageblock_nr_pages) {
  1234. int mt = get_pageblock_migratetype(page);
  1235. if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
  1236. set_pageblock_migratetype(page,
  1237. MIGRATE_MOVABLE);
  1238. }
  1239. }
  1240. return 1UL << order;
  1241. }
  1242. /*
  1243. * Similar to split_page except the page is already free. As this is only
  1244. * being used for migration, the migratetype of the block also changes.
  1245. * As this is called with interrupts disabled, the caller is responsible
  1246. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1247. * are enabled.
  1248. *
  1249. * Note: this is probably too low level an operation for use in drivers.
  1250. * Please consult with lkml before using this in your driver.
  1251. */
  1252. int split_free_page(struct page *page)
  1253. {
  1254. unsigned int order;
  1255. int nr_pages;
  1256. BUG_ON(!PageBuddy(page));
  1257. order = page_order(page);
  1258. nr_pages = capture_free_page(page, order, 0);
  1259. if (!nr_pages)
  1260. return 0;
  1261. /* Split into individual pages */
  1262. set_page_refcounted(page);
  1263. split_page(page, order);
  1264. return nr_pages;
  1265. }
  1266. /*
  1267. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1268. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1269. * or two.
  1270. */
  1271. static inline
  1272. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1273. struct zone *zone, int order, gfp_t gfp_flags,
  1274. int migratetype)
  1275. {
  1276. unsigned long flags;
  1277. struct page *page;
  1278. int cold = !!(gfp_flags & __GFP_COLD);
  1279. again:
  1280. if (likely(order == 0)) {
  1281. struct per_cpu_pages *pcp;
  1282. struct list_head *list;
  1283. local_irq_save(flags);
  1284. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1285. list = &pcp->lists[migratetype];
  1286. if (list_empty(list)) {
  1287. pcp->count += rmqueue_bulk(zone, 0,
  1288. pcp->batch, list,
  1289. migratetype, cold);
  1290. if (unlikely(list_empty(list)))
  1291. goto failed;
  1292. }
  1293. if (cold)
  1294. page = list_entry(list->prev, struct page, lru);
  1295. else
  1296. page = list_entry(list->next, struct page, lru);
  1297. list_del(&page->lru);
  1298. pcp->count--;
  1299. } else {
  1300. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1301. /*
  1302. * __GFP_NOFAIL is not to be used in new code.
  1303. *
  1304. * All __GFP_NOFAIL callers should be fixed so that they
  1305. * properly detect and handle allocation failures.
  1306. *
  1307. * We most definitely don't want callers attempting to
  1308. * allocate greater than order-1 page units with
  1309. * __GFP_NOFAIL.
  1310. */
  1311. WARN_ON_ONCE(order > 1);
  1312. }
  1313. spin_lock_irqsave(&zone->lock, flags);
  1314. page = __rmqueue(zone, order, migratetype);
  1315. spin_unlock(&zone->lock);
  1316. if (!page)
  1317. goto failed;
  1318. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1319. }
  1320. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1321. zone_statistics(preferred_zone, zone, gfp_flags);
  1322. local_irq_restore(flags);
  1323. VM_BUG_ON(bad_range(zone, page));
  1324. if (prep_new_page(page, order, gfp_flags))
  1325. goto again;
  1326. return page;
  1327. failed:
  1328. local_irq_restore(flags);
  1329. return NULL;
  1330. }
  1331. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1332. #define ALLOC_WMARK_MIN WMARK_MIN
  1333. #define ALLOC_WMARK_LOW WMARK_LOW
  1334. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1335. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1336. /* Mask to get the watermark bits */
  1337. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1338. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1339. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1340. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1341. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1342. static struct {
  1343. struct fault_attr attr;
  1344. u32 ignore_gfp_highmem;
  1345. u32 ignore_gfp_wait;
  1346. u32 min_order;
  1347. } fail_page_alloc = {
  1348. .attr = FAULT_ATTR_INITIALIZER,
  1349. .ignore_gfp_wait = 1,
  1350. .ignore_gfp_highmem = 1,
  1351. .min_order = 1,
  1352. };
  1353. static int __init setup_fail_page_alloc(char *str)
  1354. {
  1355. return setup_fault_attr(&fail_page_alloc.attr, str);
  1356. }
  1357. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1358. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1359. {
  1360. if (order < fail_page_alloc.min_order)
  1361. return false;
  1362. if (gfp_mask & __GFP_NOFAIL)
  1363. return false;
  1364. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1365. return false;
  1366. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1367. return false;
  1368. return should_fail(&fail_page_alloc.attr, 1 << order);
  1369. }
  1370. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1371. static int __init fail_page_alloc_debugfs(void)
  1372. {
  1373. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1374. struct dentry *dir;
  1375. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1376. &fail_page_alloc.attr);
  1377. if (IS_ERR(dir))
  1378. return PTR_ERR(dir);
  1379. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1380. &fail_page_alloc.ignore_gfp_wait))
  1381. goto fail;
  1382. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1383. &fail_page_alloc.ignore_gfp_highmem))
  1384. goto fail;
  1385. if (!debugfs_create_u32("min-order", mode, dir,
  1386. &fail_page_alloc.min_order))
  1387. goto fail;
  1388. return 0;
  1389. fail:
  1390. debugfs_remove_recursive(dir);
  1391. return -ENOMEM;
  1392. }
  1393. late_initcall(fail_page_alloc_debugfs);
  1394. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1395. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1396. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1397. {
  1398. return false;
  1399. }
  1400. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1401. /*
  1402. * Return true if free pages are above 'mark'. This takes into account the order
  1403. * of the allocation.
  1404. */
  1405. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1406. int classzone_idx, int alloc_flags, long free_pages)
  1407. {
  1408. /* free_pages my go negative - that's OK */
  1409. long min = mark;
  1410. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1411. int o;
  1412. free_pages -= (1 << order) - 1;
  1413. if (alloc_flags & ALLOC_HIGH)
  1414. min -= min / 2;
  1415. if (alloc_flags & ALLOC_HARDER)
  1416. min -= min / 4;
  1417. if (free_pages <= min + lowmem_reserve)
  1418. return false;
  1419. for (o = 0; o < order; o++) {
  1420. /* At the next order, this order's pages become unavailable */
  1421. free_pages -= z->free_area[o].nr_free << o;
  1422. /* Require fewer higher order pages to be free */
  1423. min >>= 1;
  1424. if (free_pages <= min)
  1425. return false;
  1426. }
  1427. return true;
  1428. }
  1429. #ifdef CONFIG_MEMORY_ISOLATION
  1430. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1431. {
  1432. if (unlikely(zone->nr_pageblock_isolate))
  1433. return zone->nr_pageblock_isolate * pageblock_nr_pages;
  1434. return 0;
  1435. }
  1436. #else
  1437. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1438. {
  1439. return 0;
  1440. }
  1441. #endif
  1442. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1443. int classzone_idx, int alloc_flags)
  1444. {
  1445. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1446. zone_page_state(z, NR_FREE_PAGES));
  1447. }
  1448. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1449. int classzone_idx, int alloc_flags)
  1450. {
  1451. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1452. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1453. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1454. /*
  1455. * If the zone has MIGRATE_ISOLATE type free pages, we should consider
  1456. * it. nr_zone_isolate_freepages is never accurate so kswapd might not
  1457. * sleep although it could do so. But this is more desirable for memory
  1458. * hotplug than sleeping which can cause a livelock in the direct
  1459. * reclaim path.
  1460. */
  1461. free_pages -= nr_zone_isolate_freepages(z);
  1462. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1463. free_pages);
  1464. }
  1465. #ifdef CONFIG_NUMA
  1466. /*
  1467. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1468. * skip over zones that are not allowed by the cpuset, or that have
  1469. * been recently (in last second) found to be nearly full. See further
  1470. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1471. * that have to skip over a lot of full or unallowed zones.
  1472. *
  1473. * If the zonelist cache is present in the passed in zonelist, then
  1474. * returns a pointer to the allowed node mask (either the current
  1475. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1476. *
  1477. * If the zonelist cache is not available for this zonelist, does
  1478. * nothing and returns NULL.
  1479. *
  1480. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1481. * a second since last zap'd) then we zap it out (clear its bits.)
  1482. *
  1483. * We hold off even calling zlc_setup, until after we've checked the
  1484. * first zone in the zonelist, on the theory that most allocations will
  1485. * be satisfied from that first zone, so best to examine that zone as
  1486. * quickly as we can.
  1487. */
  1488. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1489. {
  1490. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1491. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1492. zlc = zonelist->zlcache_ptr;
  1493. if (!zlc)
  1494. return NULL;
  1495. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1496. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1497. zlc->last_full_zap = jiffies;
  1498. }
  1499. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1500. &cpuset_current_mems_allowed :
  1501. &node_states[N_HIGH_MEMORY];
  1502. return allowednodes;
  1503. }
  1504. /*
  1505. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1506. * if it is worth looking at further for free memory:
  1507. * 1) Check that the zone isn't thought to be full (doesn't have its
  1508. * bit set in the zonelist_cache fullzones BITMAP).
  1509. * 2) Check that the zones node (obtained from the zonelist_cache
  1510. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1511. * Return true (non-zero) if zone is worth looking at further, or
  1512. * else return false (zero) if it is not.
  1513. *
  1514. * This check -ignores- the distinction between various watermarks,
  1515. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1516. * found to be full for any variation of these watermarks, it will
  1517. * be considered full for up to one second by all requests, unless
  1518. * we are so low on memory on all allowed nodes that we are forced
  1519. * into the second scan of the zonelist.
  1520. *
  1521. * In the second scan we ignore this zonelist cache and exactly
  1522. * apply the watermarks to all zones, even it is slower to do so.
  1523. * We are low on memory in the second scan, and should leave no stone
  1524. * unturned looking for a free page.
  1525. */
  1526. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1527. nodemask_t *allowednodes)
  1528. {
  1529. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1530. int i; /* index of *z in zonelist zones */
  1531. int n; /* node that zone *z is on */
  1532. zlc = zonelist->zlcache_ptr;
  1533. if (!zlc)
  1534. return 1;
  1535. i = z - zonelist->_zonerefs;
  1536. n = zlc->z_to_n[i];
  1537. /* This zone is worth trying if it is allowed but not full */
  1538. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1539. }
  1540. /*
  1541. * Given 'z' scanning a zonelist, set the corresponding bit in
  1542. * zlc->fullzones, so that subsequent attempts to allocate a page
  1543. * from that zone don't waste time re-examining it.
  1544. */
  1545. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1546. {
  1547. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1548. int i; /* index of *z in zonelist zones */
  1549. zlc = zonelist->zlcache_ptr;
  1550. if (!zlc)
  1551. return;
  1552. i = z - zonelist->_zonerefs;
  1553. set_bit(i, zlc->fullzones);
  1554. }
  1555. /*
  1556. * clear all zones full, called after direct reclaim makes progress so that
  1557. * a zone that was recently full is not skipped over for up to a second
  1558. */
  1559. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1560. {
  1561. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1562. zlc = zonelist->zlcache_ptr;
  1563. if (!zlc)
  1564. return;
  1565. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1566. }
  1567. #else /* CONFIG_NUMA */
  1568. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1569. {
  1570. return NULL;
  1571. }
  1572. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1573. nodemask_t *allowednodes)
  1574. {
  1575. return 1;
  1576. }
  1577. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1578. {
  1579. }
  1580. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1581. {
  1582. }
  1583. #endif /* CONFIG_NUMA */
  1584. /*
  1585. * get_page_from_freelist goes through the zonelist trying to allocate
  1586. * a page.
  1587. */
  1588. static struct page *
  1589. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1590. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1591. struct zone *preferred_zone, int migratetype)
  1592. {
  1593. struct zoneref *z;
  1594. struct page *page = NULL;
  1595. int classzone_idx;
  1596. struct zone *zone;
  1597. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1598. int zlc_active = 0; /* set if using zonelist_cache */
  1599. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1600. classzone_idx = zone_idx(preferred_zone);
  1601. zonelist_scan:
  1602. /*
  1603. * Scan zonelist, looking for a zone with enough free.
  1604. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1605. */
  1606. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1607. high_zoneidx, nodemask) {
  1608. if (NUMA_BUILD && zlc_active &&
  1609. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1610. continue;
  1611. if ((alloc_flags & ALLOC_CPUSET) &&
  1612. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1613. continue;
  1614. /*
  1615. * When allocating a page cache page for writing, we
  1616. * want to get it from a zone that is within its dirty
  1617. * limit, such that no single zone holds more than its
  1618. * proportional share of globally allowed dirty pages.
  1619. * The dirty limits take into account the zone's
  1620. * lowmem reserves and high watermark so that kswapd
  1621. * should be able to balance it without having to
  1622. * write pages from its LRU list.
  1623. *
  1624. * This may look like it could increase pressure on
  1625. * lower zones by failing allocations in higher zones
  1626. * before they are full. But the pages that do spill
  1627. * over are limited as the lower zones are protected
  1628. * by this very same mechanism. It should not become
  1629. * a practical burden to them.
  1630. *
  1631. * XXX: For now, allow allocations to potentially
  1632. * exceed the per-zone dirty limit in the slowpath
  1633. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1634. * which is important when on a NUMA setup the allowed
  1635. * zones are together not big enough to reach the
  1636. * global limit. The proper fix for these situations
  1637. * will require awareness of zones in the
  1638. * dirty-throttling and the flusher threads.
  1639. */
  1640. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1641. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1642. goto this_zone_full;
  1643. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1644. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1645. unsigned long mark;
  1646. int ret;
  1647. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1648. if (zone_watermark_ok(zone, order, mark,
  1649. classzone_idx, alloc_flags))
  1650. goto try_this_zone;
  1651. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1652. /*
  1653. * we do zlc_setup if there are multiple nodes
  1654. * and before considering the first zone allowed
  1655. * by the cpuset.
  1656. */
  1657. allowednodes = zlc_setup(zonelist, alloc_flags);
  1658. zlc_active = 1;
  1659. did_zlc_setup = 1;
  1660. }
  1661. if (zone_reclaim_mode == 0)
  1662. goto this_zone_full;
  1663. /*
  1664. * As we may have just activated ZLC, check if the first
  1665. * eligible zone has failed zone_reclaim recently.
  1666. */
  1667. if (NUMA_BUILD && zlc_active &&
  1668. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1669. continue;
  1670. ret = zone_reclaim(zone, gfp_mask, order);
  1671. switch (ret) {
  1672. case ZONE_RECLAIM_NOSCAN:
  1673. /* did not scan */
  1674. continue;
  1675. case ZONE_RECLAIM_FULL:
  1676. /* scanned but unreclaimable */
  1677. continue;
  1678. default:
  1679. /* did we reclaim enough */
  1680. if (!zone_watermark_ok(zone, order, mark,
  1681. classzone_idx, alloc_flags))
  1682. goto this_zone_full;
  1683. }
  1684. }
  1685. try_this_zone:
  1686. page = buffered_rmqueue(preferred_zone, zone, order,
  1687. gfp_mask, migratetype);
  1688. if (page)
  1689. break;
  1690. this_zone_full:
  1691. if (NUMA_BUILD)
  1692. zlc_mark_zone_full(zonelist, z);
  1693. }
  1694. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1695. /* Disable zlc cache for second zonelist scan */
  1696. zlc_active = 0;
  1697. goto zonelist_scan;
  1698. }
  1699. if (page)
  1700. /*
  1701. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1702. * necessary to allocate the page. The expectation is
  1703. * that the caller is taking steps that will free more
  1704. * memory. The caller should avoid the page being used
  1705. * for !PFMEMALLOC purposes.
  1706. */
  1707. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1708. return page;
  1709. }
  1710. /*
  1711. * Large machines with many possible nodes should not always dump per-node
  1712. * meminfo in irq context.
  1713. */
  1714. static inline bool should_suppress_show_mem(void)
  1715. {
  1716. bool ret = false;
  1717. #if NODES_SHIFT > 8
  1718. ret = in_interrupt();
  1719. #endif
  1720. return ret;
  1721. }
  1722. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1723. DEFAULT_RATELIMIT_INTERVAL,
  1724. DEFAULT_RATELIMIT_BURST);
  1725. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1726. {
  1727. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1728. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1729. debug_guardpage_minorder() > 0)
  1730. return;
  1731. /*
  1732. * This documents exceptions given to allocations in certain
  1733. * contexts that are allowed to allocate outside current's set
  1734. * of allowed nodes.
  1735. */
  1736. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1737. if (test_thread_flag(TIF_MEMDIE) ||
  1738. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1739. filter &= ~SHOW_MEM_FILTER_NODES;
  1740. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1741. filter &= ~SHOW_MEM_FILTER_NODES;
  1742. if (fmt) {
  1743. struct va_format vaf;
  1744. va_list args;
  1745. va_start(args, fmt);
  1746. vaf.fmt = fmt;
  1747. vaf.va = &args;
  1748. pr_warn("%pV", &vaf);
  1749. va_end(args);
  1750. }
  1751. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1752. current->comm, order, gfp_mask);
  1753. dump_stack();
  1754. if (!should_suppress_show_mem())
  1755. show_mem(filter);
  1756. }
  1757. static inline int
  1758. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1759. unsigned long did_some_progress,
  1760. unsigned long pages_reclaimed)
  1761. {
  1762. /* Do not loop if specifically requested */
  1763. if (gfp_mask & __GFP_NORETRY)
  1764. return 0;
  1765. /* Always retry if specifically requested */
  1766. if (gfp_mask & __GFP_NOFAIL)
  1767. return 1;
  1768. /*
  1769. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1770. * making forward progress without invoking OOM. Suspend also disables
  1771. * storage devices so kswapd will not help. Bail if we are suspending.
  1772. */
  1773. if (!did_some_progress && pm_suspended_storage())
  1774. return 0;
  1775. /*
  1776. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1777. * means __GFP_NOFAIL, but that may not be true in other
  1778. * implementations.
  1779. */
  1780. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1781. return 1;
  1782. /*
  1783. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1784. * specified, then we retry until we no longer reclaim any pages
  1785. * (above), or we've reclaimed an order of pages at least as
  1786. * large as the allocation's order. In both cases, if the
  1787. * allocation still fails, we stop retrying.
  1788. */
  1789. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1790. return 1;
  1791. return 0;
  1792. }
  1793. static inline struct page *
  1794. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1795. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1796. nodemask_t *nodemask, struct zone *preferred_zone,
  1797. int migratetype)
  1798. {
  1799. struct page *page;
  1800. /* Acquire the OOM killer lock for the zones in zonelist */
  1801. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1802. schedule_timeout_uninterruptible(1);
  1803. return NULL;
  1804. }
  1805. /*
  1806. * Go through the zonelist yet one more time, keep very high watermark
  1807. * here, this is only to catch a parallel oom killing, we must fail if
  1808. * we're still under heavy pressure.
  1809. */
  1810. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1811. order, zonelist, high_zoneidx,
  1812. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1813. preferred_zone, migratetype);
  1814. if (page)
  1815. goto out;
  1816. if (!(gfp_mask & __GFP_NOFAIL)) {
  1817. /* The OOM killer will not help higher order allocs */
  1818. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1819. goto out;
  1820. /* The OOM killer does not needlessly kill tasks for lowmem */
  1821. if (high_zoneidx < ZONE_NORMAL)
  1822. goto out;
  1823. /*
  1824. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1825. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1826. * The caller should handle page allocation failure by itself if
  1827. * it specifies __GFP_THISNODE.
  1828. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1829. */
  1830. if (gfp_mask & __GFP_THISNODE)
  1831. goto out;
  1832. }
  1833. /* Exhausted what can be done so it's blamo time */
  1834. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1835. out:
  1836. clear_zonelist_oom(zonelist, gfp_mask);
  1837. return page;
  1838. }
  1839. #ifdef CONFIG_COMPACTION
  1840. /* Try memory compaction for high-order allocations before reclaim */
  1841. static struct page *
  1842. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1843. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1844. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1845. int migratetype, bool sync_migration,
  1846. bool *contended_compaction, bool *deferred_compaction,
  1847. unsigned long *did_some_progress)
  1848. {
  1849. struct page *page = NULL;
  1850. if (!order)
  1851. return NULL;
  1852. if (compaction_deferred(preferred_zone, order)) {
  1853. *deferred_compaction = true;
  1854. return NULL;
  1855. }
  1856. current->flags |= PF_MEMALLOC;
  1857. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1858. nodemask, sync_migration,
  1859. contended_compaction, &page);
  1860. current->flags &= ~PF_MEMALLOC;
  1861. /* If compaction captured a page, prep and use it */
  1862. if (page) {
  1863. prep_new_page(page, order, gfp_mask);
  1864. goto got_page;
  1865. }
  1866. if (*did_some_progress != COMPACT_SKIPPED) {
  1867. /* Page migration frees to the PCP lists but we want merging */
  1868. drain_pages(get_cpu());
  1869. put_cpu();
  1870. page = get_page_from_freelist(gfp_mask, nodemask,
  1871. order, zonelist, high_zoneidx,
  1872. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1873. preferred_zone, migratetype);
  1874. if (page) {
  1875. got_page:
  1876. preferred_zone->compact_considered = 0;
  1877. preferred_zone->compact_defer_shift = 0;
  1878. if (order >= preferred_zone->compact_order_failed)
  1879. preferred_zone->compact_order_failed = order + 1;
  1880. count_vm_event(COMPACTSUCCESS);
  1881. return page;
  1882. }
  1883. /*
  1884. * It's bad if compaction run occurs and fails.
  1885. * The most likely reason is that pages exist,
  1886. * but not enough to satisfy watermarks.
  1887. */
  1888. count_vm_event(COMPACTFAIL);
  1889. /*
  1890. * As async compaction considers a subset of pageblocks, only
  1891. * defer if the failure was a sync compaction failure.
  1892. */
  1893. if (sync_migration)
  1894. defer_compaction(preferred_zone, order);
  1895. cond_resched();
  1896. }
  1897. return NULL;
  1898. }
  1899. #else
  1900. static inline struct page *
  1901. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1902. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1903. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1904. int migratetype, bool sync_migration,
  1905. bool *contended_compaction, bool *deferred_compaction,
  1906. unsigned long *did_some_progress)
  1907. {
  1908. return NULL;
  1909. }
  1910. #endif /* CONFIG_COMPACTION */
  1911. /* Perform direct synchronous page reclaim */
  1912. static int
  1913. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1914. nodemask_t *nodemask)
  1915. {
  1916. struct reclaim_state reclaim_state;
  1917. int progress;
  1918. cond_resched();
  1919. /* We now go into synchronous reclaim */
  1920. cpuset_memory_pressure_bump();
  1921. current->flags |= PF_MEMALLOC;
  1922. lockdep_set_current_reclaim_state(gfp_mask);
  1923. reclaim_state.reclaimed_slab = 0;
  1924. current->reclaim_state = &reclaim_state;
  1925. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1926. current->reclaim_state = NULL;
  1927. lockdep_clear_current_reclaim_state();
  1928. current->flags &= ~PF_MEMALLOC;
  1929. cond_resched();
  1930. return progress;
  1931. }
  1932. /* The really slow allocator path where we enter direct reclaim */
  1933. static inline struct page *
  1934. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1935. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1936. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1937. int migratetype, unsigned long *did_some_progress)
  1938. {
  1939. struct page *page = NULL;
  1940. bool drained = false;
  1941. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1942. nodemask);
  1943. if (unlikely(!(*did_some_progress)))
  1944. return NULL;
  1945. /* After successful reclaim, reconsider all zones for allocation */
  1946. if (NUMA_BUILD)
  1947. zlc_clear_zones_full(zonelist);
  1948. retry:
  1949. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1950. zonelist, high_zoneidx,
  1951. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1952. preferred_zone, migratetype);
  1953. /*
  1954. * If an allocation failed after direct reclaim, it could be because
  1955. * pages are pinned on the per-cpu lists. Drain them and try again
  1956. */
  1957. if (!page && !drained) {
  1958. drain_all_pages();
  1959. drained = true;
  1960. goto retry;
  1961. }
  1962. return page;
  1963. }
  1964. /*
  1965. * This is called in the allocator slow-path if the allocation request is of
  1966. * sufficient urgency to ignore watermarks and take other desperate measures
  1967. */
  1968. static inline struct page *
  1969. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1970. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1971. nodemask_t *nodemask, struct zone *preferred_zone,
  1972. int migratetype)
  1973. {
  1974. struct page *page;
  1975. do {
  1976. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1977. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1978. preferred_zone, migratetype);
  1979. if (!page && gfp_mask & __GFP_NOFAIL)
  1980. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1981. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1982. return page;
  1983. }
  1984. static inline
  1985. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1986. enum zone_type high_zoneidx,
  1987. enum zone_type classzone_idx)
  1988. {
  1989. struct zoneref *z;
  1990. struct zone *zone;
  1991. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1992. wakeup_kswapd(zone, order, classzone_idx);
  1993. }
  1994. static inline int
  1995. gfp_to_alloc_flags(gfp_t gfp_mask)
  1996. {
  1997. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1998. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1999. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2000. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2001. /*
  2002. * The caller may dip into page reserves a bit more if the caller
  2003. * cannot run direct reclaim, or if the caller has realtime scheduling
  2004. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2005. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2006. */
  2007. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2008. if (!wait) {
  2009. /*
  2010. * Not worth trying to allocate harder for
  2011. * __GFP_NOMEMALLOC even if it can't schedule.
  2012. */
  2013. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2014. alloc_flags |= ALLOC_HARDER;
  2015. /*
  2016. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2017. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2018. */
  2019. alloc_flags &= ~ALLOC_CPUSET;
  2020. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2021. alloc_flags |= ALLOC_HARDER;
  2022. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2023. if (gfp_mask & __GFP_MEMALLOC)
  2024. alloc_flags |= ALLOC_NO_WATERMARKS;
  2025. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2026. alloc_flags |= ALLOC_NO_WATERMARKS;
  2027. else if (!in_interrupt() &&
  2028. ((current->flags & PF_MEMALLOC) ||
  2029. unlikely(test_thread_flag(TIF_MEMDIE))))
  2030. alloc_flags |= ALLOC_NO_WATERMARKS;
  2031. }
  2032. return alloc_flags;
  2033. }
  2034. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2035. {
  2036. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2037. }
  2038. static inline struct page *
  2039. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2040. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2041. nodemask_t *nodemask, struct zone *preferred_zone,
  2042. int migratetype)
  2043. {
  2044. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2045. struct page *page = NULL;
  2046. int alloc_flags;
  2047. unsigned long pages_reclaimed = 0;
  2048. unsigned long did_some_progress;
  2049. bool sync_migration = false;
  2050. bool deferred_compaction = false;
  2051. bool contended_compaction = false;
  2052. /*
  2053. * In the slowpath, we sanity check order to avoid ever trying to
  2054. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2055. * be using allocators in order of preference for an area that is
  2056. * too large.
  2057. */
  2058. if (order >= MAX_ORDER) {
  2059. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2060. return NULL;
  2061. }
  2062. /*
  2063. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2064. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2065. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2066. * using a larger set of nodes after it has established that the
  2067. * allowed per node queues are empty and that nodes are
  2068. * over allocated.
  2069. */
  2070. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2071. goto nopage;
  2072. restart:
  2073. wake_all_kswapd(order, zonelist, high_zoneidx,
  2074. zone_idx(preferred_zone));
  2075. /*
  2076. * OK, we're below the kswapd watermark and have kicked background
  2077. * reclaim. Now things get more complex, so set up alloc_flags according
  2078. * to how we want to proceed.
  2079. */
  2080. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2081. /*
  2082. * Find the true preferred zone if the allocation is unconstrained by
  2083. * cpusets.
  2084. */
  2085. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2086. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2087. &preferred_zone);
  2088. rebalance:
  2089. /* This is the last chance, in general, before the goto nopage. */
  2090. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2091. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2092. preferred_zone, migratetype);
  2093. if (page)
  2094. goto got_pg;
  2095. /* Allocate without watermarks if the context allows */
  2096. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2097. /*
  2098. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2099. * the allocation is high priority and these type of
  2100. * allocations are system rather than user orientated
  2101. */
  2102. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2103. page = __alloc_pages_high_priority(gfp_mask, order,
  2104. zonelist, high_zoneidx, nodemask,
  2105. preferred_zone, migratetype);
  2106. if (page) {
  2107. goto got_pg;
  2108. }
  2109. }
  2110. /* Atomic allocations - we can't balance anything */
  2111. if (!wait)
  2112. goto nopage;
  2113. /* Avoid recursion of direct reclaim */
  2114. if (current->flags & PF_MEMALLOC)
  2115. goto nopage;
  2116. /* Avoid allocations with no watermarks from looping endlessly */
  2117. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2118. goto nopage;
  2119. /*
  2120. * Try direct compaction. The first pass is asynchronous. Subsequent
  2121. * attempts after direct reclaim are synchronous
  2122. */
  2123. page = __alloc_pages_direct_compact(gfp_mask, order,
  2124. zonelist, high_zoneidx,
  2125. nodemask,
  2126. alloc_flags, preferred_zone,
  2127. migratetype, sync_migration,
  2128. &contended_compaction,
  2129. &deferred_compaction,
  2130. &did_some_progress);
  2131. if (page)
  2132. goto got_pg;
  2133. sync_migration = true;
  2134. /*
  2135. * If compaction is deferred for high-order allocations, it is because
  2136. * sync compaction recently failed. In this is the case and the caller
  2137. * requested a movable allocation that does not heavily disrupt the
  2138. * system then fail the allocation instead of entering direct reclaim.
  2139. */
  2140. if ((deferred_compaction || contended_compaction) &&
  2141. (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
  2142. goto nopage;
  2143. /* Try direct reclaim and then allocating */
  2144. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2145. zonelist, high_zoneidx,
  2146. nodemask,
  2147. alloc_flags, preferred_zone,
  2148. migratetype, &did_some_progress);
  2149. if (page)
  2150. goto got_pg;
  2151. /*
  2152. * If we failed to make any progress reclaiming, then we are
  2153. * running out of options and have to consider going OOM
  2154. */
  2155. if (!did_some_progress) {
  2156. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2157. if (oom_killer_disabled)
  2158. goto nopage;
  2159. /* Coredumps can quickly deplete all memory reserves */
  2160. if ((current->flags & PF_DUMPCORE) &&
  2161. !(gfp_mask & __GFP_NOFAIL))
  2162. goto nopage;
  2163. page = __alloc_pages_may_oom(gfp_mask, order,
  2164. zonelist, high_zoneidx,
  2165. nodemask, preferred_zone,
  2166. migratetype);
  2167. if (page)
  2168. goto got_pg;
  2169. if (!(gfp_mask & __GFP_NOFAIL)) {
  2170. /*
  2171. * The oom killer is not called for high-order
  2172. * allocations that may fail, so if no progress
  2173. * is being made, there are no other options and
  2174. * retrying is unlikely to help.
  2175. */
  2176. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2177. goto nopage;
  2178. /*
  2179. * The oom killer is not called for lowmem
  2180. * allocations to prevent needlessly killing
  2181. * innocent tasks.
  2182. */
  2183. if (high_zoneidx < ZONE_NORMAL)
  2184. goto nopage;
  2185. }
  2186. goto restart;
  2187. }
  2188. }
  2189. /* Check if we should retry the allocation */
  2190. pages_reclaimed += did_some_progress;
  2191. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2192. pages_reclaimed)) {
  2193. /* Wait for some write requests to complete then retry */
  2194. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2195. goto rebalance;
  2196. } else {
  2197. /*
  2198. * High-order allocations do not necessarily loop after
  2199. * direct reclaim and reclaim/compaction depends on compaction
  2200. * being called after reclaim so call directly if necessary
  2201. */
  2202. page = __alloc_pages_direct_compact(gfp_mask, order,
  2203. zonelist, high_zoneidx,
  2204. nodemask,
  2205. alloc_flags, preferred_zone,
  2206. migratetype, sync_migration,
  2207. &contended_compaction,
  2208. &deferred_compaction,
  2209. &did_some_progress);
  2210. if (page)
  2211. goto got_pg;
  2212. }
  2213. nopage:
  2214. warn_alloc_failed(gfp_mask, order, NULL);
  2215. return page;
  2216. got_pg:
  2217. if (kmemcheck_enabled)
  2218. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2219. return page;
  2220. }
  2221. /*
  2222. * This is the 'heart' of the zoned buddy allocator.
  2223. */
  2224. struct page *
  2225. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2226. struct zonelist *zonelist, nodemask_t *nodemask)
  2227. {
  2228. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2229. struct zone *preferred_zone;
  2230. struct page *page = NULL;
  2231. int migratetype = allocflags_to_migratetype(gfp_mask);
  2232. unsigned int cpuset_mems_cookie;
  2233. gfp_mask &= gfp_allowed_mask;
  2234. lockdep_trace_alloc(gfp_mask);
  2235. might_sleep_if(gfp_mask & __GFP_WAIT);
  2236. if (should_fail_alloc_page(gfp_mask, order))
  2237. return NULL;
  2238. /*
  2239. * Check the zones suitable for the gfp_mask contain at least one
  2240. * valid zone. It's possible to have an empty zonelist as a result
  2241. * of GFP_THISNODE and a memoryless node
  2242. */
  2243. if (unlikely(!zonelist->_zonerefs->zone))
  2244. return NULL;
  2245. retry_cpuset:
  2246. cpuset_mems_cookie = get_mems_allowed();
  2247. /* The preferred zone is used for statistics later */
  2248. first_zones_zonelist(zonelist, high_zoneidx,
  2249. nodemask ? : &cpuset_current_mems_allowed,
  2250. &preferred_zone);
  2251. if (!preferred_zone)
  2252. goto out;
  2253. /* First allocation attempt */
  2254. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2255. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  2256. preferred_zone, migratetype);
  2257. if (unlikely(!page))
  2258. page = __alloc_pages_slowpath(gfp_mask, order,
  2259. zonelist, high_zoneidx, nodemask,
  2260. preferred_zone, migratetype);
  2261. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2262. out:
  2263. /*
  2264. * When updating a task's mems_allowed, it is possible to race with
  2265. * parallel threads in such a way that an allocation can fail while
  2266. * the mask is being updated. If a page allocation is about to fail,
  2267. * check if the cpuset changed during allocation and if so, retry.
  2268. */
  2269. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2270. goto retry_cpuset;
  2271. return page;
  2272. }
  2273. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2274. /*
  2275. * Common helper functions.
  2276. */
  2277. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2278. {
  2279. struct page *page;
  2280. /*
  2281. * __get_free_pages() returns a 32-bit address, which cannot represent
  2282. * a highmem page
  2283. */
  2284. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2285. page = alloc_pages(gfp_mask, order);
  2286. if (!page)
  2287. return 0;
  2288. return (unsigned long) page_address(page);
  2289. }
  2290. EXPORT_SYMBOL(__get_free_pages);
  2291. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2292. {
  2293. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2294. }
  2295. EXPORT_SYMBOL(get_zeroed_page);
  2296. void __free_pages(struct page *page, unsigned int order)
  2297. {
  2298. if (put_page_testzero(page)) {
  2299. if (order == 0)
  2300. free_hot_cold_page(page, 0);
  2301. else
  2302. __free_pages_ok(page, order);
  2303. }
  2304. }
  2305. EXPORT_SYMBOL(__free_pages);
  2306. void free_pages(unsigned long addr, unsigned int order)
  2307. {
  2308. if (addr != 0) {
  2309. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2310. __free_pages(virt_to_page((void *)addr), order);
  2311. }
  2312. }
  2313. EXPORT_SYMBOL(free_pages);
  2314. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2315. {
  2316. if (addr) {
  2317. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2318. unsigned long used = addr + PAGE_ALIGN(size);
  2319. split_page(virt_to_page((void *)addr), order);
  2320. while (used < alloc_end) {
  2321. free_page(used);
  2322. used += PAGE_SIZE;
  2323. }
  2324. }
  2325. return (void *)addr;
  2326. }
  2327. /**
  2328. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2329. * @size: the number of bytes to allocate
  2330. * @gfp_mask: GFP flags for the allocation
  2331. *
  2332. * This function is similar to alloc_pages(), except that it allocates the
  2333. * minimum number of pages to satisfy the request. alloc_pages() can only
  2334. * allocate memory in power-of-two pages.
  2335. *
  2336. * This function is also limited by MAX_ORDER.
  2337. *
  2338. * Memory allocated by this function must be released by free_pages_exact().
  2339. */
  2340. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2341. {
  2342. unsigned int order = get_order(size);
  2343. unsigned long addr;
  2344. addr = __get_free_pages(gfp_mask, order);
  2345. return make_alloc_exact(addr, order, size);
  2346. }
  2347. EXPORT_SYMBOL(alloc_pages_exact);
  2348. /**
  2349. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2350. * pages on a node.
  2351. * @nid: the preferred node ID where memory should be allocated
  2352. * @size: the number of bytes to allocate
  2353. * @gfp_mask: GFP flags for the allocation
  2354. *
  2355. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2356. * back.
  2357. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2358. * but is not exact.
  2359. */
  2360. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2361. {
  2362. unsigned order = get_order(size);
  2363. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2364. if (!p)
  2365. return NULL;
  2366. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2367. }
  2368. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2369. /**
  2370. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2371. * @virt: the value returned by alloc_pages_exact.
  2372. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2373. *
  2374. * Release the memory allocated by a previous call to alloc_pages_exact.
  2375. */
  2376. void free_pages_exact(void *virt, size_t size)
  2377. {
  2378. unsigned long addr = (unsigned long)virt;
  2379. unsigned long end = addr + PAGE_ALIGN(size);
  2380. while (addr < end) {
  2381. free_page(addr);
  2382. addr += PAGE_SIZE;
  2383. }
  2384. }
  2385. EXPORT_SYMBOL(free_pages_exact);
  2386. static unsigned int nr_free_zone_pages(int offset)
  2387. {
  2388. struct zoneref *z;
  2389. struct zone *zone;
  2390. /* Just pick one node, since fallback list is circular */
  2391. unsigned int sum = 0;
  2392. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2393. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2394. unsigned long size = zone->present_pages;
  2395. unsigned long high = high_wmark_pages(zone);
  2396. if (size > high)
  2397. sum += size - high;
  2398. }
  2399. return sum;
  2400. }
  2401. /*
  2402. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2403. */
  2404. unsigned int nr_free_buffer_pages(void)
  2405. {
  2406. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2407. }
  2408. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2409. /*
  2410. * Amount of free RAM allocatable within all zones
  2411. */
  2412. unsigned int nr_free_pagecache_pages(void)
  2413. {
  2414. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2415. }
  2416. static inline void show_node(struct zone *zone)
  2417. {
  2418. if (NUMA_BUILD)
  2419. printk("Node %d ", zone_to_nid(zone));
  2420. }
  2421. void si_meminfo(struct sysinfo *val)
  2422. {
  2423. val->totalram = totalram_pages;
  2424. val->sharedram = 0;
  2425. val->freeram = global_page_state(NR_FREE_PAGES);
  2426. val->bufferram = nr_blockdev_pages();
  2427. val->totalhigh = totalhigh_pages;
  2428. val->freehigh = nr_free_highpages();
  2429. val->mem_unit = PAGE_SIZE;
  2430. }
  2431. EXPORT_SYMBOL(si_meminfo);
  2432. #ifdef CONFIG_NUMA
  2433. void si_meminfo_node(struct sysinfo *val, int nid)
  2434. {
  2435. pg_data_t *pgdat = NODE_DATA(nid);
  2436. val->totalram = pgdat->node_present_pages;
  2437. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2438. #ifdef CONFIG_HIGHMEM
  2439. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2440. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2441. NR_FREE_PAGES);
  2442. #else
  2443. val->totalhigh = 0;
  2444. val->freehigh = 0;
  2445. #endif
  2446. val->mem_unit = PAGE_SIZE;
  2447. }
  2448. #endif
  2449. /*
  2450. * Determine whether the node should be displayed or not, depending on whether
  2451. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2452. */
  2453. bool skip_free_areas_node(unsigned int flags, int nid)
  2454. {
  2455. bool ret = false;
  2456. unsigned int cpuset_mems_cookie;
  2457. if (!(flags & SHOW_MEM_FILTER_NODES))
  2458. goto out;
  2459. do {
  2460. cpuset_mems_cookie = get_mems_allowed();
  2461. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2462. } while (!put_mems_allowed(cpuset_mems_cookie));
  2463. out:
  2464. return ret;
  2465. }
  2466. #define K(x) ((x) << (PAGE_SHIFT-10))
  2467. /*
  2468. * Show free area list (used inside shift_scroll-lock stuff)
  2469. * We also calculate the percentage fragmentation. We do this by counting the
  2470. * memory on each free list with the exception of the first item on the list.
  2471. * Suppresses nodes that are not allowed by current's cpuset if
  2472. * SHOW_MEM_FILTER_NODES is passed.
  2473. */
  2474. void show_free_areas(unsigned int filter)
  2475. {
  2476. int cpu;
  2477. struct zone *zone;
  2478. for_each_populated_zone(zone) {
  2479. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2480. continue;
  2481. show_node(zone);
  2482. printk("%s per-cpu:\n", zone->name);
  2483. for_each_online_cpu(cpu) {
  2484. struct per_cpu_pageset *pageset;
  2485. pageset = per_cpu_ptr(zone->pageset, cpu);
  2486. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2487. cpu, pageset->pcp.high,
  2488. pageset->pcp.batch, pageset->pcp.count);
  2489. }
  2490. }
  2491. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2492. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2493. " unevictable:%lu"
  2494. " dirty:%lu writeback:%lu unstable:%lu\n"
  2495. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2496. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2497. global_page_state(NR_ACTIVE_ANON),
  2498. global_page_state(NR_INACTIVE_ANON),
  2499. global_page_state(NR_ISOLATED_ANON),
  2500. global_page_state(NR_ACTIVE_FILE),
  2501. global_page_state(NR_INACTIVE_FILE),
  2502. global_page_state(NR_ISOLATED_FILE),
  2503. global_page_state(NR_UNEVICTABLE),
  2504. global_page_state(NR_FILE_DIRTY),
  2505. global_page_state(NR_WRITEBACK),
  2506. global_page_state(NR_UNSTABLE_NFS),
  2507. global_page_state(NR_FREE_PAGES),
  2508. global_page_state(NR_SLAB_RECLAIMABLE),
  2509. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2510. global_page_state(NR_FILE_MAPPED),
  2511. global_page_state(NR_SHMEM),
  2512. global_page_state(NR_PAGETABLE),
  2513. global_page_state(NR_BOUNCE));
  2514. for_each_populated_zone(zone) {
  2515. int i;
  2516. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2517. continue;
  2518. show_node(zone);
  2519. printk("%s"
  2520. " free:%lukB"
  2521. " min:%lukB"
  2522. " low:%lukB"
  2523. " high:%lukB"
  2524. " active_anon:%lukB"
  2525. " inactive_anon:%lukB"
  2526. " active_file:%lukB"
  2527. " inactive_file:%lukB"
  2528. " unevictable:%lukB"
  2529. " isolated(anon):%lukB"
  2530. " isolated(file):%lukB"
  2531. " present:%lukB"
  2532. " mlocked:%lukB"
  2533. " dirty:%lukB"
  2534. " writeback:%lukB"
  2535. " mapped:%lukB"
  2536. " shmem:%lukB"
  2537. " slab_reclaimable:%lukB"
  2538. " slab_unreclaimable:%lukB"
  2539. " kernel_stack:%lukB"
  2540. " pagetables:%lukB"
  2541. " unstable:%lukB"
  2542. " bounce:%lukB"
  2543. " writeback_tmp:%lukB"
  2544. " pages_scanned:%lu"
  2545. " all_unreclaimable? %s"
  2546. "\n",
  2547. zone->name,
  2548. K(zone_page_state(zone, NR_FREE_PAGES)),
  2549. K(min_wmark_pages(zone)),
  2550. K(low_wmark_pages(zone)),
  2551. K(high_wmark_pages(zone)),
  2552. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2553. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2554. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2555. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2556. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2557. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2558. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2559. K(zone->present_pages),
  2560. K(zone_page_state(zone, NR_MLOCK)),
  2561. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2562. K(zone_page_state(zone, NR_WRITEBACK)),
  2563. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2564. K(zone_page_state(zone, NR_SHMEM)),
  2565. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2566. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2567. zone_page_state(zone, NR_KERNEL_STACK) *
  2568. THREAD_SIZE / 1024,
  2569. K(zone_page_state(zone, NR_PAGETABLE)),
  2570. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2571. K(zone_page_state(zone, NR_BOUNCE)),
  2572. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2573. zone->pages_scanned,
  2574. (zone->all_unreclaimable ? "yes" : "no")
  2575. );
  2576. printk("lowmem_reserve[]:");
  2577. for (i = 0; i < MAX_NR_ZONES; i++)
  2578. printk(" %lu", zone->lowmem_reserve[i]);
  2579. printk("\n");
  2580. }
  2581. for_each_populated_zone(zone) {
  2582. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2583. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2584. continue;
  2585. show_node(zone);
  2586. printk("%s: ", zone->name);
  2587. spin_lock_irqsave(&zone->lock, flags);
  2588. for (order = 0; order < MAX_ORDER; order++) {
  2589. nr[order] = zone->free_area[order].nr_free;
  2590. total += nr[order] << order;
  2591. }
  2592. spin_unlock_irqrestore(&zone->lock, flags);
  2593. for (order = 0; order < MAX_ORDER; order++)
  2594. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2595. printk("= %lukB\n", K(total));
  2596. }
  2597. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2598. show_swap_cache_info();
  2599. }
  2600. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2601. {
  2602. zoneref->zone = zone;
  2603. zoneref->zone_idx = zone_idx(zone);
  2604. }
  2605. /*
  2606. * Builds allocation fallback zone lists.
  2607. *
  2608. * Add all populated zones of a node to the zonelist.
  2609. */
  2610. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2611. int nr_zones, enum zone_type zone_type)
  2612. {
  2613. struct zone *zone;
  2614. BUG_ON(zone_type >= MAX_NR_ZONES);
  2615. zone_type++;
  2616. do {
  2617. zone_type--;
  2618. zone = pgdat->node_zones + zone_type;
  2619. if (populated_zone(zone)) {
  2620. zoneref_set_zone(zone,
  2621. &zonelist->_zonerefs[nr_zones++]);
  2622. check_highest_zone(zone_type);
  2623. }
  2624. } while (zone_type);
  2625. return nr_zones;
  2626. }
  2627. /*
  2628. * zonelist_order:
  2629. * 0 = automatic detection of better ordering.
  2630. * 1 = order by ([node] distance, -zonetype)
  2631. * 2 = order by (-zonetype, [node] distance)
  2632. *
  2633. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2634. * the same zonelist. So only NUMA can configure this param.
  2635. */
  2636. #define ZONELIST_ORDER_DEFAULT 0
  2637. #define ZONELIST_ORDER_NODE 1
  2638. #define ZONELIST_ORDER_ZONE 2
  2639. /* zonelist order in the kernel.
  2640. * set_zonelist_order() will set this to NODE or ZONE.
  2641. */
  2642. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2643. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2644. #ifdef CONFIG_NUMA
  2645. /* The value user specified ....changed by config */
  2646. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2647. /* string for sysctl */
  2648. #define NUMA_ZONELIST_ORDER_LEN 16
  2649. char numa_zonelist_order[16] = "default";
  2650. /*
  2651. * interface for configure zonelist ordering.
  2652. * command line option "numa_zonelist_order"
  2653. * = "[dD]efault - default, automatic configuration.
  2654. * = "[nN]ode - order by node locality, then by zone within node
  2655. * = "[zZ]one - order by zone, then by locality within zone
  2656. */
  2657. static int __parse_numa_zonelist_order(char *s)
  2658. {
  2659. if (*s == 'd' || *s == 'D') {
  2660. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2661. } else if (*s == 'n' || *s == 'N') {
  2662. user_zonelist_order = ZONELIST_ORDER_NODE;
  2663. } else if (*s == 'z' || *s == 'Z') {
  2664. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2665. } else {
  2666. printk(KERN_WARNING
  2667. "Ignoring invalid numa_zonelist_order value: "
  2668. "%s\n", s);
  2669. return -EINVAL;
  2670. }
  2671. return 0;
  2672. }
  2673. static __init int setup_numa_zonelist_order(char *s)
  2674. {
  2675. int ret;
  2676. if (!s)
  2677. return 0;
  2678. ret = __parse_numa_zonelist_order(s);
  2679. if (ret == 0)
  2680. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2681. return ret;
  2682. }
  2683. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2684. /*
  2685. * sysctl handler for numa_zonelist_order
  2686. */
  2687. int numa_zonelist_order_handler(ctl_table *table, int write,
  2688. void __user *buffer, size_t *length,
  2689. loff_t *ppos)
  2690. {
  2691. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2692. int ret;
  2693. static DEFINE_MUTEX(zl_order_mutex);
  2694. mutex_lock(&zl_order_mutex);
  2695. if (write)
  2696. strcpy(saved_string, (char*)table->data);
  2697. ret = proc_dostring(table, write, buffer, length, ppos);
  2698. if (ret)
  2699. goto out;
  2700. if (write) {
  2701. int oldval = user_zonelist_order;
  2702. if (__parse_numa_zonelist_order((char*)table->data)) {
  2703. /*
  2704. * bogus value. restore saved string
  2705. */
  2706. strncpy((char*)table->data, saved_string,
  2707. NUMA_ZONELIST_ORDER_LEN);
  2708. user_zonelist_order = oldval;
  2709. } else if (oldval != user_zonelist_order) {
  2710. mutex_lock(&zonelists_mutex);
  2711. build_all_zonelists(NULL, NULL);
  2712. mutex_unlock(&zonelists_mutex);
  2713. }
  2714. }
  2715. out:
  2716. mutex_unlock(&zl_order_mutex);
  2717. return ret;
  2718. }
  2719. #define MAX_NODE_LOAD (nr_online_nodes)
  2720. static int node_load[MAX_NUMNODES];
  2721. /**
  2722. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2723. * @node: node whose fallback list we're appending
  2724. * @used_node_mask: nodemask_t of already used nodes
  2725. *
  2726. * We use a number of factors to determine which is the next node that should
  2727. * appear on a given node's fallback list. The node should not have appeared
  2728. * already in @node's fallback list, and it should be the next closest node
  2729. * according to the distance array (which contains arbitrary distance values
  2730. * from each node to each node in the system), and should also prefer nodes
  2731. * with no CPUs, since presumably they'll have very little allocation pressure
  2732. * on them otherwise.
  2733. * It returns -1 if no node is found.
  2734. */
  2735. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2736. {
  2737. int n, val;
  2738. int min_val = INT_MAX;
  2739. int best_node = -1;
  2740. const struct cpumask *tmp = cpumask_of_node(0);
  2741. /* Use the local node if we haven't already */
  2742. if (!node_isset(node, *used_node_mask)) {
  2743. node_set(node, *used_node_mask);
  2744. return node;
  2745. }
  2746. for_each_node_state(n, N_HIGH_MEMORY) {
  2747. /* Don't want a node to appear more than once */
  2748. if (node_isset(n, *used_node_mask))
  2749. continue;
  2750. /* Use the distance array to find the distance */
  2751. val = node_distance(node, n);
  2752. /* Penalize nodes under us ("prefer the next node") */
  2753. val += (n < node);
  2754. /* Give preference to headless and unused nodes */
  2755. tmp = cpumask_of_node(n);
  2756. if (!cpumask_empty(tmp))
  2757. val += PENALTY_FOR_NODE_WITH_CPUS;
  2758. /* Slight preference for less loaded node */
  2759. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2760. val += node_load[n];
  2761. if (val < min_val) {
  2762. min_val = val;
  2763. best_node = n;
  2764. }
  2765. }
  2766. if (best_node >= 0)
  2767. node_set(best_node, *used_node_mask);
  2768. return best_node;
  2769. }
  2770. /*
  2771. * Build zonelists ordered by node and zones within node.
  2772. * This results in maximum locality--normal zone overflows into local
  2773. * DMA zone, if any--but risks exhausting DMA zone.
  2774. */
  2775. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2776. {
  2777. int j;
  2778. struct zonelist *zonelist;
  2779. zonelist = &pgdat->node_zonelists[0];
  2780. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2781. ;
  2782. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2783. MAX_NR_ZONES - 1);
  2784. zonelist->_zonerefs[j].zone = NULL;
  2785. zonelist->_zonerefs[j].zone_idx = 0;
  2786. }
  2787. /*
  2788. * Build gfp_thisnode zonelists
  2789. */
  2790. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2791. {
  2792. int j;
  2793. struct zonelist *zonelist;
  2794. zonelist = &pgdat->node_zonelists[1];
  2795. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2796. zonelist->_zonerefs[j].zone = NULL;
  2797. zonelist->_zonerefs[j].zone_idx = 0;
  2798. }
  2799. /*
  2800. * Build zonelists ordered by zone and nodes within zones.
  2801. * This results in conserving DMA zone[s] until all Normal memory is
  2802. * exhausted, but results in overflowing to remote node while memory
  2803. * may still exist in local DMA zone.
  2804. */
  2805. static int node_order[MAX_NUMNODES];
  2806. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2807. {
  2808. int pos, j, node;
  2809. int zone_type; /* needs to be signed */
  2810. struct zone *z;
  2811. struct zonelist *zonelist;
  2812. zonelist = &pgdat->node_zonelists[0];
  2813. pos = 0;
  2814. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2815. for (j = 0; j < nr_nodes; j++) {
  2816. node = node_order[j];
  2817. z = &NODE_DATA(node)->node_zones[zone_type];
  2818. if (populated_zone(z)) {
  2819. zoneref_set_zone(z,
  2820. &zonelist->_zonerefs[pos++]);
  2821. check_highest_zone(zone_type);
  2822. }
  2823. }
  2824. }
  2825. zonelist->_zonerefs[pos].zone = NULL;
  2826. zonelist->_zonerefs[pos].zone_idx = 0;
  2827. }
  2828. static int default_zonelist_order(void)
  2829. {
  2830. int nid, zone_type;
  2831. unsigned long low_kmem_size,total_size;
  2832. struct zone *z;
  2833. int average_size;
  2834. /*
  2835. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2836. * If they are really small and used heavily, the system can fall
  2837. * into OOM very easily.
  2838. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2839. */
  2840. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2841. low_kmem_size = 0;
  2842. total_size = 0;
  2843. for_each_online_node(nid) {
  2844. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2845. z = &NODE_DATA(nid)->node_zones[zone_type];
  2846. if (populated_zone(z)) {
  2847. if (zone_type < ZONE_NORMAL)
  2848. low_kmem_size += z->present_pages;
  2849. total_size += z->present_pages;
  2850. } else if (zone_type == ZONE_NORMAL) {
  2851. /*
  2852. * If any node has only lowmem, then node order
  2853. * is preferred to allow kernel allocations
  2854. * locally; otherwise, they can easily infringe
  2855. * on other nodes when there is an abundance of
  2856. * lowmem available to allocate from.
  2857. */
  2858. return ZONELIST_ORDER_NODE;
  2859. }
  2860. }
  2861. }
  2862. if (!low_kmem_size || /* there are no DMA area. */
  2863. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2864. return ZONELIST_ORDER_NODE;
  2865. /*
  2866. * look into each node's config.
  2867. * If there is a node whose DMA/DMA32 memory is very big area on
  2868. * local memory, NODE_ORDER may be suitable.
  2869. */
  2870. average_size = total_size /
  2871. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2872. for_each_online_node(nid) {
  2873. low_kmem_size = 0;
  2874. total_size = 0;
  2875. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2876. z = &NODE_DATA(nid)->node_zones[zone_type];
  2877. if (populated_zone(z)) {
  2878. if (zone_type < ZONE_NORMAL)
  2879. low_kmem_size += z->present_pages;
  2880. total_size += z->present_pages;
  2881. }
  2882. }
  2883. if (low_kmem_size &&
  2884. total_size > average_size && /* ignore small node */
  2885. low_kmem_size > total_size * 70/100)
  2886. return ZONELIST_ORDER_NODE;
  2887. }
  2888. return ZONELIST_ORDER_ZONE;
  2889. }
  2890. static void set_zonelist_order(void)
  2891. {
  2892. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2893. current_zonelist_order = default_zonelist_order();
  2894. else
  2895. current_zonelist_order = user_zonelist_order;
  2896. }
  2897. static void build_zonelists(pg_data_t *pgdat)
  2898. {
  2899. int j, node, load;
  2900. enum zone_type i;
  2901. nodemask_t used_mask;
  2902. int local_node, prev_node;
  2903. struct zonelist *zonelist;
  2904. int order = current_zonelist_order;
  2905. /* initialize zonelists */
  2906. for (i = 0; i < MAX_ZONELISTS; i++) {
  2907. zonelist = pgdat->node_zonelists + i;
  2908. zonelist->_zonerefs[0].zone = NULL;
  2909. zonelist->_zonerefs[0].zone_idx = 0;
  2910. }
  2911. /* NUMA-aware ordering of nodes */
  2912. local_node = pgdat->node_id;
  2913. load = nr_online_nodes;
  2914. prev_node = local_node;
  2915. nodes_clear(used_mask);
  2916. memset(node_order, 0, sizeof(node_order));
  2917. j = 0;
  2918. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2919. int distance = node_distance(local_node, node);
  2920. /*
  2921. * If another node is sufficiently far away then it is better
  2922. * to reclaim pages in a zone before going off node.
  2923. */
  2924. if (distance > RECLAIM_DISTANCE)
  2925. zone_reclaim_mode = 1;
  2926. /*
  2927. * We don't want to pressure a particular node.
  2928. * So adding penalty to the first node in same
  2929. * distance group to make it round-robin.
  2930. */
  2931. if (distance != node_distance(local_node, prev_node))
  2932. node_load[node] = load;
  2933. prev_node = node;
  2934. load--;
  2935. if (order == ZONELIST_ORDER_NODE)
  2936. build_zonelists_in_node_order(pgdat, node);
  2937. else
  2938. node_order[j++] = node; /* remember order */
  2939. }
  2940. if (order == ZONELIST_ORDER_ZONE) {
  2941. /* calculate node order -- i.e., DMA last! */
  2942. build_zonelists_in_zone_order(pgdat, j);
  2943. }
  2944. build_thisnode_zonelists(pgdat);
  2945. }
  2946. /* Construct the zonelist performance cache - see further mmzone.h */
  2947. static void build_zonelist_cache(pg_data_t *pgdat)
  2948. {
  2949. struct zonelist *zonelist;
  2950. struct zonelist_cache *zlc;
  2951. struct zoneref *z;
  2952. zonelist = &pgdat->node_zonelists[0];
  2953. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2954. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2955. for (z = zonelist->_zonerefs; z->zone; z++)
  2956. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2957. }
  2958. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2959. /*
  2960. * Return node id of node used for "local" allocations.
  2961. * I.e., first node id of first zone in arg node's generic zonelist.
  2962. * Used for initializing percpu 'numa_mem', which is used primarily
  2963. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2964. */
  2965. int local_memory_node(int node)
  2966. {
  2967. struct zone *zone;
  2968. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2969. gfp_zone(GFP_KERNEL),
  2970. NULL,
  2971. &zone);
  2972. return zone->node;
  2973. }
  2974. #endif
  2975. #else /* CONFIG_NUMA */
  2976. static void set_zonelist_order(void)
  2977. {
  2978. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2979. }
  2980. static void build_zonelists(pg_data_t *pgdat)
  2981. {
  2982. int node, local_node;
  2983. enum zone_type j;
  2984. struct zonelist *zonelist;
  2985. local_node = pgdat->node_id;
  2986. zonelist = &pgdat->node_zonelists[0];
  2987. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2988. /*
  2989. * Now we build the zonelist so that it contains the zones
  2990. * of all the other nodes.
  2991. * We don't want to pressure a particular node, so when
  2992. * building the zones for node N, we make sure that the
  2993. * zones coming right after the local ones are those from
  2994. * node N+1 (modulo N)
  2995. */
  2996. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2997. if (!node_online(node))
  2998. continue;
  2999. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3000. MAX_NR_ZONES - 1);
  3001. }
  3002. for (node = 0; node < local_node; node++) {
  3003. if (!node_online(node))
  3004. continue;
  3005. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3006. MAX_NR_ZONES - 1);
  3007. }
  3008. zonelist->_zonerefs[j].zone = NULL;
  3009. zonelist->_zonerefs[j].zone_idx = 0;
  3010. }
  3011. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3012. static void build_zonelist_cache(pg_data_t *pgdat)
  3013. {
  3014. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3015. }
  3016. #endif /* CONFIG_NUMA */
  3017. /*
  3018. * Boot pageset table. One per cpu which is going to be used for all
  3019. * zones and all nodes. The parameters will be set in such a way
  3020. * that an item put on a list will immediately be handed over to
  3021. * the buddy list. This is safe since pageset manipulation is done
  3022. * with interrupts disabled.
  3023. *
  3024. * The boot_pagesets must be kept even after bootup is complete for
  3025. * unused processors and/or zones. They do play a role for bootstrapping
  3026. * hotplugged processors.
  3027. *
  3028. * zoneinfo_show() and maybe other functions do
  3029. * not check if the processor is online before following the pageset pointer.
  3030. * Other parts of the kernel may not check if the zone is available.
  3031. */
  3032. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3033. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3034. static void setup_zone_pageset(struct zone *zone);
  3035. /*
  3036. * Global mutex to protect against size modification of zonelists
  3037. * as well as to serialize pageset setup for the new populated zone.
  3038. */
  3039. DEFINE_MUTEX(zonelists_mutex);
  3040. /* return values int ....just for stop_machine() */
  3041. static int __build_all_zonelists(void *data)
  3042. {
  3043. int nid;
  3044. int cpu;
  3045. pg_data_t *self = data;
  3046. #ifdef CONFIG_NUMA
  3047. memset(node_load, 0, sizeof(node_load));
  3048. #endif
  3049. if (self && !node_online(self->node_id)) {
  3050. build_zonelists(self);
  3051. build_zonelist_cache(self);
  3052. }
  3053. for_each_online_node(nid) {
  3054. pg_data_t *pgdat = NODE_DATA(nid);
  3055. build_zonelists(pgdat);
  3056. build_zonelist_cache(pgdat);
  3057. }
  3058. /*
  3059. * Initialize the boot_pagesets that are going to be used
  3060. * for bootstrapping processors. The real pagesets for
  3061. * each zone will be allocated later when the per cpu
  3062. * allocator is available.
  3063. *
  3064. * boot_pagesets are used also for bootstrapping offline
  3065. * cpus if the system is already booted because the pagesets
  3066. * are needed to initialize allocators on a specific cpu too.
  3067. * F.e. the percpu allocator needs the page allocator which
  3068. * needs the percpu allocator in order to allocate its pagesets
  3069. * (a chicken-egg dilemma).
  3070. */
  3071. for_each_possible_cpu(cpu) {
  3072. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3073. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3074. /*
  3075. * We now know the "local memory node" for each node--
  3076. * i.e., the node of the first zone in the generic zonelist.
  3077. * Set up numa_mem percpu variable for on-line cpus. During
  3078. * boot, only the boot cpu should be on-line; we'll init the
  3079. * secondary cpus' numa_mem as they come on-line. During
  3080. * node/memory hotplug, we'll fixup all on-line cpus.
  3081. */
  3082. if (cpu_online(cpu))
  3083. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3084. #endif
  3085. }
  3086. return 0;
  3087. }
  3088. /*
  3089. * Called with zonelists_mutex held always
  3090. * unless system_state == SYSTEM_BOOTING.
  3091. */
  3092. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3093. {
  3094. set_zonelist_order();
  3095. if (system_state == SYSTEM_BOOTING) {
  3096. __build_all_zonelists(NULL);
  3097. mminit_verify_zonelist();
  3098. cpuset_init_current_mems_allowed();
  3099. } else {
  3100. /* we have to stop all cpus to guarantee there is no user
  3101. of zonelist */
  3102. #ifdef CONFIG_MEMORY_HOTPLUG
  3103. if (zone)
  3104. setup_zone_pageset(zone);
  3105. #endif
  3106. stop_machine(__build_all_zonelists, pgdat, NULL);
  3107. /* cpuset refresh routine should be here */
  3108. }
  3109. vm_total_pages = nr_free_pagecache_pages();
  3110. /*
  3111. * Disable grouping by mobility if the number of pages in the
  3112. * system is too low to allow the mechanism to work. It would be
  3113. * more accurate, but expensive to check per-zone. This check is
  3114. * made on memory-hotadd so a system can start with mobility
  3115. * disabled and enable it later
  3116. */
  3117. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3118. page_group_by_mobility_disabled = 1;
  3119. else
  3120. page_group_by_mobility_disabled = 0;
  3121. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3122. "Total pages: %ld\n",
  3123. nr_online_nodes,
  3124. zonelist_order_name[current_zonelist_order],
  3125. page_group_by_mobility_disabled ? "off" : "on",
  3126. vm_total_pages);
  3127. #ifdef CONFIG_NUMA
  3128. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3129. #endif
  3130. }
  3131. /*
  3132. * Helper functions to size the waitqueue hash table.
  3133. * Essentially these want to choose hash table sizes sufficiently
  3134. * large so that collisions trying to wait on pages are rare.
  3135. * But in fact, the number of active page waitqueues on typical
  3136. * systems is ridiculously low, less than 200. So this is even
  3137. * conservative, even though it seems large.
  3138. *
  3139. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3140. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3141. */
  3142. #define PAGES_PER_WAITQUEUE 256
  3143. #ifndef CONFIG_MEMORY_HOTPLUG
  3144. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3145. {
  3146. unsigned long size = 1;
  3147. pages /= PAGES_PER_WAITQUEUE;
  3148. while (size < pages)
  3149. size <<= 1;
  3150. /*
  3151. * Once we have dozens or even hundreds of threads sleeping
  3152. * on IO we've got bigger problems than wait queue collision.
  3153. * Limit the size of the wait table to a reasonable size.
  3154. */
  3155. size = min(size, 4096UL);
  3156. return max(size, 4UL);
  3157. }
  3158. #else
  3159. /*
  3160. * A zone's size might be changed by hot-add, so it is not possible to determine
  3161. * a suitable size for its wait_table. So we use the maximum size now.
  3162. *
  3163. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3164. *
  3165. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3166. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3167. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3168. *
  3169. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3170. * or more by the traditional way. (See above). It equals:
  3171. *
  3172. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3173. * ia64(16K page size) : = ( 8G + 4M)byte.
  3174. * powerpc (64K page size) : = (32G +16M)byte.
  3175. */
  3176. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3177. {
  3178. return 4096UL;
  3179. }
  3180. #endif
  3181. /*
  3182. * This is an integer logarithm so that shifts can be used later
  3183. * to extract the more random high bits from the multiplicative
  3184. * hash function before the remainder is taken.
  3185. */
  3186. static inline unsigned long wait_table_bits(unsigned long size)
  3187. {
  3188. return ffz(~size);
  3189. }
  3190. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3191. /*
  3192. * Check if a pageblock contains reserved pages
  3193. */
  3194. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3195. {
  3196. unsigned long pfn;
  3197. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3198. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3199. return 1;
  3200. }
  3201. return 0;
  3202. }
  3203. /*
  3204. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3205. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3206. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3207. * higher will lead to a bigger reserve which will get freed as contiguous
  3208. * blocks as reclaim kicks in
  3209. */
  3210. static void setup_zone_migrate_reserve(struct zone *zone)
  3211. {
  3212. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3213. struct page *page;
  3214. unsigned long block_migratetype;
  3215. int reserve;
  3216. /*
  3217. * Get the start pfn, end pfn and the number of blocks to reserve
  3218. * We have to be careful to be aligned to pageblock_nr_pages to
  3219. * make sure that we always check pfn_valid for the first page in
  3220. * the block.
  3221. */
  3222. start_pfn = zone->zone_start_pfn;
  3223. end_pfn = start_pfn + zone->spanned_pages;
  3224. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3225. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3226. pageblock_order;
  3227. /*
  3228. * Reserve blocks are generally in place to help high-order atomic
  3229. * allocations that are short-lived. A min_free_kbytes value that
  3230. * would result in more than 2 reserve blocks for atomic allocations
  3231. * is assumed to be in place to help anti-fragmentation for the
  3232. * future allocation of hugepages at runtime.
  3233. */
  3234. reserve = min(2, reserve);
  3235. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3236. if (!pfn_valid(pfn))
  3237. continue;
  3238. page = pfn_to_page(pfn);
  3239. /* Watch out for overlapping nodes */
  3240. if (page_to_nid(page) != zone_to_nid(zone))
  3241. continue;
  3242. block_migratetype = get_pageblock_migratetype(page);
  3243. /* Only test what is necessary when the reserves are not met */
  3244. if (reserve > 0) {
  3245. /*
  3246. * Blocks with reserved pages will never free, skip
  3247. * them.
  3248. */
  3249. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3250. if (pageblock_is_reserved(pfn, block_end_pfn))
  3251. continue;
  3252. /* If this block is reserved, account for it */
  3253. if (block_migratetype == MIGRATE_RESERVE) {
  3254. reserve--;
  3255. continue;
  3256. }
  3257. /* Suitable for reserving if this block is movable */
  3258. if (block_migratetype == MIGRATE_MOVABLE) {
  3259. set_pageblock_migratetype(page,
  3260. MIGRATE_RESERVE);
  3261. move_freepages_block(zone, page,
  3262. MIGRATE_RESERVE);
  3263. reserve--;
  3264. continue;
  3265. }
  3266. }
  3267. /*
  3268. * If the reserve is met and this is a previous reserved block,
  3269. * take it back
  3270. */
  3271. if (block_migratetype == MIGRATE_RESERVE) {
  3272. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3273. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3274. }
  3275. }
  3276. }
  3277. /*
  3278. * Initially all pages are reserved - free ones are freed
  3279. * up by free_all_bootmem() once the early boot process is
  3280. * done. Non-atomic initialization, single-pass.
  3281. */
  3282. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3283. unsigned long start_pfn, enum memmap_context context)
  3284. {
  3285. struct page *page;
  3286. unsigned long end_pfn = start_pfn + size;
  3287. unsigned long pfn;
  3288. struct zone *z;
  3289. if (highest_memmap_pfn < end_pfn - 1)
  3290. highest_memmap_pfn = end_pfn - 1;
  3291. z = &NODE_DATA(nid)->node_zones[zone];
  3292. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3293. /*
  3294. * There can be holes in boot-time mem_map[]s
  3295. * handed to this function. They do not
  3296. * exist on hotplugged memory.
  3297. */
  3298. if (context == MEMMAP_EARLY) {
  3299. if (!early_pfn_valid(pfn))
  3300. continue;
  3301. if (!early_pfn_in_nid(pfn, nid))
  3302. continue;
  3303. }
  3304. page = pfn_to_page(pfn);
  3305. set_page_links(page, zone, nid, pfn);
  3306. mminit_verify_page_links(page, zone, nid, pfn);
  3307. init_page_count(page);
  3308. reset_page_mapcount(page);
  3309. SetPageReserved(page);
  3310. /*
  3311. * Mark the block movable so that blocks are reserved for
  3312. * movable at startup. This will force kernel allocations
  3313. * to reserve their blocks rather than leaking throughout
  3314. * the address space during boot when many long-lived
  3315. * kernel allocations are made. Later some blocks near
  3316. * the start are marked MIGRATE_RESERVE by
  3317. * setup_zone_migrate_reserve()
  3318. *
  3319. * bitmap is created for zone's valid pfn range. but memmap
  3320. * can be created for invalid pages (for alignment)
  3321. * check here not to call set_pageblock_migratetype() against
  3322. * pfn out of zone.
  3323. */
  3324. if ((z->zone_start_pfn <= pfn)
  3325. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3326. && !(pfn & (pageblock_nr_pages - 1)))
  3327. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3328. INIT_LIST_HEAD(&page->lru);
  3329. #ifdef WANT_PAGE_VIRTUAL
  3330. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3331. if (!is_highmem_idx(zone))
  3332. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3333. #endif
  3334. }
  3335. }
  3336. static void __meminit zone_init_free_lists(struct zone *zone)
  3337. {
  3338. int order, t;
  3339. for_each_migratetype_order(order, t) {
  3340. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3341. zone->free_area[order].nr_free = 0;
  3342. }
  3343. }
  3344. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3345. #define memmap_init(size, nid, zone, start_pfn) \
  3346. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3347. #endif
  3348. static int __meminit zone_batchsize(struct zone *zone)
  3349. {
  3350. #ifdef CONFIG_MMU
  3351. int batch;
  3352. /*
  3353. * The per-cpu-pages pools are set to around 1000th of the
  3354. * size of the zone. But no more than 1/2 of a meg.
  3355. *
  3356. * OK, so we don't know how big the cache is. So guess.
  3357. */
  3358. batch = zone->present_pages / 1024;
  3359. if (batch * PAGE_SIZE > 512 * 1024)
  3360. batch = (512 * 1024) / PAGE_SIZE;
  3361. batch /= 4; /* We effectively *= 4 below */
  3362. if (batch < 1)
  3363. batch = 1;
  3364. /*
  3365. * Clamp the batch to a 2^n - 1 value. Having a power
  3366. * of 2 value was found to be more likely to have
  3367. * suboptimal cache aliasing properties in some cases.
  3368. *
  3369. * For example if 2 tasks are alternately allocating
  3370. * batches of pages, one task can end up with a lot
  3371. * of pages of one half of the possible page colors
  3372. * and the other with pages of the other colors.
  3373. */
  3374. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3375. return batch;
  3376. #else
  3377. /* The deferral and batching of frees should be suppressed under NOMMU
  3378. * conditions.
  3379. *
  3380. * The problem is that NOMMU needs to be able to allocate large chunks
  3381. * of contiguous memory as there's no hardware page translation to
  3382. * assemble apparent contiguous memory from discontiguous pages.
  3383. *
  3384. * Queueing large contiguous runs of pages for batching, however,
  3385. * causes the pages to actually be freed in smaller chunks. As there
  3386. * can be a significant delay between the individual batches being
  3387. * recycled, this leads to the once large chunks of space being
  3388. * fragmented and becoming unavailable for high-order allocations.
  3389. */
  3390. return 0;
  3391. #endif
  3392. }
  3393. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3394. {
  3395. struct per_cpu_pages *pcp;
  3396. int migratetype;
  3397. memset(p, 0, sizeof(*p));
  3398. pcp = &p->pcp;
  3399. pcp->count = 0;
  3400. pcp->high = 6 * batch;
  3401. pcp->batch = max(1UL, 1 * batch);
  3402. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3403. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3404. }
  3405. /*
  3406. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3407. * to the value high for the pageset p.
  3408. */
  3409. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3410. unsigned long high)
  3411. {
  3412. struct per_cpu_pages *pcp;
  3413. pcp = &p->pcp;
  3414. pcp->high = high;
  3415. pcp->batch = max(1UL, high/4);
  3416. if ((high/4) > (PAGE_SHIFT * 8))
  3417. pcp->batch = PAGE_SHIFT * 8;
  3418. }
  3419. static void __meminit setup_zone_pageset(struct zone *zone)
  3420. {
  3421. int cpu;
  3422. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3423. for_each_possible_cpu(cpu) {
  3424. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3425. setup_pageset(pcp, zone_batchsize(zone));
  3426. if (percpu_pagelist_fraction)
  3427. setup_pagelist_highmark(pcp,
  3428. (zone->present_pages /
  3429. percpu_pagelist_fraction));
  3430. }
  3431. }
  3432. /*
  3433. * Allocate per cpu pagesets and initialize them.
  3434. * Before this call only boot pagesets were available.
  3435. */
  3436. void __init setup_per_cpu_pageset(void)
  3437. {
  3438. struct zone *zone;
  3439. for_each_populated_zone(zone)
  3440. setup_zone_pageset(zone);
  3441. }
  3442. static noinline __init_refok
  3443. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3444. {
  3445. int i;
  3446. struct pglist_data *pgdat = zone->zone_pgdat;
  3447. size_t alloc_size;
  3448. /*
  3449. * The per-page waitqueue mechanism uses hashed waitqueues
  3450. * per zone.
  3451. */
  3452. zone->wait_table_hash_nr_entries =
  3453. wait_table_hash_nr_entries(zone_size_pages);
  3454. zone->wait_table_bits =
  3455. wait_table_bits(zone->wait_table_hash_nr_entries);
  3456. alloc_size = zone->wait_table_hash_nr_entries
  3457. * sizeof(wait_queue_head_t);
  3458. if (!slab_is_available()) {
  3459. zone->wait_table = (wait_queue_head_t *)
  3460. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3461. } else {
  3462. /*
  3463. * This case means that a zone whose size was 0 gets new memory
  3464. * via memory hot-add.
  3465. * But it may be the case that a new node was hot-added. In
  3466. * this case vmalloc() will not be able to use this new node's
  3467. * memory - this wait_table must be initialized to use this new
  3468. * node itself as well.
  3469. * To use this new node's memory, further consideration will be
  3470. * necessary.
  3471. */
  3472. zone->wait_table = vmalloc(alloc_size);
  3473. }
  3474. if (!zone->wait_table)
  3475. return -ENOMEM;
  3476. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3477. init_waitqueue_head(zone->wait_table + i);
  3478. return 0;
  3479. }
  3480. static __meminit void zone_pcp_init(struct zone *zone)
  3481. {
  3482. /*
  3483. * per cpu subsystem is not up at this point. The following code
  3484. * relies on the ability of the linker to provide the
  3485. * offset of a (static) per cpu variable into the per cpu area.
  3486. */
  3487. zone->pageset = &boot_pageset;
  3488. if (zone->present_pages)
  3489. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3490. zone->name, zone->present_pages,
  3491. zone_batchsize(zone));
  3492. }
  3493. int __meminit init_currently_empty_zone(struct zone *zone,
  3494. unsigned long zone_start_pfn,
  3495. unsigned long size,
  3496. enum memmap_context context)
  3497. {
  3498. struct pglist_data *pgdat = zone->zone_pgdat;
  3499. int ret;
  3500. ret = zone_wait_table_init(zone, size);
  3501. if (ret)
  3502. return ret;
  3503. pgdat->nr_zones = zone_idx(zone) + 1;
  3504. zone->zone_start_pfn = zone_start_pfn;
  3505. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3506. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3507. pgdat->node_id,
  3508. (unsigned long)zone_idx(zone),
  3509. zone_start_pfn, (zone_start_pfn + size));
  3510. zone_init_free_lists(zone);
  3511. return 0;
  3512. }
  3513. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3514. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3515. /*
  3516. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3517. * Architectures may implement their own version but if add_active_range()
  3518. * was used and there are no special requirements, this is a convenient
  3519. * alternative
  3520. */
  3521. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3522. {
  3523. unsigned long start_pfn, end_pfn;
  3524. int i, nid;
  3525. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3526. if (start_pfn <= pfn && pfn < end_pfn)
  3527. return nid;
  3528. /* This is a memory hole */
  3529. return -1;
  3530. }
  3531. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3532. int __meminit early_pfn_to_nid(unsigned long pfn)
  3533. {
  3534. int nid;
  3535. nid = __early_pfn_to_nid(pfn);
  3536. if (nid >= 0)
  3537. return nid;
  3538. /* just returns 0 */
  3539. return 0;
  3540. }
  3541. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3542. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3543. {
  3544. int nid;
  3545. nid = __early_pfn_to_nid(pfn);
  3546. if (nid >= 0 && nid != node)
  3547. return false;
  3548. return true;
  3549. }
  3550. #endif
  3551. /**
  3552. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3553. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3554. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3555. *
  3556. * If an architecture guarantees that all ranges registered with
  3557. * add_active_ranges() contain no holes and may be freed, this
  3558. * this function may be used instead of calling free_bootmem() manually.
  3559. */
  3560. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3561. {
  3562. unsigned long start_pfn, end_pfn;
  3563. int i, this_nid;
  3564. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3565. start_pfn = min(start_pfn, max_low_pfn);
  3566. end_pfn = min(end_pfn, max_low_pfn);
  3567. if (start_pfn < end_pfn)
  3568. free_bootmem_node(NODE_DATA(this_nid),
  3569. PFN_PHYS(start_pfn),
  3570. (end_pfn - start_pfn) << PAGE_SHIFT);
  3571. }
  3572. }
  3573. /**
  3574. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3575. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3576. *
  3577. * If an architecture guarantees that all ranges registered with
  3578. * add_active_ranges() contain no holes and may be freed, this
  3579. * function may be used instead of calling memory_present() manually.
  3580. */
  3581. void __init sparse_memory_present_with_active_regions(int nid)
  3582. {
  3583. unsigned long start_pfn, end_pfn;
  3584. int i, this_nid;
  3585. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3586. memory_present(this_nid, start_pfn, end_pfn);
  3587. }
  3588. /**
  3589. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3590. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3591. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3592. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3593. *
  3594. * It returns the start and end page frame of a node based on information
  3595. * provided by an arch calling add_active_range(). If called for a node
  3596. * with no available memory, a warning is printed and the start and end
  3597. * PFNs will be 0.
  3598. */
  3599. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3600. unsigned long *start_pfn, unsigned long *end_pfn)
  3601. {
  3602. unsigned long this_start_pfn, this_end_pfn;
  3603. int i;
  3604. *start_pfn = -1UL;
  3605. *end_pfn = 0;
  3606. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3607. *start_pfn = min(*start_pfn, this_start_pfn);
  3608. *end_pfn = max(*end_pfn, this_end_pfn);
  3609. }
  3610. if (*start_pfn == -1UL)
  3611. *start_pfn = 0;
  3612. }
  3613. /*
  3614. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3615. * assumption is made that zones within a node are ordered in monotonic
  3616. * increasing memory addresses so that the "highest" populated zone is used
  3617. */
  3618. static void __init find_usable_zone_for_movable(void)
  3619. {
  3620. int zone_index;
  3621. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3622. if (zone_index == ZONE_MOVABLE)
  3623. continue;
  3624. if (arch_zone_highest_possible_pfn[zone_index] >
  3625. arch_zone_lowest_possible_pfn[zone_index])
  3626. break;
  3627. }
  3628. VM_BUG_ON(zone_index == -1);
  3629. movable_zone = zone_index;
  3630. }
  3631. /*
  3632. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3633. * because it is sized independent of architecture. Unlike the other zones,
  3634. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3635. * in each node depending on the size of each node and how evenly kernelcore
  3636. * is distributed. This helper function adjusts the zone ranges
  3637. * provided by the architecture for a given node by using the end of the
  3638. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3639. * zones within a node are in order of monotonic increases memory addresses
  3640. */
  3641. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3642. unsigned long zone_type,
  3643. unsigned long node_start_pfn,
  3644. unsigned long node_end_pfn,
  3645. unsigned long *zone_start_pfn,
  3646. unsigned long *zone_end_pfn)
  3647. {
  3648. /* Only adjust if ZONE_MOVABLE is on this node */
  3649. if (zone_movable_pfn[nid]) {
  3650. /* Size ZONE_MOVABLE */
  3651. if (zone_type == ZONE_MOVABLE) {
  3652. *zone_start_pfn = zone_movable_pfn[nid];
  3653. *zone_end_pfn = min(node_end_pfn,
  3654. arch_zone_highest_possible_pfn[movable_zone]);
  3655. /* Adjust for ZONE_MOVABLE starting within this range */
  3656. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3657. *zone_end_pfn > zone_movable_pfn[nid]) {
  3658. *zone_end_pfn = zone_movable_pfn[nid];
  3659. /* Check if this whole range is within ZONE_MOVABLE */
  3660. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3661. *zone_start_pfn = *zone_end_pfn;
  3662. }
  3663. }
  3664. /*
  3665. * Return the number of pages a zone spans in a node, including holes
  3666. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3667. */
  3668. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3669. unsigned long zone_type,
  3670. unsigned long *ignored)
  3671. {
  3672. unsigned long node_start_pfn, node_end_pfn;
  3673. unsigned long zone_start_pfn, zone_end_pfn;
  3674. /* Get the start and end of the node and zone */
  3675. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3676. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3677. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3678. adjust_zone_range_for_zone_movable(nid, zone_type,
  3679. node_start_pfn, node_end_pfn,
  3680. &zone_start_pfn, &zone_end_pfn);
  3681. /* Check that this node has pages within the zone's required range */
  3682. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3683. return 0;
  3684. /* Move the zone boundaries inside the node if necessary */
  3685. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3686. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3687. /* Return the spanned pages */
  3688. return zone_end_pfn - zone_start_pfn;
  3689. }
  3690. /*
  3691. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3692. * then all holes in the requested range will be accounted for.
  3693. */
  3694. unsigned long __meminit __absent_pages_in_range(int nid,
  3695. unsigned long range_start_pfn,
  3696. unsigned long range_end_pfn)
  3697. {
  3698. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3699. unsigned long start_pfn, end_pfn;
  3700. int i;
  3701. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3702. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3703. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3704. nr_absent -= end_pfn - start_pfn;
  3705. }
  3706. return nr_absent;
  3707. }
  3708. /**
  3709. * absent_pages_in_range - Return number of page frames in holes within a range
  3710. * @start_pfn: The start PFN to start searching for holes
  3711. * @end_pfn: The end PFN to stop searching for holes
  3712. *
  3713. * It returns the number of pages frames in memory holes within a range.
  3714. */
  3715. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3716. unsigned long end_pfn)
  3717. {
  3718. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3719. }
  3720. /* Return the number of page frames in holes in a zone on a node */
  3721. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3722. unsigned long zone_type,
  3723. unsigned long *ignored)
  3724. {
  3725. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3726. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3727. unsigned long node_start_pfn, node_end_pfn;
  3728. unsigned long zone_start_pfn, zone_end_pfn;
  3729. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3730. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3731. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3732. adjust_zone_range_for_zone_movable(nid, zone_type,
  3733. node_start_pfn, node_end_pfn,
  3734. &zone_start_pfn, &zone_end_pfn);
  3735. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3736. }
  3737. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3738. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3739. unsigned long zone_type,
  3740. unsigned long *zones_size)
  3741. {
  3742. return zones_size[zone_type];
  3743. }
  3744. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3745. unsigned long zone_type,
  3746. unsigned long *zholes_size)
  3747. {
  3748. if (!zholes_size)
  3749. return 0;
  3750. return zholes_size[zone_type];
  3751. }
  3752. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3753. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3754. unsigned long *zones_size, unsigned long *zholes_size)
  3755. {
  3756. unsigned long realtotalpages, totalpages = 0;
  3757. enum zone_type i;
  3758. for (i = 0; i < MAX_NR_ZONES; i++)
  3759. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3760. zones_size);
  3761. pgdat->node_spanned_pages = totalpages;
  3762. realtotalpages = totalpages;
  3763. for (i = 0; i < MAX_NR_ZONES; i++)
  3764. realtotalpages -=
  3765. zone_absent_pages_in_node(pgdat->node_id, i,
  3766. zholes_size);
  3767. pgdat->node_present_pages = realtotalpages;
  3768. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3769. realtotalpages);
  3770. }
  3771. #ifndef CONFIG_SPARSEMEM
  3772. /*
  3773. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3774. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3775. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3776. * round what is now in bits to nearest long in bits, then return it in
  3777. * bytes.
  3778. */
  3779. static unsigned long __init usemap_size(unsigned long zonesize)
  3780. {
  3781. unsigned long usemapsize;
  3782. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3783. usemapsize = usemapsize >> pageblock_order;
  3784. usemapsize *= NR_PAGEBLOCK_BITS;
  3785. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3786. return usemapsize / 8;
  3787. }
  3788. static void __init setup_usemap(struct pglist_data *pgdat,
  3789. struct zone *zone, unsigned long zonesize)
  3790. {
  3791. unsigned long usemapsize = usemap_size(zonesize);
  3792. zone->pageblock_flags = NULL;
  3793. if (usemapsize)
  3794. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3795. usemapsize);
  3796. }
  3797. #else
  3798. static inline void setup_usemap(struct pglist_data *pgdat,
  3799. struct zone *zone, unsigned long zonesize) {}
  3800. #endif /* CONFIG_SPARSEMEM */
  3801. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3802. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3803. void __init set_pageblock_order(void)
  3804. {
  3805. unsigned int order;
  3806. /* Check that pageblock_nr_pages has not already been setup */
  3807. if (pageblock_order)
  3808. return;
  3809. if (HPAGE_SHIFT > PAGE_SHIFT)
  3810. order = HUGETLB_PAGE_ORDER;
  3811. else
  3812. order = MAX_ORDER - 1;
  3813. /*
  3814. * Assume the largest contiguous order of interest is a huge page.
  3815. * This value may be variable depending on boot parameters on IA64 and
  3816. * powerpc.
  3817. */
  3818. pageblock_order = order;
  3819. }
  3820. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3821. /*
  3822. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3823. * is unused as pageblock_order is set at compile-time. See
  3824. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  3825. * the kernel config
  3826. */
  3827. void __init set_pageblock_order(void)
  3828. {
  3829. }
  3830. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3831. /*
  3832. * Set up the zone data structures:
  3833. * - mark all pages reserved
  3834. * - mark all memory queues empty
  3835. * - clear the memory bitmaps
  3836. *
  3837. * NOTE: pgdat should get zeroed by caller.
  3838. */
  3839. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3840. unsigned long *zones_size, unsigned long *zholes_size)
  3841. {
  3842. enum zone_type j;
  3843. int nid = pgdat->node_id;
  3844. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3845. int ret;
  3846. pgdat_resize_init(pgdat);
  3847. init_waitqueue_head(&pgdat->kswapd_wait);
  3848. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  3849. pgdat_page_cgroup_init(pgdat);
  3850. for (j = 0; j < MAX_NR_ZONES; j++) {
  3851. struct zone *zone = pgdat->node_zones + j;
  3852. unsigned long size, realsize, memmap_pages;
  3853. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3854. realsize = size - zone_absent_pages_in_node(nid, j,
  3855. zholes_size);
  3856. /*
  3857. * Adjust realsize so that it accounts for how much memory
  3858. * is used by this zone for memmap. This affects the watermark
  3859. * and per-cpu initialisations
  3860. */
  3861. memmap_pages =
  3862. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3863. if (realsize >= memmap_pages) {
  3864. realsize -= memmap_pages;
  3865. if (memmap_pages)
  3866. printk(KERN_DEBUG
  3867. " %s zone: %lu pages used for memmap\n",
  3868. zone_names[j], memmap_pages);
  3869. } else
  3870. printk(KERN_WARNING
  3871. " %s zone: %lu pages exceeds realsize %lu\n",
  3872. zone_names[j], memmap_pages, realsize);
  3873. /* Account for reserved pages */
  3874. if (j == 0 && realsize > dma_reserve) {
  3875. realsize -= dma_reserve;
  3876. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3877. zone_names[0], dma_reserve);
  3878. }
  3879. if (!is_highmem_idx(j))
  3880. nr_kernel_pages += realsize;
  3881. nr_all_pages += realsize;
  3882. zone->spanned_pages = size;
  3883. zone->present_pages = realsize;
  3884. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  3885. zone->compact_cached_free_pfn = zone->zone_start_pfn +
  3886. zone->spanned_pages;
  3887. zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
  3888. #endif
  3889. #ifdef CONFIG_NUMA
  3890. zone->node = nid;
  3891. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3892. / 100;
  3893. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3894. #endif
  3895. zone->name = zone_names[j];
  3896. spin_lock_init(&zone->lock);
  3897. spin_lock_init(&zone->lru_lock);
  3898. zone_seqlock_init(zone);
  3899. zone->zone_pgdat = pgdat;
  3900. zone_pcp_init(zone);
  3901. lruvec_init(&zone->lruvec, zone);
  3902. if (!size)
  3903. continue;
  3904. set_pageblock_order();
  3905. setup_usemap(pgdat, zone, size);
  3906. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3907. size, MEMMAP_EARLY);
  3908. BUG_ON(ret);
  3909. memmap_init(size, nid, j, zone_start_pfn);
  3910. zone_start_pfn += size;
  3911. }
  3912. }
  3913. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3914. {
  3915. /* Skip empty nodes */
  3916. if (!pgdat->node_spanned_pages)
  3917. return;
  3918. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3919. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3920. if (!pgdat->node_mem_map) {
  3921. unsigned long size, start, end;
  3922. struct page *map;
  3923. /*
  3924. * The zone's endpoints aren't required to be MAX_ORDER
  3925. * aligned but the node_mem_map endpoints must be in order
  3926. * for the buddy allocator to function correctly.
  3927. */
  3928. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3929. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3930. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3931. size = (end - start) * sizeof(struct page);
  3932. map = alloc_remap(pgdat->node_id, size);
  3933. if (!map)
  3934. map = alloc_bootmem_node_nopanic(pgdat, size);
  3935. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3936. }
  3937. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3938. /*
  3939. * With no DISCONTIG, the global mem_map is just set as node 0's
  3940. */
  3941. if (pgdat == NODE_DATA(0)) {
  3942. mem_map = NODE_DATA(0)->node_mem_map;
  3943. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3944. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3945. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3946. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3947. }
  3948. #endif
  3949. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3950. }
  3951. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3952. unsigned long node_start_pfn, unsigned long *zholes_size)
  3953. {
  3954. pg_data_t *pgdat = NODE_DATA(nid);
  3955. /* pg_data_t should be reset to zero when it's allocated */
  3956. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  3957. pgdat->node_id = nid;
  3958. pgdat->node_start_pfn = node_start_pfn;
  3959. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3960. alloc_node_mem_map(pgdat);
  3961. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3962. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3963. nid, (unsigned long)pgdat,
  3964. (unsigned long)pgdat->node_mem_map);
  3965. #endif
  3966. free_area_init_core(pgdat, zones_size, zholes_size);
  3967. }
  3968. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3969. #if MAX_NUMNODES > 1
  3970. /*
  3971. * Figure out the number of possible node ids.
  3972. */
  3973. static void __init setup_nr_node_ids(void)
  3974. {
  3975. unsigned int node;
  3976. unsigned int highest = 0;
  3977. for_each_node_mask(node, node_possible_map)
  3978. highest = node;
  3979. nr_node_ids = highest + 1;
  3980. }
  3981. #else
  3982. static inline void setup_nr_node_ids(void)
  3983. {
  3984. }
  3985. #endif
  3986. /**
  3987. * node_map_pfn_alignment - determine the maximum internode alignment
  3988. *
  3989. * This function should be called after node map is populated and sorted.
  3990. * It calculates the maximum power of two alignment which can distinguish
  3991. * all the nodes.
  3992. *
  3993. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  3994. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  3995. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  3996. * shifted, 1GiB is enough and this function will indicate so.
  3997. *
  3998. * This is used to test whether pfn -> nid mapping of the chosen memory
  3999. * model has fine enough granularity to avoid incorrect mapping for the
  4000. * populated node map.
  4001. *
  4002. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4003. * requirement (single node).
  4004. */
  4005. unsigned long __init node_map_pfn_alignment(void)
  4006. {
  4007. unsigned long accl_mask = 0, last_end = 0;
  4008. unsigned long start, end, mask;
  4009. int last_nid = -1;
  4010. int i, nid;
  4011. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4012. if (!start || last_nid < 0 || last_nid == nid) {
  4013. last_nid = nid;
  4014. last_end = end;
  4015. continue;
  4016. }
  4017. /*
  4018. * Start with a mask granular enough to pin-point to the
  4019. * start pfn and tick off bits one-by-one until it becomes
  4020. * too coarse to separate the current node from the last.
  4021. */
  4022. mask = ~((1 << __ffs(start)) - 1);
  4023. while (mask && last_end <= (start & (mask << 1)))
  4024. mask <<= 1;
  4025. /* accumulate all internode masks */
  4026. accl_mask |= mask;
  4027. }
  4028. /* convert mask to number of pages */
  4029. return ~accl_mask + 1;
  4030. }
  4031. /* Find the lowest pfn for a node */
  4032. static unsigned long __init find_min_pfn_for_node(int nid)
  4033. {
  4034. unsigned long min_pfn = ULONG_MAX;
  4035. unsigned long start_pfn;
  4036. int i;
  4037. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4038. min_pfn = min(min_pfn, start_pfn);
  4039. if (min_pfn == ULONG_MAX) {
  4040. printk(KERN_WARNING
  4041. "Could not find start_pfn for node %d\n", nid);
  4042. return 0;
  4043. }
  4044. return min_pfn;
  4045. }
  4046. /**
  4047. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4048. *
  4049. * It returns the minimum PFN based on information provided via
  4050. * add_active_range().
  4051. */
  4052. unsigned long __init find_min_pfn_with_active_regions(void)
  4053. {
  4054. return find_min_pfn_for_node(MAX_NUMNODES);
  4055. }
  4056. /*
  4057. * early_calculate_totalpages()
  4058. * Sum pages in active regions for movable zone.
  4059. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  4060. */
  4061. static unsigned long __init early_calculate_totalpages(void)
  4062. {
  4063. unsigned long totalpages = 0;
  4064. unsigned long start_pfn, end_pfn;
  4065. int i, nid;
  4066. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4067. unsigned long pages = end_pfn - start_pfn;
  4068. totalpages += pages;
  4069. if (pages)
  4070. node_set_state(nid, N_HIGH_MEMORY);
  4071. }
  4072. return totalpages;
  4073. }
  4074. /*
  4075. * Find the PFN the Movable zone begins in each node. Kernel memory
  4076. * is spread evenly between nodes as long as the nodes have enough
  4077. * memory. When they don't, some nodes will have more kernelcore than
  4078. * others
  4079. */
  4080. static void __init find_zone_movable_pfns_for_nodes(void)
  4081. {
  4082. int i, nid;
  4083. unsigned long usable_startpfn;
  4084. unsigned long kernelcore_node, kernelcore_remaining;
  4085. /* save the state before borrow the nodemask */
  4086. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  4087. unsigned long totalpages = early_calculate_totalpages();
  4088. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  4089. /*
  4090. * If movablecore was specified, calculate what size of
  4091. * kernelcore that corresponds so that memory usable for
  4092. * any allocation type is evenly spread. If both kernelcore
  4093. * and movablecore are specified, then the value of kernelcore
  4094. * will be used for required_kernelcore if it's greater than
  4095. * what movablecore would have allowed.
  4096. */
  4097. if (required_movablecore) {
  4098. unsigned long corepages;
  4099. /*
  4100. * Round-up so that ZONE_MOVABLE is at least as large as what
  4101. * was requested by the user
  4102. */
  4103. required_movablecore =
  4104. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4105. corepages = totalpages - required_movablecore;
  4106. required_kernelcore = max(required_kernelcore, corepages);
  4107. }
  4108. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4109. if (!required_kernelcore)
  4110. goto out;
  4111. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4112. find_usable_zone_for_movable();
  4113. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4114. restart:
  4115. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4116. kernelcore_node = required_kernelcore / usable_nodes;
  4117. for_each_node_state(nid, N_HIGH_MEMORY) {
  4118. unsigned long start_pfn, end_pfn;
  4119. /*
  4120. * Recalculate kernelcore_node if the division per node
  4121. * now exceeds what is necessary to satisfy the requested
  4122. * amount of memory for the kernel
  4123. */
  4124. if (required_kernelcore < kernelcore_node)
  4125. kernelcore_node = required_kernelcore / usable_nodes;
  4126. /*
  4127. * As the map is walked, we track how much memory is usable
  4128. * by the kernel using kernelcore_remaining. When it is
  4129. * 0, the rest of the node is usable by ZONE_MOVABLE
  4130. */
  4131. kernelcore_remaining = kernelcore_node;
  4132. /* Go through each range of PFNs within this node */
  4133. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4134. unsigned long size_pages;
  4135. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4136. if (start_pfn >= end_pfn)
  4137. continue;
  4138. /* Account for what is only usable for kernelcore */
  4139. if (start_pfn < usable_startpfn) {
  4140. unsigned long kernel_pages;
  4141. kernel_pages = min(end_pfn, usable_startpfn)
  4142. - start_pfn;
  4143. kernelcore_remaining -= min(kernel_pages,
  4144. kernelcore_remaining);
  4145. required_kernelcore -= min(kernel_pages,
  4146. required_kernelcore);
  4147. /* Continue if range is now fully accounted */
  4148. if (end_pfn <= usable_startpfn) {
  4149. /*
  4150. * Push zone_movable_pfn to the end so
  4151. * that if we have to rebalance
  4152. * kernelcore across nodes, we will
  4153. * not double account here
  4154. */
  4155. zone_movable_pfn[nid] = end_pfn;
  4156. continue;
  4157. }
  4158. start_pfn = usable_startpfn;
  4159. }
  4160. /*
  4161. * The usable PFN range for ZONE_MOVABLE is from
  4162. * start_pfn->end_pfn. Calculate size_pages as the
  4163. * number of pages used as kernelcore
  4164. */
  4165. size_pages = end_pfn - start_pfn;
  4166. if (size_pages > kernelcore_remaining)
  4167. size_pages = kernelcore_remaining;
  4168. zone_movable_pfn[nid] = start_pfn + size_pages;
  4169. /*
  4170. * Some kernelcore has been met, update counts and
  4171. * break if the kernelcore for this node has been
  4172. * satisified
  4173. */
  4174. required_kernelcore -= min(required_kernelcore,
  4175. size_pages);
  4176. kernelcore_remaining -= size_pages;
  4177. if (!kernelcore_remaining)
  4178. break;
  4179. }
  4180. }
  4181. /*
  4182. * If there is still required_kernelcore, we do another pass with one
  4183. * less node in the count. This will push zone_movable_pfn[nid] further
  4184. * along on the nodes that still have memory until kernelcore is
  4185. * satisified
  4186. */
  4187. usable_nodes--;
  4188. if (usable_nodes && required_kernelcore > usable_nodes)
  4189. goto restart;
  4190. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4191. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4192. zone_movable_pfn[nid] =
  4193. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4194. out:
  4195. /* restore the node_state */
  4196. node_states[N_HIGH_MEMORY] = saved_node_state;
  4197. }
  4198. /* Any regular memory on that node ? */
  4199. static void __init check_for_regular_memory(pg_data_t *pgdat)
  4200. {
  4201. #ifdef CONFIG_HIGHMEM
  4202. enum zone_type zone_type;
  4203. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4204. struct zone *zone = &pgdat->node_zones[zone_type];
  4205. if (zone->present_pages) {
  4206. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4207. break;
  4208. }
  4209. }
  4210. #endif
  4211. }
  4212. /**
  4213. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4214. * @max_zone_pfn: an array of max PFNs for each zone
  4215. *
  4216. * This will call free_area_init_node() for each active node in the system.
  4217. * Using the page ranges provided by add_active_range(), the size of each
  4218. * zone in each node and their holes is calculated. If the maximum PFN
  4219. * between two adjacent zones match, it is assumed that the zone is empty.
  4220. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4221. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4222. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4223. * at arch_max_dma_pfn.
  4224. */
  4225. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4226. {
  4227. unsigned long start_pfn, end_pfn;
  4228. int i, nid;
  4229. /* Record where the zone boundaries are */
  4230. memset(arch_zone_lowest_possible_pfn, 0,
  4231. sizeof(arch_zone_lowest_possible_pfn));
  4232. memset(arch_zone_highest_possible_pfn, 0,
  4233. sizeof(arch_zone_highest_possible_pfn));
  4234. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4235. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4236. for (i = 1; i < MAX_NR_ZONES; i++) {
  4237. if (i == ZONE_MOVABLE)
  4238. continue;
  4239. arch_zone_lowest_possible_pfn[i] =
  4240. arch_zone_highest_possible_pfn[i-1];
  4241. arch_zone_highest_possible_pfn[i] =
  4242. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4243. }
  4244. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4245. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4246. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4247. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4248. find_zone_movable_pfns_for_nodes();
  4249. /* Print out the zone ranges */
  4250. printk("Zone ranges:\n");
  4251. for (i = 0; i < MAX_NR_ZONES; i++) {
  4252. if (i == ZONE_MOVABLE)
  4253. continue;
  4254. printk(KERN_CONT " %-8s ", zone_names[i]);
  4255. if (arch_zone_lowest_possible_pfn[i] ==
  4256. arch_zone_highest_possible_pfn[i])
  4257. printk(KERN_CONT "empty\n");
  4258. else
  4259. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4260. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4261. (arch_zone_highest_possible_pfn[i]
  4262. << PAGE_SHIFT) - 1);
  4263. }
  4264. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4265. printk("Movable zone start for each node\n");
  4266. for (i = 0; i < MAX_NUMNODES; i++) {
  4267. if (zone_movable_pfn[i])
  4268. printk(" Node %d: %#010lx\n", i,
  4269. zone_movable_pfn[i] << PAGE_SHIFT);
  4270. }
  4271. /* Print out the early_node_map[] */
  4272. printk("Early memory node ranges\n");
  4273. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4274. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4275. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4276. /* Initialise every node */
  4277. mminit_verify_pageflags_layout();
  4278. setup_nr_node_ids();
  4279. for_each_online_node(nid) {
  4280. pg_data_t *pgdat = NODE_DATA(nid);
  4281. free_area_init_node(nid, NULL,
  4282. find_min_pfn_for_node(nid), NULL);
  4283. /* Any memory on that node */
  4284. if (pgdat->node_present_pages)
  4285. node_set_state(nid, N_HIGH_MEMORY);
  4286. check_for_regular_memory(pgdat);
  4287. }
  4288. }
  4289. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4290. {
  4291. unsigned long long coremem;
  4292. if (!p)
  4293. return -EINVAL;
  4294. coremem = memparse(p, &p);
  4295. *core = coremem >> PAGE_SHIFT;
  4296. /* Paranoid check that UL is enough for the coremem value */
  4297. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4298. return 0;
  4299. }
  4300. /*
  4301. * kernelcore=size sets the amount of memory for use for allocations that
  4302. * cannot be reclaimed or migrated.
  4303. */
  4304. static int __init cmdline_parse_kernelcore(char *p)
  4305. {
  4306. return cmdline_parse_core(p, &required_kernelcore);
  4307. }
  4308. /*
  4309. * movablecore=size sets the amount of memory for use for allocations that
  4310. * can be reclaimed or migrated.
  4311. */
  4312. static int __init cmdline_parse_movablecore(char *p)
  4313. {
  4314. return cmdline_parse_core(p, &required_movablecore);
  4315. }
  4316. early_param("kernelcore", cmdline_parse_kernelcore);
  4317. early_param("movablecore", cmdline_parse_movablecore);
  4318. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4319. /**
  4320. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4321. * @new_dma_reserve: The number of pages to mark reserved
  4322. *
  4323. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4324. * In the DMA zone, a significant percentage may be consumed by kernel image
  4325. * and other unfreeable allocations which can skew the watermarks badly. This
  4326. * function may optionally be used to account for unfreeable pages in the
  4327. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4328. * smaller per-cpu batchsize.
  4329. */
  4330. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4331. {
  4332. dma_reserve = new_dma_reserve;
  4333. }
  4334. void __init free_area_init(unsigned long *zones_size)
  4335. {
  4336. free_area_init_node(0, zones_size,
  4337. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4338. }
  4339. static int page_alloc_cpu_notify(struct notifier_block *self,
  4340. unsigned long action, void *hcpu)
  4341. {
  4342. int cpu = (unsigned long)hcpu;
  4343. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4344. lru_add_drain_cpu(cpu);
  4345. drain_pages(cpu);
  4346. /*
  4347. * Spill the event counters of the dead processor
  4348. * into the current processors event counters.
  4349. * This artificially elevates the count of the current
  4350. * processor.
  4351. */
  4352. vm_events_fold_cpu(cpu);
  4353. /*
  4354. * Zero the differential counters of the dead processor
  4355. * so that the vm statistics are consistent.
  4356. *
  4357. * This is only okay since the processor is dead and cannot
  4358. * race with what we are doing.
  4359. */
  4360. refresh_cpu_vm_stats(cpu);
  4361. }
  4362. return NOTIFY_OK;
  4363. }
  4364. void __init page_alloc_init(void)
  4365. {
  4366. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4367. }
  4368. /*
  4369. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4370. * or min_free_kbytes changes.
  4371. */
  4372. static void calculate_totalreserve_pages(void)
  4373. {
  4374. struct pglist_data *pgdat;
  4375. unsigned long reserve_pages = 0;
  4376. enum zone_type i, j;
  4377. for_each_online_pgdat(pgdat) {
  4378. for (i = 0; i < MAX_NR_ZONES; i++) {
  4379. struct zone *zone = pgdat->node_zones + i;
  4380. unsigned long max = 0;
  4381. /* Find valid and maximum lowmem_reserve in the zone */
  4382. for (j = i; j < MAX_NR_ZONES; j++) {
  4383. if (zone->lowmem_reserve[j] > max)
  4384. max = zone->lowmem_reserve[j];
  4385. }
  4386. /* we treat the high watermark as reserved pages. */
  4387. max += high_wmark_pages(zone);
  4388. if (max > zone->present_pages)
  4389. max = zone->present_pages;
  4390. reserve_pages += max;
  4391. /*
  4392. * Lowmem reserves are not available to
  4393. * GFP_HIGHUSER page cache allocations and
  4394. * kswapd tries to balance zones to their high
  4395. * watermark. As a result, neither should be
  4396. * regarded as dirtyable memory, to prevent a
  4397. * situation where reclaim has to clean pages
  4398. * in order to balance the zones.
  4399. */
  4400. zone->dirty_balance_reserve = max;
  4401. }
  4402. }
  4403. dirty_balance_reserve = reserve_pages;
  4404. totalreserve_pages = reserve_pages;
  4405. }
  4406. /*
  4407. * setup_per_zone_lowmem_reserve - called whenever
  4408. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4409. * has a correct pages reserved value, so an adequate number of
  4410. * pages are left in the zone after a successful __alloc_pages().
  4411. */
  4412. static void setup_per_zone_lowmem_reserve(void)
  4413. {
  4414. struct pglist_data *pgdat;
  4415. enum zone_type j, idx;
  4416. for_each_online_pgdat(pgdat) {
  4417. for (j = 0; j < MAX_NR_ZONES; j++) {
  4418. struct zone *zone = pgdat->node_zones + j;
  4419. unsigned long present_pages = zone->present_pages;
  4420. zone->lowmem_reserve[j] = 0;
  4421. idx = j;
  4422. while (idx) {
  4423. struct zone *lower_zone;
  4424. idx--;
  4425. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4426. sysctl_lowmem_reserve_ratio[idx] = 1;
  4427. lower_zone = pgdat->node_zones + idx;
  4428. lower_zone->lowmem_reserve[j] = present_pages /
  4429. sysctl_lowmem_reserve_ratio[idx];
  4430. present_pages += lower_zone->present_pages;
  4431. }
  4432. }
  4433. }
  4434. /* update totalreserve_pages */
  4435. calculate_totalreserve_pages();
  4436. }
  4437. static void __setup_per_zone_wmarks(void)
  4438. {
  4439. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4440. unsigned long lowmem_pages = 0;
  4441. struct zone *zone;
  4442. unsigned long flags;
  4443. /* Calculate total number of !ZONE_HIGHMEM pages */
  4444. for_each_zone(zone) {
  4445. if (!is_highmem(zone))
  4446. lowmem_pages += zone->present_pages;
  4447. }
  4448. for_each_zone(zone) {
  4449. u64 tmp;
  4450. spin_lock_irqsave(&zone->lock, flags);
  4451. tmp = (u64)pages_min * zone->present_pages;
  4452. do_div(tmp, lowmem_pages);
  4453. if (is_highmem(zone)) {
  4454. /*
  4455. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4456. * need highmem pages, so cap pages_min to a small
  4457. * value here.
  4458. *
  4459. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4460. * deltas controls asynch page reclaim, and so should
  4461. * not be capped for highmem.
  4462. */
  4463. int min_pages;
  4464. min_pages = zone->present_pages / 1024;
  4465. if (min_pages < SWAP_CLUSTER_MAX)
  4466. min_pages = SWAP_CLUSTER_MAX;
  4467. if (min_pages > 128)
  4468. min_pages = 128;
  4469. zone->watermark[WMARK_MIN] = min_pages;
  4470. } else {
  4471. /*
  4472. * If it's a lowmem zone, reserve a number of pages
  4473. * proportionate to the zone's size.
  4474. */
  4475. zone->watermark[WMARK_MIN] = tmp;
  4476. }
  4477. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4478. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4479. zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
  4480. zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
  4481. zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
  4482. setup_zone_migrate_reserve(zone);
  4483. spin_unlock_irqrestore(&zone->lock, flags);
  4484. }
  4485. /* update totalreserve_pages */
  4486. calculate_totalreserve_pages();
  4487. }
  4488. /**
  4489. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4490. * or when memory is hot-{added|removed}
  4491. *
  4492. * Ensures that the watermark[min,low,high] values for each zone are set
  4493. * correctly with respect to min_free_kbytes.
  4494. */
  4495. void setup_per_zone_wmarks(void)
  4496. {
  4497. mutex_lock(&zonelists_mutex);
  4498. __setup_per_zone_wmarks();
  4499. mutex_unlock(&zonelists_mutex);
  4500. }
  4501. /*
  4502. * The inactive anon list should be small enough that the VM never has to
  4503. * do too much work, but large enough that each inactive page has a chance
  4504. * to be referenced again before it is swapped out.
  4505. *
  4506. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4507. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4508. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4509. * the anonymous pages are kept on the inactive list.
  4510. *
  4511. * total target max
  4512. * memory ratio inactive anon
  4513. * -------------------------------------
  4514. * 10MB 1 5MB
  4515. * 100MB 1 50MB
  4516. * 1GB 3 250MB
  4517. * 10GB 10 0.9GB
  4518. * 100GB 31 3GB
  4519. * 1TB 101 10GB
  4520. * 10TB 320 32GB
  4521. */
  4522. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4523. {
  4524. unsigned int gb, ratio;
  4525. /* Zone size in gigabytes */
  4526. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4527. if (gb)
  4528. ratio = int_sqrt(10 * gb);
  4529. else
  4530. ratio = 1;
  4531. zone->inactive_ratio = ratio;
  4532. }
  4533. static void __meminit setup_per_zone_inactive_ratio(void)
  4534. {
  4535. struct zone *zone;
  4536. for_each_zone(zone)
  4537. calculate_zone_inactive_ratio(zone);
  4538. }
  4539. /*
  4540. * Initialise min_free_kbytes.
  4541. *
  4542. * For small machines we want it small (128k min). For large machines
  4543. * we want it large (64MB max). But it is not linear, because network
  4544. * bandwidth does not increase linearly with machine size. We use
  4545. *
  4546. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4547. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4548. *
  4549. * which yields
  4550. *
  4551. * 16MB: 512k
  4552. * 32MB: 724k
  4553. * 64MB: 1024k
  4554. * 128MB: 1448k
  4555. * 256MB: 2048k
  4556. * 512MB: 2896k
  4557. * 1024MB: 4096k
  4558. * 2048MB: 5792k
  4559. * 4096MB: 8192k
  4560. * 8192MB: 11584k
  4561. * 16384MB: 16384k
  4562. */
  4563. int __meminit init_per_zone_wmark_min(void)
  4564. {
  4565. unsigned long lowmem_kbytes;
  4566. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4567. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4568. if (min_free_kbytes < 128)
  4569. min_free_kbytes = 128;
  4570. if (min_free_kbytes > 65536)
  4571. min_free_kbytes = 65536;
  4572. setup_per_zone_wmarks();
  4573. refresh_zone_stat_thresholds();
  4574. setup_per_zone_lowmem_reserve();
  4575. setup_per_zone_inactive_ratio();
  4576. return 0;
  4577. }
  4578. module_init(init_per_zone_wmark_min)
  4579. /*
  4580. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4581. * that we can call two helper functions whenever min_free_kbytes
  4582. * changes.
  4583. */
  4584. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4585. void __user *buffer, size_t *length, loff_t *ppos)
  4586. {
  4587. proc_dointvec(table, write, buffer, length, ppos);
  4588. if (write)
  4589. setup_per_zone_wmarks();
  4590. return 0;
  4591. }
  4592. #ifdef CONFIG_NUMA
  4593. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4594. void __user *buffer, size_t *length, loff_t *ppos)
  4595. {
  4596. struct zone *zone;
  4597. int rc;
  4598. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4599. if (rc)
  4600. return rc;
  4601. for_each_zone(zone)
  4602. zone->min_unmapped_pages = (zone->present_pages *
  4603. sysctl_min_unmapped_ratio) / 100;
  4604. return 0;
  4605. }
  4606. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4607. void __user *buffer, size_t *length, loff_t *ppos)
  4608. {
  4609. struct zone *zone;
  4610. int rc;
  4611. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4612. if (rc)
  4613. return rc;
  4614. for_each_zone(zone)
  4615. zone->min_slab_pages = (zone->present_pages *
  4616. sysctl_min_slab_ratio) / 100;
  4617. return 0;
  4618. }
  4619. #endif
  4620. /*
  4621. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4622. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4623. * whenever sysctl_lowmem_reserve_ratio changes.
  4624. *
  4625. * The reserve ratio obviously has absolutely no relation with the
  4626. * minimum watermarks. The lowmem reserve ratio can only make sense
  4627. * if in function of the boot time zone sizes.
  4628. */
  4629. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4630. void __user *buffer, size_t *length, loff_t *ppos)
  4631. {
  4632. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4633. setup_per_zone_lowmem_reserve();
  4634. return 0;
  4635. }
  4636. /*
  4637. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4638. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4639. * can have before it gets flushed back to buddy allocator.
  4640. */
  4641. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4642. void __user *buffer, size_t *length, loff_t *ppos)
  4643. {
  4644. struct zone *zone;
  4645. unsigned int cpu;
  4646. int ret;
  4647. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4648. if (!write || (ret < 0))
  4649. return ret;
  4650. for_each_populated_zone(zone) {
  4651. for_each_possible_cpu(cpu) {
  4652. unsigned long high;
  4653. high = zone->present_pages / percpu_pagelist_fraction;
  4654. setup_pagelist_highmark(
  4655. per_cpu_ptr(zone->pageset, cpu), high);
  4656. }
  4657. }
  4658. return 0;
  4659. }
  4660. int hashdist = HASHDIST_DEFAULT;
  4661. #ifdef CONFIG_NUMA
  4662. static int __init set_hashdist(char *str)
  4663. {
  4664. if (!str)
  4665. return 0;
  4666. hashdist = simple_strtoul(str, &str, 0);
  4667. return 1;
  4668. }
  4669. __setup("hashdist=", set_hashdist);
  4670. #endif
  4671. /*
  4672. * allocate a large system hash table from bootmem
  4673. * - it is assumed that the hash table must contain an exact power-of-2
  4674. * quantity of entries
  4675. * - limit is the number of hash buckets, not the total allocation size
  4676. */
  4677. void *__init alloc_large_system_hash(const char *tablename,
  4678. unsigned long bucketsize,
  4679. unsigned long numentries,
  4680. int scale,
  4681. int flags,
  4682. unsigned int *_hash_shift,
  4683. unsigned int *_hash_mask,
  4684. unsigned long low_limit,
  4685. unsigned long high_limit)
  4686. {
  4687. unsigned long long max = high_limit;
  4688. unsigned long log2qty, size;
  4689. void *table = NULL;
  4690. /* allow the kernel cmdline to have a say */
  4691. if (!numentries) {
  4692. /* round applicable memory size up to nearest megabyte */
  4693. numentries = nr_kernel_pages;
  4694. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4695. numentries >>= 20 - PAGE_SHIFT;
  4696. numentries <<= 20 - PAGE_SHIFT;
  4697. /* limit to 1 bucket per 2^scale bytes of low memory */
  4698. if (scale > PAGE_SHIFT)
  4699. numentries >>= (scale - PAGE_SHIFT);
  4700. else
  4701. numentries <<= (PAGE_SHIFT - scale);
  4702. /* Make sure we've got at least a 0-order allocation.. */
  4703. if (unlikely(flags & HASH_SMALL)) {
  4704. /* Makes no sense without HASH_EARLY */
  4705. WARN_ON(!(flags & HASH_EARLY));
  4706. if (!(numentries >> *_hash_shift)) {
  4707. numentries = 1UL << *_hash_shift;
  4708. BUG_ON(!numentries);
  4709. }
  4710. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4711. numentries = PAGE_SIZE / bucketsize;
  4712. }
  4713. numentries = roundup_pow_of_two(numentries);
  4714. /* limit allocation size to 1/16 total memory by default */
  4715. if (max == 0) {
  4716. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4717. do_div(max, bucketsize);
  4718. }
  4719. max = min(max, 0x80000000ULL);
  4720. if (numentries < low_limit)
  4721. numentries = low_limit;
  4722. if (numentries > max)
  4723. numentries = max;
  4724. log2qty = ilog2(numentries);
  4725. do {
  4726. size = bucketsize << log2qty;
  4727. if (flags & HASH_EARLY)
  4728. table = alloc_bootmem_nopanic(size);
  4729. else if (hashdist)
  4730. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4731. else {
  4732. /*
  4733. * If bucketsize is not a power-of-two, we may free
  4734. * some pages at the end of hash table which
  4735. * alloc_pages_exact() automatically does
  4736. */
  4737. if (get_order(size) < MAX_ORDER) {
  4738. table = alloc_pages_exact(size, GFP_ATOMIC);
  4739. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4740. }
  4741. }
  4742. } while (!table && size > PAGE_SIZE && --log2qty);
  4743. if (!table)
  4744. panic("Failed to allocate %s hash table\n", tablename);
  4745. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4746. tablename,
  4747. (1UL << log2qty),
  4748. ilog2(size) - PAGE_SHIFT,
  4749. size);
  4750. if (_hash_shift)
  4751. *_hash_shift = log2qty;
  4752. if (_hash_mask)
  4753. *_hash_mask = (1 << log2qty) - 1;
  4754. return table;
  4755. }
  4756. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4757. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4758. unsigned long pfn)
  4759. {
  4760. #ifdef CONFIG_SPARSEMEM
  4761. return __pfn_to_section(pfn)->pageblock_flags;
  4762. #else
  4763. return zone->pageblock_flags;
  4764. #endif /* CONFIG_SPARSEMEM */
  4765. }
  4766. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4767. {
  4768. #ifdef CONFIG_SPARSEMEM
  4769. pfn &= (PAGES_PER_SECTION-1);
  4770. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4771. #else
  4772. pfn = pfn - zone->zone_start_pfn;
  4773. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4774. #endif /* CONFIG_SPARSEMEM */
  4775. }
  4776. /**
  4777. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4778. * @page: The page within the block of interest
  4779. * @start_bitidx: The first bit of interest to retrieve
  4780. * @end_bitidx: The last bit of interest
  4781. * returns pageblock_bits flags
  4782. */
  4783. unsigned long get_pageblock_flags_group(struct page *page,
  4784. int start_bitidx, int end_bitidx)
  4785. {
  4786. struct zone *zone;
  4787. unsigned long *bitmap;
  4788. unsigned long pfn, bitidx;
  4789. unsigned long flags = 0;
  4790. unsigned long value = 1;
  4791. zone = page_zone(page);
  4792. pfn = page_to_pfn(page);
  4793. bitmap = get_pageblock_bitmap(zone, pfn);
  4794. bitidx = pfn_to_bitidx(zone, pfn);
  4795. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4796. if (test_bit(bitidx + start_bitidx, bitmap))
  4797. flags |= value;
  4798. return flags;
  4799. }
  4800. /**
  4801. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4802. * @page: The page within the block of interest
  4803. * @start_bitidx: The first bit of interest
  4804. * @end_bitidx: The last bit of interest
  4805. * @flags: The flags to set
  4806. */
  4807. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4808. int start_bitidx, int end_bitidx)
  4809. {
  4810. struct zone *zone;
  4811. unsigned long *bitmap;
  4812. unsigned long pfn, bitidx;
  4813. unsigned long value = 1;
  4814. zone = page_zone(page);
  4815. pfn = page_to_pfn(page);
  4816. bitmap = get_pageblock_bitmap(zone, pfn);
  4817. bitidx = pfn_to_bitidx(zone, pfn);
  4818. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4819. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4820. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4821. if (flags & value)
  4822. __set_bit(bitidx + start_bitidx, bitmap);
  4823. else
  4824. __clear_bit(bitidx + start_bitidx, bitmap);
  4825. }
  4826. /*
  4827. * This function checks whether pageblock includes unmovable pages or not.
  4828. * If @count is not zero, it is okay to include less @count unmovable pages
  4829. *
  4830. * PageLRU check wihtout isolation or lru_lock could race so that
  4831. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  4832. * expect this function should be exact.
  4833. */
  4834. bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
  4835. {
  4836. unsigned long pfn, iter, found;
  4837. int mt;
  4838. /*
  4839. * For avoiding noise data, lru_add_drain_all() should be called
  4840. * If ZONE_MOVABLE, the zone never contains unmovable pages
  4841. */
  4842. if (zone_idx(zone) == ZONE_MOVABLE)
  4843. return false;
  4844. mt = get_pageblock_migratetype(page);
  4845. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  4846. return false;
  4847. pfn = page_to_pfn(page);
  4848. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4849. unsigned long check = pfn + iter;
  4850. if (!pfn_valid_within(check))
  4851. continue;
  4852. page = pfn_to_page(check);
  4853. /*
  4854. * We can't use page_count without pin a page
  4855. * because another CPU can free compound page.
  4856. * This check already skips compound tails of THP
  4857. * because their page->_count is zero at all time.
  4858. */
  4859. if (!atomic_read(&page->_count)) {
  4860. if (PageBuddy(page))
  4861. iter += (1 << page_order(page)) - 1;
  4862. continue;
  4863. }
  4864. if (!PageLRU(page))
  4865. found++;
  4866. /*
  4867. * If there are RECLAIMABLE pages, we need to check it.
  4868. * But now, memory offline itself doesn't call shrink_slab()
  4869. * and it still to be fixed.
  4870. */
  4871. /*
  4872. * If the page is not RAM, page_count()should be 0.
  4873. * we don't need more check. This is an _used_ not-movable page.
  4874. *
  4875. * The problematic thing here is PG_reserved pages. PG_reserved
  4876. * is set to both of a memory hole page and a _used_ kernel
  4877. * page at boot.
  4878. */
  4879. if (found > count)
  4880. return true;
  4881. }
  4882. return false;
  4883. }
  4884. bool is_pageblock_removable_nolock(struct page *page)
  4885. {
  4886. struct zone *zone;
  4887. unsigned long pfn;
  4888. /*
  4889. * We have to be careful here because we are iterating over memory
  4890. * sections which are not zone aware so we might end up outside of
  4891. * the zone but still within the section.
  4892. * We have to take care about the node as well. If the node is offline
  4893. * its NODE_DATA will be NULL - see page_zone.
  4894. */
  4895. if (!node_online(page_to_nid(page)))
  4896. return false;
  4897. zone = page_zone(page);
  4898. pfn = page_to_pfn(page);
  4899. if (zone->zone_start_pfn > pfn ||
  4900. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  4901. return false;
  4902. return !has_unmovable_pages(zone, page, 0);
  4903. }
  4904. #ifdef CONFIG_CMA
  4905. static unsigned long pfn_max_align_down(unsigned long pfn)
  4906. {
  4907. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  4908. pageblock_nr_pages) - 1);
  4909. }
  4910. static unsigned long pfn_max_align_up(unsigned long pfn)
  4911. {
  4912. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  4913. pageblock_nr_pages));
  4914. }
  4915. static struct page *
  4916. __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
  4917. int **resultp)
  4918. {
  4919. gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
  4920. if (PageHighMem(page))
  4921. gfp_mask |= __GFP_HIGHMEM;
  4922. return alloc_page(gfp_mask);
  4923. }
  4924. /* [start, end) must belong to a single zone. */
  4925. static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
  4926. {
  4927. /* This function is based on compact_zone() from compaction.c. */
  4928. unsigned long pfn = start;
  4929. unsigned int tries = 0;
  4930. int ret = 0;
  4931. struct compact_control cc = {
  4932. .nr_migratepages = 0,
  4933. .order = -1,
  4934. .zone = page_zone(pfn_to_page(start)),
  4935. .sync = true,
  4936. };
  4937. INIT_LIST_HEAD(&cc.migratepages);
  4938. migrate_prep_local();
  4939. while (pfn < end || !list_empty(&cc.migratepages)) {
  4940. if (fatal_signal_pending(current)) {
  4941. ret = -EINTR;
  4942. break;
  4943. }
  4944. if (list_empty(&cc.migratepages)) {
  4945. cc.nr_migratepages = 0;
  4946. pfn = isolate_migratepages_range(cc.zone, &cc,
  4947. pfn, end);
  4948. if (!pfn) {
  4949. ret = -EINTR;
  4950. break;
  4951. }
  4952. tries = 0;
  4953. } else if (++tries == 5) {
  4954. ret = ret < 0 ? ret : -EBUSY;
  4955. break;
  4956. }
  4957. reclaim_clean_pages_from_list(cc.zone, &cc.migratepages);
  4958. ret = migrate_pages(&cc.migratepages,
  4959. __alloc_contig_migrate_alloc,
  4960. 0, false, MIGRATE_SYNC);
  4961. }
  4962. putback_lru_pages(&cc.migratepages);
  4963. return ret > 0 ? 0 : ret;
  4964. }
  4965. /*
  4966. * Update zone's cma pages counter used for watermark level calculation.
  4967. */
  4968. static inline void __update_cma_watermarks(struct zone *zone, int count)
  4969. {
  4970. unsigned long flags;
  4971. spin_lock_irqsave(&zone->lock, flags);
  4972. zone->min_cma_pages += count;
  4973. spin_unlock_irqrestore(&zone->lock, flags);
  4974. setup_per_zone_wmarks();
  4975. }
  4976. /*
  4977. * Trigger memory pressure bump to reclaim some pages in order to be able to
  4978. * allocate 'count' pages in single page units. Does similar work as
  4979. *__alloc_pages_slowpath() function.
  4980. */
  4981. static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
  4982. {
  4983. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  4984. struct zonelist *zonelist = node_zonelist(0, gfp_mask);
  4985. int did_some_progress = 0;
  4986. int order = 1;
  4987. /*
  4988. * Increase level of watermarks to force kswapd do his job
  4989. * to stabilise at new watermark level.
  4990. */
  4991. __update_cma_watermarks(zone, count);
  4992. /* Obey watermarks as if the page was being allocated */
  4993. while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
  4994. wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
  4995. did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  4996. NULL);
  4997. if (!did_some_progress) {
  4998. /* Exhausted what can be done so it's blamo time */
  4999. out_of_memory(zonelist, gfp_mask, order, NULL, false);
  5000. }
  5001. }
  5002. /* Restore original watermark levels. */
  5003. __update_cma_watermarks(zone, -count);
  5004. return count;
  5005. }
  5006. /**
  5007. * alloc_contig_range() -- tries to allocate given range of pages
  5008. * @start: start PFN to allocate
  5009. * @end: one-past-the-last PFN to allocate
  5010. * @migratetype: migratetype of the underlaying pageblocks (either
  5011. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5012. * in range must have the same migratetype and it must
  5013. * be either of the two.
  5014. *
  5015. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5016. * aligned, however it's the caller's responsibility to guarantee that
  5017. * we are the only thread that changes migrate type of pageblocks the
  5018. * pages fall in.
  5019. *
  5020. * The PFN range must belong to a single zone.
  5021. *
  5022. * Returns zero on success or negative error code. On success all
  5023. * pages which PFN is in [start, end) are allocated for the caller and
  5024. * need to be freed with free_contig_range().
  5025. */
  5026. int alloc_contig_range(unsigned long start, unsigned long end,
  5027. unsigned migratetype)
  5028. {
  5029. struct zone *zone = page_zone(pfn_to_page(start));
  5030. unsigned long outer_start, outer_end;
  5031. int ret = 0, order;
  5032. /*
  5033. * What we do here is we mark all pageblocks in range as
  5034. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5035. * have different sizes, and due to the way page allocator
  5036. * work, we align the range to biggest of the two pages so
  5037. * that page allocator won't try to merge buddies from
  5038. * different pageblocks and change MIGRATE_ISOLATE to some
  5039. * other migration type.
  5040. *
  5041. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5042. * migrate the pages from an unaligned range (ie. pages that
  5043. * we are interested in). This will put all the pages in
  5044. * range back to page allocator as MIGRATE_ISOLATE.
  5045. *
  5046. * When this is done, we take the pages in range from page
  5047. * allocator removing them from the buddy system. This way
  5048. * page allocator will never consider using them.
  5049. *
  5050. * This lets us mark the pageblocks back as
  5051. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5052. * aligned range but not in the unaligned, original range are
  5053. * put back to page allocator so that buddy can use them.
  5054. */
  5055. ret = start_isolate_page_range(pfn_max_align_down(start),
  5056. pfn_max_align_up(end), migratetype);
  5057. if (ret)
  5058. goto done;
  5059. ret = __alloc_contig_migrate_range(start, end);
  5060. if (ret)
  5061. goto done;
  5062. /*
  5063. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5064. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5065. * more, all pages in [start, end) are free in page allocator.
  5066. * What we are going to do is to allocate all pages from
  5067. * [start, end) (that is remove them from page allocator).
  5068. *
  5069. * The only problem is that pages at the beginning and at the
  5070. * end of interesting range may be not aligned with pages that
  5071. * page allocator holds, ie. they can be part of higher order
  5072. * pages. Because of this, we reserve the bigger range and
  5073. * once this is done free the pages we are not interested in.
  5074. *
  5075. * We don't have to hold zone->lock here because the pages are
  5076. * isolated thus they won't get removed from buddy.
  5077. */
  5078. lru_add_drain_all();
  5079. drain_all_pages();
  5080. order = 0;
  5081. outer_start = start;
  5082. while (!PageBuddy(pfn_to_page(outer_start))) {
  5083. if (++order >= MAX_ORDER) {
  5084. ret = -EBUSY;
  5085. goto done;
  5086. }
  5087. outer_start &= ~0UL << order;
  5088. }
  5089. /* Make sure the range is really isolated. */
  5090. if (test_pages_isolated(outer_start, end)) {
  5091. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5092. outer_start, end);
  5093. ret = -EBUSY;
  5094. goto done;
  5095. }
  5096. /*
  5097. * Reclaim enough pages to make sure that contiguous allocation
  5098. * will not starve the system.
  5099. */
  5100. __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
  5101. /* Grab isolated pages from freelists. */
  5102. outer_end = isolate_freepages_range(outer_start, end);
  5103. if (!outer_end) {
  5104. ret = -EBUSY;
  5105. goto done;
  5106. }
  5107. /* Free head and tail (if any) */
  5108. if (start != outer_start)
  5109. free_contig_range(outer_start, start - outer_start);
  5110. if (end != outer_end)
  5111. free_contig_range(end, outer_end - end);
  5112. done:
  5113. undo_isolate_page_range(pfn_max_align_down(start),
  5114. pfn_max_align_up(end), migratetype);
  5115. return ret;
  5116. }
  5117. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5118. {
  5119. for (; nr_pages--; ++pfn)
  5120. __free_page(pfn_to_page(pfn));
  5121. }
  5122. #endif
  5123. #ifdef CONFIG_MEMORY_HOTPLUG
  5124. static int __meminit __zone_pcp_update(void *data)
  5125. {
  5126. struct zone *zone = data;
  5127. int cpu;
  5128. unsigned long batch = zone_batchsize(zone), flags;
  5129. for_each_possible_cpu(cpu) {
  5130. struct per_cpu_pageset *pset;
  5131. struct per_cpu_pages *pcp;
  5132. pset = per_cpu_ptr(zone->pageset, cpu);
  5133. pcp = &pset->pcp;
  5134. local_irq_save(flags);
  5135. if (pcp->count > 0)
  5136. free_pcppages_bulk(zone, pcp->count, pcp);
  5137. setup_pageset(pset, batch);
  5138. local_irq_restore(flags);
  5139. }
  5140. return 0;
  5141. }
  5142. void __meminit zone_pcp_update(struct zone *zone)
  5143. {
  5144. stop_machine(__zone_pcp_update, zone, NULL);
  5145. }
  5146. #endif
  5147. #ifdef CONFIG_MEMORY_HOTREMOVE
  5148. void zone_pcp_reset(struct zone *zone)
  5149. {
  5150. unsigned long flags;
  5151. /* avoid races with drain_pages() */
  5152. local_irq_save(flags);
  5153. if (zone->pageset != &boot_pageset) {
  5154. free_percpu(zone->pageset);
  5155. zone->pageset = &boot_pageset;
  5156. }
  5157. local_irq_restore(flags);
  5158. }
  5159. /*
  5160. * All pages in the range must be isolated before calling this.
  5161. */
  5162. void
  5163. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5164. {
  5165. struct page *page;
  5166. struct zone *zone;
  5167. int order, i;
  5168. unsigned long pfn;
  5169. unsigned long flags;
  5170. /* find the first valid pfn */
  5171. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5172. if (pfn_valid(pfn))
  5173. break;
  5174. if (pfn == end_pfn)
  5175. return;
  5176. zone = page_zone(pfn_to_page(pfn));
  5177. spin_lock_irqsave(&zone->lock, flags);
  5178. pfn = start_pfn;
  5179. while (pfn < end_pfn) {
  5180. if (!pfn_valid(pfn)) {
  5181. pfn++;
  5182. continue;
  5183. }
  5184. page = pfn_to_page(pfn);
  5185. BUG_ON(page_count(page));
  5186. BUG_ON(!PageBuddy(page));
  5187. order = page_order(page);
  5188. #ifdef CONFIG_DEBUG_VM
  5189. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5190. pfn, 1 << order, end_pfn);
  5191. #endif
  5192. list_del(&page->lru);
  5193. rmv_page_order(page);
  5194. zone->free_area[order].nr_free--;
  5195. __mod_zone_page_state(zone, NR_FREE_PAGES,
  5196. - (1UL << order));
  5197. for (i = 0; i < (1 << order); i++)
  5198. SetPageReserved((page+i));
  5199. pfn += (1 << order);
  5200. }
  5201. spin_unlock_irqrestore(&zone->lock, flags);
  5202. }
  5203. #endif
  5204. #ifdef CONFIG_MEMORY_FAILURE
  5205. bool is_free_buddy_page(struct page *page)
  5206. {
  5207. struct zone *zone = page_zone(page);
  5208. unsigned long pfn = page_to_pfn(page);
  5209. unsigned long flags;
  5210. int order;
  5211. spin_lock_irqsave(&zone->lock, flags);
  5212. for (order = 0; order < MAX_ORDER; order++) {
  5213. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5214. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5215. break;
  5216. }
  5217. spin_unlock_irqrestore(&zone->lock, flags);
  5218. return order < MAX_ORDER;
  5219. }
  5220. #endif
  5221. static const struct trace_print_flags pageflag_names[] = {
  5222. {1UL << PG_locked, "locked" },
  5223. {1UL << PG_error, "error" },
  5224. {1UL << PG_referenced, "referenced" },
  5225. {1UL << PG_uptodate, "uptodate" },
  5226. {1UL << PG_dirty, "dirty" },
  5227. {1UL << PG_lru, "lru" },
  5228. {1UL << PG_active, "active" },
  5229. {1UL << PG_slab, "slab" },
  5230. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5231. {1UL << PG_arch_1, "arch_1" },
  5232. {1UL << PG_reserved, "reserved" },
  5233. {1UL << PG_private, "private" },
  5234. {1UL << PG_private_2, "private_2" },
  5235. {1UL << PG_writeback, "writeback" },
  5236. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5237. {1UL << PG_head, "head" },
  5238. {1UL << PG_tail, "tail" },
  5239. #else
  5240. {1UL << PG_compound, "compound" },
  5241. #endif
  5242. {1UL << PG_swapcache, "swapcache" },
  5243. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5244. {1UL << PG_reclaim, "reclaim" },
  5245. {1UL << PG_swapbacked, "swapbacked" },
  5246. {1UL << PG_unevictable, "unevictable" },
  5247. #ifdef CONFIG_MMU
  5248. {1UL << PG_mlocked, "mlocked" },
  5249. #endif
  5250. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5251. {1UL << PG_uncached, "uncached" },
  5252. #endif
  5253. #ifdef CONFIG_MEMORY_FAILURE
  5254. {1UL << PG_hwpoison, "hwpoison" },
  5255. #endif
  5256. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5257. {1UL << PG_compound_lock, "compound_lock" },
  5258. #endif
  5259. };
  5260. static void dump_page_flags(unsigned long flags)
  5261. {
  5262. const char *delim = "";
  5263. unsigned long mask;
  5264. int i;
  5265. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5266. printk(KERN_ALERT "page flags: %#lx(", flags);
  5267. /* remove zone id */
  5268. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5269. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5270. mask = pageflag_names[i].mask;
  5271. if ((flags & mask) != mask)
  5272. continue;
  5273. flags &= ~mask;
  5274. printk("%s%s", delim, pageflag_names[i].name);
  5275. delim = "|";
  5276. }
  5277. /* check for left over flags */
  5278. if (flags)
  5279. printk("%s%#lx", delim, flags);
  5280. printk(")\n");
  5281. }
  5282. void dump_page(struct page *page)
  5283. {
  5284. printk(KERN_ALERT
  5285. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5286. page, atomic_read(&page->_count), page_mapcount(page),
  5287. page->mapping, page->index);
  5288. dump_page_flags(page->flags);
  5289. mem_cgroup_print_bad_page(page);
  5290. }