vmx.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. #ifdef CONFIG_X86_64
  33. #define HOST_IS_64 1
  34. #else
  35. #define HOST_IS_64 0
  36. #endif
  37. static struct vmcs_descriptor {
  38. int size;
  39. int order;
  40. u32 revision_id;
  41. } vmcs_descriptor;
  42. #define VMX_SEGMENT_FIELD(seg) \
  43. [VCPU_SREG_##seg] = { \
  44. .selector = GUEST_##seg##_SELECTOR, \
  45. .base = GUEST_##seg##_BASE, \
  46. .limit = GUEST_##seg##_LIMIT, \
  47. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  48. }
  49. static struct kvm_vmx_segment_field {
  50. unsigned selector;
  51. unsigned base;
  52. unsigned limit;
  53. unsigned ar_bytes;
  54. } kvm_vmx_segment_fields[] = {
  55. VMX_SEGMENT_FIELD(CS),
  56. VMX_SEGMENT_FIELD(DS),
  57. VMX_SEGMENT_FIELD(ES),
  58. VMX_SEGMENT_FIELD(FS),
  59. VMX_SEGMENT_FIELD(GS),
  60. VMX_SEGMENT_FIELD(SS),
  61. VMX_SEGMENT_FIELD(TR),
  62. VMX_SEGMENT_FIELD(LDTR),
  63. };
  64. /*
  65. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  66. * away by decrementing the array size.
  67. */
  68. static const u32 vmx_msr_index[] = {
  69. #ifdef CONFIG_X86_64
  70. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  71. #endif
  72. MSR_EFER, MSR_K6_STAR,
  73. };
  74. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  75. #ifdef CONFIG_X86_64
  76. static unsigned msr_offset_kernel_gs_base;
  77. #define NR_64BIT_MSRS 4
  78. /*
  79. * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
  80. * mechanism (cpu bug AA24)
  81. */
  82. #define NR_BAD_MSRS 2
  83. #else
  84. #define NR_64BIT_MSRS 0
  85. #define NR_BAD_MSRS 0
  86. #endif
  87. static inline int is_page_fault(u32 intr_info)
  88. {
  89. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  90. INTR_INFO_VALID_MASK)) ==
  91. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  92. }
  93. static inline int is_no_device(u32 intr_info)
  94. {
  95. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  96. INTR_INFO_VALID_MASK)) ==
  97. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  98. }
  99. static inline int is_external_interrupt(u32 intr_info)
  100. {
  101. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  102. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  103. }
  104. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  105. {
  106. int i;
  107. for (i = 0; i < vcpu->nmsrs; ++i)
  108. if (vcpu->guest_msrs[i].index == msr)
  109. return &vcpu->guest_msrs[i];
  110. return NULL;
  111. }
  112. static void vmcs_clear(struct vmcs *vmcs)
  113. {
  114. u64 phys_addr = __pa(vmcs);
  115. u8 error;
  116. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  117. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  118. : "cc", "memory");
  119. if (error)
  120. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  121. vmcs, phys_addr);
  122. }
  123. static void __vcpu_clear(void *arg)
  124. {
  125. struct kvm_vcpu *vcpu = arg;
  126. int cpu = raw_smp_processor_id();
  127. if (vcpu->cpu == cpu)
  128. vmcs_clear(vcpu->vmcs);
  129. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  130. per_cpu(current_vmcs, cpu) = NULL;
  131. }
  132. static void vcpu_clear(struct kvm_vcpu *vcpu)
  133. {
  134. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  135. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  136. else
  137. __vcpu_clear(vcpu);
  138. vcpu->launched = 0;
  139. }
  140. static unsigned long vmcs_readl(unsigned long field)
  141. {
  142. unsigned long value;
  143. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  144. : "=a"(value) : "d"(field) : "cc");
  145. return value;
  146. }
  147. static u16 vmcs_read16(unsigned long field)
  148. {
  149. return vmcs_readl(field);
  150. }
  151. static u32 vmcs_read32(unsigned long field)
  152. {
  153. return vmcs_readl(field);
  154. }
  155. static u64 vmcs_read64(unsigned long field)
  156. {
  157. #ifdef CONFIG_X86_64
  158. return vmcs_readl(field);
  159. #else
  160. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  161. #endif
  162. }
  163. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  164. {
  165. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  166. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  167. dump_stack();
  168. }
  169. static void vmcs_writel(unsigned long field, unsigned long value)
  170. {
  171. u8 error;
  172. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  173. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  174. if (unlikely(error))
  175. vmwrite_error(field, value);
  176. }
  177. static void vmcs_write16(unsigned long field, u16 value)
  178. {
  179. vmcs_writel(field, value);
  180. }
  181. static void vmcs_write32(unsigned long field, u32 value)
  182. {
  183. vmcs_writel(field, value);
  184. }
  185. static void vmcs_write64(unsigned long field, u64 value)
  186. {
  187. #ifdef CONFIG_X86_64
  188. vmcs_writel(field, value);
  189. #else
  190. vmcs_writel(field, value);
  191. asm volatile ("");
  192. vmcs_writel(field+1, value >> 32);
  193. #endif
  194. }
  195. static void vmcs_clear_bits(unsigned long field, u32 mask)
  196. {
  197. vmcs_writel(field, vmcs_readl(field) & ~mask);
  198. }
  199. static void vmcs_set_bits(unsigned long field, u32 mask)
  200. {
  201. vmcs_writel(field, vmcs_readl(field) | mask);
  202. }
  203. /*
  204. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  205. * vcpu mutex is already taken.
  206. */
  207. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  208. {
  209. u64 phys_addr = __pa(vcpu->vmcs);
  210. int cpu;
  211. cpu = get_cpu();
  212. if (vcpu->cpu != cpu)
  213. vcpu_clear(vcpu);
  214. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  215. u8 error;
  216. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  217. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  218. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  219. : "cc");
  220. if (error)
  221. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  222. vcpu->vmcs, phys_addr);
  223. }
  224. if (vcpu->cpu != cpu) {
  225. struct descriptor_table dt;
  226. unsigned long sysenter_esp;
  227. vcpu->cpu = cpu;
  228. /*
  229. * Linux uses per-cpu TSS and GDT, so set these when switching
  230. * processors.
  231. */
  232. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  233. get_gdt(&dt);
  234. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  235. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  236. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  237. }
  238. }
  239. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  240. {
  241. kvm_put_guest_fpu(vcpu);
  242. put_cpu();
  243. }
  244. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  245. {
  246. vcpu_clear(vcpu);
  247. }
  248. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  249. {
  250. return vmcs_readl(GUEST_RFLAGS);
  251. }
  252. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  253. {
  254. vmcs_writel(GUEST_RFLAGS, rflags);
  255. }
  256. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  257. {
  258. unsigned long rip;
  259. u32 interruptibility;
  260. rip = vmcs_readl(GUEST_RIP);
  261. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  262. vmcs_writel(GUEST_RIP, rip);
  263. /*
  264. * We emulated an instruction, so temporary interrupt blocking
  265. * should be removed, if set.
  266. */
  267. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  268. if (interruptibility & 3)
  269. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  270. interruptibility & ~3);
  271. vcpu->interrupt_window_open = 1;
  272. }
  273. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  274. {
  275. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  276. vmcs_readl(GUEST_RIP));
  277. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  278. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  279. GP_VECTOR |
  280. INTR_TYPE_EXCEPTION |
  281. INTR_INFO_DELIEVER_CODE_MASK |
  282. INTR_INFO_VALID_MASK);
  283. }
  284. /*
  285. * Set up the vmcs to automatically save and restore system
  286. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  287. * mode, as fiddling with msrs is very expensive.
  288. */
  289. static void setup_msrs(struct kvm_vcpu *vcpu)
  290. {
  291. int nr_skip, nr_good_msrs;
  292. if (is_long_mode(vcpu))
  293. nr_skip = NR_BAD_MSRS;
  294. else
  295. nr_skip = NR_64BIT_MSRS;
  296. nr_good_msrs = vcpu->nmsrs - nr_skip;
  297. /*
  298. * MSR_K6_STAR is only needed on long mode guests, and only
  299. * if efer.sce is enabled.
  300. */
  301. if (find_msr_entry(vcpu, MSR_K6_STAR)) {
  302. --nr_good_msrs;
  303. #ifdef CONFIG_X86_64
  304. if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
  305. ++nr_good_msrs;
  306. #endif
  307. }
  308. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  309. virt_to_phys(vcpu->guest_msrs + nr_skip));
  310. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  311. virt_to_phys(vcpu->guest_msrs + nr_skip));
  312. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  313. virt_to_phys(vcpu->host_msrs + nr_skip));
  314. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  315. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  316. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  317. }
  318. /*
  319. * reads and returns guest's timestamp counter "register"
  320. * guest_tsc = host_tsc + tsc_offset -- 21.3
  321. */
  322. static u64 guest_read_tsc(void)
  323. {
  324. u64 host_tsc, tsc_offset;
  325. rdtscll(host_tsc);
  326. tsc_offset = vmcs_read64(TSC_OFFSET);
  327. return host_tsc + tsc_offset;
  328. }
  329. /*
  330. * writes 'guest_tsc' into guest's timestamp counter "register"
  331. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  332. */
  333. static void guest_write_tsc(u64 guest_tsc)
  334. {
  335. u64 host_tsc;
  336. rdtscll(host_tsc);
  337. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  338. }
  339. static void reload_tss(void)
  340. {
  341. #ifndef CONFIG_X86_64
  342. /*
  343. * VT restores TR but not its size. Useless.
  344. */
  345. struct descriptor_table gdt;
  346. struct segment_descriptor *descs;
  347. get_gdt(&gdt);
  348. descs = (void *)gdt.base;
  349. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  350. load_TR_desc();
  351. #endif
  352. }
  353. /*
  354. * Reads an msr value (of 'msr_index') into 'pdata'.
  355. * Returns 0 on success, non-0 otherwise.
  356. * Assumes vcpu_load() was already called.
  357. */
  358. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  359. {
  360. u64 data;
  361. struct vmx_msr_entry *msr;
  362. if (!pdata) {
  363. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  364. return -EINVAL;
  365. }
  366. switch (msr_index) {
  367. #ifdef CONFIG_X86_64
  368. case MSR_FS_BASE:
  369. data = vmcs_readl(GUEST_FS_BASE);
  370. break;
  371. case MSR_GS_BASE:
  372. data = vmcs_readl(GUEST_GS_BASE);
  373. break;
  374. case MSR_EFER:
  375. return kvm_get_msr_common(vcpu, msr_index, pdata);
  376. #endif
  377. case MSR_IA32_TIME_STAMP_COUNTER:
  378. data = guest_read_tsc();
  379. break;
  380. case MSR_IA32_SYSENTER_CS:
  381. data = vmcs_read32(GUEST_SYSENTER_CS);
  382. break;
  383. case MSR_IA32_SYSENTER_EIP:
  384. data = vmcs_readl(GUEST_SYSENTER_EIP);
  385. break;
  386. case MSR_IA32_SYSENTER_ESP:
  387. data = vmcs_readl(GUEST_SYSENTER_ESP);
  388. break;
  389. default:
  390. msr = find_msr_entry(vcpu, msr_index);
  391. if (msr) {
  392. data = msr->data;
  393. break;
  394. }
  395. return kvm_get_msr_common(vcpu, msr_index, pdata);
  396. }
  397. *pdata = data;
  398. return 0;
  399. }
  400. /*
  401. * Writes msr value into into the appropriate "register".
  402. * Returns 0 on success, non-0 otherwise.
  403. * Assumes vcpu_load() was already called.
  404. */
  405. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  406. {
  407. struct vmx_msr_entry *msr;
  408. switch (msr_index) {
  409. #ifdef CONFIG_X86_64
  410. case MSR_EFER:
  411. return kvm_set_msr_common(vcpu, msr_index, data);
  412. case MSR_FS_BASE:
  413. vmcs_writel(GUEST_FS_BASE, data);
  414. break;
  415. case MSR_GS_BASE:
  416. vmcs_writel(GUEST_GS_BASE, data);
  417. break;
  418. #endif
  419. case MSR_IA32_SYSENTER_CS:
  420. vmcs_write32(GUEST_SYSENTER_CS, data);
  421. break;
  422. case MSR_IA32_SYSENTER_EIP:
  423. vmcs_writel(GUEST_SYSENTER_EIP, data);
  424. break;
  425. case MSR_IA32_SYSENTER_ESP:
  426. vmcs_writel(GUEST_SYSENTER_ESP, data);
  427. break;
  428. case MSR_IA32_TIME_STAMP_COUNTER:
  429. guest_write_tsc(data);
  430. break;
  431. default:
  432. msr = find_msr_entry(vcpu, msr_index);
  433. if (msr) {
  434. msr->data = data;
  435. break;
  436. }
  437. return kvm_set_msr_common(vcpu, msr_index, data);
  438. msr->data = data;
  439. break;
  440. }
  441. return 0;
  442. }
  443. /*
  444. * Sync the rsp and rip registers into the vcpu structure. This allows
  445. * registers to be accessed by indexing vcpu->regs.
  446. */
  447. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  448. {
  449. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  450. vcpu->rip = vmcs_readl(GUEST_RIP);
  451. }
  452. /*
  453. * Syncs rsp and rip back into the vmcs. Should be called after possible
  454. * modification.
  455. */
  456. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  457. {
  458. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  459. vmcs_writel(GUEST_RIP, vcpu->rip);
  460. }
  461. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  462. {
  463. unsigned long dr7 = 0x400;
  464. u32 exception_bitmap;
  465. int old_singlestep;
  466. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  467. old_singlestep = vcpu->guest_debug.singlestep;
  468. vcpu->guest_debug.enabled = dbg->enabled;
  469. if (vcpu->guest_debug.enabled) {
  470. int i;
  471. dr7 |= 0x200; /* exact */
  472. for (i = 0; i < 4; ++i) {
  473. if (!dbg->breakpoints[i].enabled)
  474. continue;
  475. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  476. dr7 |= 2 << (i*2); /* global enable */
  477. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  478. }
  479. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  480. vcpu->guest_debug.singlestep = dbg->singlestep;
  481. } else {
  482. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  483. vcpu->guest_debug.singlestep = 0;
  484. }
  485. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  486. unsigned long flags;
  487. flags = vmcs_readl(GUEST_RFLAGS);
  488. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  489. vmcs_writel(GUEST_RFLAGS, flags);
  490. }
  491. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  492. vmcs_writel(GUEST_DR7, dr7);
  493. return 0;
  494. }
  495. static __init int cpu_has_kvm_support(void)
  496. {
  497. unsigned long ecx = cpuid_ecx(1);
  498. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  499. }
  500. static __init int vmx_disabled_by_bios(void)
  501. {
  502. u64 msr;
  503. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  504. return (msr & 5) == 1; /* locked but not enabled */
  505. }
  506. static void hardware_enable(void *garbage)
  507. {
  508. int cpu = raw_smp_processor_id();
  509. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  510. u64 old;
  511. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  512. if ((old & 5) != 5)
  513. /* enable and lock */
  514. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  515. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  516. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  517. : "memory", "cc");
  518. }
  519. static void hardware_disable(void *garbage)
  520. {
  521. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  522. }
  523. static __init void setup_vmcs_descriptor(void)
  524. {
  525. u32 vmx_msr_low, vmx_msr_high;
  526. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  527. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  528. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  529. vmcs_descriptor.revision_id = vmx_msr_low;
  530. }
  531. static struct vmcs *alloc_vmcs_cpu(int cpu)
  532. {
  533. int node = cpu_to_node(cpu);
  534. struct page *pages;
  535. struct vmcs *vmcs;
  536. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  537. if (!pages)
  538. return NULL;
  539. vmcs = page_address(pages);
  540. memset(vmcs, 0, vmcs_descriptor.size);
  541. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  542. return vmcs;
  543. }
  544. static struct vmcs *alloc_vmcs(void)
  545. {
  546. return alloc_vmcs_cpu(raw_smp_processor_id());
  547. }
  548. static void free_vmcs(struct vmcs *vmcs)
  549. {
  550. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  551. }
  552. static void free_kvm_area(void)
  553. {
  554. int cpu;
  555. for_each_online_cpu(cpu)
  556. free_vmcs(per_cpu(vmxarea, cpu));
  557. }
  558. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  559. static __init int alloc_kvm_area(void)
  560. {
  561. int cpu;
  562. for_each_online_cpu(cpu) {
  563. struct vmcs *vmcs;
  564. vmcs = alloc_vmcs_cpu(cpu);
  565. if (!vmcs) {
  566. free_kvm_area();
  567. return -ENOMEM;
  568. }
  569. per_cpu(vmxarea, cpu) = vmcs;
  570. }
  571. return 0;
  572. }
  573. static __init int hardware_setup(void)
  574. {
  575. setup_vmcs_descriptor();
  576. return alloc_kvm_area();
  577. }
  578. static __exit void hardware_unsetup(void)
  579. {
  580. free_kvm_area();
  581. }
  582. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  583. {
  584. if (vcpu->rmode.active)
  585. vmcs_write32(EXCEPTION_BITMAP, ~0);
  586. else
  587. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  588. }
  589. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  590. {
  591. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  592. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  593. vmcs_write16(sf->selector, save->selector);
  594. vmcs_writel(sf->base, save->base);
  595. vmcs_write32(sf->limit, save->limit);
  596. vmcs_write32(sf->ar_bytes, save->ar);
  597. } else {
  598. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  599. << AR_DPL_SHIFT;
  600. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  601. }
  602. }
  603. static void enter_pmode(struct kvm_vcpu *vcpu)
  604. {
  605. unsigned long flags;
  606. vcpu->rmode.active = 0;
  607. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  608. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  609. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  610. flags = vmcs_readl(GUEST_RFLAGS);
  611. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  612. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  613. vmcs_writel(GUEST_RFLAGS, flags);
  614. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  615. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  616. update_exception_bitmap(vcpu);
  617. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  618. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  619. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  620. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  621. vmcs_write16(GUEST_SS_SELECTOR, 0);
  622. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  623. vmcs_write16(GUEST_CS_SELECTOR,
  624. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  625. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  626. }
  627. static int rmode_tss_base(struct kvm* kvm)
  628. {
  629. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  630. return base_gfn << PAGE_SHIFT;
  631. }
  632. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  633. {
  634. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  635. save->selector = vmcs_read16(sf->selector);
  636. save->base = vmcs_readl(sf->base);
  637. save->limit = vmcs_read32(sf->limit);
  638. save->ar = vmcs_read32(sf->ar_bytes);
  639. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  640. vmcs_write32(sf->limit, 0xffff);
  641. vmcs_write32(sf->ar_bytes, 0xf3);
  642. }
  643. static void enter_rmode(struct kvm_vcpu *vcpu)
  644. {
  645. unsigned long flags;
  646. vcpu->rmode.active = 1;
  647. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  648. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  649. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  650. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  651. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  652. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  653. flags = vmcs_readl(GUEST_RFLAGS);
  654. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  655. flags |= IOPL_MASK | X86_EFLAGS_VM;
  656. vmcs_writel(GUEST_RFLAGS, flags);
  657. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  658. update_exception_bitmap(vcpu);
  659. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  660. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  661. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  662. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  663. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  664. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  665. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  666. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  667. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  668. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  669. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  670. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  671. }
  672. #ifdef CONFIG_X86_64
  673. static void enter_lmode(struct kvm_vcpu *vcpu)
  674. {
  675. u32 guest_tr_ar;
  676. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  677. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  678. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  679. __FUNCTION__);
  680. vmcs_write32(GUEST_TR_AR_BYTES,
  681. (guest_tr_ar & ~AR_TYPE_MASK)
  682. | AR_TYPE_BUSY_64_TSS);
  683. }
  684. vcpu->shadow_efer |= EFER_LMA;
  685. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  686. vmcs_write32(VM_ENTRY_CONTROLS,
  687. vmcs_read32(VM_ENTRY_CONTROLS)
  688. | VM_ENTRY_CONTROLS_IA32E_MASK);
  689. }
  690. static void exit_lmode(struct kvm_vcpu *vcpu)
  691. {
  692. vcpu->shadow_efer &= ~EFER_LMA;
  693. vmcs_write32(VM_ENTRY_CONTROLS,
  694. vmcs_read32(VM_ENTRY_CONTROLS)
  695. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  696. }
  697. #endif
  698. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  699. {
  700. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  701. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  702. }
  703. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  704. {
  705. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  706. enter_pmode(vcpu);
  707. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  708. enter_rmode(vcpu);
  709. #ifdef CONFIG_X86_64
  710. if (vcpu->shadow_efer & EFER_LME) {
  711. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  712. enter_lmode(vcpu);
  713. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  714. exit_lmode(vcpu);
  715. }
  716. #endif
  717. if (!(cr0 & CR0_TS_MASK)) {
  718. vcpu->fpu_active = 1;
  719. vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
  720. }
  721. vmcs_writel(CR0_READ_SHADOW, cr0);
  722. vmcs_writel(GUEST_CR0,
  723. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  724. vcpu->cr0 = cr0;
  725. }
  726. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  727. {
  728. vmcs_writel(GUEST_CR3, cr3);
  729. if (!(vcpu->cr0 & CR0_TS_MASK)) {
  730. vcpu->fpu_active = 0;
  731. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  732. vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  733. }
  734. }
  735. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  736. {
  737. vmcs_writel(CR4_READ_SHADOW, cr4);
  738. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  739. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  740. vcpu->cr4 = cr4;
  741. }
  742. #ifdef CONFIG_X86_64
  743. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  744. {
  745. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  746. vcpu->shadow_efer = efer;
  747. if (efer & EFER_LMA) {
  748. vmcs_write32(VM_ENTRY_CONTROLS,
  749. vmcs_read32(VM_ENTRY_CONTROLS) |
  750. VM_ENTRY_CONTROLS_IA32E_MASK);
  751. msr->data = efer;
  752. } else {
  753. vmcs_write32(VM_ENTRY_CONTROLS,
  754. vmcs_read32(VM_ENTRY_CONTROLS) &
  755. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  756. msr->data = efer & ~EFER_LME;
  757. }
  758. setup_msrs(vcpu);
  759. }
  760. #endif
  761. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  762. {
  763. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  764. return vmcs_readl(sf->base);
  765. }
  766. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  767. struct kvm_segment *var, int seg)
  768. {
  769. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  770. u32 ar;
  771. var->base = vmcs_readl(sf->base);
  772. var->limit = vmcs_read32(sf->limit);
  773. var->selector = vmcs_read16(sf->selector);
  774. ar = vmcs_read32(sf->ar_bytes);
  775. if (ar & AR_UNUSABLE_MASK)
  776. ar = 0;
  777. var->type = ar & 15;
  778. var->s = (ar >> 4) & 1;
  779. var->dpl = (ar >> 5) & 3;
  780. var->present = (ar >> 7) & 1;
  781. var->avl = (ar >> 12) & 1;
  782. var->l = (ar >> 13) & 1;
  783. var->db = (ar >> 14) & 1;
  784. var->g = (ar >> 15) & 1;
  785. var->unusable = (ar >> 16) & 1;
  786. }
  787. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  788. struct kvm_segment *var, int seg)
  789. {
  790. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  791. u32 ar;
  792. vmcs_writel(sf->base, var->base);
  793. vmcs_write32(sf->limit, var->limit);
  794. vmcs_write16(sf->selector, var->selector);
  795. if (vcpu->rmode.active && var->s) {
  796. /*
  797. * Hack real-mode segments into vm86 compatibility.
  798. */
  799. if (var->base == 0xffff0000 && var->selector == 0xf000)
  800. vmcs_writel(sf->base, 0xf0000);
  801. ar = 0xf3;
  802. } else if (var->unusable)
  803. ar = 1 << 16;
  804. else {
  805. ar = var->type & 15;
  806. ar |= (var->s & 1) << 4;
  807. ar |= (var->dpl & 3) << 5;
  808. ar |= (var->present & 1) << 7;
  809. ar |= (var->avl & 1) << 12;
  810. ar |= (var->l & 1) << 13;
  811. ar |= (var->db & 1) << 14;
  812. ar |= (var->g & 1) << 15;
  813. }
  814. if (ar == 0) /* a 0 value means unusable */
  815. ar = AR_UNUSABLE_MASK;
  816. vmcs_write32(sf->ar_bytes, ar);
  817. }
  818. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  819. {
  820. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  821. *db = (ar >> 14) & 1;
  822. *l = (ar >> 13) & 1;
  823. }
  824. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  825. {
  826. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  827. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  828. }
  829. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  830. {
  831. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  832. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  833. }
  834. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  835. {
  836. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  837. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  838. }
  839. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  840. {
  841. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  842. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  843. }
  844. static int init_rmode_tss(struct kvm* kvm)
  845. {
  846. struct page *p1, *p2, *p3;
  847. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  848. char *page;
  849. p1 = gfn_to_page(kvm, fn++);
  850. p2 = gfn_to_page(kvm, fn++);
  851. p3 = gfn_to_page(kvm, fn);
  852. if (!p1 || !p2 || !p3) {
  853. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  854. return 0;
  855. }
  856. page = kmap_atomic(p1, KM_USER0);
  857. memset(page, 0, PAGE_SIZE);
  858. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  859. kunmap_atomic(page, KM_USER0);
  860. page = kmap_atomic(p2, KM_USER0);
  861. memset(page, 0, PAGE_SIZE);
  862. kunmap_atomic(page, KM_USER0);
  863. page = kmap_atomic(p3, KM_USER0);
  864. memset(page, 0, PAGE_SIZE);
  865. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  866. kunmap_atomic(page, KM_USER0);
  867. return 1;
  868. }
  869. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  870. {
  871. u32 msr_high, msr_low;
  872. rdmsr(msr, msr_low, msr_high);
  873. val &= msr_high;
  874. val |= msr_low;
  875. vmcs_write32(vmcs_field, val);
  876. }
  877. static void seg_setup(int seg)
  878. {
  879. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  880. vmcs_write16(sf->selector, 0);
  881. vmcs_writel(sf->base, 0);
  882. vmcs_write32(sf->limit, 0xffff);
  883. vmcs_write32(sf->ar_bytes, 0x93);
  884. }
  885. /*
  886. * Sets up the vmcs for emulated real mode.
  887. */
  888. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  889. {
  890. u32 host_sysenter_cs;
  891. u32 junk;
  892. unsigned long a;
  893. struct descriptor_table dt;
  894. int i;
  895. int ret = 0;
  896. extern asmlinkage void kvm_vmx_return(void);
  897. if (!init_rmode_tss(vcpu->kvm)) {
  898. ret = -ENOMEM;
  899. goto out;
  900. }
  901. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  902. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  903. vcpu->cr8 = 0;
  904. vcpu->apic_base = 0xfee00000 |
  905. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  906. MSR_IA32_APICBASE_ENABLE;
  907. fx_init(vcpu);
  908. /*
  909. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  910. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  911. */
  912. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  913. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  914. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  915. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  916. seg_setup(VCPU_SREG_DS);
  917. seg_setup(VCPU_SREG_ES);
  918. seg_setup(VCPU_SREG_FS);
  919. seg_setup(VCPU_SREG_GS);
  920. seg_setup(VCPU_SREG_SS);
  921. vmcs_write16(GUEST_TR_SELECTOR, 0);
  922. vmcs_writel(GUEST_TR_BASE, 0);
  923. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  924. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  925. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  926. vmcs_writel(GUEST_LDTR_BASE, 0);
  927. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  928. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  929. vmcs_write32(GUEST_SYSENTER_CS, 0);
  930. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  931. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  932. vmcs_writel(GUEST_RFLAGS, 0x02);
  933. vmcs_writel(GUEST_RIP, 0xfff0);
  934. vmcs_writel(GUEST_RSP, 0);
  935. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  936. vmcs_writel(GUEST_DR7, 0x400);
  937. vmcs_writel(GUEST_GDTR_BASE, 0);
  938. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  939. vmcs_writel(GUEST_IDTR_BASE, 0);
  940. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  941. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  942. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  943. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  944. /* I/O */
  945. vmcs_write64(IO_BITMAP_A, 0);
  946. vmcs_write64(IO_BITMAP_B, 0);
  947. guest_write_tsc(0);
  948. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  949. /* Special registers */
  950. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  951. /* Control */
  952. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  953. PIN_BASED_VM_EXEC_CONTROL,
  954. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  955. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  956. );
  957. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  958. CPU_BASED_VM_EXEC_CONTROL,
  959. CPU_BASED_HLT_EXITING /* 20.6.2 */
  960. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  961. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  962. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  963. | CPU_BASED_MOV_DR_EXITING
  964. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  965. );
  966. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  967. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  968. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  969. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  970. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  971. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  972. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  973. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  974. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  975. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  976. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  977. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  978. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  979. #ifdef CONFIG_X86_64
  980. rdmsrl(MSR_FS_BASE, a);
  981. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  982. rdmsrl(MSR_GS_BASE, a);
  983. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  984. #else
  985. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  986. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  987. #endif
  988. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  989. get_idt(&dt);
  990. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  991. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  992. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  993. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  994. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  995. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  996. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  997. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  998. for (i = 0; i < NR_VMX_MSR; ++i) {
  999. u32 index = vmx_msr_index[i];
  1000. u32 data_low, data_high;
  1001. u64 data;
  1002. int j = vcpu->nmsrs;
  1003. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1004. continue;
  1005. if (wrmsr_safe(index, data_low, data_high) < 0)
  1006. continue;
  1007. data = data_low | ((u64)data_high << 32);
  1008. vcpu->host_msrs[j].index = index;
  1009. vcpu->host_msrs[j].reserved = 0;
  1010. vcpu->host_msrs[j].data = data;
  1011. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1012. #ifdef CONFIG_X86_64
  1013. if (index == MSR_KERNEL_GS_BASE)
  1014. msr_offset_kernel_gs_base = j;
  1015. #endif
  1016. ++vcpu->nmsrs;
  1017. }
  1018. setup_msrs(vcpu);
  1019. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1020. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1021. /* 22.2.1, 20.8.1 */
  1022. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1023. VM_ENTRY_CONTROLS, 0);
  1024. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1025. #ifdef CONFIG_X86_64
  1026. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1027. vmcs_writel(TPR_THRESHOLD, 0);
  1028. #endif
  1029. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1030. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1031. vcpu->cr0 = 0x60000010;
  1032. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1033. vmx_set_cr4(vcpu, 0);
  1034. #ifdef CONFIG_X86_64
  1035. vmx_set_efer(vcpu, 0);
  1036. #endif
  1037. return 0;
  1038. out:
  1039. return ret;
  1040. }
  1041. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1042. {
  1043. u16 ent[2];
  1044. u16 cs;
  1045. u16 ip;
  1046. unsigned long flags;
  1047. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1048. u16 sp = vmcs_readl(GUEST_RSP);
  1049. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1050. if (sp > ss_limit || sp < 6 ) {
  1051. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1052. __FUNCTION__,
  1053. vmcs_readl(GUEST_RSP),
  1054. vmcs_readl(GUEST_SS_BASE),
  1055. vmcs_read32(GUEST_SS_LIMIT));
  1056. return;
  1057. }
  1058. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1059. sizeof(ent)) {
  1060. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1061. return;
  1062. }
  1063. flags = vmcs_readl(GUEST_RFLAGS);
  1064. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1065. ip = vmcs_readl(GUEST_RIP);
  1066. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1067. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1068. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1069. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1070. return;
  1071. }
  1072. vmcs_writel(GUEST_RFLAGS, flags &
  1073. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1074. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1075. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1076. vmcs_writel(GUEST_RIP, ent[0]);
  1077. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1078. }
  1079. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1080. {
  1081. int word_index = __ffs(vcpu->irq_summary);
  1082. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1083. int irq = word_index * BITS_PER_LONG + bit_index;
  1084. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1085. if (!vcpu->irq_pending[word_index])
  1086. clear_bit(word_index, &vcpu->irq_summary);
  1087. if (vcpu->rmode.active) {
  1088. inject_rmode_irq(vcpu, irq);
  1089. return;
  1090. }
  1091. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1092. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1093. }
  1094. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1095. struct kvm_run *kvm_run)
  1096. {
  1097. u32 cpu_based_vm_exec_control;
  1098. vcpu->interrupt_window_open =
  1099. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1100. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1101. if (vcpu->interrupt_window_open &&
  1102. vcpu->irq_summary &&
  1103. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1104. /*
  1105. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1106. */
  1107. kvm_do_inject_irq(vcpu);
  1108. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1109. if (!vcpu->interrupt_window_open &&
  1110. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1111. /*
  1112. * Interrupts blocked. Wait for unblock.
  1113. */
  1114. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1115. else
  1116. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1117. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1118. }
  1119. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1120. {
  1121. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1122. set_debugreg(dbg->bp[0], 0);
  1123. set_debugreg(dbg->bp[1], 1);
  1124. set_debugreg(dbg->bp[2], 2);
  1125. set_debugreg(dbg->bp[3], 3);
  1126. if (dbg->singlestep) {
  1127. unsigned long flags;
  1128. flags = vmcs_readl(GUEST_RFLAGS);
  1129. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1130. vmcs_writel(GUEST_RFLAGS, flags);
  1131. }
  1132. }
  1133. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1134. int vec, u32 err_code)
  1135. {
  1136. if (!vcpu->rmode.active)
  1137. return 0;
  1138. if (vec == GP_VECTOR && err_code == 0)
  1139. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1140. return 1;
  1141. return 0;
  1142. }
  1143. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1144. {
  1145. u32 intr_info, error_code;
  1146. unsigned long cr2, rip;
  1147. u32 vect_info;
  1148. enum emulation_result er;
  1149. int r;
  1150. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1151. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1152. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1153. !is_page_fault(intr_info)) {
  1154. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1155. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1156. }
  1157. if (is_external_interrupt(vect_info)) {
  1158. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1159. set_bit(irq, vcpu->irq_pending);
  1160. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1161. }
  1162. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1163. asm ("int $2");
  1164. return 1;
  1165. }
  1166. if (is_no_device(intr_info)) {
  1167. vcpu->fpu_active = 1;
  1168. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1169. if (!(vcpu->cr0 & CR0_TS_MASK))
  1170. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1171. return 1;
  1172. }
  1173. error_code = 0;
  1174. rip = vmcs_readl(GUEST_RIP);
  1175. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1176. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1177. if (is_page_fault(intr_info)) {
  1178. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1179. spin_lock(&vcpu->kvm->lock);
  1180. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1181. if (r < 0) {
  1182. spin_unlock(&vcpu->kvm->lock);
  1183. return r;
  1184. }
  1185. if (!r) {
  1186. spin_unlock(&vcpu->kvm->lock);
  1187. return 1;
  1188. }
  1189. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1190. spin_unlock(&vcpu->kvm->lock);
  1191. switch (er) {
  1192. case EMULATE_DONE:
  1193. return 1;
  1194. case EMULATE_DO_MMIO:
  1195. ++vcpu->stat.mmio_exits;
  1196. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1197. return 0;
  1198. case EMULATE_FAIL:
  1199. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1200. break;
  1201. default:
  1202. BUG();
  1203. }
  1204. }
  1205. if (vcpu->rmode.active &&
  1206. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1207. error_code))
  1208. return 1;
  1209. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1210. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1211. return 0;
  1212. }
  1213. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1214. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1215. kvm_run->ex.error_code = error_code;
  1216. return 0;
  1217. }
  1218. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1219. struct kvm_run *kvm_run)
  1220. {
  1221. ++vcpu->stat.irq_exits;
  1222. return 1;
  1223. }
  1224. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1225. {
  1226. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1227. return 0;
  1228. }
  1229. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1230. {
  1231. u64 inst;
  1232. gva_t rip;
  1233. int countr_size;
  1234. int i, n;
  1235. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1236. countr_size = 2;
  1237. } else {
  1238. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1239. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1240. (cs_ar & AR_DB_MASK) ? 4: 2;
  1241. }
  1242. rip = vmcs_readl(GUEST_RIP);
  1243. if (countr_size != 8)
  1244. rip += vmcs_readl(GUEST_CS_BASE);
  1245. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1246. for (i = 0; i < n; i++) {
  1247. switch (((u8*)&inst)[i]) {
  1248. case 0xf0:
  1249. case 0xf2:
  1250. case 0xf3:
  1251. case 0x2e:
  1252. case 0x36:
  1253. case 0x3e:
  1254. case 0x26:
  1255. case 0x64:
  1256. case 0x65:
  1257. case 0x66:
  1258. break;
  1259. case 0x67:
  1260. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1261. default:
  1262. goto done;
  1263. }
  1264. }
  1265. return 0;
  1266. done:
  1267. countr_size *= 8;
  1268. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1269. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1270. return 1;
  1271. }
  1272. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1273. {
  1274. u64 exit_qualification;
  1275. int size, down, in, string, rep;
  1276. unsigned port;
  1277. unsigned long count;
  1278. gva_t address;
  1279. ++vcpu->stat.io_exits;
  1280. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1281. in = (exit_qualification & 8) != 0;
  1282. size = (exit_qualification & 7) + 1;
  1283. string = (exit_qualification & 16) != 0;
  1284. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1285. count = 1;
  1286. rep = (exit_qualification & 32) != 0;
  1287. port = exit_qualification >> 16;
  1288. address = 0;
  1289. if (string) {
  1290. if (rep && !get_io_count(vcpu, &count))
  1291. return 1;
  1292. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1293. }
  1294. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1295. address, rep, port);
  1296. }
  1297. static void
  1298. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1299. {
  1300. /*
  1301. * Patch in the VMCALL instruction:
  1302. */
  1303. hypercall[0] = 0x0f;
  1304. hypercall[1] = 0x01;
  1305. hypercall[2] = 0xc1;
  1306. hypercall[3] = 0xc3;
  1307. }
  1308. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1309. {
  1310. u64 exit_qualification;
  1311. int cr;
  1312. int reg;
  1313. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1314. cr = exit_qualification & 15;
  1315. reg = (exit_qualification >> 8) & 15;
  1316. switch ((exit_qualification >> 4) & 3) {
  1317. case 0: /* mov to cr */
  1318. switch (cr) {
  1319. case 0:
  1320. vcpu_load_rsp_rip(vcpu);
  1321. set_cr0(vcpu, vcpu->regs[reg]);
  1322. skip_emulated_instruction(vcpu);
  1323. return 1;
  1324. case 3:
  1325. vcpu_load_rsp_rip(vcpu);
  1326. set_cr3(vcpu, vcpu->regs[reg]);
  1327. skip_emulated_instruction(vcpu);
  1328. return 1;
  1329. case 4:
  1330. vcpu_load_rsp_rip(vcpu);
  1331. set_cr4(vcpu, vcpu->regs[reg]);
  1332. skip_emulated_instruction(vcpu);
  1333. return 1;
  1334. case 8:
  1335. vcpu_load_rsp_rip(vcpu);
  1336. set_cr8(vcpu, vcpu->regs[reg]);
  1337. skip_emulated_instruction(vcpu);
  1338. return 1;
  1339. };
  1340. break;
  1341. case 2: /* clts */
  1342. vcpu_load_rsp_rip(vcpu);
  1343. vcpu->fpu_active = 1;
  1344. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1345. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1346. vcpu->cr0 &= ~CR0_TS_MASK;
  1347. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1348. skip_emulated_instruction(vcpu);
  1349. return 1;
  1350. case 1: /*mov from cr*/
  1351. switch (cr) {
  1352. case 3:
  1353. vcpu_load_rsp_rip(vcpu);
  1354. vcpu->regs[reg] = vcpu->cr3;
  1355. vcpu_put_rsp_rip(vcpu);
  1356. skip_emulated_instruction(vcpu);
  1357. return 1;
  1358. case 8:
  1359. vcpu_load_rsp_rip(vcpu);
  1360. vcpu->regs[reg] = vcpu->cr8;
  1361. vcpu_put_rsp_rip(vcpu);
  1362. skip_emulated_instruction(vcpu);
  1363. return 1;
  1364. }
  1365. break;
  1366. case 3: /* lmsw */
  1367. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1368. skip_emulated_instruction(vcpu);
  1369. return 1;
  1370. default:
  1371. break;
  1372. }
  1373. kvm_run->exit_reason = 0;
  1374. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1375. (int)(exit_qualification >> 4) & 3, cr);
  1376. return 0;
  1377. }
  1378. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1379. {
  1380. u64 exit_qualification;
  1381. unsigned long val;
  1382. int dr, reg;
  1383. /*
  1384. * FIXME: this code assumes the host is debugging the guest.
  1385. * need to deal with guest debugging itself too.
  1386. */
  1387. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1388. dr = exit_qualification & 7;
  1389. reg = (exit_qualification >> 8) & 15;
  1390. vcpu_load_rsp_rip(vcpu);
  1391. if (exit_qualification & 16) {
  1392. /* mov from dr */
  1393. switch (dr) {
  1394. case 6:
  1395. val = 0xffff0ff0;
  1396. break;
  1397. case 7:
  1398. val = 0x400;
  1399. break;
  1400. default:
  1401. val = 0;
  1402. }
  1403. vcpu->regs[reg] = val;
  1404. } else {
  1405. /* mov to dr */
  1406. }
  1407. vcpu_put_rsp_rip(vcpu);
  1408. skip_emulated_instruction(vcpu);
  1409. return 1;
  1410. }
  1411. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1412. {
  1413. kvm_emulate_cpuid(vcpu);
  1414. return 1;
  1415. }
  1416. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1417. {
  1418. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1419. u64 data;
  1420. if (vmx_get_msr(vcpu, ecx, &data)) {
  1421. vmx_inject_gp(vcpu, 0);
  1422. return 1;
  1423. }
  1424. /* FIXME: handling of bits 32:63 of rax, rdx */
  1425. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1426. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1427. skip_emulated_instruction(vcpu);
  1428. return 1;
  1429. }
  1430. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1431. {
  1432. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1433. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1434. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1435. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1436. vmx_inject_gp(vcpu, 0);
  1437. return 1;
  1438. }
  1439. skip_emulated_instruction(vcpu);
  1440. return 1;
  1441. }
  1442. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1443. struct kvm_run *kvm_run)
  1444. {
  1445. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1446. kvm_run->cr8 = vcpu->cr8;
  1447. kvm_run->apic_base = vcpu->apic_base;
  1448. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1449. vcpu->irq_summary == 0);
  1450. }
  1451. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1452. struct kvm_run *kvm_run)
  1453. {
  1454. /*
  1455. * If the user space waits to inject interrupts, exit as soon as
  1456. * possible
  1457. */
  1458. if (kvm_run->request_interrupt_window &&
  1459. !vcpu->irq_summary) {
  1460. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1461. ++vcpu->stat.irq_window_exits;
  1462. return 0;
  1463. }
  1464. return 1;
  1465. }
  1466. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1467. {
  1468. skip_emulated_instruction(vcpu);
  1469. if (vcpu->irq_summary)
  1470. return 1;
  1471. kvm_run->exit_reason = KVM_EXIT_HLT;
  1472. ++vcpu->stat.halt_exits;
  1473. return 0;
  1474. }
  1475. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1476. {
  1477. skip_emulated_instruction(vcpu);
  1478. return kvm_hypercall(vcpu, kvm_run);
  1479. }
  1480. /*
  1481. * The exit handlers return 1 if the exit was handled fully and guest execution
  1482. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1483. * to be done to userspace and return 0.
  1484. */
  1485. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1486. struct kvm_run *kvm_run) = {
  1487. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1488. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1489. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1490. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1491. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1492. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1493. [EXIT_REASON_CPUID] = handle_cpuid,
  1494. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1495. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1496. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1497. [EXIT_REASON_HLT] = handle_halt,
  1498. [EXIT_REASON_VMCALL] = handle_vmcall,
  1499. };
  1500. static const int kvm_vmx_max_exit_handlers =
  1501. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1502. /*
  1503. * The guest has exited. See if we can fix it or if we need userspace
  1504. * assistance.
  1505. */
  1506. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1507. {
  1508. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1509. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1510. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1511. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1512. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1513. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1514. if (exit_reason < kvm_vmx_max_exit_handlers
  1515. && kvm_vmx_exit_handlers[exit_reason])
  1516. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1517. else {
  1518. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1519. kvm_run->hw.hardware_exit_reason = exit_reason;
  1520. }
  1521. return 0;
  1522. }
  1523. /*
  1524. * Check if userspace requested an interrupt window, and that the
  1525. * interrupt window is open.
  1526. *
  1527. * No need to exit to userspace if we already have an interrupt queued.
  1528. */
  1529. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1530. struct kvm_run *kvm_run)
  1531. {
  1532. return (!vcpu->irq_summary &&
  1533. kvm_run->request_interrupt_window &&
  1534. vcpu->interrupt_window_open &&
  1535. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1536. }
  1537. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1538. {
  1539. u8 fail;
  1540. u16 fs_sel, gs_sel, ldt_sel;
  1541. int fs_gs_ldt_reload_needed;
  1542. int r;
  1543. again:
  1544. /*
  1545. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1546. * allow segment selectors with cpl > 0 or ti == 1.
  1547. */
  1548. fs_sel = read_fs();
  1549. gs_sel = read_gs();
  1550. ldt_sel = read_ldt();
  1551. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1552. if (!fs_gs_ldt_reload_needed) {
  1553. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1554. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1555. } else {
  1556. vmcs_write16(HOST_FS_SELECTOR, 0);
  1557. vmcs_write16(HOST_GS_SELECTOR, 0);
  1558. }
  1559. #ifdef CONFIG_X86_64
  1560. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1561. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1562. #else
  1563. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1564. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1565. #endif
  1566. if (!vcpu->mmio_read_completed)
  1567. do_interrupt_requests(vcpu, kvm_run);
  1568. if (vcpu->guest_debug.enabled)
  1569. kvm_guest_debug_pre(vcpu);
  1570. kvm_load_guest_fpu(vcpu);
  1571. /*
  1572. * Loading guest fpu may have cleared host cr0.ts
  1573. */
  1574. vmcs_writel(HOST_CR0, read_cr0());
  1575. #ifdef CONFIG_X86_64
  1576. if (is_long_mode(vcpu)) {
  1577. save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
  1578. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1579. }
  1580. #endif
  1581. asm (
  1582. /* Store host registers */
  1583. "pushf \n\t"
  1584. #ifdef CONFIG_X86_64
  1585. "push %%rax; push %%rbx; push %%rdx;"
  1586. "push %%rsi; push %%rdi; push %%rbp;"
  1587. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1588. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1589. "push %%rcx \n\t"
  1590. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1591. #else
  1592. "pusha; push %%ecx \n\t"
  1593. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1594. #endif
  1595. /* Check if vmlaunch of vmresume is needed */
  1596. "cmp $0, %1 \n\t"
  1597. /* Load guest registers. Don't clobber flags. */
  1598. #ifdef CONFIG_X86_64
  1599. "mov %c[cr2](%3), %%rax \n\t"
  1600. "mov %%rax, %%cr2 \n\t"
  1601. "mov %c[rax](%3), %%rax \n\t"
  1602. "mov %c[rbx](%3), %%rbx \n\t"
  1603. "mov %c[rdx](%3), %%rdx \n\t"
  1604. "mov %c[rsi](%3), %%rsi \n\t"
  1605. "mov %c[rdi](%3), %%rdi \n\t"
  1606. "mov %c[rbp](%3), %%rbp \n\t"
  1607. "mov %c[r8](%3), %%r8 \n\t"
  1608. "mov %c[r9](%3), %%r9 \n\t"
  1609. "mov %c[r10](%3), %%r10 \n\t"
  1610. "mov %c[r11](%3), %%r11 \n\t"
  1611. "mov %c[r12](%3), %%r12 \n\t"
  1612. "mov %c[r13](%3), %%r13 \n\t"
  1613. "mov %c[r14](%3), %%r14 \n\t"
  1614. "mov %c[r15](%3), %%r15 \n\t"
  1615. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1616. #else
  1617. "mov %c[cr2](%3), %%eax \n\t"
  1618. "mov %%eax, %%cr2 \n\t"
  1619. "mov %c[rax](%3), %%eax \n\t"
  1620. "mov %c[rbx](%3), %%ebx \n\t"
  1621. "mov %c[rdx](%3), %%edx \n\t"
  1622. "mov %c[rsi](%3), %%esi \n\t"
  1623. "mov %c[rdi](%3), %%edi \n\t"
  1624. "mov %c[rbp](%3), %%ebp \n\t"
  1625. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1626. #endif
  1627. /* Enter guest mode */
  1628. "jne launched \n\t"
  1629. ASM_VMX_VMLAUNCH "\n\t"
  1630. "jmp kvm_vmx_return \n\t"
  1631. "launched: " ASM_VMX_VMRESUME "\n\t"
  1632. ".globl kvm_vmx_return \n\t"
  1633. "kvm_vmx_return: "
  1634. /* Save guest registers, load host registers, keep flags */
  1635. #ifdef CONFIG_X86_64
  1636. "xchg %3, (%%rsp) \n\t"
  1637. "mov %%rax, %c[rax](%3) \n\t"
  1638. "mov %%rbx, %c[rbx](%3) \n\t"
  1639. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1640. "mov %%rdx, %c[rdx](%3) \n\t"
  1641. "mov %%rsi, %c[rsi](%3) \n\t"
  1642. "mov %%rdi, %c[rdi](%3) \n\t"
  1643. "mov %%rbp, %c[rbp](%3) \n\t"
  1644. "mov %%r8, %c[r8](%3) \n\t"
  1645. "mov %%r9, %c[r9](%3) \n\t"
  1646. "mov %%r10, %c[r10](%3) \n\t"
  1647. "mov %%r11, %c[r11](%3) \n\t"
  1648. "mov %%r12, %c[r12](%3) \n\t"
  1649. "mov %%r13, %c[r13](%3) \n\t"
  1650. "mov %%r14, %c[r14](%3) \n\t"
  1651. "mov %%r15, %c[r15](%3) \n\t"
  1652. "mov %%cr2, %%rax \n\t"
  1653. "mov %%rax, %c[cr2](%3) \n\t"
  1654. "mov (%%rsp), %3 \n\t"
  1655. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1656. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1657. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1658. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1659. #else
  1660. "xchg %3, (%%esp) \n\t"
  1661. "mov %%eax, %c[rax](%3) \n\t"
  1662. "mov %%ebx, %c[rbx](%3) \n\t"
  1663. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1664. "mov %%edx, %c[rdx](%3) \n\t"
  1665. "mov %%esi, %c[rsi](%3) \n\t"
  1666. "mov %%edi, %c[rdi](%3) \n\t"
  1667. "mov %%ebp, %c[rbp](%3) \n\t"
  1668. "mov %%cr2, %%eax \n\t"
  1669. "mov %%eax, %c[cr2](%3) \n\t"
  1670. "mov (%%esp), %3 \n\t"
  1671. "pop %%ecx; popa \n\t"
  1672. #endif
  1673. "setbe %0 \n\t"
  1674. "popf \n\t"
  1675. : "=q" (fail)
  1676. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1677. "c"(vcpu),
  1678. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1679. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1680. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1681. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1682. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1683. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1684. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1685. #ifdef CONFIG_X86_64
  1686. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1687. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1688. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1689. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1690. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1691. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1692. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1693. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1694. #endif
  1695. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1696. : "cc", "memory" );
  1697. /*
  1698. * Reload segment selectors ASAP. (it's needed for a functional
  1699. * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
  1700. * relies on having 0 in %gs for the CPU PDA to work.)
  1701. */
  1702. if (fs_gs_ldt_reload_needed) {
  1703. load_ldt(ldt_sel);
  1704. load_fs(fs_sel);
  1705. /*
  1706. * If we have to reload gs, we must take care to
  1707. * preserve our gs base.
  1708. */
  1709. local_irq_disable();
  1710. load_gs(gs_sel);
  1711. #ifdef CONFIG_X86_64
  1712. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1713. #endif
  1714. local_irq_enable();
  1715. reload_tss();
  1716. }
  1717. ++vcpu->stat.exits;
  1718. #ifdef CONFIG_X86_64
  1719. if (is_long_mode(vcpu)) {
  1720. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1721. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1722. }
  1723. #endif
  1724. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1725. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1726. if (fail) {
  1727. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1728. kvm_run->fail_entry.hardware_entry_failure_reason
  1729. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1730. r = 0;
  1731. } else {
  1732. /*
  1733. * Profile KVM exit RIPs:
  1734. */
  1735. if (unlikely(prof_on == KVM_PROFILING))
  1736. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1737. vcpu->launched = 1;
  1738. r = kvm_handle_exit(kvm_run, vcpu);
  1739. if (r > 0) {
  1740. /* Give scheduler a change to reschedule. */
  1741. if (signal_pending(current)) {
  1742. ++vcpu->stat.signal_exits;
  1743. post_kvm_run_save(vcpu, kvm_run);
  1744. kvm_run->exit_reason = KVM_EXIT_INTR;
  1745. return -EINTR;
  1746. }
  1747. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1748. ++vcpu->stat.request_irq_exits;
  1749. post_kvm_run_save(vcpu, kvm_run);
  1750. kvm_run->exit_reason = KVM_EXIT_INTR;
  1751. return -EINTR;
  1752. }
  1753. kvm_resched(vcpu);
  1754. goto again;
  1755. }
  1756. }
  1757. post_kvm_run_save(vcpu, kvm_run);
  1758. return r;
  1759. }
  1760. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1761. {
  1762. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1763. }
  1764. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1765. unsigned long addr,
  1766. u32 err_code)
  1767. {
  1768. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1769. ++vcpu->stat.pf_guest;
  1770. if (is_page_fault(vect_info)) {
  1771. printk(KERN_DEBUG "inject_page_fault: "
  1772. "double fault 0x%lx @ 0x%lx\n",
  1773. addr, vmcs_readl(GUEST_RIP));
  1774. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1775. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1776. DF_VECTOR |
  1777. INTR_TYPE_EXCEPTION |
  1778. INTR_INFO_DELIEVER_CODE_MASK |
  1779. INTR_INFO_VALID_MASK);
  1780. return;
  1781. }
  1782. vcpu->cr2 = addr;
  1783. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1784. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1785. PF_VECTOR |
  1786. INTR_TYPE_EXCEPTION |
  1787. INTR_INFO_DELIEVER_CODE_MASK |
  1788. INTR_INFO_VALID_MASK);
  1789. }
  1790. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1791. {
  1792. if (vcpu->vmcs) {
  1793. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1794. free_vmcs(vcpu->vmcs);
  1795. vcpu->vmcs = NULL;
  1796. }
  1797. }
  1798. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1799. {
  1800. vmx_free_vmcs(vcpu);
  1801. }
  1802. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1803. {
  1804. struct vmcs *vmcs;
  1805. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1806. if (!vcpu->guest_msrs)
  1807. return -ENOMEM;
  1808. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1809. if (!vcpu->host_msrs)
  1810. goto out_free_guest_msrs;
  1811. vmcs = alloc_vmcs();
  1812. if (!vmcs)
  1813. goto out_free_msrs;
  1814. vmcs_clear(vmcs);
  1815. vcpu->vmcs = vmcs;
  1816. vcpu->launched = 0;
  1817. vcpu->fpu_active = 1;
  1818. return 0;
  1819. out_free_msrs:
  1820. kfree(vcpu->host_msrs);
  1821. vcpu->host_msrs = NULL;
  1822. out_free_guest_msrs:
  1823. kfree(vcpu->guest_msrs);
  1824. vcpu->guest_msrs = NULL;
  1825. return -ENOMEM;
  1826. }
  1827. static struct kvm_arch_ops vmx_arch_ops = {
  1828. .cpu_has_kvm_support = cpu_has_kvm_support,
  1829. .disabled_by_bios = vmx_disabled_by_bios,
  1830. .hardware_setup = hardware_setup,
  1831. .hardware_unsetup = hardware_unsetup,
  1832. .hardware_enable = hardware_enable,
  1833. .hardware_disable = hardware_disable,
  1834. .vcpu_create = vmx_create_vcpu,
  1835. .vcpu_free = vmx_free_vcpu,
  1836. .vcpu_load = vmx_vcpu_load,
  1837. .vcpu_put = vmx_vcpu_put,
  1838. .vcpu_decache = vmx_vcpu_decache,
  1839. .set_guest_debug = set_guest_debug,
  1840. .get_msr = vmx_get_msr,
  1841. .set_msr = vmx_set_msr,
  1842. .get_segment_base = vmx_get_segment_base,
  1843. .get_segment = vmx_get_segment,
  1844. .set_segment = vmx_set_segment,
  1845. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1846. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1847. .set_cr0 = vmx_set_cr0,
  1848. .set_cr3 = vmx_set_cr3,
  1849. .set_cr4 = vmx_set_cr4,
  1850. #ifdef CONFIG_X86_64
  1851. .set_efer = vmx_set_efer,
  1852. #endif
  1853. .get_idt = vmx_get_idt,
  1854. .set_idt = vmx_set_idt,
  1855. .get_gdt = vmx_get_gdt,
  1856. .set_gdt = vmx_set_gdt,
  1857. .cache_regs = vcpu_load_rsp_rip,
  1858. .decache_regs = vcpu_put_rsp_rip,
  1859. .get_rflags = vmx_get_rflags,
  1860. .set_rflags = vmx_set_rflags,
  1861. .tlb_flush = vmx_flush_tlb,
  1862. .inject_page_fault = vmx_inject_page_fault,
  1863. .inject_gp = vmx_inject_gp,
  1864. .run = vmx_vcpu_run,
  1865. .skip_emulated_instruction = skip_emulated_instruction,
  1866. .vcpu_setup = vmx_vcpu_setup,
  1867. .patch_hypercall = vmx_patch_hypercall,
  1868. };
  1869. static int __init vmx_init(void)
  1870. {
  1871. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1872. }
  1873. static void __exit vmx_exit(void)
  1874. {
  1875. kvm_exit_arch();
  1876. }
  1877. module_init(vmx_init)
  1878. module_exit(vmx_exit)