kvm_main.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <linux/magic.h>
  22. #include <asm/processor.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <asm/msr.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/reboot.h>
  31. #include <asm/io.h>
  32. #include <linux/debugfs.h>
  33. #include <linux/highmem.h>
  34. #include <linux/file.h>
  35. #include <asm/desc.h>
  36. #include <linux/sysdev.h>
  37. #include <linux/cpu.h>
  38. #include <linux/file.h>
  39. #include <linux/fs.h>
  40. #include <linux/mount.h>
  41. #include <linux/sched.h>
  42. #include "x86_emulate.h"
  43. #include "segment_descriptor.h"
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static DEFINE_SPINLOCK(kvm_lock);
  47. static LIST_HEAD(vm_list);
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  50. static struct kvm_stats_debugfs_item {
  51. const char *name;
  52. int offset;
  53. struct dentry *dentry;
  54. } debugfs_entries[] = {
  55. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  56. { "pf_guest", STAT_OFFSET(pf_guest) },
  57. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  58. { "invlpg", STAT_OFFSET(invlpg) },
  59. { "exits", STAT_OFFSET(exits) },
  60. { "io_exits", STAT_OFFSET(io_exits) },
  61. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  62. { "signal_exits", STAT_OFFSET(signal_exits) },
  63. { "irq_window", STAT_OFFSET(irq_window_exits) },
  64. { "halt_exits", STAT_OFFSET(halt_exits) },
  65. { "request_irq", STAT_OFFSET(request_irq_exits) },
  66. { "irq_exits", STAT_OFFSET(irq_exits) },
  67. { NULL }
  68. };
  69. static struct dentry *debugfs_dir;
  70. struct vfsmount *kvmfs_mnt;
  71. #define MAX_IO_MSRS 256
  72. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  73. #define LMSW_GUEST_MASK 0x0eULL
  74. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  75. #define CR8_RESEVED_BITS (~0x0fULL)
  76. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  77. #ifdef CONFIG_X86_64
  78. // LDT or TSS descriptor in the GDT. 16 bytes.
  79. struct segment_descriptor_64 {
  80. struct segment_descriptor s;
  81. u32 base_higher;
  82. u32 pad_zero;
  83. };
  84. #endif
  85. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  86. unsigned long arg);
  87. static struct inode *kvmfs_inode(struct file_operations *fops)
  88. {
  89. int error = -ENOMEM;
  90. struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
  91. if (!inode)
  92. goto eexit_1;
  93. inode->i_fop = fops;
  94. /*
  95. * Mark the inode dirty from the very beginning,
  96. * that way it will never be moved to the dirty
  97. * list because mark_inode_dirty() will think
  98. * that it already _is_ on the dirty list.
  99. */
  100. inode->i_state = I_DIRTY;
  101. inode->i_mode = S_IRUSR | S_IWUSR;
  102. inode->i_uid = current->fsuid;
  103. inode->i_gid = current->fsgid;
  104. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  105. return inode;
  106. eexit_1:
  107. return ERR_PTR(error);
  108. }
  109. static struct file *kvmfs_file(struct inode *inode, void *private_data)
  110. {
  111. struct file *file = get_empty_filp();
  112. if (!file)
  113. return ERR_PTR(-ENFILE);
  114. file->f_path.mnt = mntget(kvmfs_mnt);
  115. file->f_path.dentry = d_alloc_anon(inode);
  116. if (!file->f_path.dentry)
  117. return ERR_PTR(-ENOMEM);
  118. file->f_mapping = inode->i_mapping;
  119. file->f_pos = 0;
  120. file->f_flags = O_RDWR;
  121. file->f_op = inode->i_fop;
  122. file->f_mode = FMODE_READ | FMODE_WRITE;
  123. file->f_version = 0;
  124. file->private_data = private_data;
  125. return file;
  126. }
  127. unsigned long segment_base(u16 selector)
  128. {
  129. struct descriptor_table gdt;
  130. struct segment_descriptor *d;
  131. unsigned long table_base;
  132. typedef unsigned long ul;
  133. unsigned long v;
  134. if (selector == 0)
  135. return 0;
  136. asm ("sgdt %0" : "=m"(gdt));
  137. table_base = gdt.base;
  138. if (selector & 4) { /* from ldt */
  139. u16 ldt_selector;
  140. asm ("sldt %0" : "=g"(ldt_selector));
  141. table_base = segment_base(ldt_selector);
  142. }
  143. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  144. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  145. #ifdef CONFIG_X86_64
  146. if (d->system == 0
  147. && (d->type == 2 || d->type == 9 || d->type == 11))
  148. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  149. #endif
  150. return v;
  151. }
  152. EXPORT_SYMBOL_GPL(segment_base);
  153. static inline int valid_vcpu(int n)
  154. {
  155. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  156. }
  157. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  158. void *dest)
  159. {
  160. unsigned char *host_buf = dest;
  161. unsigned long req_size = size;
  162. while (size) {
  163. hpa_t paddr;
  164. unsigned now;
  165. unsigned offset;
  166. hva_t guest_buf;
  167. paddr = gva_to_hpa(vcpu, addr);
  168. if (is_error_hpa(paddr))
  169. break;
  170. guest_buf = (hva_t)kmap_atomic(
  171. pfn_to_page(paddr >> PAGE_SHIFT),
  172. KM_USER0);
  173. offset = addr & ~PAGE_MASK;
  174. guest_buf |= offset;
  175. now = min(size, PAGE_SIZE - offset);
  176. memcpy(host_buf, (void*)guest_buf, now);
  177. host_buf += now;
  178. addr += now;
  179. size -= now;
  180. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  181. }
  182. return req_size - size;
  183. }
  184. EXPORT_SYMBOL_GPL(kvm_read_guest);
  185. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  186. void *data)
  187. {
  188. unsigned char *host_buf = data;
  189. unsigned long req_size = size;
  190. while (size) {
  191. hpa_t paddr;
  192. unsigned now;
  193. unsigned offset;
  194. hva_t guest_buf;
  195. gfn_t gfn;
  196. paddr = gva_to_hpa(vcpu, addr);
  197. if (is_error_hpa(paddr))
  198. break;
  199. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  200. mark_page_dirty(vcpu->kvm, gfn);
  201. guest_buf = (hva_t)kmap_atomic(
  202. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  203. offset = addr & ~PAGE_MASK;
  204. guest_buf |= offset;
  205. now = min(size, PAGE_SIZE - offset);
  206. memcpy((void*)guest_buf, host_buf, now);
  207. host_buf += now;
  208. addr += now;
  209. size -= now;
  210. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  211. }
  212. return req_size - size;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_write_guest);
  215. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  216. {
  217. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  218. return;
  219. vcpu->guest_fpu_loaded = 1;
  220. fx_save(vcpu->host_fx_image);
  221. fx_restore(vcpu->guest_fx_image);
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  224. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  225. {
  226. if (!vcpu->guest_fpu_loaded)
  227. return;
  228. vcpu->guest_fpu_loaded = 0;
  229. fx_save(vcpu->guest_fx_image);
  230. fx_restore(vcpu->host_fx_image);
  231. }
  232. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  233. /*
  234. * Switches to specified vcpu, until a matching vcpu_put()
  235. */
  236. static void vcpu_load(struct kvm_vcpu *vcpu)
  237. {
  238. mutex_lock(&vcpu->mutex);
  239. kvm_arch_ops->vcpu_load(vcpu);
  240. }
  241. /*
  242. * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
  243. * if the slot is not populated.
  244. */
  245. static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
  246. {
  247. struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
  248. mutex_lock(&vcpu->mutex);
  249. if (!vcpu->vmcs) {
  250. mutex_unlock(&vcpu->mutex);
  251. return NULL;
  252. }
  253. kvm_arch_ops->vcpu_load(vcpu);
  254. return vcpu;
  255. }
  256. static void vcpu_put(struct kvm_vcpu *vcpu)
  257. {
  258. kvm_arch_ops->vcpu_put(vcpu);
  259. mutex_unlock(&vcpu->mutex);
  260. }
  261. static struct kvm *kvm_create_vm(void)
  262. {
  263. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  264. int i;
  265. if (!kvm)
  266. return ERR_PTR(-ENOMEM);
  267. spin_lock_init(&kvm->lock);
  268. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  269. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  270. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  271. mutex_init(&vcpu->mutex);
  272. vcpu->cpu = -1;
  273. vcpu->kvm = kvm;
  274. vcpu->mmu.root_hpa = INVALID_PAGE;
  275. INIT_LIST_HEAD(&vcpu->free_pages);
  276. spin_lock(&kvm_lock);
  277. list_add(&kvm->vm_list, &vm_list);
  278. spin_unlock(&kvm_lock);
  279. }
  280. return kvm;
  281. }
  282. static int kvm_dev_open(struct inode *inode, struct file *filp)
  283. {
  284. return 0;
  285. }
  286. /*
  287. * Free any memory in @free but not in @dont.
  288. */
  289. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  290. struct kvm_memory_slot *dont)
  291. {
  292. int i;
  293. if (!dont || free->phys_mem != dont->phys_mem)
  294. if (free->phys_mem) {
  295. for (i = 0; i < free->npages; ++i)
  296. if (free->phys_mem[i])
  297. __free_page(free->phys_mem[i]);
  298. vfree(free->phys_mem);
  299. }
  300. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  301. vfree(free->dirty_bitmap);
  302. free->phys_mem = NULL;
  303. free->npages = 0;
  304. free->dirty_bitmap = NULL;
  305. }
  306. static void kvm_free_physmem(struct kvm *kvm)
  307. {
  308. int i;
  309. for (i = 0; i < kvm->nmemslots; ++i)
  310. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  311. }
  312. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  313. {
  314. int i;
  315. for (i = 0; i < 2; ++i)
  316. if (vcpu->pio.guest_pages[i]) {
  317. __free_page(vcpu->pio.guest_pages[i]);
  318. vcpu->pio.guest_pages[i] = NULL;
  319. }
  320. }
  321. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  322. {
  323. if (!vcpu->vmcs)
  324. return;
  325. vcpu_load(vcpu);
  326. kvm_mmu_destroy(vcpu);
  327. vcpu_put(vcpu);
  328. kvm_arch_ops->vcpu_free(vcpu);
  329. free_page((unsigned long)vcpu->run);
  330. vcpu->run = NULL;
  331. free_page((unsigned long)vcpu->pio_data);
  332. vcpu->pio_data = NULL;
  333. free_pio_guest_pages(vcpu);
  334. }
  335. static void kvm_free_vcpus(struct kvm *kvm)
  336. {
  337. unsigned int i;
  338. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  339. kvm_free_vcpu(&kvm->vcpus[i]);
  340. }
  341. static int kvm_dev_release(struct inode *inode, struct file *filp)
  342. {
  343. return 0;
  344. }
  345. static void kvm_destroy_vm(struct kvm *kvm)
  346. {
  347. spin_lock(&kvm_lock);
  348. list_del(&kvm->vm_list);
  349. spin_unlock(&kvm_lock);
  350. kvm_free_vcpus(kvm);
  351. kvm_free_physmem(kvm);
  352. kfree(kvm);
  353. }
  354. static int kvm_vm_release(struct inode *inode, struct file *filp)
  355. {
  356. struct kvm *kvm = filp->private_data;
  357. kvm_destroy_vm(kvm);
  358. return 0;
  359. }
  360. static void inject_gp(struct kvm_vcpu *vcpu)
  361. {
  362. kvm_arch_ops->inject_gp(vcpu, 0);
  363. }
  364. /*
  365. * Load the pae pdptrs. Return true is they are all valid.
  366. */
  367. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  368. {
  369. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  370. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  371. int i;
  372. u64 pdpte;
  373. u64 *pdpt;
  374. int ret;
  375. struct page *page;
  376. spin_lock(&vcpu->kvm->lock);
  377. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  378. /* FIXME: !page - emulate? 0xff? */
  379. pdpt = kmap_atomic(page, KM_USER0);
  380. ret = 1;
  381. for (i = 0; i < 4; ++i) {
  382. pdpte = pdpt[offset + i];
  383. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  384. ret = 0;
  385. goto out;
  386. }
  387. }
  388. for (i = 0; i < 4; ++i)
  389. vcpu->pdptrs[i] = pdpt[offset + i];
  390. out:
  391. kunmap_atomic(pdpt, KM_USER0);
  392. spin_unlock(&vcpu->kvm->lock);
  393. return ret;
  394. }
  395. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  396. {
  397. if (cr0 & CR0_RESEVED_BITS) {
  398. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  399. cr0, vcpu->cr0);
  400. inject_gp(vcpu);
  401. return;
  402. }
  403. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  404. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  405. inject_gp(vcpu);
  406. return;
  407. }
  408. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  409. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  410. "and a clear PE flag\n");
  411. inject_gp(vcpu);
  412. return;
  413. }
  414. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  415. #ifdef CONFIG_X86_64
  416. if ((vcpu->shadow_efer & EFER_LME)) {
  417. int cs_db, cs_l;
  418. if (!is_pae(vcpu)) {
  419. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  420. "in long mode while PAE is disabled\n");
  421. inject_gp(vcpu);
  422. return;
  423. }
  424. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  425. if (cs_l) {
  426. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  427. "in long mode while CS.L == 1\n");
  428. inject_gp(vcpu);
  429. return;
  430. }
  431. } else
  432. #endif
  433. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  434. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  435. "reserved bits\n");
  436. inject_gp(vcpu);
  437. return;
  438. }
  439. }
  440. kvm_arch_ops->set_cr0(vcpu, cr0);
  441. vcpu->cr0 = cr0;
  442. spin_lock(&vcpu->kvm->lock);
  443. kvm_mmu_reset_context(vcpu);
  444. spin_unlock(&vcpu->kvm->lock);
  445. return;
  446. }
  447. EXPORT_SYMBOL_GPL(set_cr0);
  448. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  449. {
  450. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  451. }
  452. EXPORT_SYMBOL_GPL(lmsw);
  453. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  454. {
  455. if (cr4 & CR4_RESEVED_BITS) {
  456. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. if (is_long_mode(vcpu)) {
  461. if (!(cr4 & CR4_PAE_MASK)) {
  462. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  463. "in long mode\n");
  464. inject_gp(vcpu);
  465. return;
  466. }
  467. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  468. && !load_pdptrs(vcpu, vcpu->cr3)) {
  469. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  470. inject_gp(vcpu);
  471. }
  472. if (cr4 & CR4_VMXE_MASK) {
  473. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  474. inject_gp(vcpu);
  475. return;
  476. }
  477. kvm_arch_ops->set_cr4(vcpu, cr4);
  478. spin_lock(&vcpu->kvm->lock);
  479. kvm_mmu_reset_context(vcpu);
  480. spin_unlock(&vcpu->kvm->lock);
  481. }
  482. EXPORT_SYMBOL_GPL(set_cr4);
  483. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  484. {
  485. if (is_long_mode(vcpu)) {
  486. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  487. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  488. inject_gp(vcpu);
  489. return;
  490. }
  491. } else {
  492. if (cr3 & CR3_RESEVED_BITS) {
  493. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  494. inject_gp(vcpu);
  495. return;
  496. }
  497. if (is_paging(vcpu) && is_pae(vcpu) &&
  498. !load_pdptrs(vcpu, cr3)) {
  499. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  500. "reserved bits\n");
  501. inject_gp(vcpu);
  502. return;
  503. }
  504. }
  505. vcpu->cr3 = cr3;
  506. spin_lock(&vcpu->kvm->lock);
  507. /*
  508. * Does the new cr3 value map to physical memory? (Note, we
  509. * catch an invalid cr3 even in real-mode, because it would
  510. * cause trouble later on when we turn on paging anyway.)
  511. *
  512. * A real CPU would silently accept an invalid cr3 and would
  513. * attempt to use it - with largely undefined (and often hard
  514. * to debug) behavior on the guest side.
  515. */
  516. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  517. inject_gp(vcpu);
  518. else
  519. vcpu->mmu.new_cr3(vcpu);
  520. spin_unlock(&vcpu->kvm->lock);
  521. }
  522. EXPORT_SYMBOL_GPL(set_cr3);
  523. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  524. {
  525. if ( cr8 & CR8_RESEVED_BITS) {
  526. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  527. inject_gp(vcpu);
  528. return;
  529. }
  530. vcpu->cr8 = cr8;
  531. }
  532. EXPORT_SYMBOL_GPL(set_cr8);
  533. void fx_init(struct kvm_vcpu *vcpu)
  534. {
  535. struct __attribute__ ((__packed__)) fx_image_s {
  536. u16 control; //fcw
  537. u16 status; //fsw
  538. u16 tag; // ftw
  539. u16 opcode; //fop
  540. u64 ip; // fpu ip
  541. u64 operand;// fpu dp
  542. u32 mxcsr;
  543. u32 mxcsr_mask;
  544. } *fx_image;
  545. fx_save(vcpu->host_fx_image);
  546. fpu_init();
  547. fx_save(vcpu->guest_fx_image);
  548. fx_restore(vcpu->host_fx_image);
  549. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  550. fx_image->mxcsr = 0x1f80;
  551. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  552. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  553. }
  554. EXPORT_SYMBOL_GPL(fx_init);
  555. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  556. {
  557. spin_lock(&vcpu->kvm->lock);
  558. kvm_mmu_slot_remove_write_access(vcpu, slot);
  559. spin_unlock(&vcpu->kvm->lock);
  560. }
  561. /*
  562. * Allocate some memory and give it an address in the guest physical address
  563. * space.
  564. *
  565. * Discontiguous memory is allowed, mostly for framebuffers.
  566. */
  567. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  568. struct kvm_memory_region *mem)
  569. {
  570. int r;
  571. gfn_t base_gfn;
  572. unsigned long npages;
  573. unsigned long i;
  574. struct kvm_memory_slot *memslot;
  575. struct kvm_memory_slot old, new;
  576. int memory_config_version;
  577. r = -EINVAL;
  578. /* General sanity checks */
  579. if (mem->memory_size & (PAGE_SIZE - 1))
  580. goto out;
  581. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  582. goto out;
  583. if (mem->slot >= KVM_MEMORY_SLOTS)
  584. goto out;
  585. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  586. goto out;
  587. memslot = &kvm->memslots[mem->slot];
  588. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  589. npages = mem->memory_size >> PAGE_SHIFT;
  590. if (!npages)
  591. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  592. raced:
  593. spin_lock(&kvm->lock);
  594. memory_config_version = kvm->memory_config_version;
  595. new = old = *memslot;
  596. new.base_gfn = base_gfn;
  597. new.npages = npages;
  598. new.flags = mem->flags;
  599. /* Disallow changing a memory slot's size. */
  600. r = -EINVAL;
  601. if (npages && old.npages && npages != old.npages)
  602. goto out_unlock;
  603. /* Check for overlaps */
  604. r = -EEXIST;
  605. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  606. struct kvm_memory_slot *s = &kvm->memslots[i];
  607. if (s == memslot)
  608. continue;
  609. if (!((base_gfn + npages <= s->base_gfn) ||
  610. (base_gfn >= s->base_gfn + s->npages)))
  611. goto out_unlock;
  612. }
  613. /*
  614. * Do memory allocations outside lock. memory_config_version will
  615. * detect any races.
  616. */
  617. spin_unlock(&kvm->lock);
  618. /* Deallocate if slot is being removed */
  619. if (!npages)
  620. new.phys_mem = NULL;
  621. /* Free page dirty bitmap if unneeded */
  622. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  623. new.dirty_bitmap = NULL;
  624. r = -ENOMEM;
  625. /* Allocate if a slot is being created */
  626. if (npages && !new.phys_mem) {
  627. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  628. if (!new.phys_mem)
  629. goto out_free;
  630. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  631. for (i = 0; i < npages; ++i) {
  632. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  633. | __GFP_ZERO);
  634. if (!new.phys_mem[i])
  635. goto out_free;
  636. set_page_private(new.phys_mem[i],0);
  637. }
  638. }
  639. /* Allocate page dirty bitmap if needed */
  640. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  641. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  642. new.dirty_bitmap = vmalloc(dirty_bytes);
  643. if (!new.dirty_bitmap)
  644. goto out_free;
  645. memset(new.dirty_bitmap, 0, dirty_bytes);
  646. }
  647. spin_lock(&kvm->lock);
  648. if (memory_config_version != kvm->memory_config_version) {
  649. spin_unlock(&kvm->lock);
  650. kvm_free_physmem_slot(&new, &old);
  651. goto raced;
  652. }
  653. r = -EAGAIN;
  654. if (kvm->busy)
  655. goto out_unlock;
  656. if (mem->slot >= kvm->nmemslots)
  657. kvm->nmemslots = mem->slot + 1;
  658. *memslot = new;
  659. ++kvm->memory_config_version;
  660. spin_unlock(&kvm->lock);
  661. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  662. struct kvm_vcpu *vcpu;
  663. vcpu = vcpu_load_slot(kvm, i);
  664. if (!vcpu)
  665. continue;
  666. if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
  667. do_remove_write_access(vcpu, mem->slot);
  668. kvm_mmu_reset_context(vcpu);
  669. vcpu_put(vcpu);
  670. }
  671. kvm_free_physmem_slot(&old, &new);
  672. return 0;
  673. out_unlock:
  674. spin_unlock(&kvm->lock);
  675. out_free:
  676. kvm_free_physmem_slot(&new, &old);
  677. out:
  678. return r;
  679. }
  680. /*
  681. * Get (and clear) the dirty memory log for a memory slot.
  682. */
  683. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  684. struct kvm_dirty_log *log)
  685. {
  686. struct kvm_memory_slot *memslot;
  687. int r, i;
  688. int n;
  689. int cleared;
  690. unsigned long any = 0;
  691. spin_lock(&kvm->lock);
  692. /*
  693. * Prevent changes to guest memory configuration even while the lock
  694. * is not taken.
  695. */
  696. ++kvm->busy;
  697. spin_unlock(&kvm->lock);
  698. r = -EINVAL;
  699. if (log->slot >= KVM_MEMORY_SLOTS)
  700. goto out;
  701. memslot = &kvm->memslots[log->slot];
  702. r = -ENOENT;
  703. if (!memslot->dirty_bitmap)
  704. goto out;
  705. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  706. for (i = 0; !any && i < n/sizeof(long); ++i)
  707. any = memslot->dirty_bitmap[i];
  708. r = -EFAULT;
  709. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  710. goto out;
  711. if (any) {
  712. cleared = 0;
  713. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  714. struct kvm_vcpu *vcpu;
  715. vcpu = vcpu_load_slot(kvm, i);
  716. if (!vcpu)
  717. continue;
  718. if (!cleared) {
  719. do_remove_write_access(vcpu, log->slot);
  720. memset(memslot->dirty_bitmap, 0, n);
  721. cleared = 1;
  722. }
  723. kvm_arch_ops->tlb_flush(vcpu);
  724. vcpu_put(vcpu);
  725. }
  726. }
  727. r = 0;
  728. out:
  729. spin_lock(&kvm->lock);
  730. --kvm->busy;
  731. spin_unlock(&kvm->lock);
  732. return r;
  733. }
  734. /*
  735. * Set a new alias region. Aliases map a portion of physical memory into
  736. * another portion. This is useful for memory windows, for example the PC
  737. * VGA region.
  738. */
  739. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  740. struct kvm_memory_alias *alias)
  741. {
  742. int r, n;
  743. struct kvm_mem_alias *p;
  744. r = -EINVAL;
  745. /* General sanity checks */
  746. if (alias->memory_size & (PAGE_SIZE - 1))
  747. goto out;
  748. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  749. goto out;
  750. if (alias->slot >= KVM_ALIAS_SLOTS)
  751. goto out;
  752. if (alias->guest_phys_addr + alias->memory_size
  753. < alias->guest_phys_addr)
  754. goto out;
  755. if (alias->target_phys_addr + alias->memory_size
  756. < alias->target_phys_addr)
  757. goto out;
  758. spin_lock(&kvm->lock);
  759. p = &kvm->aliases[alias->slot];
  760. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  761. p->npages = alias->memory_size >> PAGE_SHIFT;
  762. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  763. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  764. if (kvm->aliases[n - 1].npages)
  765. break;
  766. kvm->naliases = n;
  767. spin_unlock(&kvm->lock);
  768. vcpu_load(&kvm->vcpus[0]);
  769. spin_lock(&kvm->lock);
  770. kvm_mmu_zap_all(&kvm->vcpus[0]);
  771. spin_unlock(&kvm->lock);
  772. vcpu_put(&kvm->vcpus[0]);
  773. return 0;
  774. out:
  775. return r;
  776. }
  777. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  778. {
  779. int i;
  780. struct kvm_mem_alias *alias;
  781. for (i = 0; i < kvm->naliases; ++i) {
  782. alias = &kvm->aliases[i];
  783. if (gfn >= alias->base_gfn
  784. && gfn < alias->base_gfn + alias->npages)
  785. return alias->target_gfn + gfn - alias->base_gfn;
  786. }
  787. return gfn;
  788. }
  789. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  790. {
  791. int i;
  792. for (i = 0; i < kvm->nmemslots; ++i) {
  793. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  794. if (gfn >= memslot->base_gfn
  795. && gfn < memslot->base_gfn + memslot->npages)
  796. return memslot;
  797. }
  798. return NULL;
  799. }
  800. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  801. {
  802. gfn = unalias_gfn(kvm, gfn);
  803. return __gfn_to_memslot(kvm, gfn);
  804. }
  805. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  806. {
  807. struct kvm_memory_slot *slot;
  808. gfn = unalias_gfn(kvm, gfn);
  809. slot = __gfn_to_memslot(kvm, gfn);
  810. if (!slot)
  811. return NULL;
  812. return slot->phys_mem[gfn - slot->base_gfn];
  813. }
  814. EXPORT_SYMBOL_GPL(gfn_to_page);
  815. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  816. {
  817. int i;
  818. struct kvm_memory_slot *memslot = NULL;
  819. unsigned long rel_gfn;
  820. for (i = 0; i < kvm->nmemslots; ++i) {
  821. memslot = &kvm->memslots[i];
  822. if (gfn >= memslot->base_gfn
  823. && gfn < memslot->base_gfn + memslot->npages) {
  824. if (!memslot || !memslot->dirty_bitmap)
  825. return;
  826. rel_gfn = gfn - memslot->base_gfn;
  827. /* avoid RMW */
  828. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  829. set_bit(rel_gfn, memslot->dirty_bitmap);
  830. return;
  831. }
  832. }
  833. }
  834. static int emulator_read_std(unsigned long addr,
  835. void *val,
  836. unsigned int bytes,
  837. struct x86_emulate_ctxt *ctxt)
  838. {
  839. struct kvm_vcpu *vcpu = ctxt->vcpu;
  840. void *data = val;
  841. while (bytes) {
  842. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  843. unsigned offset = addr & (PAGE_SIZE-1);
  844. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  845. unsigned long pfn;
  846. struct page *page;
  847. void *page_virt;
  848. if (gpa == UNMAPPED_GVA)
  849. return X86EMUL_PROPAGATE_FAULT;
  850. pfn = gpa >> PAGE_SHIFT;
  851. page = gfn_to_page(vcpu->kvm, pfn);
  852. if (!page)
  853. return X86EMUL_UNHANDLEABLE;
  854. page_virt = kmap_atomic(page, KM_USER0);
  855. memcpy(data, page_virt + offset, tocopy);
  856. kunmap_atomic(page_virt, KM_USER0);
  857. bytes -= tocopy;
  858. data += tocopy;
  859. addr += tocopy;
  860. }
  861. return X86EMUL_CONTINUE;
  862. }
  863. static int emulator_write_std(unsigned long addr,
  864. const void *val,
  865. unsigned int bytes,
  866. struct x86_emulate_ctxt *ctxt)
  867. {
  868. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  869. addr, bytes);
  870. return X86EMUL_UNHANDLEABLE;
  871. }
  872. static int emulator_read_emulated(unsigned long addr,
  873. void *val,
  874. unsigned int bytes,
  875. struct x86_emulate_ctxt *ctxt)
  876. {
  877. struct kvm_vcpu *vcpu = ctxt->vcpu;
  878. if (vcpu->mmio_read_completed) {
  879. memcpy(val, vcpu->mmio_data, bytes);
  880. vcpu->mmio_read_completed = 0;
  881. return X86EMUL_CONTINUE;
  882. } else if (emulator_read_std(addr, val, bytes, ctxt)
  883. == X86EMUL_CONTINUE)
  884. return X86EMUL_CONTINUE;
  885. else {
  886. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  887. if (gpa == UNMAPPED_GVA)
  888. return X86EMUL_PROPAGATE_FAULT;
  889. vcpu->mmio_needed = 1;
  890. vcpu->mmio_phys_addr = gpa;
  891. vcpu->mmio_size = bytes;
  892. vcpu->mmio_is_write = 0;
  893. return X86EMUL_UNHANDLEABLE;
  894. }
  895. }
  896. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  897. const void *val, int bytes)
  898. {
  899. struct page *page;
  900. void *virt;
  901. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  902. return 0;
  903. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  904. if (!page)
  905. return 0;
  906. kvm_mmu_pre_write(vcpu, gpa, bytes);
  907. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  908. virt = kmap_atomic(page, KM_USER0);
  909. memcpy(virt + offset_in_page(gpa), val, bytes);
  910. kunmap_atomic(virt, KM_USER0);
  911. kvm_mmu_post_write(vcpu, gpa, bytes);
  912. return 1;
  913. }
  914. static int emulator_write_emulated(unsigned long addr,
  915. const void *val,
  916. unsigned int bytes,
  917. struct x86_emulate_ctxt *ctxt)
  918. {
  919. struct kvm_vcpu *vcpu = ctxt->vcpu;
  920. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  921. if (gpa == UNMAPPED_GVA) {
  922. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  923. return X86EMUL_PROPAGATE_FAULT;
  924. }
  925. if (emulator_write_phys(vcpu, gpa, val, bytes))
  926. return X86EMUL_CONTINUE;
  927. vcpu->mmio_needed = 1;
  928. vcpu->mmio_phys_addr = gpa;
  929. vcpu->mmio_size = bytes;
  930. vcpu->mmio_is_write = 1;
  931. memcpy(vcpu->mmio_data, val, bytes);
  932. return X86EMUL_CONTINUE;
  933. }
  934. static int emulator_cmpxchg_emulated(unsigned long addr,
  935. const void *old,
  936. const void *new,
  937. unsigned int bytes,
  938. struct x86_emulate_ctxt *ctxt)
  939. {
  940. static int reported;
  941. if (!reported) {
  942. reported = 1;
  943. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  944. }
  945. return emulator_write_emulated(addr, new, bytes, ctxt);
  946. }
  947. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  948. {
  949. return kvm_arch_ops->get_segment_base(vcpu, seg);
  950. }
  951. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  952. {
  953. return X86EMUL_CONTINUE;
  954. }
  955. int emulate_clts(struct kvm_vcpu *vcpu)
  956. {
  957. unsigned long cr0;
  958. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  959. kvm_arch_ops->set_cr0(vcpu, cr0);
  960. return X86EMUL_CONTINUE;
  961. }
  962. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  963. {
  964. struct kvm_vcpu *vcpu = ctxt->vcpu;
  965. switch (dr) {
  966. case 0 ... 3:
  967. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  968. return X86EMUL_CONTINUE;
  969. default:
  970. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  971. __FUNCTION__, dr);
  972. return X86EMUL_UNHANDLEABLE;
  973. }
  974. }
  975. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  976. {
  977. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  978. int exception;
  979. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  980. if (exception) {
  981. /* FIXME: better handling */
  982. return X86EMUL_UNHANDLEABLE;
  983. }
  984. return X86EMUL_CONTINUE;
  985. }
  986. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  987. {
  988. static int reported;
  989. u8 opcodes[4];
  990. unsigned long rip = ctxt->vcpu->rip;
  991. unsigned long rip_linear;
  992. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  993. if (reported)
  994. return;
  995. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  996. printk(KERN_ERR "emulation failed but !mmio_needed?"
  997. " rip %lx %02x %02x %02x %02x\n",
  998. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  999. reported = 1;
  1000. }
  1001. struct x86_emulate_ops emulate_ops = {
  1002. .read_std = emulator_read_std,
  1003. .write_std = emulator_write_std,
  1004. .read_emulated = emulator_read_emulated,
  1005. .write_emulated = emulator_write_emulated,
  1006. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1007. };
  1008. int emulate_instruction(struct kvm_vcpu *vcpu,
  1009. struct kvm_run *run,
  1010. unsigned long cr2,
  1011. u16 error_code)
  1012. {
  1013. struct x86_emulate_ctxt emulate_ctxt;
  1014. int r;
  1015. int cs_db, cs_l;
  1016. vcpu->mmio_fault_cr2 = cr2;
  1017. kvm_arch_ops->cache_regs(vcpu);
  1018. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1019. emulate_ctxt.vcpu = vcpu;
  1020. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1021. emulate_ctxt.cr2 = cr2;
  1022. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1023. ? X86EMUL_MODE_REAL : cs_l
  1024. ? X86EMUL_MODE_PROT64 : cs_db
  1025. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1026. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1027. emulate_ctxt.cs_base = 0;
  1028. emulate_ctxt.ds_base = 0;
  1029. emulate_ctxt.es_base = 0;
  1030. emulate_ctxt.ss_base = 0;
  1031. } else {
  1032. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1033. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1034. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1035. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1036. }
  1037. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1038. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1039. vcpu->mmio_is_write = 0;
  1040. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1041. if ((r || vcpu->mmio_is_write) && run) {
  1042. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1043. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1044. run->mmio.len = vcpu->mmio_size;
  1045. run->mmio.is_write = vcpu->mmio_is_write;
  1046. }
  1047. if (r) {
  1048. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1049. return EMULATE_DONE;
  1050. if (!vcpu->mmio_needed) {
  1051. report_emulation_failure(&emulate_ctxt);
  1052. return EMULATE_FAIL;
  1053. }
  1054. return EMULATE_DO_MMIO;
  1055. }
  1056. kvm_arch_ops->decache_regs(vcpu);
  1057. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1058. if (vcpu->mmio_is_write) {
  1059. vcpu->mmio_needed = 0;
  1060. return EMULATE_DO_MMIO;
  1061. }
  1062. return EMULATE_DONE;
  1063. }
  1064. EXPORT_SYMBOL_GPL(emulate_instruction);
  1065. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1066. {
  1067. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1068. kvm_arch_ops->cache_regs(vcpu);
  1069. ret = -KVM_EINVAL;
  1070. #ifdef CONFIG_X86_64
  1071. if (is_long_mode(vcpu)) {
  1072. nr = vcpu->regs[VCPU_REGS_RAX];
  1073. a0 = vcpu->regs[VCPU_REGS_RDI];
  1074. a1 = vcpu->regs[VCPU_REGS_RSI];
  1075. a2 = vcpu->regs[VCPU_REGS_RDX];
  1076. a3 = vcpu->regs[VCPU_REGS_RCX];
  1077. a4 = vcpu->regs[VCPU_REGS_R8];
  1078. a5 = vcpu->regs[VCPU_REGS_R9];
  1079. } else
  1080. #endif
  1081. {
  1082. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1083. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1084. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1085. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1086. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1087. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1088. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1089. }
  1090. switch (nr) {
  1091. default:
  1092. run->hypercall.args[0] = a0;
  1093. run->hypercall.args[1] = a1;
  1094. run->hypercall.args[2] = a2;
  1095. run->hypercall.args[3] = a3;
  1096. run->hypercall.args[4] = a4;
  1097. run->hypercall.args[5] = a5;
  1098. run->hypercall.ret = ret;
  1099. run->hypercall.longmode = is_long_mode(vcpu);
  1100. kvm_arch_ops->decache_regs(vcpu);
  1101. return 0;
  1102. }
  1103. vcpu->regs[VCPU_REGS_RAX] = ret;
  1104. kvm_arch_ops->decache_regs(vcpu);
  1105. return 1;
  1106. }
  1107. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1108. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1109. {
  1110. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1111. }
  1112. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1113. {
  1114. struct descriptor_table dt = { limit, base };
  1115. kvm_arch_ops->set_gdt(vcpu, &dt);
  1116. }
  1117. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1118. {
  1119. struct descriptor_table dt = { limit, base };
  1120. kvm_arch_ops->set_idt(vcpu, &dt);
  1121. }
  1122. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1123. unsigned long *rflags)
  1124. {
  1125. lmsw(vcpu, msw);
  1126. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1127. }
  1128. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1129. {
  1130. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1131. switch (cr) {
  1132. case 0:
  1133. return vcpu->cr0;
  1134. case 2:
  1135. return vcpu->cr2;
  1136. case 3:
  1137. return vcpu->cr3;
  1138. case 4:
  1139. return vcpu->cr4;
  1140. default:
  1141. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1142. return 0;
  1143. }
  1144. }
  1145. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1146. unsigned long *rflags)
  1147. {
  1148. switch (cr) {
  1149. case 0:
  1150. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1151. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1152. break;
  1153. case 2:
  1154. vcpu->cr2 = val;
  1155. break;
  1156. case 3:
  1157. set_cr3(vcpu, val);
  1158. break;
  1159. case 4:
  1160. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1161. break;
  1162. default:
  1163. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1164. }
  1165. }
  1166. /*
  1167. * Register the para guest with the host:
  1168. */
  1169. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1170. {
  1171. struct kvm_vcpu_para_state *para_state;
  1172. hpa_t para_state_hpa, hypercall_hpa;
  1173. struct page *para_state_page;
  1174. unsigned char *hypercall;
  1175. gpa_t hypercall_gpa;
  1176. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1177. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1178. /*
  1179. * Needs to be page aligned:
  1180. */
  1181. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1182. goto err_gp;
  1183. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1184. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1185. if (is_error_hpa(para_state_hpa))
  1186. goto err_gp;
  1187. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1188. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1189. para_state = kmap_atomic(para_state_page, KM_USER0);
  1190. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1191. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1192. para_state->host_version = KVM_PARA_API_VERSION;
  1193. /*
  1194. * We cannot support guests that try to register themselves
  1195. * with a newer API version than the host supports:
  1196. */
  1197. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1198. para_state->ret = -KVM_EINVAL;
  1199. goto err_kunmap_skip;
  1200. }
  1201. hypercall_gpa = para_state->hypercall_gpa;
  1202. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1203. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1204. if (is_error_hpa(hypercall_hpa)) {
  1205. para_state->ret = -KVM_EINVAL;
  1206. goto err_kunmap_skip;
  1207. }
  1208. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1209. vcpu->para_state_page = para_state_page;
  1210. vcpu->para_state_gpa = para_state_gpa;
  1211. vcpu->hypercall_gpa = hypercall_gpa;
  1212. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1213. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1214. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1215. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1216. kunmap_atomic(hypercall, KM_USER1);
  1217. para_state->ret = 0;
  1218. err_kunmap_skip:
  1219. kunmap_atomic(para_state, KM_USER0);
  1220. return 0;
  1221. err_gp:
  1222. return 1;
  1223. }
  1224. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1225. {
  1226. u64 data;
  1227. switch (msr) {
  1228. case 0xc0010010: /* SYSCFG */
  1229. case 0xc0010015: /* HWCR */
  1230. case MSR_IA32_PLATFORM_ID:
  1231. case MSR_IA32_P5_MC_ADDR:
  1232. case MSR_IA32_P5_MC_TYPE:
  1233. case MSR_IA32_MC0_CTL:
  1234. case MSR_IA32_MCG_STATUS:
  1235. case MSR_IA32_MCG_CAP:
  1236. case MSR_IA32_MC0_MISC:
  1237. case MSR_IA32_MC0_MISC+4:
  1238. case MSR_IA32_MC0_MISC+8:
  1239. case MSR_IA32_MC0_MISC+12:
  1240. case MSR_IA32_MC0_MISC+16:
  1241. case MSR_IA32_UCODE_REV:
  1242. case MSR_IA32_PERF_STATUS:
  1243. /* MTRR registers */
  1244. case 0xfe:
  1245. case 0x200 ... 0x2ff:
  1246. data = 0;
  1247. break;
  1248. case 0xcd: /* fsb frequency */
  1249. data = 3;
  1250. break;
  1251. case MSR_IA32_APICBASE:
  1252. data = vcpu->apic_base;
  1253. break;
  1254. case MSR_IA32_MISC_ENABLE:
  1255. data = vcpu->ia32_misc_enable_msr;
  1256. break;
  1257. #ifdef CONFIG_X86_64
  1258. case MSR_EFER:
  1259. data = vcpu->shadow_efer;
  1260. break;
  1261. #endif
  1262. default:
  1263. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1264. return 1;
  1265. }
  1266. *pdata = data;
  1267. return 0;
  1268. }
  1269. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1270. /*
  1271. * Reads an msr value (of 'msr_index') into 'pdata'.
  1272. * Returns 0 on success, non-0 otherwise.
  1273. * Assumes vcpu_load() was already called.
  1274. */
  1275. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1276. {
  1277. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1278. }
  1279. #ifdef CONFIG_X86_64
  1280. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1281. {
  1282. if (efer & EFER_RESERVED_BITS) {
  1283. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1284. efer);
  1285. inject_gp(vcpu);
  1286. return;
  1287. }
  1288. if (is_paging(vcpu)
  1289. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1290. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1291. inject_gp(vcpu);
  1292. return;
  1293. }
  1294. kvm_arch_ops->set_efer(vcpu, efer);
  1295. efer &= ~EFER_LMA;
  1296. efer |= vcpu->shadow_efer & EFER_LMA;
  1297. vcpu->shadow_efer = efer;
  1298. }
  1299. #endif
  1300. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1301. {
  1302. switch (msr) {
  1303. #ifdef CONFIG_X86_64
  1304. case MSR_EFER:
  1305. set_efer(vcpu, data);
  1306. break;
  1307. #endif
  1308. case MSR_IA32_MC0_STATUS:
  1309. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1310. __FUNCTION__, data);
  1311. break;
  1312. case MSR_IA32_MCG_STATUS:
  1313. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1314. __FUNCTION__, data);
  1315. break;
  1316. case MSR_IA32_UCODE_REV:
  1317. case MSR_IA32_UCODE_WRITE:
  1318. case 0x200 ... 0x2ff: /* MTRRs */
  1319. break;
  1320. case MSR_IA32_APICBASE:
  1321. vcpu->apic_base = data;
  1322. break;
  1323. case MSR_IA32_MISC_ENABLE:
  1324. vcpu->ia32_misc_enable_msr = data;
  1325. break;
  1326. /*
  1327. * This is the 'probe whether the host is KVM' logic:
  1328. */
  1329. case MSR_KVM_API_MAGIC:
  1330. return vcpu_register_para(vcpu, data);
  1331. default:
  1332. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1333. return 1;
  1334. }
  1335. return 0;
  1336. }
  1337. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1338. /*
  1339. * Writes msr value into into the appropriate "register".
  1340. * Returns 0 on success, non-0 otherwise.
  1341. * Assumes vcpu_load() was already called.
  1342. */
  1343. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1344. {
  1345. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1346. }
  1347. void kvm_resched(struct kvm_vcpu *vcpu)
  1348. {
  1349. if (!need_resched())
  1350. return;
  1351. vcpu_put(vcpu);
  1352. cond_resched();
  1353. vcpu_load(vcpu);
  1354. }
  1355. EXPORT_SYMBOL_GPL(kvm_resched);
  1356. void load_msrs(struct vmx_msr_entry *e, int n)
  1357. {
  1358. int i;
  1359. for (i = 0; i < n; ++i)
  1360. wrmsrl(e[i].index, e[i].data);
  1361. }
  1362. EXPORT_SYMBOL_GPL(load_msrs);
  1363. void save_msrs(struct vmx_msr_entry *e, int n)
  1364. {
  1365. int i;
  1366. for (i = 0; i < n; ++i)
  1367. rdmsrl(e[i].index, e[i].data);
  1368. }
  1369. EXPORT_SYMBOL_GPL(save_msrs);
  1370. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1371. {
  1372. int i;
  1373. u32 function;
  1374. struct kvm_cpuid_entry *e, *best;
  1375. kvm_arch_ops->cache_regs(vcpu);
  1376. function = vcpu->regs[VCPU_REGS_RAX];
  1377. vcpu->regs[VCPU_REGS_RAX] = 0;
  1378. vcpu->regs[VCPU_REGS_RBX] = 0;
  1379. vcpu->regs[VCPU_REGS_RCX] = 0;
  1380. vcpu->regs[VCPU_REGS_RDX] = 0;
  1381. best = NULL;
  1382. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1383. e = &vcpu->cpuid_entries[i];
  1384. if (e->function == function) {
  1385. best = e;
  1386. break;
  1387. }
  1388. /*
  1389. * Both basic or both extended?
  1390. */
  1391. if (((e->function ^ function) & 0x80000000) == 0)
  1392. if (!best || e->function > best->function)
  1393. best = e;
  1394. }
  1395. if (best) {
  1396. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1397. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1398. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1399. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1400. }
  1401. kvm_arch_ops->decache_regs(vcpu);
  1402. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1403. }
  1404. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1405. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1406. {
  1407. void *p = vcpu->pio_data;
  1408. void *q;
  1409. unsigned bytes;
  1410. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1411. kvm_arch_ops->vcpu_put(vcpu);
  1412. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1413. PAGE_KERNEL);
  1414. if (!q) {
  1415. kvm_arch_ops->vcpu_load(vcpu);
  1416. free_pio_guest_pages(vcpu);
  1417. return -ENOMEM;
  1418. }
  1419. q += vcpu->pio.guest_page_offset;
  1420. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1421. if (vcpu->pio.in)
  1422. memcpy(q, p, bytes);
  1423. else
  1424. memcpy(p, q, bytes);
  1425. q -= vcpu->pio.guest_page_offset;
  1426. vunmap(q);
  1427. kvm_arch_ops->vcpu_load(vcpu);
  1428. free_pio_guest_pages(vcpu);
  1429. return 0;
  1430. }
  1431. static int complete_pio(struct kvm_vcpu *vcpu)
  1432. {
  1433. struct kvm_pio_request *io = &vcpu->pio;
  1434. long delta;
  1435. int r;
  1436. kvm_arch_ops->cache_regs(vcpu);
  1437. if (!io->string) {
  1438. if (io->in)
  1439. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1440. io->size);
  1441. } else {
  1442. if (io->in) {
  1443. r = pio_copy_data(vcpu);
  1444. if (r) {
  1445. kvm_arch_ops->cache_regs(vcpu);
  1446. return r;
  1447. }
  1448. }
  1449. delta = 1;
  1450. if (io->rep) {
  1451. delta *= io->cur_count;
  1452. /*
  1453. * The size of the register should really depend on
  1454. * current address size.
  1455. */
  1456. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1457. }
  1458. if (io->down)
  1459. delta = -delta;
  1460. delta *= io->size;
  1461. if (io->in)
  1462. vcpu->regs[VCPU_REGS_RDI] += delta;
  1463. else
  1464. vcpu->regs[VCPU_REGS_RSI] += delta;
  1465. }
  1466. kvm_arch_ops->decache_regs(vcpu);
  1467. io->count -= io->cur_count;
  1468. io->cur_count = 0;
  1469. if (!io->count)
  1470. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1471. return 0;
  1472. }
  1473. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1474. int size, unsigned long count, int string, int down,
  1475. gva_t address, int rep, unsigned port)
  1476. {
  1477. unsigned now, in_page;
  1478. int i;
  1479. int nr_pages = 1;
  1480. struct page *page;
  1481. vcpu->run->exit_reason = KVM_EXIT_IO;
  1482. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1483. vcpu->run->io.size = size;
  1484. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1485. vcpu->run->io.count = count;
  1486. vcpu->run->io.port = port;
  1487. vcpu->pio.count = count;
  1488. vcpu->pio.cur_count = count;
  1489. vcpu->pio.size = size;
  1490. vcpu->pio.in = in;
  1491. vcpu->pio.string = string;
  1492. vcpu->pio.down = down;
  1493. vcpu->pio.guest_page_offset = offset_in_page(address);
  1494. vcpu->pio.rep = rep;
  1495. if (!string) {
  1496. kvm_arch_ops->cache_regs(vcpu);
  1497. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1498. kvm_arch_ops->decache_regs(vcpu);
  1499. return 0;
  1500. }
  1501. if (!count) {
  1502. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1503. return 1;
  1504. }
  1505. now = min(count, PAGE_SIZE / size);
  1506. if (!down)
  1507. in_page = PAGE_SIZE - offset_in_page(address);
  1508. else
  1509. in_page = offset_in_page(address) + size;
  1510. now = min(count, (unsigned long)in_page / size);
  1511. if (!now) {
  1512. /*
  1513. * String I/O straddles page boundary. Pin two guest pages
  1514. * so that we satisfy atomicity constraints. Do just one
  1515. * transaction to avoid complexity.
  1516. */
  1517. nr_pages = 2;
  1518. now = 1;
  1519. }
  1520. if (down) {
  1521. /*
  1522. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1523. */
  1524. printk(KERN_ERR "kvm: guest string pio down\n");
  1525. inject_gp(vcpu);
  1526. return 1;
  1527. }
  1528. vcpu->run->io.count = now;
  1529. vcpu->pio.cur_count = now;
  1530. for (i = 0; i < nr_pages; ++i) {
  1531. spin_lock(&vcpu->kvm->lock);
  1532. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1533. if (page)
  1534. get_page(page);
  1535. vcpu->pio.guest_pages[i] = page;
  1536. spin_unlock(&vcpu->kvm->lock);
  1537. if (!page) {
  1538. inject_gp(vcpu);
  1539. free_pio_guest_pages(vcpu);
  1540. return 1;
  1541. }
  1542. }
  1543. if (!vcpu->pio.in)
  1544. return pio_copy_data(vcpu);
  1545. return 0;
  1546. }
  1547. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1548. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1549. {
  1550. int r;
  1551. sigset_t sigsaved;
  1552. vcpu_load(vcpu);
  1553. if (vcpu->sigset_active)
  1554. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1555. /* re-sync apic's tpr */
  1556. vcpu->cr8 = kvm_run->cr8;
  1557. if (vcpu->pio.cur_count) {
  1558. r = complete_pio(vcpu);
  1559. if (r)
  1560. goto out;
  1561. }
  1562. if (vcpu->mmio_needed) {
  1563. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1564. vcpu->mmio_read_completed = 1;
  1565. vcpu->mmio_needed = 0;
  1566. r = emulate_instruction(vcpu, kvm_run,
  1567. vcpu->mmio_fault_cr2, 0);
  1568. if (r == EMULATE_DO_MMIO) {
  1569. /*
  1570. * Read-modify-write. Back to userspace.
  1571. */
  1572. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1573. r = 0;
  1574. goto out;
  1575. }
  1576. }
  1577. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1578. kvm_arch_ops->cache_regs(vcpu);
  1579. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1580. kvm_arch_ops->decache_regs(vcpu);
  1581. }
  1582. r = kvm_arch_ops->run(vcpu, kvm_run);
  1583. out:
  1584. if (vcpu->sigset_active)
  1585. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1586. vcpu_put(vcpu);
  1587. return r;
  1588. }
  1589. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1590. struct kvm_regs *regs)
  1591. {
  1592. vcpu_load(vcpu);
  1593. kvm_arch_ops->cache_regs(vcpu);
  1594. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1595. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1596. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1597. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1598. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1599. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1600. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1601. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1602. #ifdef CONFIG_X86_64
  1603. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1604. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1605. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1606. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1607. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1608. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1609. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1610. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1611. #endif
  1612. regs->rip = vcpu->rip;
  1613. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1614. /*
  1615. * Don't leak debug flags in case they were set for guest debugging
  1616. */
  1617. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1618. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1619. vcpu_put(vcpu);
  1620. return 0;
  1621. }
  1622. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1623. struct kvm_regs *regs)
  1624. {
  1625. vcpu_load(vcpu);
  1626. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1627. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1628. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1629. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1630. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1631. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1632. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1633. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1634. #ifdef CONFIG_X86_64
  1635. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1636. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1637. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1638. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1639. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1640. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1641. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1642. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1643. #endif
  1644. vcpu->rip = regs->rip;
  1645. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1646. kvm_arch_ops->decache_regs(vcpu);
  1647. vcpu_put(vcpu);
  1648. return 0;
  1649. }
  1650. static void get_segment(struct kvm_vcpu *vcpu,
  1651. struct kvm_segment *var, int seg)
  1652. {
  1653. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1654. }
  1655. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1656. struct kvm_sregs *sregs)
  1657. {
  1658. struct descriptor_table dt;
  1659. vcpu_load(vcpu);
  1660. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1661. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1662. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1663. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1664. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1665. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1666. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1667. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1668. kvm_arch_ops->get_idt(vcpu, &dt);
  1669. sregs->idt.limit = dt.limit;
  1670. sregs->idt.base = dt.base;
  1671. kvm_arch_ops->get_gdt(vcpu, &dt);
  1672. sregs->gdt.limit = dt.limit;
  1673. sregs->gdt.base = dt.base;
  1674. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1675. sregs->cr0 = vcpu->cr0;
  1676. sregs->cr2 = vcpu->cr2;
  1677. sregs->cr3 = vcpu->cr3;
  1678. sregs->cr4 = vcpu->cr4;
  1679. sregs->cr8 = vcpu->cr8;
  1680. sregs->efer = vcpu->shadow_efer;
  1681. sregs->apic_base = vcpu->apic_base;
  1682. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1683. sizeof sregs->interrupt_bitmap);
  1684. vcpu_put(vcpu);
  1685. return 0;
  1686. }
  1687. static void set_segment(struct kvm_vcpu *vcpu,
  1688. struct kvm_segment *var, int seg)
  1689. {
  1690. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1691. }
  1692. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1693. struct kvm_sregs *sregs)
  1694. {
  1695. int mmu_reset_needed = 0;
  1696. int i;
  1697. struct descriptor_table dt;
  1698. vcpu_load(vcpu);
  1699. dt.limit = sregs->idt.limit;
  1700. dt.base = sregs->idt.base;
  1701. kvm_arch_ops->set_idt(vcpu, &dt);
  1702. dt.limit = sregs->gdt.limit;
  1703. dt.base = sregs->gdt.base;
  1704. kvm_arch_ops->set_gdt(vcpu, &dt);
  1705. vcpu->cr2 = sregs->cr2;
  1706. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1707. vcpu->cr3 = sregs->cr3;
  1708. vcpu->cr8 = sregs->cr8;
  1709. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1710. #ifdef CONFIG_X86_64
  1711. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1712. #endif
  1713. vcpu->apic_base = sregs->apic_base;
  1714. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1715. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1716. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1717. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1718. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1719. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1720. load_pdptrs(vcpu, vcpu->cr3);
  1721. if (mmu_reset_needed)
  1722. kvm_mmu_reset_context(vcpu);
  1723. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1724. sizeof vcpu->irq_pending);
  1725. vcpu->irq_summary = 0;
  1726. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1727. if (vcpu->irq_pending[i])
  1728. __set_bit(i, &vcpu->irq_summary);
  1729. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1730. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1731. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1732. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1733. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1734. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1735. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1736. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1737. vcpu_put(vcpu);
  1738. return 0;
  1739. }
  1740. /*
  1741. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1742. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1743. *
  1744. * This list is modified at module load time to reflect the
  1745. * capabilities of the host cpu.
  1746. */
  1747. static u32 msrs_to_save[] = {
  1748. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1749. MSR_K6_STAR,
  1750. #ifdef CONFIG_X86_64
  1751. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1752. #endif
  1753. MSR_IA32_TIME_STAMP_COUNTER,
  1754. };
  1755. static unsigned num_msrs_to_save;
  1756. static u32 emulated_msrs[] = {
  1757. MSR_IA32_MISC_ENABLE,
  1758. };
  1759. static __init void kvm_init_msr_list(void)
  1760. {
  1761. u32 dummy[2];
  1762. unsigned i, j;
  1763. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1764. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1765. continue;
  1766. if (j < i)
  1767. msrs_to_save[j] = msrs_to_save[i];
  1768. j++;
  1769. }
  1770. num_msrs_to_save = j;
  1771. }
  1772. /*
  1773. * Adapt set_msr() to msr_io()'s calling convention
  1774. */
  1775. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1776. {
  1777. return set_msr(vcpu, index, *data);
  1778. }
  1779. /*
  1780. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1781. *
  1782. * @return number of msrs set successfully.
  1783. */
  1784. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1785. struct kvm_msr_entry *entries,
  1786. int (*do_msr)(struct kvm_vcpu *vcpu,
  1787. unsigned index, u64 *data))
  1788. {
  1789. int i;
  1790. vcpu_load(vcpu);
  1791. for (i = 0; i < msrs->nmsrs; ++i)
  1792. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1793. break;
  1794. vcpu_put(vcpu);
  1795. return i;
  1796. }
  1797. /*
  1798. * Read or write a bunch of msrs. Parameters are user addresses.
  1799. *
  1800. * @return number of msrs set successfully.
  1801. */
  1802. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1803. int (*do_msr)(struct kvm_vcpu *vcpu,
  1804. unsigned index, u64 *data),
  1805. int writeback)
  1806. {
  1807. struct kvm_msrs msrs;
  1808. struct kvm_msr_entry *entries;
  1809. int r, n;
  1810. unsigned size;
  1811. r = -EFAULT;
  1812. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1813. goto out;
  1814. r = -E2BIG;
  1815. if (msrs.nmsrs >= MAX_IO_MSRS)
  1816. goto out;
  1817. r = -ENOMEM;
  1818. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1819. entries = vmalloc(size);
  1820. if (!entries)
  1821. goto out;
  1822. r = -EFAULT;
  1823. if (copy_from_user(entries, user_msrs->entries, size))
  1824. goto out_free;
  1825. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1826. if (r < 0)
  1827. goto out_free;
  1828. r = -EFAULT;
  1829. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1830. goto out_free;
  1831. r = n;
  1832. out_free:
  1833. vfree(entries);
  1834. out:
  1835. return r;
  1836. }
  1837. /*
  1838. * Translate a guest virtual address to a guest physical address.
  1839. */
  1840. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1841. struct kvm_translation *tr)
  1842. {
  1843. unsigned long vaddr = tr->linear_address;
  1844. gpa_t gpa;
  1845. vcpu_load(vcpu);
  1846. spin_lock(&vcpu->kvm->lock);
  1847. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1848. tr->physical_address = gpa;
  1849. tr->valid = gpa != UNMAPPED_GVA;
  1850. tr->writeable = 1;
  1851. tr->usermode = 0;
  1852. spin_unlock(&vcpu->kvm->lock);
  1853. vcpu_put(vcpu);
  1854. return 0;
  1855. }
  1856. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1857. struct kvm_interrupt *irq)
  1858. {
  1859. if (irq->irq < 0 || irq->irq >= 256)
  1860. return -EINVAL;
  1861. vcpu_load(vcpu);
  1862. set_bit(irq->irq, vcpu->irq_pending);
  1863. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1864. vcpu_put(vcpu);
  1865. return 0;
  1866. }
  1867. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1868. struct kvm_debug_guest *dbg)
  1869. {
  1870. int r;
  1871. vcpu_load(vcpu);
  1872. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1873. vcpu_put(vcpu);
  1874. return r;
  1875. }
  1876. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1877. unsigned long address,
  1878. int *type)
  1879. {
  1880. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1881. unsigned long pgoff;
  1882. struct page *page;
  1883. *type = VM_FAULT_MINOR;
  1884. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1885. if (pgoff == 0)
  1886. page = virt_to_page(vcpu->run);
  1887. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1888. page = virt_to_page(vcpu->pio_data);
  1889. else
  1890. return NOPAGE_SIGBUS;
  1891. get_page(page);
  1892. return page;
  1893. }
  1894. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1895. .nopage = kvm_vcpu_nopage,
  1896. };
  1897. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1898. {
  1899. vma->vm_ops = &kvm_vcpu_vm_ops;
  1900. return 0;
  1901. }
  1902. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1903. {
  1904. struct kvm_vcpu *vcpu = filp->private_data;
  1905. fput(vcpu->kvm->filp);
  1906. return 0;
  1907. }
  1908. static struct file_operations kvm_vcpu_fops = {
  1909. .release = kvm_vcpu_release,
  1910. .unlocked_ioctl = kvm_vcpu_ioctl,
  1911. .compat_ioctl = kvm_vcpu_ioctl,
  1912. .mmap = kvm_vcpu_mmap,
  1913. };
  1914. /*
  1915. * Allocates an inode for the vcpu.
  1916. */
  1917. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1918. {
  1919. int fd, r;
  1920. struct inode *inode;
  1921. struct file *file;
  1922. atomic_inc(&vcpu->kvm->filp->f_count);
  1923. inode = kvmfs_inode(&kvm_vcpu_fops);
  1924. if (IS_ERR(inode)) {
  1925. r = PTR_ERR(inode);
  1926. goto out1;
  1927. }
  1928. file = kvmfs_file(inode, vcpu);
  1929. if (IS_ERR(file)) {
  1930. r = PTR_ERR(file);
  1931. goto out2;
  1932. }
  1933. r = get_unused_fd();
  1934. if (r < 0)
  1935. goto out3;
  1936. fd = r;
  1937. fd_install(fd, file);
  1938. return fd;
  1939. out3:
  1940. fput(file);
  1941. out2:
  1942. iput(inode);
  1943. out1:
  1944. fput(vcpu->kvm->filp);
  1945. return r;
  1946. }
  1947. /*
  1948. * Creates some virtual cpus. Good luck creating more than one.
  1949. */
  1950. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1951. {
  1952. int r;
  1953. struct kvm_vcpu *vcpu;
  1954. struct page *page;
  1955. r = -EINVAL;
  1956. if (!valid_vcpu(n))
  1957. goto out;
  1958. vcpu = &kvm->vcpus[n];
  1959. mutex_lock(&vcpu->mutex);
  1960. if (vcpu->vmcs) {
  1961. mutex_unlock(&vcpu->mutex);
  1962. return -EEXIST;
  1963. }
  1964. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1965. r = -ENOMEM;
  1966. if (!page)
  1967. goto out_unlock;
  1968. vcpu->run = page_address(page);
  1969. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1970. r = -ENOMEM;
  1971. if (!page)
  1972. goto out_free_run;
  1973. vcpu->pio_data = page_address(page);
  1974. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  1975. FX_IMAGE_ALIGN);
  1976. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  1977. vcpu->cr0 = 0x10;
  1978. r = kvm_arch_ops->vcpu_create(vcpu);
  1979. if (r < 0)
  1980. goto out_free_vcpus;
  1981. r = kvm_mmu_create(vcpu);
  1982. if (r < 0)
  1983. goto out_free_vcpus;
  1984. kvm_arch_ops->vcpu_load(vcpu);
  1985. r = kvm_mmu_setup(vcpu);
  1986. if (r >= 0)
  1987. r = kvm_arch_ops->vcpu_setup(vcpu);
  1988. vcpu_put(vcpu);
  1989. if (r < 0)
  1990. goto out_free_vcpus;
  1991. r = create_vcpu_fd(vcpu);
  1992. if (r < 0)
  1993. goto out_free_vcpus;
  1994. return r;
  1995. out_free_vcpus:
  1996. kvm_free_vcpu(vcpu);
  1997. out_free_run:
  1998. free_page((unsigned long)vcpu->run);
  1999. vcpu->run = NULL;
  2000. out_unlock:
  2001. mutex_unlock(&vcpu->mutex);
  2002. out:
  2003. return r;
  2004. }
  2005. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2006. struct kvm_cpuid *cpuid,
  2007. struct kvm_cpuid_entry __user *entries)
  2008. {
  2009. int r;
  2010. r = -E2BIG;
  2011. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2012. goto out;
  2013. r = -EFAULT;
  2014. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2015. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2016. goto out;
  2017. vcpu->cpuid_nent = cpuid->nent;
  2018. return 0;
  2019. out:
  2020. return r;
  2021. }
  2022. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2023. {
  2024. if (sigset) {
  2025. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2026. vcpu->sigset_active = 1;
  2027. vcpu->sigset = *sigset;
  2028. } else
  2029. vcpu->sigset_active = 0;
  2030. return 0;
  2031. }
  2032. /*
  2033. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2034. * we have asm/x86/processor.h
  2035. */
  2036. struct fxsave {
  2037. u16 cwd;
  2038. u16 swd;
  2039. u16 twd;
  2040. u16 fop;
  2041. u64 rip;
  2042. u64 rdp;
  2043. u32 mxcsr;
  2044. u32 mxcsr_mask;
  2045. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2046. #ifdef CONFIG_X86_64
  2047. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2048. #else
  2049. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2050. #endif
  2051. };
  2052. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2053. {
  2054. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2055. vcpu_load(vcpu);
  2056. memcpy(fpu->fpr, fxsave->st_space, 128);
  2057. fpu->fcw = fxsave->cwd;
  2058. fpu->fsw = fxsave->swd;
  2059. fpu->ftwx = fxsave->twd;
  2060. fpu->last_opcode = fxsave->fop;
  2061. fpu->last_ip = fxsave->rip;
  2062. fpu->last_dp = fxsave->rdp;
  2063. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2064. vcpu_put(vcpu);
  2065. return 0;
  2066. }
  2067. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2068. {
  2069. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2070. vcpu_load(vcpu);
  2071. memcpy(fxsave->st_space, fpu->fpr, 128);
  2072. fxsave->cwd = fpu->fcw;
  2073. fxsave->swd = fpu->fsw;
  2074. fxsave->twd = fpu->ftwx;
  2075. fxsave->fop = fpu->last_opcode;
  2076. fxsave->rip = fpu->last_ip;
  2077. fxsave->rdp = fpu->last_dp;
  2078. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2079. vcpu_put(vcpu);
  2080. return 0;
  2081. }
  2082. static long kvm_vcpu_ioctl(struct file *filp,
  2083. unsigned int ioctl, unsigned long arg)
  2084. {
  2085. struct kvm_vcpu *vcpu = filp->private_data;
  2086. void __user *argp = (void __user *)arg;
  2087. int r = -EINVAL;
  2088. switch (ioctl) {
  2089. case KVM_RUN:
  2090. r = -EINVAL;
  2091. if (arg)
  2092. goto out;
  2093. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2094. break;
  2095. case KVM_GET_REGS: {
  2096. struct kvm_regs kvm_regs;
  2097. memset(&kvm_regs, 0, sizeof kvm_regs);
  2098. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2099. if (r)
  2100. goto out;
  2101. r = -EFAULT;
  2102. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2103. goto out;
  2104. r = 0;
  2105. break;
  2106. }
  2107. case KVM_SET_REGS: {
  2108. struct kvm_regs kvm_regs;
  2109. r = -EFAULT;
  2110. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2111. goto out;
  2112. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2113. if (r)
  2114. goto out;
  2115. r = 0;
  2116. break;
  2117. }
  2118. case KVM_GET_SREGS: {
  2119. struct kvm_sregs kvm_sregs;
  2120. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2121. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2122. if (r)
  2123. goto out;
  2124. r = -EFAULT;
  2125. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2126. goto out;
  2127. r = 0;
  2128. break;
  2129. }
  2130. case KVM_SET_SREGS: {
  2131. struct kvm_sregs kvm_sregs;
  2132. r = -EFAULT;
  2133. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2134. goto out;
  2135. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2136. if (r)
  2137. goto out;
  2138. r = 0;
  2139. break;
  2140. }
  2141. case KVM_TRANSLATE: {
  2142. struct kvm_translation tr;
  2143. r = -EFAULT;
  2144. if (copy_from_user(&tr, argp, sizeof tr))
  2145. goto out;
  2146. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2147. if (r)
  2148. goto out;
  2149. r = -EFAULT;
  2150. if (copy_to_user(argp, &tr, sizeof tr))
  2151. goto out;
  2152. r = 0;
  2153. break;
  2154. }
  2155. case KVM_INTERRUPT: {
  2156. struct kvm_interrupt irq;
  2157. r = -EFAULT;
  2158. if (copy_from_user(&irq, argp, sizeof irq))
  2159. goto out;
  2160. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2161. if (r)
  2162. goto out;
  2163. r = 0;
  2164. break;
  2165. }
  2166. case KVM_DEBUG_GUEST: {
  2167. struct kvm_debug_guest dbg;
  2168. r = -EFAULT;
  2169. if (copy_from_user(&dbg, argp, sizeof dbg))
  2170. goto out;
  2171. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2172. if (r)
  2173. goto out;
  2174. r = 0;
  2175. break;
  2176. }
  2177. case KVM_GET_MSRS:
  2178. r = msr_io(vcpu, argp, get_msr, 1);
  2179. break;
  2180. case KVM_SET_MSRS:
  2181. r = msr_io(vcpu, argp, do_set_msr, 0);
  2182. break;
  2183. case KVM_SET_CPUID: {
  2184. struct kvm_cpuid __user *cpuid_arg = argp;
  2185. struct kvm_cpuid cpuid;
  2186. r = -EFAULT;
  2187. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2188. goto out;
  2189. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2190. if (r)
  2191. goto out;
  2192. break;
  2193. }
  2194. case KVM_SET_SIGNAL_MASK: {
  2195. struct kvm_signal_mask __user *sigmask_arg = argp;
  2196. struct kvm_signal_mask kvm_sigmask;
  2197. sigset_t sigset, *p;
  2198. p = NULL;
  2199. if (argp) {
  2200. r = -EFAULT;
  2201. if (copy_from_user(&kvm_sigmask, argp,
  2202. sizeof kvm_sigmask))
  2203. goto out;
  2204. r = -EINVAL;
  2205. if (kvm_sigmask.len != sizeof sigset)
  2206. goto out;
  2207. r = -EFAULT;
  2208. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2209. sizeof sigset))
  2210. goto out;
  2211. p = &sigset;
  2212. }
  2213. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2214. break;
  2215. }
  2216. case KVM_GET_FPU: {
  2217. struct kvm_fpu fpu;
  2218. memset(&fpu, 0, sizeof fpu);
  2219. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2220. if (r)
  2221. goto out;
  2222. r = -EFAULT;
  2223. if (copy_to_user(argp, &fpu, sizeof fpu))
  2224. goto out;
  2225. r = 0;
  2226. break;
  2227. }
  2228. case KVM_SET_FPU: {
  2229. struct kvm_fpu fpu;
  2230. r = -EFAULT;
  2231. if (copy_from_user(&fpu, argp, sizeof fpu))
  2232. goto out;
  2233. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2234. if (r)
  2235. goto out;
  2236. r = 0;
  2237. break;
  2238. }
  2239. default:
  2240. ;
  2241. }
  2242. out:
  2243. return r;
  2244. }
  2245. static long kvm_vm_ioctl(struct file *filp,
  2246. unsigned int ioctl, unsigned long arg)
  2247. {
  2248. struct kvm *kvm = filp->private_data;
  2249. void __user *argp = (void __user *)arg;
  2250. int r = -EINVAL;
  2251. switch (ioctl) {
  2252. case KVM_CREATE_VCPU:
  2253. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2254. if (r < 0)
  2255. goto out;
  2256. break;
  2257. case KVM_SET_MEMORY_REGION: {
  2258. struct kvm_memory_region kvm_mem;
  2259. r = -EFAULT;
  2260. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2261. goto out;
  2262. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2263. if (r)
  2264. goto out;
  2265. break;
  2266. }
  2267. case KVM_GET_DIRTY_LOG: {
  2268. struct kvm_dirty_log log;
  2269. r = -EFAULT;
  2270. if (copy_from_user(&log, argp, sizeof log))
  2271. goto out;
  2272. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2273. if (r)
  2274. goto out;
  2275. break;
  2276. }
  2277. case KVM_SET_MEMORY_ALIAS: {
  2278. struct kvm_memory_alias alias;
  2279. r = -EFAULT;
  2280. if (copy_from_user(&alias, argp, sizeof alias))
  2281. goto out;
  2282. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2283. if (r)
  2284. goto out;
  2285. break;
  2286. }
  2287. default:
  2288. ;
  2289. }
  2290. out:
  2291. return r;
  2292. }
  2293. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2294. unsigned long address,
  2295. int *type)
  2296. {
  2297. struct kvm *kvm = vma->vm_file->private_data;
  2298. unsigned long pgoff;
  2299. struct page *page;
  2300. *type = VM_FAULT_MINOR;
  2301. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2302. page = gfn_to_page(kvm, pgoff);
  2303. if (!page)
  2304. return NOPAGE_SIGBUS;
  2305. get_page(page);
  2306. return page;
  2307. }
  2308. static struct vm_operations_struct kvm_vm_vm_ops = {
  2309. .nopage = kvm_vm_nopage,
  2310. };
  2311. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2312. {
  2313. vma->vm_ops = &kvm_vm_vm_ops;
  2314. return 0;
  2315. }
  2316. static struct file_operations kvm_vm_fops = {
  2317. .release = kvm_vm_release,
  2318. .unlocked_ioctl = kvm_vm_ioctl,
  2319. .compat_ioctl = kvm_vm_ioctl,
  2320. .mmap = kvm_vm_mmap,
  2321. };
  2322. static int kvm_dev_ioctl_create_vm(void)
  2323. {
  2324. int fd, r;
  2325. struct inode *inode;
  2326. struct file *file;
  2327. struct kvm *kvm;
  2328. inode = kvmfs_inode(&kvm_vm_fops);
  2329. if (IS_ERR(inode)) {
  2330. r = PTR_ERR(inode);
  2331. goto out1;
  2332. }
  2333. kvm = kvm_create_vm();
  2334. if (IS_ERR(kvm)) {
  2335. r = PTR_ERR(kvm);
  2336. goto out2;
  2337. }
  2338. file = kvmfs_file(inode, kvm);
  2339. if (IS_ERR(file)) {
  2340. r = PTR_ERR(file);
  2341. goto out3;
  2342. }
  2343. kvm->filp = file;
  2344. r = get_unused_fd();
  2345. if (r < 0)
  2346. goto out4;
  2347. fd = r;
  2348. fd_install(fd, file);
  2349. return fd;
  2350. out4:
  2351. fput(file);
  2352. out3:
  2353. kvm_destroy_vm(kvm);
  2354. out2:
  2355. iput(inode);
  2356. out1:
  2357. return r;
  2358. }
  2359. static long kvm_dev_ioctl(struct file *filp,
  2360. unsigned int ioctl, unsigned long arg)
  2361. {
  2362. void __user *argp = (void __user *)arg;
  2363. long r = -EINVAL;
  2364. switch (ioctl) {
  2365. case KVM_GET_API_VERSION:
  2366. r = -EINVAL;
  2367. if (arg)
  2368. goto out;
  2369. r = KVM_API_VERSION;
  2370. break;
  2371. case KVM_CREATE_VM:
  2372. r = -EINVAL;
  2373. if (arg)
  2374. goto out;
  2375. r = kvm_dev_ioctl_create_vm();
  2376. break;
  2377. case KVM_GET_MSR_INDEX_LIST: {
  2378. struct kvm_msr_list __user *user_msr_list = argp;
  2379. struct kvm_msr_list msr_list;
  2380. unsigned n;
  2381. r = -EFAULT;
  2382. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2383. goto out;
  2384. n = msr_list.nmsrs;
  2385. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2386. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2387. goto out;
  2388. r = -E2BIG;
  2389. if (n < num_msrs_to_save)
  2390. goto out;
  2391. r = -EFAULT;
  2392. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2393. num_msrs_to_save * sizeof(u32)))
  2394. goto out;
  2395. if (copy_to_user(user_msr_list->indices
  2396. + num_msrs_to_save * sizeof(u32),
  2397. &emulated_msrs,
  2398. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2399. goto out;
  2400. r = 0;
  2401. break;
  2402. }
  2403. case KVM_CHECK_EXTENSION:
  2404. /*
  2405. * No extensions defined at present.
  2406. */
  2407. r = 0;
  2408. break;
  2409. case KVM_GET_VCPU_MMAP_SIZE:
  2410. r = -EINVAL;
  2411. if (arg)
  2412. goto out;
  2413. r = 2 * PAGE_SIZE;
  2414. break;
  2415. default:
  2416. ;
  2417. }
  2418. out:
  2419. return r;
  2420. }
  2421. static struct file_operations kvm_chardev_ops = {
  2422. .open = kvm_dev_open,
  2423. .release = kvm_dev_release,
  2424. .unlocked_ioctl = kvm_dev_ioctl,
  2425. .compat_ioctl = kvm_dev_ioctl,
  2426. };
  2427. static struct miscdevice kvm_dev = {
  2428. KVM_MINOR,
  2429. "kvm",
  2430. &kvm_chardev_ops,
  2431. };
  2432. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2433. void *v)
  2434. {
  2435. if (val == SYS_RESTART) {
  2436. /*
  2437. * Some (well, at least mine) BIOSes hang on reboot if
  2438. * in vmx root mode.
  2439. */
  2440. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2441. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2442. }
  2443. return NOTIFY_OK;
  2444. }
  2445. static struct notifier_block kvm_reboot_notifier = {
  2446. .notifier_call = kvm_reboot,
  2447. .priority = 0,
  2448. };
  2449. /*
  2450. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2451. * cached on it.
  2452. */
  2453. static void decache_vcpus_on_cpu(int cpu)
  2454. {
  2455. struct kvm *vm;
  2456. struct kvm_vcpu *vcpu;
  2457. int i;
  2458. spin_lock(&kvm_lock);
  2459. list_for_each_entry(vm, &vm_list, vm_list)
  2460. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2461. vcpu = &vm->vcpus[i];
  2462. /*
  2463. * If the vcpu is locked, then it is running on some
  2464. * other cpu and therefore it is not cached on the
  2465. * cpu in question.
  2466. *
  2467. * If it's not locked, check the last cpu it executed
  2468. * on.
  2469. */
  2470. if (mutex_trylock(&vcpu->mutex)) {
  2471. if (vcpu->cpu == cpu) {
  2472. kvm_arch_ops->vcpu_decache(vcpu);
  2473. vcpu->cpu = -1;
  2474. }
  2475. mutex_unlock(&vcpu->mutex);
  2476. }
  2477. }
  2478. spin_unlock(&kvm_lock);
  2479. }
  2480. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2481. void *v)
  2482. {
  2483. int cpu = (long)v;
  2484. switch (val) {
  2485. case CPU_DOWN_PREPARE:
  2486. case CPU_DOWN_PREPARE_FROZEN:
  2487. case CPU_UP_CANCELED:
  2488. case CPU_UP_CANCELED_FROZEN:
  2489. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2490. cpu);
  2491. decache_vcpus_on_cpu(cpu);
  2492. smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
  2493. NULL, 0, 1);
  2494. break;
  2495. case CPU_ONLINE:
  2496. case CPU_ONLINE_FROZEN:
  2497. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2498. cpu);
  2499. smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
  2500. NULL, 0, 1);
  2501. break;
  2502. }
  2503. return NOTIFY_OK;
  2504. }
  2505. static struct notifier_block kvm_cpu_notifier = {
  2506. .notifier_call = kvm_cpu_hotplug,
  2507. .priority = 20, /* must be > scheduler priority */
  2508. };
  2509. static u64 stat_get(void *_offset)
  2510. {
  2511. unsigned offset = (long)_offset;
  2512. u64 total = 0;
  2513. struct kvm *kvm;
  2514. struct kvm_vcpu *vcpu;
  2515. int i;
  2516. spin_lock(&kvm_lock);
  2517. list_for_each_entry(kvm, &vm_list, vm_list)
  2518. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2519. vcpu = &kvm->vcpus[i];
  2520. total += *(u32 *)((void *)vcpu + offset);
  2521. }
  2522. spin_unlock(&kvm_lock);
  2523. return total;
  2524. }
  2525. static void stat_set(void *offset, u64 val)
  2526. {
  2527. }
  2528. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2529. static __init void kvm_init_debug(void)
  2530. {
  2531. struct kvm_stats_debugfs_item *p;
  2532. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2533. for (p = debugfs_entries; p->name; ++p)
  2534. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2535. (void *)(long)p->offset,
  2536. &stat_fops);
  2537. }
  2538. static void kvm_exit_debug(void)
  2539. {
  2540. struct kvm_stats_debugfs_item *p;
  2541. for (p = debugfs_entries; p->name; ++p)
  2542. debugfs_remove(p->dentry);
  2543. debugfs_remove(debugfs_dir);
  2544. }
  2545. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2546. {
  2547. decache_vcpus_on_cpu(raw_smp_processor_id());
  2548. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2549. return 0;
  2550. }
  2551. static int kvm_resume(struct sys_device *dev)
  2552. {
  2553. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2554. return 0;
  2555. }
  2556. static struct sysdev_class kvm_sysdev_class = {
  2557. set_kset_name("kvm"),
  2558. .suspend = kvm_suspend,
  2559. .resume = kvm_resume,
  2560. };
  2561. static struct sys_device kvm_sysdev = {
  2562. .id = 0,
  2563. .cls = &kvm_sysdev_class,
  2564. };
  2565. hpa_t bad_page_address;
  2566. static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
  2567. const char *dev_name, void *data, struct vfsmount *mnt)
  2568. {
  2569. return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
  2570. }
  2571. static struct file_system_type kvm_fs_type = {
  2572. .name = "kvmfs",
  2573. .get_sb = kvmfs_get_sb,
  2574. .kill_sb = kill_anon_super,
  2575. };
  2576. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2577. {
  2578. int r;
  2579. if (kvm_arch_ops) {
  2580. printk(KERN_ERR "kvm: already loaded the other module\n");
  2581. return -EEXIST;
  2582. }
  2583. if (!ops->cpu_has_kvm_support()) {
  2584. printk(KERN_ERR "kvm: no hardware support\n");
  2585. return -EOPNOTSUPP;
  2586. }
  2587. if (ops->disabled_by_bios()) {
  2588. printk(KERN_ERR "kvm: disabled by bios\n");
  2589. return -EOPNOTSUPP;
  2590. }
  2591. kvm_arch_ops = ops;
  2592. r = kvm_arch_ops->hardware_setup();
  2593. if (r < 0)
  2594. goto out;
  2595. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2596. r = register_cpu_notifier(&kvm_cpu_notifier);
  2597. if (r)
  2598. goto out_free_1;
  2599. register_reboot_notifier(&kvm_reboot_notifier);
  2600. r = sysdev_class_register(&kvm_sysdev_class);
  2601. if (r)
  2602. goto out_free_2;
  2603. r = sysdev_register(&kvm_sysdev);
  2604. if (r)
  2605. goto out_free_3;
  2606. kvm_chardev_ops.owner = module;
  2607. r = misc_register(&kvm_dev);
  2608. if (r) {
  2609. printk (KERN_ERR "kvm: misc device register failed\n");
  2610. goto out_free;
  2611. }
  2612. return r;
  2613. out_free:
  2614. sysdev_unregister(&kvm_sysdev);
  2615. out_free_3:
  2616. sysdev_class_unregister(&kvm_sysdev_class);
  2617. out_free_2:
  2618. unregister_reboot_notifier(&kvm_reboot_notifier);
  2619. unregister_cpu_notifier(&kvm_cpu_notifier);
  2620. out_free_1:
  2621. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2622. kvm_arch_ops->hardware_unsetup();
  2623. out:
  2624. kvm_arch_ops = NULL;
  2625. return r;
  2626. }
  2627. void kvm_exit_arch(void)
  2628. {
  2629. misc_deregister(&kvm_dev);
  2630. sysdev_unregister(&kvm_sysdev);
  2631. sysdev_class_unregister(&kvm_sysdev_class);
  2632. unregister_reboot_notifier(&kvm_reboot_notifier);
  2633. unregister_cpu_notifier(&kvm_cpu_notifier);
  2634. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2635. kvm_arch_ops->hardware_unsetup();
  2636. kvm_arch_ops = NULL;
  2637. }
  2638. static __init int kvm_init(void)
  2639. {
  2640. static struct page *bad_page;
  2641. int r;
  2642. r = kvm_mmu_module_init();
  2643. if (r)
  2644. goto out4;
  2645. r = register_filesystem(&kvm_fs_type);
  2646. if (r)
  2647. goto out3;
  2648. kvmfs_mnt = kern_mount(&kvm_fs_type);
  2649. r = PTR_ERR(kvmfs_mnt);
  2650. if (IS_ERR(kvmfs_mnt))
  2651. goto out2;
  2652. kvm_init_debug();
  2653. kvm_init_msr_list();
  2654. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2655. r = -ENOMEM;
  2656. goto out;
  2657. }
  2658. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2659. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2660. return 0;
  2661. out:
  2662. kvm_exit_debug();
  2663. mntput(kvmfs_mnt);
  2664. out2:
  2665. unregister_filesystem(&kvm_fs_type);
  2666. out3:
  2667. kvm_mmu_module_exit();
  2668. out4:
  2669. return r;
  2670. }
  2671. static __exit void kvm_exit(void)
  2672. {
  2673. kvm_exit_debug();
  2674. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2675. mntput(kvmfs_mnt);
  2676. unregister_filesystem(&kvm_fs_type);
  2677. kvm_mmu_module_exit();
  2678. }
  2679. module_init(kvm_init)
  2680. module_exit(kvm_exit)
  2681. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2682. EXPORT_SYMBOL_GPL(kvm_exit_arch);