kvm_main.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <asm/processor.h>
  42. #include <asm/msr.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static DEFINE_SPINLOCK(kvm_lock);
  49. static LIST_HEAD(vm_list);
  50. static cpumask_t cpus_hardware_enabled;
  51. struct kvm_x86_ops *kvm_x86_ops;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  56. static struct kvm_stats_debugfs_item {
  57. const char *name;
  58. int offset;
  59. struct dentry *dentry;
  60. } debugfs_entries[] = {
  61. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  62. { "pf_guest", STAT_OFFSET(pf_guest) },
  63. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  64. { "invlpg", STAT_OFFSET(invlpg) },
  65. { "exits", STAT_OFFSET(exits) },
  66. { "io_exits", STAT_OFFSET(io_exits) },
  67. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  68. { "signal_exits", STAT_OFFSET(signal_exits) },
  69. { "irq_window", STAT_OFFSET(irq_window_exits) },
  70. { "halt_exits", STAT_OFFSET(halt_exits) },
  71. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  72. { "request_irq", STAT_OFFSET(request_irq_exits) },
  73. { "irq_exits", STAT_OFFSET(irq_exits) },
  74. { "light_exits", STAT_OFFSET(light_exits) },
  75. { "efer_reload", STAT_OFFSET(efer_reload) },
  76. { NULL }
  77. };
  78. static struct dentry *debugfs_dir;
  79. #define MAX_IO_MSRS 256
  80. #define CR0_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  82. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  83. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  84. #define CR4_RESERVED_BITS \
  85. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  86. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  87. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  88. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  89. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  90. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  91. #ifdef CONFIG_X86_64
  92. // LDT or TSS descriptor in the GDT. 16 bytes.
  93. struct segment_descriptor_64 {
  94. struct segment_descriptor s;
  95. u32 base_higher;
  96. u32 pad_zero;
  97. };
  98. #endif
  99. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  100. unsigned long arg);
  101. unsigned long segment_base(u16 selector)
  102. {
  103. struct descriptor_table gdt;
  104. struct segment_descriptor *d;
  105. unsigned long table_base;
  106. typedef unsigned long ul;
  107. unsigned long v;
  108. if (selector == 0)
  109. return 0;
  110. asm ("sgdt %0" : "=m"(gdt));
  111. table_base = gdt.base;
  112. if (selector & 4) { /* from ldt */
  113. u16 ldt_selector;
  114. asm ("sldt %0" : "=g"(ldt_selector));
  115. table_base = segment_base(ldt_selector);
  116. }
  117. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  118. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  119. #ifdef CONFIG_X86_64
  120. if (d->system == 0
  121. && (d->type == 2 || d->type == 9 || d->type == 11))
  122. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  123. #endif
  124. return v;
  125. }
  126. EXPORT_SYMBOL_GPL(segment_base);
  127. static inline int valid_vcpu(int n)
  128. {
  129. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  130. }
  131. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  132. {
  133. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  134. return;
  135. vcpu->guest_fpu_loaded = 1;
  136. fx_save(&vcpu->host_fx_image);
  137. fx_restore(&vcpu->guest_fx_image);
  138. }
  139. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  140. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  141. {
  142. if (!vcpu->guest_fpu_loaded)
  143. return;
  144. vcpu->guest_fpu_loaded = 0;
  145. fx_save(&vcpu->guest_fx_image);
  146. fx_restore(&vcpu->host_fx_image);
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  149. /*
  150. * Switches to specified vcpu, until a matching vcpu_put()
  151. */
  152. static void vcpu_load(struct kvm_vcpu *vcpu)
  153. {
  154. int cpu;
  155. mutex_lock(&vcpu->mutex);
  156. cpu = get_cpu();
  157. preempt_notifier_register(&vcpu->preempt_notifier);
  158. kvm_x86_ops->vcpu_load(vcpu, cpu);
  159. put_cpu();
  160. }
  161. static void vcpu_put(struct kvm_vcpu *vcpu)
  162. {
  163. preempt_disable();
  164. kvm_x86_ops->vcpu_put(vcpu);
  165. preempt_notifier_unregister(&vcpu->preempt_notifier);
  166. preempt_enable();
  167. mutex_unlock(&vcpu->mutex);
  168. }
  169. static void ack_flush(void *_completed)
  170. {
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. int i, cpu;
  175. cpumask_t cpus;
  176. struct kvm_vcpu *vcpu;
  177. cpus_clear(cpus);
  178. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  179. vcpu = kvm->vcpus[i];
  180. if (!vcpu)
  181. continue;
  182. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  183. continue;
  184. cpu = vcpu->cpu;
  185. if (cpu != -1 && cpu != raw_smp_processor_id())
  186. cpu_set(cpu, cpus);
  187. }
  188. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  189. }
  190. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  191. {
  192. struct page *page;
  193. int r;
  194. mutex_init(&vcpu->mutex);
  195. vcpu->cpu = -1;
  196. vcpu->mmu.root_hpa = INVALID_PAGE;
  197. vcpu->kvm = kvm;
  198. vcpu->vcpu_id = id;
  199. if (!irqchip_in_kernel(kvm) || id == 0)
  200. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  201. else
  202. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  203. init_waitqueue_head(&vcpu->wq);
  204. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  205. if (!page) {
  206. r = -ENOMEM;
  207. goto fail;
  208. }
  209. vcpu->run = page_address(page);
  210. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  211. if (!page) {
  212. r = -ENOMEM;
  213. goto fail_free_run;
  214. }
  215. vcpu->pio_data = page_address(page);
  216. r = kvm_mmu_create(vcpu);
  217. if (r < 0)
  218. goto fail_free_pio_data;
  219. if (irqchip_in_kernel(kvm)) {
  220. r = kvm_create_lapic(vcpu);
  221. if (r < 0)
  222. goto fail_mmu_destroy;
  223. }
  224. return 0;
  225. fail_mmu_destroy:
  226. kvm_mmu_destroy(vcpu);
  227. fail_free_pio_data:
  228. free_page((unsigned long)vcpu->pio_data);
  229. fail_free_run:
  230. free_page((unsigned long)vcpu->run);
  231. fail:
  232. return r;
  233. }
  234. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  235. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  236. {
  237. kvm_free_lapic(vcpu);
  238. kvm_mmu_destroy(vcpu);
  239. free_page((unsigned long)vcpu->pio_data);
  240. free_page((unsigned long)vcpu->run);
  241. }
  242. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  243. static struct kvm *kvm_create_vm(void)
  244. {
  245. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  246. if (!kvm)
  247. return ERR_PTR(-ENOMEM);
  248. kvm_io_bus_init(&kvm->pio_bus);
  249. mutex_init(&kvm->lock);
  250. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  251. kvm_io_bus_init(&kvm->mmio_bus);
  252. spin_lock(&kvm_lock);
  253. list_add(&kvm->vm_list, &vm_list);
  254. spin_unlock(&kvm_lock);
  255. return kvm;
  256. }
  257. /*
  258. * Free any memory in @free but not in @dont.
  259. */
  260. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  261. struct kvm_memory_slot *dont)
  262. {
  263. int i;
  264. if (!dont || free->phys_mem != dont->phys_mem)
  265. if (free->phys_mem) {
  266. for (i = 0; i < free->npages; ++i)
  267. if (free->phys_mem[i])
  268. __free_page(free->phys_mem[i]);
  269. vfree(free->phys_mem);
  270. }
  271. if (!dont || free->rmap != dont->rmap)
  272. vfree(free->rmap);
  273. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  274. vfree(free->dirty_bitmap);
  275. free->phys_mem = NULL;
  276. free->npages = 0;
  277. free->dirty_bitmap = NULL;
  278. }
  279. static void kvm_free_physmem(struct kvm *kvm)
  280. {
  281. int i;
  282. for (i = 0; i < kvm->nmemslots; ++i)
  283. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  284. }
  285. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  286. {
  287. int i;
  288. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  289. if (vcpu->pio.guest_pages[i]) {
  290. __free_page(vcpu->pio.guest_pages[i]);
  291. vcpu->pio.guest_pages[i] = NULL;
  292. }
  293. }
  294. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  295. {
  296. vcpu_load(vcpu);
  297. kvm_mmu_unload(vcpu);
  298. vcpu_put(vcpu);
  299. }
  300. static void kvm_free_vcpus(struct kvm *kvm)
  301. {
  302. unsigned int i;
  303. /*
  304. * Unpin any mmu pages first.
  305. */
  306. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  307. if (kvm->vcpus[i])
  308. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  309. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  310. if (kvm->vcpus[i]) {
  311. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  312. kvm->vcpus[i] = NULL;
  313. }
  314. }
  315. }
  316. static void kvm_destroy_vm(struct kvm *kvm)
  317. {
  318. spin_lock(&kvm_lock);
  319. list_del(&kvm->vm_list);
  320. spin_unlock(&kvm_lock);
  321. kvm_io_bus_destroy(&kvm->pio_bus);
  322. kvm_io_bus_destroy(&kvm->mmio_bus);
  323. kfree(kvm->vpic);
  324. kfree(kvm->vioapic);
  325. kvm_free_vcpus(kvm);
  326. kvm_free_physmem(kvm);
  327. kfree(kvm);
  328. }
  329. static int kvm_vm_release(struct inode *inode, struct file *filp)
  330. {
  331. struct kvm *kvm = filp->private_data;
  332. kvm_destroy_vm(kvm);
  333. return 0;
  334. }
  335. static void inject_gp(struct kvm_vcpu *vcpu)
  336. {
  337. kvm_x86_ops->inject_gp(vcpu, 0);
  338. }
  339. /*
  340. * Load the pae pdptrs. Return true is they are all valid.
  341. */
  342. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  343. {
  344. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  345. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  346. int i;
  347. int ret;
  348. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  349. mutex_lock(&vcpu->kvm->lock);
  350. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  351. offset * sizeof(u64), sizeof(pdpte));
  352. if (ret < 0) {
  353. ret = 0;
  354. goto out;
  355. }
  356. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  357. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  358. ret = 0;
  359. goto out;
  360. }
  361. }
  362. ret = 1;
  363. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  364. out:
  365. mutex_unlock(&vcpu->kvm->lock);
  366. return ret;
  367. }
  368. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  369. {
  370. if (cr0 & CR0_RESERVED_BITS) {
  371. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  372. cr0, vcpu->cr0);
  373. inject_gp(vcpu);
  374. return;
  375. }
  376. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  377. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  378. inject_gp(vcpu);
  379. return;
  380. }
  381. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  382. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  383. "and a clear PE flag\n");
  384. inject_gp(vcpu);
  385. return;
  386. }
  387. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  388. #ifdef CONFIG_X86_64
  389. if ((vcpu->shadow_efer & EFER_LME)) {
  390. int cs_db, cs_l;
  391. if (!is_pae(vcpu)) {
  392. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  393. "in long mode while PAE is disabled\n");
  394. inject_gp(vcpu);
  395. return;
  396. }
  397. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  398. if (cs_l) {
  399. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  400. "in long mode while CS.L == 1\n");
  401. inject_gp(vcpu);
  402. return;
  403. }
  404. } else
  405. #endif
  406. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  407. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  408. "reserved bits\n");
  409. inject_gp(vcpu);
  410. return;
  411. }
  412. }
  413. kvm_x86_ops->set_cr0(vcpu, cr0);
  414. vcpu->cr0 = cr0;
  415. mutex_lock(&vcpu->kvm->lock);
  416. kvm_mmu_reset_context(vcpu);
  417. mutex_unlock(&vcpu->kvm->lock);
  418. return;
  419. }
  420. EXPORT_SYMBOL_GPL(set_cr0);
  421. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  422. {
  423. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  424. }
  425. EXPORT_SYMBOL_GPL(lmsw);
  426. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  427. {
  428. if (cr4 & CR4_RESERVED_BITS) {
  429. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  430. inject_gp(vcpu);
  431. return;
  432. }
  433. if (is_long_mode(vcpu)) {
  434. if (!(cr4 & X86_CR4_PAE)) {
  435. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  436. "in long mode\n");
  437. inject_gp(vcpu);
  438. return;
  439. }
  440. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  441. && !load_pdptrs(vcpu, vcpu->cr3)) {
  442. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  443. inject_gp(vcpu);
  444. return;
  445. }
  446. if (cr4 & X86_CR4_VMXE) {
  447. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  448. inject_gp(vcpu);
  449. return;
  450. }
  451. kvm_x86_ops->set_cr4(vcpu, cr4);
  452. vcpu->cr4 = cr4;
  453. mutex_lock(&vcpu->kvm->lock);
  454. kvm_mmu_reset_context(vcpu);
  455. mutex_unlock(&vcpu->kvm->lock);
  456. }
  457. EXPORT_SYMBOL_GPL(set_cr4);
  458. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  459. {
  460. if (is_long_mode(vcpu)) {
  461. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  462. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  463. inject_gp(vcpu);
  464. return;
  465. }
  466. } else {
  467. if (is_pae(vcpu)) {
  468. if (cr3 & CR3_PAE_RESERVED_BITS) {
  469. printk(KERN_DEBUG
  470. "set_cr3: #GP, reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  475. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  476. "reserved bits\n");
  477. inject_gp(vcpu);
  478. return;
  479. }
  480. }
  481. /*
  482. * We don't check reserved bits in nonpae mode, because
  483. * this isn't enforced, and VMware depends on this.
  484. */
  485. }
  486. mutex_lock(&vcpu->kvm->lock);
  487. /*
  488. * Does the new cr3 value map to physical memory? (Note, we
  489. * catch an invalid cr3 even in real-mode, because it would
  490. * cause trouble later on when we turn on paging anyway.)
  491. *
  492. * A real CPU would silently accept an invalid cr3 and would
  493. * attempt to use it - with largely undefined (and often hard
  494. * to debug) behavior on the guest side.
  495. */
  496. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  497. inject_gp(vcpu);
  498. else {
  499. vcpu->cr3 = cr3;
  500. vcpu->mmu.new_cr3(vcpu);
  501. }
  502. mutex_unlock(&vcpu->kvm->lock);
  503. }
  504. EXPORT_SYMBOL_GPL(set_cr3);
  505. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  506. {
  507. if (cr8 & CR8_RESERVED_BITS) {
  508. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  509. inject_gp(vcpu);
  510. return;
  511. }
  512. if (irqchip_in_kernel(vcpu->kvm))
  513. kvm_lapic_set_tpr(vcpu, cr8);
  514. else
  515. vcpu->cr8 = cr8;
  516. }
  517. EXPORT_SYMBOL_GPL(set_cr8);
  518. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  519. {
  520. if (irqchip_in_kernel(vcpu->kvm))
  521. return kvm_lapic_get_cr8(vcpu);
  522. else
  523. return vcpu->cr8;
  524. }
  525. EXPORT_SYMBOL_GPL(get_cr8);
  526. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  527. {
  528. if (irqchip_in_kernel(vcpu->kvm))
  529. return vcpu->apic_base;
  530. else
  531. return vcpu->apic_base;
  532. }
  533. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  534. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  535. {
  536. /* TODO: reserve bits check */
  537. if (irqchip_in_kernel(vcpu->kvm))
  538. kvm_lapic_set_base(vcpu, data);
  539. else
  540. vcpu->apic_base = data;
  541. }
  542. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  543. void fx_init(struct kvm_vcpu *vcpu)
  544. {
  545. unsigned after_mxcsr_mask;
  546. /* Initialize guest FPU by resetting ours and saving into guest's */
  547. preempt_disable();
  548. fx_save(&vcpu->host_fx_image);
  549. fpu_init();
  550. fx_save(&vcpu->guest_fx_image);
  551. fx_restore(&vcpu->host_fx_image);
  552. preempt_enable();
  553. vcpu->cr0 |= X86_CR0_ET;
  554. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  555. vcpu->guest_fx_image.mxcsr = 0x1f80;
  556. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  557. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  558. }
  559. EXPORT_SYMBOL_GPL(fx_init);
  560. /*
  561. * Allocate some memory and give it an address in the guest physical address
  562. * space.
  563. *
  564. * Discontiguous memory is allowed, mostly for framebuffers.
  565. */
  566. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  567. struct kvm_memory_region *mem)
  568. {
  569. int r;
  570. gfn_t base_gfn;
  571. unsigned long npages;
  572. unsigned long i;
  573. struct kvm_memory_slot *memslot;
  574. struct kvm_memory_slot old, new;
  575. r = -EINVAL;
  576. /* General sanity checks */
  577. if (mem->memory_size & (PAGE_SIZE - 1))
  578. goto out;
  579. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  580. goto out;
  581. if (mem->slot >= KVM_MEMORY_SLOTS)
  582. goto out;
  583. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  584. goto out;
  585. memslot = &kvm->memslots[mem->slot];
  586. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  587. npages = mem->memory_size >> PAGE_SHIFT;
  588. if (!npages)
  589. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  590. mutex_lock(&kvm->lock);
  591. new = old = *memslot;
  592. new.base_gfn = base_gfn;
  593. new.npages = npages;
  594. new.flags = mem->flags;
  595. /* Disallow changing a memory slot's size. */
  596. r = -EINVAL;
  597. if (npages && old.npages && npages != old.npages)
  598. goto out_unlock;
  599. /* Check for overlaps */
  600. r = -EEXIST;
  601. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  602. struct kvm_memory_slot *s = &kvm->memslots[i];
  603. if (s == memslot)
  604. continue;
  605. if (!((base_gfn + npages <= s->base_gfn) ||
  606. (base_gfn >= s->base_gfn + s->npages)))
  607. goto out_unlock;
  608. }
  609. /* Deallocate if slot is being removed */
  610. if (!npages)
  611. new.phys_mem = NULL;
  612. /* Free page dirty bitmap if unneeded */
  613. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  614. new.dirty_bitmap = NULL;
  615. r = -ENOMEM;
  616. /* Allocate if a slot is being created */
  617. if (npages && !new.phys_mem) {
  618. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  619. if (!new.phys_mem)
  620. goto out_unlock;
  621. new.rmap = vmalloc(npages * sizeof(struct page*));
  622. if (!new.rmap)
  623. goto out_unlock;
  624. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  625. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  626. for (i = 0; i < npages; ++i) {
  627. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  628. | __GFP_ZERO);
  629. if (!new.phys_mem[i])
  630. goto out_unlock;
  631. }
  632. }
  633. /* Allocate page dirty bitmap if needed */
  634. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  635. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  636. new.dirty_bitmap = vmalloc(dirty_bytes);
  637. if (!new.dirty_bitmap)
  638. goto out_unlock;
  639. memset(new.dirty_bitmap, 0, dirty_bytes);
  640. }
  641. if (mem->slot >= kvm->nmemslots)
  642. kvm->nmemslots = mem->slot + 1;
  643. if (!kvm->n_requested_mmu_pages) {
  644. unsigned int n_pages;
  645. if (npages) {
  646. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  647. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  648. n_pages);
  649. } else {
  650. unsigned int nr_mmu_pages;
  651. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  652. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  653. nr_mmu_pages = max(nr_mmu_pages,
  654. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  655. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  656. }
  657. }
  658. *memslot = new;
  659. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  660. kvm_flush_remote_tlbs(kvm);
  661. mutex_unlock(&kvm->lock);
  662. kvm_free_physmem_slot(&old, &new);
  663. return 0;
  664. out_unlock:
  665. mutex_unlock(&kvm->lock);
  666. kvm_free_physmem_slot(&new, &old);
  667. out:
  668. return r;
  669. }
  670. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  671. u32 kvm_nr_mmu_pages)
  672. {
  673. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  674. return -EINVAL;
  675. mutex_lock(&kvm->lock);
  676. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  677. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  678. mutex_unlock(&kvm->lock);
  679. return 0;
  680. }
  681. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  682. {
  683. return kvm->n_alloc_mmu_pages;
  684. }
  685. /*
  686. * Get (and clear) the dirty memory log for a memory slot.
  687. */
  688. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  689. struct kvm_dirty_log *log)
  690. {
  691. struct kvm_memory_slot *memslot;
  692. int r, i;
  693. int n;
  694. unsigned long any = 0;
  695. mutex_lock(&kvm->lock);
  696. r = -EINVAL;
  697. if (log->slot >= KVM_MEMORY_SLOTS)
  698. goto out;
  699. memslot = &kvm->memslots[log->slot];
  700. r = -ENOENT;
  701. if (!memslot->dirty_bitmap)
  702. goto out;
  703. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  704. for (i = 0; !any && i < n/sizeof(long); ++i)
  705. any = memslot->dirty_bitmap[i];
  706. r = -EFAULT;
  707. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  708. goto out;
  709. /* If nothing is dirty, don't bother messing with page tables. */
  710. if (any) {
  711. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  712. kvm_flush_remote_tlbs(kvm);
  713. memset(memslot->dirty_bitmap, 0, n);
  714. }
  715. r = 0;
  716. out:
  717. mutex_unlock(&kvm->lock);
  718. return r;
  719. }
  720. /*
  721. * Set a new alias region. Aliases map a portion of physical memory into
  722. * another portion. This is useful for memory windows, for example the PC
  723. * VGA region.
  724. */
  725. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  726. struct kvm_memory_alias *alias)
  727. {
  728. int r, n;
  729. struct kvm_mem_alias *p;
  730. r = -EINVAL;
  731. /* General sanity checks */
  732. if (alias->memory_size & (PAGE_SIZE - 1))
  733. goto out;
  734. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  735. goto out;
  736. if (alias->slot >= KVM_ALIAS_SLOTS)
  737. goto out;
  738. if (alias->guest_phys_addr + alias->memory_size
  739. < alias->guest_phys_addr)
  740. goto out;
  741. if (alias->target_phys_addr + alias->memory_size
  742. < alias->target_phys_addr)
  743. goto out;
  744. mutex_lock(&kvm->lock);
  745. p = &kvm->aliases[alias->slot];
  746. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  747. p->npages = alias->memory_size >> PAGE_SHIFT;
  748. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  749. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  750. if (kvm->aliases[n - 1].npages)
  751. break;
  752. kvm->naliases = n;
  753. kvm_mmu_zap_all(kvm);
  754. mutex_unlock(&kvm->lock);
  755. return 0;
  756. out:
  757. return r;
  758. }
  759. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  760. {
  761. int r;
  762. r = 0;
  763. switch (chip->chip_id) {
  764. case KVM_IRQCHIP_PIC_MASTER:
  765. memcpy (&chip->chip.pic,
  766. &pic_irqchip(kvm)->pics[0],
  767. sizeof(struct kvm_pic_state));
  768. break;
  769. case KVM_IRQCHIP_PIC_SLAVE:
  770. memcpy (&chip->chip.pic,
  771. &pic_irqchip(kvm)->pics[1],
  772. sizeof(struct kvm_pic_state));
  773. break;
  774. case KVM_IRQCHIP_IOAPIC:
  775. memcpy (&chip->chip.ioapic,
  776. ioapic_irqchip(kvm),
  777. sizeof(struct kvm_ioapic_state));
  778. break;
  779. default:
  780. r = -EINVAL;
  781. break;
  782. }
  783. return r;
  784. }
  785. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  786. {
  787. int r;
  788. r = 0;
  789. switch (chip->chip_id) {
  790. case KVM_IRQCHIP_PIC_MASTER:
  791. memcpy (&pic_irqchip(kvm)->pics[0],
  792. &chip->chip.pic,
  793. sizeof(struct kvm_pic_state));
  794. break;
  795. case KVM_IRQCHIP_PIC_SLAVE:
  796. memcpy (&pic_irqchip(kvm)->pics[1],
  797. &chip->chip.pic,
  798. sizeof(struct kvm_pic_state));
  799. break;
  800. case KVM_IRQCHIP_IOAPIC:
  801. memcpy (ioapic_irqchip(kvm),
  802. &chip->chip.ioapic,
  803. sizeof(struct kvm_ioapic_state));
  804. break;
  805. default:
  806. r = -EINVAL;
  807. break;
  808. }
  809. kvm_pic_update_irq(pic_irqchip(kvm));
  810. return r;
  811. }
  812. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  813. {
  814. int i;
  815. struct kvm_mem_alias *alias;
  816. for (i = 0; i < kvm->naliases; ++i) {
  817. alias = &kvm->aliases[i];
  818. if (gfn >= alias->base_gfn
  819. && gfn < alias->base_gfn + alias->npages)
  820. return alias->target_gfn + gfn - alias->base_gfn;
  821. }
  822. return gfn;
  823. }
  824. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  825. {
  826. int i;
  827. for (i = 0; i < kvm->nmemslots; ++i) {
  828. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  829. if (gfn >= memslot->base_gfn
  830. && gfn < memslot->base_gfn + memslot->npages)
  831. return memslot;
  832. }
  833. return NULL;
  834. }
  835. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  836. {
  837. gfn = unalias_gfn(kvm, gfn);
  838. return __gfn_to_memslot(kvm, gfn);
  839. }
  840. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  841. {
  842. struct kvm_memory_slot *slot;
  843. gfn = unalias_gfn(kvm, gfn);
  844. slot = __gfn_to_memslot(kvm, gfn);
  845. if (!slot)
  846. return NULL;
  847. return slot->phys_mem[gfn - slot->base_gfn];
  848. }
  849. EXPORT_SYMBOL_GPL(gfn_to_page);
  850. static int next_segment(unsigned long len, int offset)
  851. {
  852. if (len > PAGE_SIZE - offset)
  853. return PAGE_SIZE - offset;
  854. else
  855. return len;
  856. }
  857. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  858. int len)
  859. {
  860. void *page_virt;
  861. struct page *page;
  862. page = gfn_to_page(kvm, gfn);
  863. if (!page)
  864. return -EFAULT;
  865. page_virt = kmap_atomic(page, KM_USER0);
  866. memcpy(data, page_virt + offset, len);
  867. kunmap_atomic(page_virt, KM_USER0);
  868. return 0;
  869. }
  870. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  871. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  872. {
  873. gfn_t gfn = gpa >> PAGE_SHIFT;
  874. int seg;
  875. int offset = offset_in_page(gpa);
  876. int ret;
  877. while ((seg = next_segment(len, offset)) != 0) {
  878. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  879. if (ret < 0)
  880. return ret;
  881. offset = 0;
  882. len -= seg;
  883. data += seg;
  884. ++gfn;
  885. }
  886. return 0;
  887. }
  888. EXPORT_SYMBOL_GPL(kvm_read_guest);
  889. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  890. int offset, int len)
  891. {
  892. void *page_virt;
  893. struct page *page;
  894. page = gfn_to_page(kvm, gfn);
  895. if (!page)
  896. return -EFAULT;
  897. page_virt = kmap_atomic(page, KM_USER0);
  898. memcpy(page_virt + offset, data, len);
  899. kunmap_atomic(page_virt, KM_USER0);
  900. mark_page_dirty(kvm, gfn);
  901. return 0;
  902. }
  903. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  904. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  905. unsigned long len)
  906. {
  907. gfn_t gfn = gpa >> PAGE_SHIFT;
  908. int seg;
  909. int offset = offset_in_page(gpa);
  910. int ret;
  911. while ((seg = next_segment(len, offset)) != 0) {
  912. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  913. if (ret < 0)
  914. return ret;
  915. offset = 0;
  916. len -= seg;
  917. data += seg;
  918. ++gfn;
  919. }
  920. return 0;
  921. }
  922. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  923. {
  924. void *page_virt;
  925. struct page *page;
  926. page = gfn_to_page(kvm, gfn);
  927. if (!page)
  928. return -EFAULT;
  929. page_virt = kmap_atomic(page, KM_USER0);
  930. memset(page_virt + offset, 0, len);
  931. kunmap_atomic(page_virt, KM_USER0);
  932. return 0;
  933. }
  934. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  935. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  936. {
  937. gfn_t gfn = gpa >> PAGE_SHIFT;
  938. int seg;
  939. int offset = offset_in_page(gpa);
  940. int ret;
  941. while ((seg = next_segment(len, offset)) != 0) {
  942. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  943. if (ret < 0)
  944. return ret;
  945. offset = 0;
  946. len -= seg;
  947. ++gfn;
  948. }
  949. return 0;
  950. }
  951. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  952. /* WARNING: Does not work on aliased pages. */
  953. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  954. {
  955. struct kvm_memory_slot *memslot;
  956. memslot = __gfn_to_memslot(kvm, gfn);
  957. if (memslot && memslot->dirty_bitmap) {
  958. unsigned long rel_gfn = gfn - memslot->base_gfn;
  959. /* avoid RMW */
  960. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  961. set_bit(rel_gfn, memslot->dirty_bitmap);
  962. }
  963. }
  964. int emulator_read_std(unsigned long addr,
  965. void *val,
  966. unsigned int bytes,
  967. struct kvm_vcpu *vcpu)
  968. {
  969. void *data = val;
  970. while (bytes) {
  971. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  972. unsigned offset = addr & (PAGE_SIZE-1);
  973. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  974. int ret;
  975. if (gpa == UNMAPPED_GVA)
  976. return X86EMUL_PROPAGATE_FAULT;
  977. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  978. if (ret < 0)
  979. return X86EMUL_UNHANDLEABLE;
  980. bytes -= tocopy;
  981. data += tocopy;
  982. addr += tocopy;
  983. }
  984. return X86EMUL_CONTINUE;
  985. }
  986. EXPORT_SYMBOL_GPL(emulator_read_std);
  987. static int emulator_write_std(unsigned long addr,
  988. const void *val,
  989. unsigned int bytes,
  990. struct kvm_vcpu *vcpu)
  991. {
  992. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  993. return X86EMUL_UNHANDLEABLE;
  994. }
  995. /*
  996. * Only apic need an MMIO device hook, so shortcut now..
  997. */
  998. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  999. gpa_t addr)
  1000. {
  1001. struct kvm_io_device *dev;
  1002. if (vcpu->apic) {
  1003. dev = &vcpu->apic->dev;
  1004. if (dev->in_range(dev, addr))
  1005. return dev;
  1006. }
  1007. return NULL;
  1008. }
  1009. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1010. gpa_t addr)
  1011. {
  1012. struct kvm_io_device *dev;
  1013. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1014. if (dev == NULL)
  1015. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1016. return dev;
  1017. }
  1018. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1019. gpa_t addr)
  1020. {
  1021. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1022. }
  1023. static int emulator_read_emulated(unsigned long addr,
  1024. void *val,
  1025. unsigned int bytes,
  1026. struct kvm_vcpu *vcpu)
  1027. {
  1028. struct kvm_io_device *mmio_dev;
  1029. gpa_t gpa;
  1030. if (vcpu->mmio_read_completed) {
  1031. memcpy(val, vcpu->mmio_data, bytes);
  1032. vcpu->mmio_read_completed = 0;
  1033. return X86EMUL_CONTINUE;
  1034. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1035. == X86EMUL_CONTINUE)
  1036. return X86EMUL_CONTINUE;
  1037. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1038. if (gpa == UNMAPPED_GVA)
  1039. return X86EMUL_PROPAGATE_FAULT;
  1040. /*
  1041. * Is this MMIO handled locally?
  1042. */
  1043. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1044. if (mmio_dev) {
  1045. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1046. return X86EMUL_CONTINUE;
  1047. }
  1048. vcpu->mmio_needed = 1;
  1049. vcpu->mmio_phys_addr = gpa;
  1050. vcpu->mmio_size = bytes;
  1051. vcpu->mmio_is_write = 0;
  1052. return X86EMUL_UNHANDLEABLE;
  1053. }
  1054. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1055. const void *val, int bytes)
  1056. {
  1057. int ret;
  1058. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1059. if (ret < 0)
  1060. return 0;
  1061. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1062. return 1;
  1063. }
  1064. static int emulator_write_emulated_onepage(unsigned long addr,
  1065. const void *val,
  1066. unsigned int bytes,
  1067. struct kvm_vcpu *vcpu)
  1068. {
  1069. struct kvm_io_device *mmio_dev;
  1070. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1071. if (gpa == UNMAPPED_GVA) {
  1072. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1073. return X86EMUL_PROPAGATE_FAULT;
  1074. }
  1075. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1076. return X86EMUL_CONTINUE;
  1077. /*
  1078. * Is this MMIO handled locally?
  1079. */
  1080. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1081. if (mmio_dev) {
  1082. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1083. return X86EMUL_CONTINUE;
  1084. }
  1085. vcpu->mmio_needed = 1;
  1086. vcpu->mmio_phys_addr = gpa;
  1087. vcpu->mmio_size = bytes;
  1088. vcpu->mmio_is_write = 1;
  1089. memcpy(vcpu->mmio_data, val, bytes);
  1090. return X86EMUL_CONTINUE;
  1091. }
  1092. int emulator_write_emulated(unsigned long addr,
  1093. const void *val,
  1094. unsigned int bytes,
  1095. struct kvm_vcpu *vcpu)
  1096. {
  1097. /* Crossing a page boundary? */
  1098. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1099. int rc, now;
  1100. now = -addr & ~PAGE_MASK;
  1101. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1102. if (rc != X86EMUL_CONTINUE)
  1103. return rc;
  1104. addr += now;
  1105. val += now;
  1106. bytes -= now;
  1107. }
  1108. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1109. }
  1110. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1111. static int emulator_cmpxchg_emulated(unsigned long addr,
  1112. const void *old,
  1113. const void *new,
  1114. unsigned int bytes,
  1115. struct kvm_vcpu *vcpu)
  1116. {
  1117. static int reported;
  1118. if (!reported) {
  1119. reported = 1;
  1120. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1121. }
  1122. return emulator_write_emulated(addr, new, bytes, vcpu);
  1123. }
  1124. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1125. {
  1126. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1127. }
  1128. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1129. {
  1130. return X86EMUL_CONTINUE;
  1131. }
  1132. int emulate_clts(struct kvm_vcpu *vcpu)
  1133. {
  1134. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1135. return X86EMUL_CONTINUE;
  1136. }
  1137. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1138. {
  1139. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1140. switch (dr) {
  1141. case 0 ... 3:
  1142. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1143. return X86EMUL_CONTINUE;
  1144. default:
  1145. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1146. return X86EMUL_UNHANDLEABLE;
  1147. }
  1148. }
  1149. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1150. {
  1151. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1152. int exception;
  1153. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1154. if (exception) {
  1155. /* FIXME: better handling */
  1156. return X86EMUL_UNHANDLEABLE;
  1157. }
  1158. return X86EMUL_CONTINUE;
  1159. }
  1160. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1161. {
  1162. static int reported;
  1163. u8 opcodes[4];
  1164. unsigned long rip = vcpu->rip;
  1165. unsigned long rip_linear;
  1166. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1167. if (reported)
  1168. return;
  1169. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1170. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1171. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1172. reported = 1;
  1173. }
  1174. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1175. struct x86_emulate_ops emulate_ops = {
  1176. .read_std = emulator_read_std,
  1177. .write_std = emulator_write_std,
  1178. .read_emulated = emulator_read_emulated,
  1179. .write_emulated = emulator_write_emulated,
  1180. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1181. };
  1182. int emulate_instruction(struct kvm_vcpu *vcpu,
  1183. struct kvm_run *run,
  1184. unsigned long cr2,
  1185. u16 error_code,
  1186. int no_decode)
  1187. {
  1188. int r;
  1189. vcpu->mmio_fault_cr2 = cr2;
  1190. kvm_x86_ops->cache_regs(vcpu);
  1191. vcpu->mmio_is_write = 0;
  1192. vcpu->pio.string = 0;
  1193. if (!no_decode) {
  1194. int cs_db, cs_l;
  1195. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1196. vcpu->emulate_ctxt.vcpu = vcpu;
  1197. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1198. vcpu->emulate_ctxt.cr2 = cr2;
  1199. vcpu->emulate_ctxt.mode =
  1200. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1201. ? X86EMUL_MODE_REAL : cs_l
  1202. ? X86EMUL_MODE_PROT64 : cs_db
  1203. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1204. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1205. vcpu->emulate_ctxt.cs_base = 0;
  1206. vcpu->emulate_ctxt.ds_base = 0;
  1207. vcpu->emulate_ctxt.es_base = 0;
  1208. vcpu->emulate_ctxt.ss_base = 0;
  1209. } else {
  1210. vcpu->emulate_ctxt.cs_base =
  1211. get_segment_base(vcpu, VCPU_SREG_CS);
  1212. vcpu->emulate_ctxt.ds_base =
  1213. get_segment_base(vcpu, VCPU_SREG_DS);
  1214. vcpu->emulate_ctxt.es_base =
  1215. get_segment_base(vcpu, VCPU_SREG_ES);
  1216. vcpu->emulate_ctxt.ss_base =
  1217. get_segment_base(vcpu, VCPU_SREG_SS);
  1218. }
  1219. vcpu->emulate_ctxt.gs_base =
  1220. get_segment_base(vcpu, VCPU_SREG_GS);
  1221. vcpu->emulate_ctxt.fs_base =
  1222. get_segment_base(vcpu, VCPU_SREG_FS);
  1223. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1224. if (r) {
  1225. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1226. return EMULATE_DONE;
  1227. return EMULATE_FAIL;
  1228. }
  1229. }
  1230. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1231. if (vcpu->pio.string)
  1232. return EMULATE_DO_MMIO;
  1233. if ((r || vcpu->mmio_is_write) && run) {
  1234. run->exit_reason = KVM_EXIT_MMIO;
  1235. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1236. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1237. run->mmio.len = vcpu->mmio_size;
  1238. run->mmio.is_write = vcpu->mmio_is_write;
  1239. }
  1240. if (r) {
  1241. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1242. return EMULATE_DONE;
  1243. if (!vcpu->mmio_needed) {
  1244. kvm_report_emulation_failure(vcpu, "mmio");
  1245. return EMULATE_FAIL;
  1246. }
  1247. return EMULATE_DO_MMIO;
  1248. }
  1249. kvm_x86_ops->decache_regs(vcpu);
  1250. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1251. if (vcpu->mmio_is_write) {
  1252. vcpu->mmio_needed = 0;
  1253. return EMULATE_DO_MMIO;
  1254. }
  1255. return EMULATE_DONE;
  1256. }
  1257. EXPORT_SYMBOL_GPL(emulate_instruction);
  1258. /*
  1259. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1260. */
  1261. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1262. {
  1263. DECLARE_WAITQUEUE(wait, current);
  1264. add_wait_queue(&vcpu->wq, &wait);
  1265. /*
  1266. * We will block until either an interrupt or a signal wakes us up
  1267. */
  1268. while (!kvm_cpu_has_interrupt(vcpu)
  1269. && !signal_pending(current)
  1270. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1271. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1272. set_current_state(TASK_INTERRUPTIBLE);
  1273. vcpu_put(vcpu);
  1274. schedule();
  1275. vcpu_load(vcpu);
  1276. }
  1277. __set_current_state(TASK_RUNNING);
  1278. remove_wait_queue(&vcpu->wq, &wait);
  1279. }
  1280. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1281. {
  1282. ++vcpu->stat.halt_exits;
  1283. if (irqchip_in_kernel(vcpu->kvm)) {
  1284. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1285. kvm_vcpu_block(vcpu);
  1286. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1287. return -EINTR;
  1288. return 1;
  1289. } else {
  1290. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1291. return 0;
  1292. }
  1293. }
  1294. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1295. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1296. {
  1297. unsigned long nr, a0, a1, a2, a3, ret;
  1298. kvm_x86_ops->cache_regs(vcpu);
  1299. nr = vcpu->regs[VCPU_REGS_RAX];
  1300. a0 = vcpu->regs[VCPU_REGS_RBX];
  1301. a1 = vcpu->regs[VCPU_REGS_RCX];
  1302. a2 = vcpu->regs[VCPU_REGS_RDX];
  1303. a3 = vcpu->regs[VCPU_REGS_RSI];
  1304. if (!is_long_mode(vcpu)) {
  1305. nr &= 0xFFFFFFFF;
  1306. a0 &= 0xFFFFFFFF;
  1307. a1 &= 0xFFFFFFFF;
  1308. a2 &= 0xFFFFFFFF;
  1309. a3 &= 0xFFFFFFFF;
  1310. }
  1311. switch (nr) {
  1312. default:
  1313. ret = -KVM_ENOSYS;
  1314. break;
  1315. }
  1316. vcpu->regs[VCPU_REGS_RAX] = ret;
  1317. kvm_x86_ops->decache_regs(vcpu);
  1318. return 0;
  1319. }
  1320. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1321. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1322. {
  1323. char instruction[3];
  1324. int ret = 0;
  1325. mutex_lock(&vcpu->kvm->lock);
  1326. /*
  1327. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1328. * to ensure that the updated hypercall appears atomically across all
  1329. * VCPUs.
  1330. */
  1331. kvm_mmu_zap_all(vcpu->kvm);
  1332. kvm_x86_ops->cache_regs(vcpu);
  1333. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1334. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1335. != X86EMUL_CONTINUE)
  1336. ret = -EFAULT;
  1337. mutex_unlock(&vcpu->kvm->lock);
  1338. return ret;
  1339. }
  1340. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1341. {
  1342. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1343. }
  1344. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1345. {
  1346. struct descriptor_table dt = { limit, base };
  1347. kvm_x86_ops->set_gdt(vcpu, &dt);
  1348. }
  1349. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1350. {
  1351. struct descriptor_table dt = { limit, base };
  1352. kvm_x86_ops->set_idt(vcpu, &dt);
  1353. }
  1354. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1355. unsigned long *rflags)
  1356. {
  1357. lmsw(vcpu, msw);
  1358. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1359. }
  1360. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1361. {
  1362. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1363. switch (cr) {
  1364. case 0:
  1365. return vcpu->cr0;
  1366. case 2:
  1367. return vcpu->cr2;
  1368. case 3:
  1369. return vcpu->cr3;
  1370. case 4:
  1371. return vcpu->cr4;
  1372. default:
  1373. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1374. return 0;
  1375. }
  1376. }
  1377. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1378. unsigned long *rflags)
  1379. {
  1380. switch (cr) {
  1381. case 0:
  1382. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1383. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1384. break;
  1385. case 2:
  1386. vcpu->cr2 = val;
  1387. break;
  1388. case 3:
  1389. set_cr3(vcpu, val);
  1390. break;
  1391. case 4:
  1392. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1393. break;
  1394. default:
  1395. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1396. }
  1397. }
  1398. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1399. {
  1400. u64 data;
  1401. switch (msr) {
  1402. case 0xc0010010: /* SYSCFG */
  1403. case 0xc0010015: /* HWCR */
  1404. case MSR_IA32_PLATFORM_ID:
  1405. case MSR_IA32_P5_MC_ADDR:
  1406. case MSR_IA32_P5_MC_TYPE:
  1407. case MSR_IA32_MC0_CTL:
  1408. case MSR_IA32_MCG_STATUS:
  1409. case MSR_IA32_MCG_CAP:
  1410. case MSR_IA32_MC0_MISC:
  1411. case MSR_IA32_MC0_MISC+4:
  1412. case MSR_IA32_MC0_MISC+8:
  1413. case MSR_IA32_MC0_MISC+12:
  1414. case MSR_IA32_MC0_MISC+16:
  1415. case MSR_IA32_UCODE_REV:
  1416. case MSR_IA32_PERF_STATUS:
  1417. case MSR_IA32_EBL_CR_POWERON:
  1418. /* MTRR registers */
  1419. case 0xfe:
  1420. case 0x200 ... 0x2ff:
  1421. data = 0;
  1422. break;
  1423. case 0xcd: /* fsb frequency */
  1424. data = 3;
  1425. break;
  1426. case MSR_IA32_APICBASE:
  1427. data = kvm_get_apic_base(vcpu);
  1428. break;
  1429. case MSR_IA32_MISC_ENABLE:
  1430. data = vcpu->ia32_misc_enable_msr;
  1431. break;
  1432. #ifdef CONFIG_X86_64
  1433. case MSR_EFER:
  1434. data = vcpu->shadow_efer;
  1435. break;
  1436. #endif
  1437. default:
  1438. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1439. return 1;
  1440. }
  1441. *pdata = data;
  1442. return 0;
  1443. }
  1444. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1445. /*
  1446. * Reads an msr value (of 'msr_index') into 'pdata'.
  1447. * Returns 0 on success, non-0 otherwise.
  1448. * Assumes vcpu_load() was already called.
  1449. */
  1450. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1451. {
  1452. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1453. }
  1454. #ifdef CONFIG_X86_64
  1455. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1456. {
  1457. if (efer & EFER_RESERVED_BITS) {
  1458. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1459. efer);
  1460. inject_gp(vcpu);
  1461. return;
  1462. }
  1463. if (is_paging(vcpu)
  1464. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1465. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1466. inject_gp(vcpu);
  1467. return;
  1468. }
  1469. kvm_x86_ops->set_efer(vcpu, efer);
  1470. efer &= ~EFER_LMA;
  1471. efer |= vcpu->shadow_efer & EFER_LMA;
  1472. vcpu->shadow_efer = efer;
  1473. }
  1474. #endif
  1475. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1476. {
  1477. switch (msr) {
  1478. #ifdef CONFIG_X86_64
  1479. case MSR_EFER:
  1480. set_efer(vcpu, data);
  1481. break;
  1482. #endif
  1483. case MSR_IA32_MC0_STATUS:
  1484. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1485. __FUNCTION__, data);
  1486. break;
  1487. case MSR_IA32_MCG_STATUS:
  1488. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1489. __FUNCTION__, data);
  1490. break;
  1491. case MSR_IA32_UCODE_REV:
  1492. case MSR_IA32_UCODE_WRITE:
  1493. case 0x200 ... 0x2ff: /* MTRRs */
  1494. break;
  1495. case MSR_IA32_APICBASE:
  1496. kvm_set_apic_base(vcpu, data);
  1497. break;
  1498. case MSR_IA32_MISC_ENABLE:
  1499. vcpu->ia32_misc_enable_msr = data;
  1500. break;
  1501. default:
  1502. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1503. return 1;
  1504. }
  1505. return 0;
  1506. }
  1507. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1508. /*
  1509. * Writes msr value into into the appropriate "register".
  1510. * Returns 0 on success, non-0 otherwise.
  1511. * Assumes vcpu_load() was already called.
  1512. */
  1513. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1514. {
  1515. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1516. }
  1517. void kvm_resched(struct kvm_vcpu *vcpu)
  1518. {
  1519. if (!need_resched())
  1520. return;
  1521. cond_resched();
  1522. }
  1523. EXPORT_SYMBOL_GPL(kvm_resched);
  1524. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1525. {
  1526. int i;
  1527. u32 function;
  1528. struct kvm_cpuid_entry *e, *best;
  1529. kvm_x86_ops->cache_regs(vcpu);
  1530. function = vcpu->regs[VCPU_REGS_RAX];
  1531. vcpu->regs[VCPU_REGS_RAX] = 0;
  1532. vcpu->regs[VCPU_REGS_RBX] = 0;
  1533. vcpu->regs[VCPU_REGS_RCX] = 0;
  1534. vcpu->regs[VCPU_REGS_RDX] = 0;
  1535. best = NULL;
  1536. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1537. e = &vcpu->cpuid_entries[i];
  1538. if (e->function == function) {
  1539. best = e;
  1540. break;
  1541. }
  1542. /*
  1543. * Both basic or both extended?
  1544. */
  1545. if (((e->function ^ function) & 0x80000000) == 0)
  1546. if (!best || e->function > best->function)
  1547. best = e;
  1548. }
  1549. if (best) {
  1550. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1551. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1552. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1553. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1554. }
  1555. kvm_x86_ops->decache_regs(vcpu);
  1556. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1557. }
  1558. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1559. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1560. {
  1561. void *p = vcpu->pio_data;
  1562. void *q;
  1563. unsigned bytes;
  1564. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1565. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1566. PAGE_KERNEL);
  1567. if (!q) {
  1568. free_pio_guest_pages(vcpu);
  1569. return -ENOMEM;
  1570. }
  1571. q += vcpu->pio.guest_page_offset;
  1572. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1573. if (vcpu->pio.in)
  1574. memcpy(q, p, bytes);
  1575. else
  1576. memcpy(p, q, bytes);
  1577. q -= vcpu->pio.guest_page_offset;
  1578. vunmap(q);
  1579. free_pio_guest_pages(vcpu);
  1580. return 0;
  1581. }
  1582. static int complete_pio(struct kvm_vcpu *vcpu)
  1583. {
  1584. struct kvm_pio_request *io = &vcpu->pio;
  1585. long delta;
  1586. int r;
  1587. kvm_x86_ops->cache_regs(vcpu);
  1588. if (!io->string) {
  1589. if (io->in)
  1590. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1591. io->size);
  1592. } else {
  1593. if (io->in) {
  1594. r = pio_copy_data(vcpu);
  1595. if (r) {
  1596. kvm_x86_ops->cache_regs(vcpu);
  1597. return r;
  1598. }
  1599. }
  1600. delta = 1;
  1601. if (io->rep) {
  1602. delta *= io->cur_count;
  1603. /*
  1604. * The size of the register should really depend on
  1605. * current address size.
  1606. */
  1607. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1608. }
  1609. if (io->down)
  1610. delta = -delta;
  1611. delta *= io->size;
  1612. if (io->in)
  1613. vcpu->regs[VCPU_REGS_RDI] += delta;
  1614. else
  1615. vcpu->regs[VCPU_REGS_RSI] += delta;
  1616. }
  1617. kvm_x86_ops->decache_regs(vcpu);
  1618. io->count -= io->cur_count;
  1619. io->cur_count = 0;
  1620. return 0;
  1621. }
  1622. static void kernel_pio(struct kvm_io_device *pio_dev,
  1623. struct kvm_vcpu *vcpu,
  1624. void *pd)
  1625. {
  1626. /* TODO: String I/O for in kernel device */
  1627. mutex_lock(&vcpu->kvm->lock);
  1628. if (vcpu->pio.in)
  1629. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1630. vcpu->pio.size,
  1631. pd);
  1632. else
  1633. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1634. vcpu->pio.size,
  1635. pd);
  1636. mutex_unlock(&vcpu->kvm->lock);
  1637. }
  1638. static void pio_string_write(struct kvm_io_device *pio_dev,
  1639. struct kvm_vcpu *vcpu)
  1640. {
  1641. struct kvm_pio_request *io = &vcpu->pio;
  1642. void *pd = vcpu->pio_data;
  1643. int i;
  1644. mutex_lock(&vcpu->kvm->lock);
  1645. for (i = 0; i < io->cur_count; i++) {
  1646. kvm_iodevice_write(pio_dev, io->port,
  1647. io->size,
  1648. pd);
  1649. pd += io->size;
  1650. }
  1651. mutex_unlock(&vcpu->kvm->lock);
  1652. }
  1653. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1654. int size, unsigned port)
  1655. {
  1656. struct kvm_io_device *pio_dev;
  1657. vcpu->run->exit_reason = KVM_EXIT_IO;
  1658. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1659. vcpu->run->io.size = vcpu->pio.size = size;
  1660. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1661. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1662. vcpu->run->io.port = vcpu->pio.port = port;
  1663. vcpu->pio.in = in;
  1664. vcpu->pio.string = 0;
  1665. vcpu->pio.down = 0;
  1666. vcpu->pio.guest_page_offset = 0;
  1667. vcpu->pio.rep = 0;
  1668. kvm_x86_ops->cache_regs(vcpu);
  1669. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1670. kvm_x86_ops->decache_regs(vcpu);
  1671. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1672. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1673. if (pio_dev) {
  1674. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1675. complete_pio(vcpu);
  1676. return 1;
  1677. }
  1678. return 0;
  1679. }
  1680. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1681. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1682. int size, unsigned long count, int down,
  1683. gva_t address, int rep, unsigned port)
  1684. {
  1685. unsigned now, in_page;
  1686. int i, ret = 0;
  1687. int nr_pages = 1;
  1688. struct page *page;
  1689. struct kvm_io_device *pio_dev;
  1690. vcpu->run->exit_reason = KVM_EXIT_IO;
  1691. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1692. vcpu->run->io.size = vcpu->pio.size = size;
  1693. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1694. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1695. vcpu->run->io.port = vcpu->pio.port = port;
  1696. vcpu->pio.in = in;
  1697. vcpu->pio.string = 1;
  1698. vcpu->pio.down = down;
  1699. vcpu->pio.guest_page_offset = offset_in_page(address);
  1700. vcpu->pio.rep = rep;
  1701. if (!count) {
  1702. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1703. return 1;
  1704. }
  1705. if (!down)
  1706. in_page = PAGE_SIZE - offset_in_page(address);
  1707. else
  1708. in_page = offset_in_page(address) + size;
  1709. now = min(count, (unsigned long)in_page / size);
  1710. if (!now) {
  1711. /*
  1712. * String I/O straddles page boundary. Pin two guest pages
  1713. * so that we satisfy atomicity constraints. Do just one
  1714. * transaction to avoid complexity.
  1715. */
  1716. nr_pages = 2;
  1717. now = 1;
  1718. }
  1719. if (down) {
  1720. /*
  1721. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1722. */
  1723. pr_unimpl(vcpu, "guest string pio down\n");
  1724. inject_gp(vcpu);
  1725. return 1;
  1726. }
  1727. vcpu->run->io.count = now;
  1728. vcpu->pio.cur_count = now;
  1729. if (vcpu->pio.cur_count == vcpu->pio.count)
  1730. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1731. for (i = 0; i < nr_pages; ++i) {
  1732. mutex_lock(&vcpu->kvm->lock);
  1733. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1734. if (page)
  1735. get_page(page);
  1736. vcpu->pio.guest_pages[i] = page;
  1737. mutex_unlock(&vcpu->kvm->lock);
  1738. if (!page) {
  1739. inject_gp(vcpu);
  1740. free_pio_guest_pages(vcpu);
  1741. return 1;
  1742. }
  1743. }
  1744. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1745. if (!vcpu->pio.in) {
  1746. /* string PIO write */
  1747. ret = pio_copy_data(vcpu);
  1748. if (ret >= 0 && pio_dev) {
  1749. pio_string_write(pio_dev, vcpu);
  1750. complete_pio(vcpu);
  1751. if (vcpu->pio.count == 0)
  1752. ret = 1;
  1753. }
  1754. } else if (pio_dev)
  1755. pr_unimpl(vcpu, "no string pio read support yet, "
  1756. "port %x size %d count %ld\n",
  1757. port, size, count);
  1758. return ret;
  1759. }
  1760. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1761. /*
  1762. * Check if userspace requested an interrupt window, and that the
  1763. * interrupt window is open.
  1764. *
  1765. * No need to exit to userspace if we already have an interrupt queued.
  1766. */
  1767. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1768. struct kvm_run *kvm_run)
  1769. {
  1770. return (!vcpu->irq_summary &&
  1771. kvm_run->request_interrupt_window &&
  1772. vcpu->interrupt_window_open &&
  1773. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1774. }
  1775. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1776. struct kvm_run *kvm_run)
  1777. {
  1778. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1779. kvm_run->cr8 = get_cr8(vcpu);
  1780. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1781. if (irqchip_in_kernel(vcpu->kvm))
  1782. kvm_run->ready_for_interrupt_injection = 1;
  1783. else
  1784. kvm_run->ready_for_interrupt_injection =
  1785. (vcpu->interrupt_window_open &&
  1786. vcpu->irq_summary == 0);
  1787. }
  1788. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1789. {
  1790. int r;
  1791. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1792. printk("vcpu %d received sipi with vector # %x\n",
  1793. vcpu->vcpu_id, vcpu->sipi_vector);
  1794. kvm_lapic_reset(vcpu);
  1795. kvm_x86_ops->vcpu_reset(vcpu);
  1796. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1797. }
  1798. preempted:
  1799. if (vcpu->guest_debug.enabled)
  1800. kvm_x86_ops->guest_debug_pre(vcpu);
  1801. again:
  1802. r = kvm_mmu_reload(vcpu);
  1803. if (unlikely(r))
  1804. goto out;
  1805. preempt_disable();
  1806. kvm_x86_ops->prepare_guest_switch(vcpu);
  1807. kvm_load_guest_fpu(vcpu);
  1808. local_irq_disable();
  1809. if (signal_pending(current)) {
  1810. local_irq_enable();
  1811. preempt_enable();
  1812. r = -EINTR;
  1813. kvm_run->exit_reason = KVM_EXIT_INTR;
  1814. ++vcpu->stat.signal_exits;
  1815. goto out;
  1816. }
  1817. if (irqchip_in_kernel(vcpu->kvm))
  1818. kvm_x86_ops->inject_pending_irq(vcpu);
  1819. else if (!vcpu->mmio_read_completed)
  1820. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1821. vcpu->guest_mode = 1;
  1822. kvm_guest_enter();
  1823. if (vcpu->requests)
  1824. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1825. kvm_x86_ops->tlb_flush(vcpu);
  1826. kvm_x86_ops->run(vcpu, kvm_run);
  1827. vcpu->guest_mode = 0;
  1828. local_irq_enable();
  1829. ++vcpu->stat.exits;
  1830. /*
  1831. * We must have an instruction between local_irq_enable() and
  1832. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1833. * the interrupt shadow. The stat.exits increment will do nicely.
  1834. * But we need to prevent reordering, hence this barrier():
  1835. */
  1836. barrier();
  1837. kvm_guest_exit();
  1838. preempt_enable();
  1839. /*
  1840. * Profile KVM exit RIPs:
  1841. */
  1842. if (unlikely(prof_on == KVM_PROFILING)) {
  1843. kvm_x86_ops->cache_regs(vcpu);
  1844. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1845. }
  1846. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1847. if (r > 0) {
  1848. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1849. r = -EINTR;
  1850. kvm_run->exit_reason = KVM_EXIT_INTR;
  1851. ++vcpu->stat.request_irq_exits;
  1852. goto out;
  1853. }
  1854. if (!need_resched()) {
  1855. ++vcpu->stat.light_exits;
  1856. goto again;
  1857. }
  1858. }
  1859. out:
  1860. if (r > 0) {
  1861. kvm_resched(vcpu);
  1862. goto preempted;
  1863. }
  1864. post_kvm_run_save(vcpu, kvm_run);
  1865. return r;
  1866. }
  1867. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1868. {
  1869. int r;
  1870. sigset_t sigsaved;
  1871. vcpu_load(vcpu);
  1872. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1873. kvm_vcpu_block(vcpu);
  1874. vcpu_put(vcpu);
  1875. return -EAGAIN;
  1876. }
  1877. if (vcpu->sigset_active)
  1878. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1879. /* re-sync apic's tpr */
  1880. if (!irqchip_in_kernel(vcpu->kvm))
  1881. set_cr8(vcpu, kvm_run->cr8);
  1882. if (vcpu->pio.cur_count) {
  1883. r = complete_pio(vcpu);
  1884. if (r)
  1885. goto out;
  1886. }
  1887. if (vcpu->mmio_needed) {
  1888. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1889. vcpu->mmio_read_completed = 1;
  1890. vcpu->mmio_needed = 0;
  1891. r = emulate_instruction(vcpu, kvm_run,
  1892. vcpu->mmio_fault_cr2, 0, 1);
  1893. if (r == EMULATE_DO_MMIO) {
  1894. /*
  1895. * Read-modify-write. Back to userspace.
  1896. */
  1897. r = 0;
  1898. goto out;
  1899. }
  1900. }
  1901. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1902. kvm_x86_ops->cache_regs(vcpu);
  1903. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1904. kvm_x86_ops->decache_regs(vcpu);
  1905. }
  1906. r = __vcpu_run(vcpu, kvm_run);
  1907. out:
  1908. if (vcpu->sigset_active)
  1909. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1910. vcpu_put(vcpu);
  1911. return r;
  1912. }
  1913. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1914. struct kvm_regs *regs)
  1915. {
  1916. vcpu_load(vcpu);
  1917. kvm_x86_ops->cache_regs(vcpu);
  1918. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1919. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1920. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1921. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1922. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1923. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1924. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1925. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1926. #ifdef CONFIG_X86_64
  1927. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1928. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1929. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1930. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1931. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1932. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1933. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1934. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1935. #endif
  1936. regs->rip = vcpu->rip;
  1937. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1938. /*
  1939. * Don't leak debug flags in case they were set for guest debugging
  1940. */
  1941. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1942. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1943. vcpu_put(vcpu);
  1944. return 0;
  1945. }
  1946. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1947. struct kvm_regs *regs)
  1948. {
  1949. vcpu_load(vcpu);
  1950. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1951. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1952. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1953. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1954. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1955. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1956. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1957. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1958. #ifdef CONFIG_X86_64
  1959. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1960. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1961. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1962. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1963. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1964. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1965. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1966. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1967. #endif
  1968. vcpu->rip = regs->rip;
  1969. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1970. kvm_x86_ops->decache_regs(vcpu);
  1971. vcpu_put(vcpu);
  1972. return 0;
  1973. }
  1974. static void get_segment(struct kvm_vcpu *vcpu,
  1975. struct kvm_segment *var, int seg)
  1976. {
  1977. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1978. }
  1979. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1980. struct kvm_sregs *sregs)
  1981. {
  1982. struct descriptor_table dt;
  1983. int pending_vec;
  1984. vcpu_load(vcpu);
  1985. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1986. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1987. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1988. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1989. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1990. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1991. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1992. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1993. kvm_x86_ops->get_idt(vcpu, &dt);
  1994. sregs->idt.limit = dt.limit;
  1995. sregs->idt.base = dt.base;
  1996. kvm_x86_ops->get_gdt(vcpu, &dt);
  1997. sregs->gdt.limit = dt.limit;
  1998. sregs->gdt.base = dt.base;
  1999. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2000. sregs->cr0 = vcpu->cr0;
  2001. sregs->cr2 = vcpu->cr2;
  2002. sregs->cr3 = vcpu->cr3;
  2003. sregs->cr4 = vcpu->cr4;
  2004. sregs->cr8 = get_cr8(vcpu);
  2005. sregs->efer = vcpu->shadow_efer;
  2006. sregs->apic_base = kvm_get_apic_base(vcpu);
  2007. if (irqchip_in_kernel(vcpu->kvm)) {
  2008. memset(sregs->interrupt_bitmap, 0,
  2009. sizeof sregs->interrupt_bitmap);
  2010. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2011. if (pending_vec >= 0)
  2012. set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
  2013. } else
  2014. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2015. sizeof sregs->interrupt_bitmap);
  2016. vcpu_put(vcpu);
  2017. return 0;
  2018. }
  2019. static void set_segment(struct kvm_vcpu *vcpu,
  2020. struct kvm_segment *var, int seg)
  2021. {
  2022. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2023. }
  2024. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2025. struct kvm_sregs *sregs)
  2026. {
  2027. int mmu_reset_needed = 0;
  2028. int i, pending_vec, max_bits;
  2029. struct descriptor_table dt;
  2030. vcpu_load(vcpu);
  2031. dt.limit = sregs->idt.limit;
  2032. dt.base = sregs->idt.base;
  2033. kvm_x86_ops->set_idt(vcpu, &dt);
  2034. dt.limit = sregs->gdt.limit;
  2035. dt.base = sregs->gdt.base;
  2036. kvm_x86_ops->set_gdt(vcpu, &dt);
  2037. vcpu->cr2 = sregs->cr2;
  2038. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2039. vcpu->cr3 = sregs->cr3;
  2040. set_cr8(vcpu, sregs->cr8);
  2041. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2042. #ifdef CONFIG_X86_64
  2043. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2044. #endif
  2045. kvm_set_apic_base(vcpu, sregs->apic_base);
  2046. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2047. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2048. vcpu->cr0 = sregs->cr0;
  2049. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2050. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2051. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2052. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2053. load_pdptrs(vcpu, vcpu->cr3);
  2054. if (mmu_reset_needed)
  2055. kvm_mmu_reset_context(vcpu);
  2056. if (!irqchip_in_kernel(vcpu->kvm)) {
  2057. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2058. sizeof vcpu->irq_pending);
  2059. vcpu->irq_summary = 0;
  2060. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2061. if (vcpu->irq_pending[i])
  2062. __set_bit(i, &vcpu->irq_summary);
  2063. } else {
  2064. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2065. pending_vec = find_first_bit(
  2066. (const unsigned long *)sregs->interrupt_bitmap,
  2067. max_bits);
  2068. /* Only pending external irq is handled here */
  2069. if (pending_vec < max_bits) {
  2070. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2071. printk("Set back pending irq %d\n", pending_vec);
  2072. }
  2073. }
  2074. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2075. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2076. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2077. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2078. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2079. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2080. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2081. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2082. vcpu_put(vcpu);
  2083. return 0;
  2084. }
  2085. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2086. {
  2087. struct kvm_segment cs;
  2088. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2089. *db = cs.db;
  2090. *l = cs.l;
  2091. }
  2092. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2093. /*
  2094. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  2095. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  2096. *
  2097. * This list is modified at module load time to reflect the
  2098. * capabilities of the host cpu.
  2099. */
  2100. static u32 msrs_to_save[] = {
  2101. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  2102. MSR_K6_STAR,
  2103. #ifdef CONFIG_X86_64
  2104. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  2105. #endif
  2106. MSR_IA32_TIME_STAMP_COUNTER,
  2107. };
  2108. static unsigned num_msrs_to_save;
  2109. static u32 emulated_msrs[] = {
  2110. MSR_IA32_MISC_ENABLE,
  2111. };
  2112. static __init void kvm_init_msr_list(void)
  2113. {
  2114. u32 dummy[2];
  2115. unsigned i, j;
  2116. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2117. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2118. continue;
  2119. if (j < i)
  2120. msrs_to_save[j] = msrs_to_save[i];
  2121. j++;
  2122. }
  2123. num_msrs_to_save = j;
  2124. }
  2125. /*
  2126. * Adapt set_msr() to msr_io()'s calling convention
  2127. */
  2128. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  2129. {
  2130. return kvm_set_msr(vcpu, index, *data);
  2131. }
  2132. /*
  2133. * Read or write a bunch of msrs. All parameters are kernel addresses.
  2134. *
  2135. * @return number of msrs set successfully.
  2136. */
  2137. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  2138. struct kvm_msr_entry *entries,
  2139. int (*do_msr)(struct kvm_vcpu *vcpu,
  2140. unsigned index, u64 *data))
  2141. {
  2142. int i;
  2143. vcpu_load(vcpu);
  2144. for (i = 0; i < msrs->nmsrs; ++i)
  2145. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  2146. break;
  2147. vcpu_put(vcpu);
  2148. return i;
  2149. }
  2150. /*
  2151. * Read or write a bunch of msrs. Parameters are user addresses.
  2152. *
  2153. * @return number of msrs set successfully.
  2154. */
  2155. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  2156. int (*do_msr)(struct kvm_vcpu *vcpu,
  2157. unsigned index, u64 *data),
  2158. int writeback)
  2159. {
  2160. struct kvm_msrs msrs;
  2161. struct kvm_msr_entry *entries;
  2162. int r, n;
  2163. unsigned size;
  2164. r = -EFAULT;
  2165. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2166. goto out;
  2167. r = -E2BIG;
  2168. if (msrs.nmsrs >= MAX_IO_MSRS)
  2169. goto out;
  2170. r = -ENOMEM;
  2171. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2172. entries = vmalloc(size);
  2173. if (!entries)
  2174. goto out;
  2175. r = -EFAULT;
  2176. if (copy_from_user(entries, user_msrs->entries, size))
  2177. goto out_free;
  2178. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2179. if (r < 0)
  2180. goto out_free;
  2181. r = -EFAULT;
  2182. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2183. goto out_free;
  2184. r = n;
  2185. out_free:
  2186. vfree(entries);
  2187. out:
  2188. return r;
  2189. }
  2190. /*
  2191. * Translate a guest virtual address to a guest physical address.
  2192. */
  2193. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2194. struct kvm_translation *tr)
  2195. {
  2196. unsigned long vaddr = tr->linear_address;
  2197. gpa_t gpa;
  2198. vcpu_load(vcpu);
  2199. mutex_lock(&vcpu->kvm->lock);
  2200. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2201. tr->physical_address = gpa;
  2202. tr->valid = gpa != UNMAPPED_GVA;
  2203. tr->writeable = 1;
  2204. tr->usermode = 0;
  2205. mutex_unlock(&vcpu->kvm->lock);
  2206. vcpu_put(vcpu);
  2207. return 0;
  2208. }
  2209. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2210. struct kvm_interrupt *irq)
  2211. {
  2212. if (irq->irq < 0 || irq->irq >= 256)
  2213. return -EINVAL;
  2214. if (irqchip_in_kernel(vcpu->kvm))
  2215. return -ENXIO;
  2216. vcpu_load(vcpu);
  2217. set_bit(irq->irq, vcpu->irq_pending);
  2218. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2219. vcpu_put(vcpu);
  2220. return 0;
  2221. }
  2222. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2223. struct kvm_debug_guest *dbg)
  2224. {
  2225. int r;
  2226. vcpu_load(vcpu);
  2227. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2228. vcpu_put(vcpu);
  2229. return r;
  2230. }
  2231. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2232. unsigned long address,
  2233. int *type)
  2234. {
  2235. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2236. unsigned long pgoff;
  2237. struct page *page;
  2238. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2239. if (pgoff == 0)
  2240. page = virt_to_page(vcpu->run);
  2241. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2242. page = virt_to_page(vcpu->pio_data);
  2243. else
  2244. return NOPAGE_SIGBUS;
  2245. get_page(page);
  2246. if (type != NULL)
  2247. *type = VM_FAULT_MINOR;
  2248. return page;
  2249. }
  2250. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2251. .nopage = kvm_vcpu_nopage,
  2252. };
  2253. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2254. {
  2255. vma->vm_ops = &kvm_vcpu_vm_ops;
  2256. return 0;
  2257. }
  2258. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2259. {
  2260. struct kvm_vcpu *vcpu = filp->private_data;
  2261. fput(vcpu->kvm->filp);
  2262. return 0;
  2263. }
  2264. static struct file_operations kvm_vcpu_fops = {
  2265. .release = kvm_vcpu_release,
  2266. .unlocked_ioctl = kvm_vcpu_ioctl,
  2267. .compat_ioctl = kvm_vcpu_ioctl,
  2268. .mmap = kvm_vcpu_mmap,
  2269. };
  2270. /*
  2271. * Allocates an inode for the vcpu.
  2272. */
  2273. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2274. {
  2275. int fd, r;
  2276. struct inode *inode;
  2277. struct file *file;
  2278. r = anon_inode_getfd(&fd, &inode, &file,
  2279. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2280. if (r)
  2281. return r;
  2282. atomic_inc(&vcpu->kvm->filp->f_count);
  2283. return fd;
  2284. }
  2285. /*
  2286. * Creates some virtual cpus. Good luck creating more than one.
  2287. */
  2288. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2289. {
  2290. int r;
  2291. struct kvm_vcpu *vcpu;
  2292. if (!valid_vcpu(n))
  2293. return -EINVAL;
  2294. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2295. if (IS_ERR(vcpu))
  2296. return PTR_ERR(vcpu);
  2297. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2298. /* We do fxsave: this must be aligned. */
  2299. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2300. vcpu_load(vcpu);
  2301. r = kvm_mmu_setup(vcpu);
  2302. vcpu_put(vcpu);
  2303. if (r < 0)
  2304. goto free_vcpu;
  2305. mutex_lock(&kvm->lock);
  2306. if (kvm->vcpus[n]) {
  2307. r = -EEXIST;
  2308. mutex_unlock(&kvm->lock);
  2309. goto mmu_unload;
  2310. }
  2311. kvm->vcpus[n] = vcpu;
  2312. mutex_unlock(&kvm->lock);
  2313. /* Now it's all set up, let userspace reach it */
  2314. r = create_vcpu_fd(vcpu);
  2315. if (r < 0)
  2316. goto unlink;
  2317. return r;
  2318. unlink:
  2319. mutex_lock(&kvm->lock);
  2320. kvm->vcpus[n] = NULL;
  2321. mutex_unlock(&kvm->lock);
  2322. mmu_unload:
  2323. vcpu_load(vcpu);
  2324. kvm_mmu_unload(vcpu);
  2325. vcpu_put(vcpu);
  2326. free_vcpu:
  2327. kvm_x86_ops->vcpu_free(vcpu);
  2328. return r;
  2329. }
  2330. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2331. {
  2332. u64 efer;
  2333. int i;
  2334. struct kvm_cpuid_entry *e, *entry;
  2335. rdmsrl(MSR_EFER, efer);
  2336. entry = NULL;
  2337. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2338. e = &vcpu->cpuid_entries[i];
  2339. if (e->function == 0x80000001) {
  2340. entry = e;
  2341. break;
  2342. }
  2343. }
  2344. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2345. entry->edx &= ~(1 << 20);
  2346. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2347. }
  2348. }
  2349. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2350. struct kvm_cpuid *cpuid,
  2351. struct kvm_cpuid_entry __user *entries)
  2352. {
  2353. int r;
  2354. r = -E2BIG;
  2355. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2356. goto out;
  2357. r = -EFAULT;
  2358. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2359. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2360. goto out;
  2361. vcpu->cpuid_nent = cpuid->nent;
  2362. cpuid_fix_nx_cap(vcpu);
  2363. return 0;
  2364. out:
  2365. return r;
  2366. }
  2367. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2368. {
  2369. if (sigset) {
  2370. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2371. vcpu->sigset_active = 1;
  2372. vcpu->sigset = *sigset;
  2373. } else
  2374. vcpu->sigset_active = 0;
  2375. return 0;
  2376. }
  2377. /*
  2378. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2379. * we have asm/x86/processor.h
  2380. */
  2381. struct fxsave {
  2382. u16 cwd;
  2383. u16 swd;
  2384. u16 twd;
  2385. u16 fop;
  2386. u64 rip;
  2387. u64 rdp;
  2388. u32 mxcsr;
  2389. u32 mxcsr_mask;
  2390. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2391. #ifdef CONFIG_X86_64
  2392. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2393. #else
  2394. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2395. #endif
  2396. };
  2397. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2398. {
  2399. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2400. vcpu_load(vcpu);
  2401. memcpy(fpu->fpr, fxsave->st_space, 128);
  2402. fpu->fcw = fxsave->cwd;
  2403. fpu->fsw = fxsave->swd;
  2404. fpu->ftwx = fxsave->twd;
  2405. fpu->last_opcode = fxsave->fop;
  2406. fpu->last_ip = fxsave->rip;
  2407. fpu->last_dp = fxsave->rdp;
  2408. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2409. vcpu_put(vcpu);
  2410. return 0;
  2411. }
  2412. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2413. {
  2414. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2415. vcpu_load(vcpu);
  2416. memcpy(fxsave->st_space, fpu->fpr, 128);
  2417. fxsave->cwd = fpu->fcw;
  2418. fxsave->swd = fpu->fsw;
  2419. fxsave->twd = fpu->ftwx;
  2420. fxsave->fop = fpu->last_opcode;
  2421. fxsave->rip = fpu->last_ip;
  2422. fxsave->rdp = fpu->last_dp;
  2423. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2424. vcpu_put(vcpu);
  2425. return 0;
  2426. }
  2427. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2428. struct kvm_lapic_state *s)
  2429. {
  2430. vcpu_load(vcpu);
  2431. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  2432. vcpu_put(vcpu);
  2433. return 0;
  2434. }
  2435. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2436. struct kvm_lapic_state *s)
  2437. {
  2438. vcpu_load(vcpu);
  2439. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  2440. kvm_apic_post_state_restore(vcpu);
  2441. vcpu_put(vcpu);
  2442. return 0;
  2443. }
  2444. static long kvm_vcpu_ioctl(struct file *filp,
  2445. unsigned int ioctl, unsigned long arg)
  2446. {
  2447. struct kvm_vcpu *vcpu = filp->private_data;
  2448. void __user *argp = (void __user *)arg;
  2449. int r = -EINVAL;
  2450. switch (ioctl) {
  2451. case KVM_RUN:
  2452. r = -EINVAL;
  2453. if (arg)
  2454. goto out;
  2455. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2456. break;
  2457. case KVM_GET_REGS: {
  2458. struct kvm_regs kvm_regs;
  2459. memset(&kvm_regs, 0, sizeof kvm_regs);
  2460. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2461. if (r)
  2462. goto out;
  2463. r = -EFAULT;
  2464. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2465. goto out;
  2466. r = 0;
  2467. break;
  2468. }
  2469. case KVM_SET_REGS: {
  2470. struct kvm_regs kvm_regs;
  2471. r = -EFAULT;
  2472. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2473. goto out;
  2474. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2475. if (r)
  2476. goto out;
  2477. r = 0;
  2478. break;
  2479. }
  2480. case KVM_GET_SREGS: {
  2481. struct kvm_sregs kvm_sregs;
  2482. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2483. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2484. if (r)
  2485. goto out;
  2486. r = -EFAULT;
  2487. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2488. goto out;
  2489. r = 0;
  2490. break;
  2491. }
  2492. case KVM_SET_SREGS: {
  2493. struct kvm_sregs kvm_sregs;
  2494. r = -EFAULT;
  2495. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2496. goto out;
  2497. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2498. if (r)
  2499. goto out;
  2500. r = 0;
  2501. break;
  2502. }
  2503. case KVM_TRANSLATE: {
  2504. struct kvm_translation tr;
  2505. r = -EFAULT;
  2506. if (copy_from_user(&tr, argp, sizeof tr))
  2507. goto out;
  2508. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2509. if (r)
  2510. goto out;
  2511. r = -EFAULT;
  2512. if (copy_to_user(argp, &tr, sizeof tr))
  2513. goto out;
  2514. r = 0;
  2515. break;
  2516. }
  2517. case KVM_INTERRUPT: {
  2518. struct kvm_interrupt irq;
  2519. r = -EFAULT;
  2520. if (copy_from_user(&irq, argp, sizeof irq))
  2521. goto out;
  2522. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2523. if (r)
  2524. goto out;
  2525. r = 0;
  2526. break;
  2527. }
  2528. case KVM_DEBUG_GUEST: {
  2529. struct kvm_debug_guest dbg;
  2530. r = -EFAULT;
  2531. if (copy_from_user(&dbg, argp, sizeof dbg))
  2532. goto out;
  2533. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2534. if (r)
  2535. goto out;
  2536. r = 0;
  2537. break;
  2538. }
  2539. case KVM_GET_MSRS:
  2540. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2541. break;
  2542. case KVM_SET_MSRS:
  2543. r = msr_io(vcpu, argp, do_set_msr, 0);
  2544. break;
  2545. case KVM_SET_CPUID: {
  2546. struct kvm_cpuid __user *cpuid_arg = argp;
  2547. struct kvm_cpuid cpuid;
  2548. r = -EFAULT;
  2549. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2550. goto out;
  2551. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2552. if (r)
  2553. goto out;
  2554. break;
  2555. }
  2556. case KVM_SET_SIGNAL_MASK: {
  2557. struct kvm_signal_mask __user *sigmask_arg = argp;
  2558. struct kvm_signal_mask kvm_sigmask;
  2559. sigset_t sigset, *p;
  2560. p = NULL;
  2561. if (argp) {
  2562. r = -EFAULT;
  2563. if (copy_from_user(&kvm_sigmask, argp,
  2564. sizeof kvm_sigmask))
  2565. goto out;
  2566. r = -EINVAL;
  2567. if (kvm_sigmask.len != sizeof sigset)
  2568. goto out;
  2569. r = -EFAULT;
  2570. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2571. sizeof sigset))
  2572. goto out;
  2573. p = &sigset;
  2574. }
  2575. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2576. break;
  2577. }
  2578. case KVM_GET_FPU: {
  2579. struct kvm_fpu fpu;
  2580. memset(&fpu, 0, sizeof fpu);
  2581. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2582. if (r)
  2583. goto out;
  2584. r = -EFAULT;
  2585. if (copy_to_user(argp, &fpu, sizeof fpu))
  2586. goto out;
  2587. r = 0;
  2588. break;
  2589. }
  2590. case KVM_SET_FPU: {
  2591. struct kvm_fpu fpu;
  2592. r = -EFAULT;
  2593. if (copy_from_user(&fpu, argp, sizeof fpu))
  2594. goto out;
  2595. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2596. if (r)
  2597. goto out;
  2598. r = 0;
  2599. break;
  2600. }
  2601. case KVM_GET_LAPIC: {
  2602. struct kvm_lapic_state lapic;
  2603. memset(&lapic, 0, sizeof lapic);
  2604. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  2605. if (r)
  2606. goto out;
  2607. r = -EFAULT;
  2608. if (copy_to_user(argp, &lapic, sizeof lapic))
  2609. goto out;
  2610. r = 0;
  2611. break;
  2612. }
  2613. case KVM_SET_LAPIC: {
  2614. struct kvm_lapic_state lapic;
  2615. r = -EFAULT;
  2616. if (copy_from_user(&lapic, argp, sizeof lapic))
  2617. goto out;
  2618. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  2619. if (r)
  2620. goto out;
  2621. r = 0;
  2622. break;
  2623. }
  2624. default:
  2625. ;
  2626. }
  2627. out:
  2628. return r;
  2629. }
  2630. static long kvm_vm_ioctl(struct file *filp,
  2631. unsigned int ioctl, unsigned long arg)
  2632. {
  2633. struct kvm *kvm = filp->private_data;
  2634. void __user *argp = (void __user *)arg;
  2635. int r = -EINVAL;
  2636. switch (ioctl) {
  2637. case KVM_CREATE_VCPU:
  2638. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2639. if (r < 0)
  2640. goto out;
  2641. break;
  2642. case KVM_SET_MEMORY_REGION: {
  2643. struct kvm_memory_region kvm_mem;
  2644. r = -EFAULT;
  2645. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2646. goto out;
  2647. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2648. if (r)
  2649. goto out;
  2650. break;
  2651. }
  2652. case KVM_SET_NR_MMU_PAGES:
  2653. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2654. if (r)
  2655. goto out;
  2656. break;
  2657. case KVM_GET_NR_MMU_PAGES:
  2658. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2659. break;
  2660. case KVM_GET_DIRTY_LOG: {
  2661. struct kvm_dirty_log log;
  2662. r = -EFAULT;
  2663. if (copy_from_user(&log, argp, sizeof log))
  2664. goto out;
  2665. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2666. if (r)
  2667. goto out;
  2668. break;
  2669. }
  2670. case KVM_SET_MEMORY_ALIAS: {
  2671. struct kvm_memory_alias alias;
  2672. r = -EFAULT;
  2673. if (copy_from_user(&alias, argp, sizeof alias))
  2674. goto out;
  2675. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2676. if (r)
  2677. goto out;
  2678. break;
  2679. }
  2680. case KVM_CREATE_IRQCHIP:
  2681. r = -ENOMEM;
  2682. kvm->vpic = kvm_create_pic(kvm);
  2683. if (kvm->vpic) {
  2684. r = kvm_ioapic_init(kvm);
  2685. if (r) {
  2686. kfree(kvm->vpic);
  2687. kvm->vpic = NULL;
  2688. goto out;
  2689. }
  2690. }
  2691. else
  2692. goto out;
  2693. break;
  2694. case KVM_IRQ_LINE: {
  2695. struct kvm_irq_level irq_event;
  2696. r = -EFAULT;
  2697. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2698. goto out;
  2699. if (irqchip_in_kernel(kvm)) {
  2700. mutex_lock(&kvm->lock);
  2701. if (irq_event.irq < 16)
  2702. kvm_pic_set_irq(pic_irqchip(kvm),
  2703. irq_event.irq,
  2704. irq_event.level);
  2705. kvm_ioapic_set_irq(kvm->vioapic,
  2706. irq_event.irq,
  2707. irq_event.level);
  2708. mutex_unlock(&kvm->lock);
  2709. r = 0;
  2710. }
  2711. break;
  2712. }
  2713. case KVM_GET_IRQCHIP: {
  2714. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2715. struct kvm_irqchip chip;
  2716. r = -EFAULT;
  2717. if (copy_from_user(&chip, argp, sizeof chip))
  2718. goto out;
  2719. r = -ENXIO;
  2720. if (!irqchip_in_kernel(kvm))
  2721. goto out;
  2722. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2723. if (r)
  2724. goto out;
  2725. r = -EFAULT;
  2726. if (copy_to_user(argp, &chip, sizeof chip))
  2727. goto out;
  2728. r = 0;
  2729. break;
  2730. }
  2731. case KVM_SET_IRQCHIP: {
  2732. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2733. struct kvm_irqchip chip;
  2734. r = -EFAULT;
  2735. if (copy_from_user(&chip, argp, sizeof chip))
  2736. goto out;
  2737. r = -ENXIO;
  2738. if (!irqchip_in_kernel(kvm))
  2739. goto out;
  2740. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2741. if (r)
  2742. goto out;
  2743. r = 0;
  2744. break;
  2745. }
  2746. default:
  2747. ;
  2748. }
  2749. out:
  2750. return r;
  2751. }
  2752. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2753. unsigned long address,
  2754. int *type)
  2755. {
  2756. struct kvm *kvm = vma->vm_file->private_data;
  2757. unsigned long pgoff;
  2758. struct page *page;
  2759. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2760. page = gfn_to_page(kvm, pgoff);
  2761. if (!page)
  2762. return NOPAGE_SIGBUS;
  2763. get_page(page);
  2764. if (type != NULL)
  2765. *type = VM_FAULT_MINOR;
  2766. return page;
  2767. }
  2768. static struct vm_operations_struct kvm_vm_vm_ops = {
  2769. .nopage = kvm_vm_nopage,
  2770. };
  2771. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2772. {
  2773. vma->vm_ops = &kvm_vm_vm_ops;
  2774. return 0;
  2775. }
  2776. static struct file_operations kvm_vm_fops = {
  2777. .release = kvm_vm_release,
  2778. .unlocked_ioctl = kvm_vm_ioctl,
  2779. .compat_ioctl = kvm_vm_ioctl,
  2780. .mmap = kvm_vm_mmap,
  2781. };
  2782. static int kvm_dev_ioctl_create_vm(void)
  2783. {
  2784. int fd, r;
  2785. struct inode *inode;
  2786. struct file *file;
  2787. struct kvm *kvm;
  2788. kvm = kvm_create_vm();
  2789. if (IS_ERR(kvm))
  2790. return PTR_ERR(kvm);
  2791. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2792. if (r) {
  2793. kvm_destroy_vm(kvm);
  2794. return r;
  2795. }
  2796. kvm->filp = file;
  2797. return fd;
  2798. }
  2799. static long kvm_dev_ioctl(struct file *filp,
  2800. unsigned int ioctl, unsigned long arg)
  2801. {
  2802. void __user *argp = (void __user *)arg;
  2803. long r = -EINVAL;
  2804. switch (ioctl) {
  2805. case KVM_GET_API_VERSION:
  2806. r = -EINVAL;
  2807. if (arg)
  2808. goto out;
  2809. r = KVM_API_VERSION;
  2810. break;
  2811. case KVM_CREATE_VM:
  2812. r = -EINVAL;
  2813. if (arg)
  2814. goto out;
  2815. r = kvm_dev_ioctl_create_vm();
  2816. break;
  2817. case KVM_GET_MSR_INDEX_LIST: {
  2818. struct kvm_msr_list __user *user_msr_list = argp;
  2819. struct kvm_msr_list msr_list;
  2820. unsigned n;
  2821. r = -EFAULT;
  2822. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2823. goto out;
  2824. n = msr_list.nmsrs;
  2825. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2826. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2827. goto out;
  2828. r = -E2BIG;
  2829. if (n < num_msrs_to_save)
  2830. goto out;
  2831. r = -EFAULT;
  2832. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2833. num_msrs_to_save * sizeof(u32)))
  2834. goto out;
  2835. if (copy_to_user(user_msr_list->indices
  2836. + num_msrs_to_save * sizeof(u32),
  2837. &emulated_msrs,
  2838. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2839. goto out;
  2840. r = 0;
  2841. break;
  2842. }
  2843. case KVM_CHECK_EXTENSION: {
  2844. int ext = (long)argp;
  2845. switch (ext) {
  2846. case KVM_CAP_IRQCHIP:
  2847. case KVM_CAP_HLT:
  2848. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2849. r = 1;
  2850. break;
  2851. default:
  2852. r = 0;
  2853. break;
  2854. }
  2855. break;
  2856. }
  2857. case KVM_GET_VCPU_MMAP_SIZE:
  2858. r = -EINVAL;
  2859. if (arg)
  2860. goto out;
  2861. r = 2 * PAGE_SIZE;
  2862. break;
  2863. default:
  2864. ;
  2865. }
  2866. out:
  2867. return r;
  2868. }
  2869. static struct file_operations kvm_chardev_ops = {
  2870. .unlocked_ioctl = kvm_dev_ioctl,
  2871. .compat_ioctl = kvm_dev_ioctl,
  2872. };
  2873. static struct miscdevice kvm_dev = {
  2874. KVM_MINOR,
  2875. "kvm",
  2876. &kvm_chardev_ops,
  2877. };
  2878. /*
  2879. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2880. * cached on it.
  2881. */
  2882. static void decache_vcpus_on_cpu(int cpu)
  2883. {
  2884. struct kvm *vm;
  2885. struct kvm_vcpu *vcpu;
  2886. int i;
  2887. spin_lock(&kvm_lock);
  2888. list_for_each_entry(vm, &vm_list, vm_list)
  2889. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2890. vcpu = vm->vcpus[i];
  2891. if (!vcpu)
  2892. continue;
  2893. /*
  2894. * If the vcpu is locked, then it is running on some
  2895. * other cpu and therefore it is not cached on the
  2896. * cpu in question.
  2897. *
  2898. * If it's not locked, check the last cpu it executed
  2899. * on.
  2900. */
  2901. if (mutex_trylock(&vcpu->mutex)) {
  2902. if (vcpu->cpu == cpu) {
  2903. kvm_x86_ops->vcpu_decache(vcpu);
  2904. vcpu->cpu = -1;
  2905. }
  2906. mutex_unlock(&vcpu->mutex);
  2907. }
  2908. }
  2909. spin_unlock(&kvm_lock);
  2910. }
  2911. static void hardware_enable(void *junk)
  2912. {
  2913. int cpu = raw_smp_processor_id();
  2914. if (cpu_isset(cpu, cpus_hardware_enabled))
  2915. return;
  2916. cpu_set(cpu, cpus_hardware_enabled);
  2917. kvm_x86_ops->hardware_enable(NULL);
  2918. }
  2919. static void hardware_disable(void *junk)
  2920. {
  2921. int cpu = raw_smp_processor_id();
  2922. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2923. return;
  2924. cpu_clear(cpu, cpus_hardware_enabled);
  2925. decache_vcpus_on_cpu(cpu);
  2926. kvm_x86_ops->hardware_disable(NULL);
  2927. }
  2928. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2929. void *v)
  2930. {
  2931. int cpu = (long)v;
  2932. switch (val) {
  2933. case CPU_DYING:
  2934. case CPU_DYING_FROZEN:
  2935. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2936. cpu);
  2937. hardware_disable(NULL);
  2938. break;
  2939. case CPU_UP_CANCELED:
  2940. case CPU_UP_CANCELED_FROZEN:
  2941. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2942. cpu);
  2943. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2944. break;
  2945. case CPU_ONLINE:
  2946. case CPU_ONLINE_FROZEN:
  2947. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2948. cpu);
  2949. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2950. break;
  2951. }
  2952. return NOTIFY_OK;
  2953. }
  2954. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2955. void *v)
  2956. {
  2957. if (val == SYS_RESTART) {
  2958. /*
  2959. * Some (well, at least mine) BIOSes hang on reboot if
  2960. * in vmx root mode.
  2961. */
  2962. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2963. on_each_cpu(hardware_disable, NULL, 0, 1);
  2964. }
  2965. return NOTIFY_OK;
  2966. }
  2967. static struct notifier_block kvm_reboot_notifier = {
  2968. .notifier_call = kvm_reboot,
  2969. .priority = 0,
  2970. };
  2971. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2972. {
  2973. memset(bus, 0, sizeof(*bus));
  2974. }
  2975. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2976. {
  2977. int i;
  2978. for (i = 0; i < bus->dev_count; i++) {
  2979. struct kvm_io_device *pos = bus->devs[i];
  2980. kvm_iodevice_destructor(pos);
  2981. }
  2982. }
  2983. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2984. {
  2985. int i;
  2986. for (i = 0; i < bus->dev_count; i++) {
  2987. struct kvm_io_device *pos = bus->devs[i];
  2988. if (pos->in_range(pos, addr))
  2989. return pos;
  2990. }
  2991. return NULL;
  2992. }
  2993. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2994. {
  2995. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2996. bus->devs[bus->dev_count++] = dev;
  2997. }
  2998. static struct notifier_block kvm_cpu_notifier = {
  2999. .notifier_call = kvm_cpu_hotplug,
  3000. .priority = 20, /* must be > scheduler priority */
  3001. };
  3002. static u64 stat_get(void *_offset)
  3003. {
  3004. unsigned offset = (long)_offset;
  3005. u64 total = 0;
  3006. struct kvm *kvm;
  3007. struct kvm_vcpu *vcpu;
  3008. int i;
  3009. spin_lock(&kvm_lock);
  3010. list_for_each_entry(kvm, &vm_list, vm_list)
  3011. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3012. vcpu = kvm->vcpus[i];
  3013. if (vcpu)
  3014. total += *(u32 *)((void *)vcpu + offset);
  3015. }
  3016. spin_unlock(&kvm_lock);
  3017. return total;
  3018. }
  3019. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  3020. static __init void kvm_init_debug(void)
  3021. {
  3022. struct kvm_stats_debugfs_item *p;
  3023. debugfs_dir = debugfs_create_dir("kvm", NULL);
  3024. for (p = debugfs_entries; p->name; ++p)
  3025. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  3026. (void *)(long)p->offset,
  3027. &stat_fops);
  3028. }
  3029. static void kvm_exit_debug(void)
  3030. {
  3031. struct kvm_stats_debugfs_item *p;
  3032. for (p = debugfs_entries; p->name; ++p)
  3033. debugfs_remove(p->dentry);
  3034. debugfs_remove(debugfs_dir);
  3035. }
  3036. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  3037. {
  3038. hardware_disable(NULL);
  3039. return 0;
  3040. }
  3041. static int kvm_resume(struct sys_device *dev)
  3042. {
  3043. hardware_enable(NULL);
  3044. return 0;
  3045. }
  3046. static struct sysdev_class kvm_sysdev_class = {
  3047. .name = "kvm",
  3048. .suspend = kvm_suspend,
  3049. .resume = kvm_resume,
  3050. };
  3051. static struct sys_device kvm_sysdev = {
  3052. .id = 0,
  3053. .cls = &kvm_sysdev_class,
  3054. };
  3055. hpa_t bad_page_address;
  3056. static inline
  3057. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  3058. {
  3059. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  3060. }
  3061. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  3062. {
  3063. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3064. kvm_x86_ops->vcpu_load(vcpu, cpu);
  3065. }
  3066. static void kvm_sched_out(struct preempt_notifier *pn,
  3067. struct task_struct *next)
  3068. {
  3069. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3070. kvm_x86_ops->vcpu_put(vcpu);
  3071. }
  3072. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  3073. struct module *module)
  3074. {
  3075. int r;
  3076. int cpu;
  3077. if (kvm_x86_ops) {
  3078. printk(KERN_ERR "kvm: already loaded the other module\n");
  3079. return -EEXIST;
  3080. }
  3081. if (!ops->cpu_has_kvm_support()) {
  3082. printk(KERN_ERR "kvm: no hardware support\n");
  3083. return -EOPNOTSUPP;
  3084. }
  3085. if (ops->disabled_by_bios()) {
  3086. printk(KERN_ERR "kvm: disabled by bios\n");
  3087. return -EOPNOTSUPP;
  3088. }
  3089. kvm_x86_ops = ops;
  3090. r = kvm_x86_ops->hardware_setup();
  3091. if (r < 0)
  3092. goto out;
  3093. for_each_online_cpu(cpu) {
  3094. smp_call_function_single(cpu,
  3095. kvm_x86_ops->check_processor_compatibility,
  3096. &r, 0, 1);
  3097. if (r < 0)
  3098. goto out_free_0;
  3099. }
  3100. on_each_cpu(hardware_enable, NULL, 0, 1);
  3101. r = register_cpu_notifier(&kvm_cpu_notifier);
  3102. if (r)
  3103. goto out_free_1;
  3104. register_reboot_notifier(&kvm_reboot_notifier);
  3105. r = sysdev_class_register(&kvm_sysdev_class);
  3106. if (r)
  3107. goto out_free_2;
  3108. r = sysdev_register(&kvm_sysdev);
  3109. if (r)
  3110. goto out_free_3;
  3111. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  3112. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  3113. __alignof__(struct kvm_vcpu), 0, 0);
  3114. if (!kvm_vcpu_cache) {
  3115. r = -ENOMEM;
  3116. goto out_free_4;
  3117. }
  3118. kvm_chardev_ops.owner = module;
  3119. r = misc_register(&kvm_dev);
  3120. if (r) {
  3121. printk (KERN_ERR "kvm: misc device register failed\n");
  3122. goto out_free;
  3123. }
  3124. kvm_preempt_ops.sched_in = kvm_sched_in;
  3125. kvm_preempt_ops.sched_out = kvm_sched_out;
  3126. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3127. return 0;
  3128. out_free:
  3129. kmem_cache_destroy(kvm_vcpu_cache);
  3130. out_free_4:
  3131. sysdev_unregister(&kvm_sysdev);
  3132. out_free_3:
  3133. sysdev_class_unregister(&kvm_sysdev_class);
  3134. out_free_2:
  3135. unregister_reboot_notifier(&kvm_reboot_notifier);
  3136. unregister_cpu_notifier(&kvm_cpu_notifier);
  3137. out_free_1:
  3138. on_each_cpu(hardware_disable, NULL, 0, 1);
  3139. out_free_0:
  3140. kvm_x86_ops->hardware_unsetup();
  3141. out:
  3142. kvm_x86_ops = NULL;
  3143. return r;
  3144. }
  3145. void kvm_exit_x86(void)
  3146. {
  3147. misc_deregister(&kvm_dev);
  3148. kmem_cache_destroy(kvm_vcpu_cache);
  3149. sysdev_unregister(&kvm_sysdev);
  3150. sysdev_class_unregister(&kvm_sysdev_class);
  3151. unregister_reboot_notifier(&kvm_reboot_notifier);
  3152. unregister_cpu_notifier(&kvm_cpu_notifier);
  3153. on_each_cpu(hardware_disable, NULL, 0, 1);
  3154. kvm_x86_ops->hardware_unsetup();
  3155. kvm_x86_ops = NULL;
  3156. }
  3157. static __init int kvm_init(void)
  3158. {
  3159. static struct page *bad_page;
  3160. int r;
  3161. r = kvm_mmu_module_init();
  3162. if (r)
  3163. goto out4;
  3164. kvm_init_debug();
  3165. kvm_init_msr_list();
  3166. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  3167. r = -ENOMEM;
  3168. goto out;
  3169. }
  3170. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  3171. memset(__va(bad_page_address), 0, PAGE_SIZE);
  3172. return 0;
  3173. out:
  3174. kvm_exit_debug();
  3175. kvm_mmu_module_exit();
  3176. out4:
  3177. return r;
  3178. }
  3179. static __exit void kvm_exit(void)
  3180. {
  3181. kvm_exit_debug();
  3182. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  3183. kvm_mmu_module_exit();
  3184. }
  3185. module_init(kvm_init)
  3186. module_exit(kvm_exit)
  3187. EXPORT_SYMBOL_GPL(kvm_init_x86);
  3188. EXPORT_SYMBOL_GPL(kvm_exit_x86);