xfs_log_recover.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_imap.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_log_priv.h"
  43. #include "xfs_buf_item.h"
  44. #include "xfs_log_recover.h"
  45. #include "xfs_extfree_item.h"
  46. #include "xfs_trans_priv.h"
  47. #include "xfs_quota.h"
  48. #include "xfs_rw.h"
  49. #include "xfs_utils.h"
  50. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  51. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  52. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  53. xlog_recover_item_t *item);
  54. #if defined(DEBUG)
  55. STATIC void xlog_recover_check_summary(xlog_t *);
  56. #else
  57. #define xlog_recover_check_summary(log)
  58. #endif
  59. /*
  60. * Sector aligned buffer routines for buffer create/read/write/access
  61. */
  62. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  63. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  64. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  65. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  66. xfs_buf_t *
  67. xlog_get_bp(
  68. xlog_t *log,
  69. int num_bblks)
  70. {
  71. ASSERT(num_bblks > 0);
  72. if (log->l_sectbb_log) {
  73. if (num_bblks > 1)
  74. num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  75. num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
  76. }
  77. return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
  78. }
  79. void
  80. xlog_put_bp(
  81. xfs_buf_t *bp)
  82. {
  83. xfs_buf_free(bp);
  84. }
  85. /*
  86. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  87. */
  88. int
  89. xlog_bread(
  90. xlog_t *log,
  91. xfs_daddr_t blk_no,
  92. int nbblks,
  93. xfs_buf_t *bp)
  94. {
  95. int error;
  96. if (log->l_sectbb_log) {
  97. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  98. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  99. }
  100. ASSERT(nbblks > 0);
  101. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  102. ASSERT(bp);
  103. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  104. XFS_BUF_READ(bp);
  105. XFS_BUF_BUSY(bp);
  106. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  107. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  108. xfsbdstrat(log->l_mp, bp);
  109. error = xfs_iowait(bp);
  110. if (error)
  111. xfs_ioerror_alert("xlog_bread", log->l_mp,
  112. bp, XFS_BUF_ADDR(bp));
  113. return error;
  114. }
  115. /*
  116. * Write out the buffer at the given block for the given number of blocks.
  117. * The buffer is kept locked across the write and is returned locked.
  118. * This can only be used for synchronous log writes.
  119. */
  120. STATIC int
  121. xlog_bwrite(
  122. xlog_t *log,
  123. xfs_daddr_t blk_no,
  124. int nbblks,
  125. xfs_buf_t *bp)
  126. {
  127. int error;
  128. if (log->l_sectbb_log) {
  129. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  130. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  131. }
  132. ASSERT(nbblks > 0);
  133. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  134. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  135. XFS_BUF_ZEROFLAGS(bp);
  136. XFS_BUF_BUSY(bp);
  137. XFS_BUF_HOLD(bp);
  138. XFS_BUF_PSEMA(bp, PRIBIO);
  139. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  140. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  141. if ((error = xfs_bwrite(log->l_mp, bp)))
  142. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  143. bp, XFS_BUF_ADDR(bp));
  144. return error;
  145. }
  146. STATIC xfs_caddr_t
  147. xlog_align(
  148. xlog_t *log,
  149. xfs_daddr_t blk_no,
  150. int nbblks,
  151. xfs_buf_t *bp)
  152. {
  153. xfs_caddr_t ptr;
  154. if (!log->l_sectbb_log)
  155. return XFS_BUF_PTR(bp);
  156. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  157. ASSERT(XFS_BUF_SIZE(bp) >=
  158. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  159. return ptr;
  160. }
  161. #ifdef DEBUG
  162. /*
  163. * dump debug superblock and log record information
  164. */
  165. STATIC void
  166. xlog_header_check_dump(
  167. xfs_mount_t *mp,
  168. xlog_rec_header_t *head)
  169. {
  170. int b;
  171. cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
  172. for (b = 0; b < 16; b++)
  173. cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
  174. cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
  175. cmn_err(CE_DEBUG, " log : uuid = ");
  176. for (b = 0; b < 16; b++)
  177. cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
  178. cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
  179. }
  180. #else
  181. #define xlog_header_check_dump(mp, head)
  182. #endif
  183. /*
  184. * check log record header for recovery
  185. */
  186. STATIC int
  187. xlog_header_check_recover(
  188. xfs_mount_t *mp,
  189. xlog_rec_header_t *head)
  190. {
  191. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  192. /*
  193. * IRIX doesn't write the h_fmt field and leaves it zeroed
  194. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  195. * a dirty log created in IRIX.
  196. */
  197. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  198. xlog_warn(
  199. "XFS: dirty log written in incompatible format - can't recover");
  200. xlog_header_check_dump(mp, head);
  201. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  202. XFS_ERRLEVEL_HIGH, mp);
  203. return XFS_ERROR(EFSCORRUPTED);
  204. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  205. xlog_warn(
  206. "XFS: dirty log entry has mismatched uuid - can't recover");
  207. xlog_header_check_dump(mp, head);
  208. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  209. XFS_ERRLEVEL_HIGH, mp);
  210. return XFS_ERROR(EFSCORRUPTED);
  211. }
  212. return 0;
  213. }
  214. /*
  215. * read the head block of the log and check the header
  216. */
  217. STATIC int
  218. xlog_header_check_mount(
  219. xfs_mount_t *mp,
  220. xlog_rec_header_t *head)
  221. {
  222. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  223. if (uuid_is_nil(&head->h_fs_uuid)) {
  224. /*
  225. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  226. * h_fs_uuid is nil, we assume this log was last mounted
  227. * by IRIX and continue.
  228. */
  229. xlog_warn("XFS: nil uuid in log - IRIX style log");
  230. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  231. xlog_warn("XFS: log has mismatched uuid - can't recover");
  232. xlog_header_check_dump(mp, head);
  233. XFS_ERROR_REPORT("xlog_header_check_mount",
  234. XFS_ERRLEVEL_HIGH, mp);
  235. return XFS_ERROR(EFSCORRUPTED);
  236. }
  237. return 0;
  238. }
  239. STATIC void
  240. xlog_recover_iodone(
  241. struct xfs_buf *bp)
  242. {
  243. xfs_mount_t *mp;
  244. ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
  245. if (XFS_BUF_GETERROR(bp)) {
  246. /*
  247. * We're not going to bother about retrying
  248. * this during recovery. One strike!
  249. */
  250. mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
  251. xfs_ioerror_alert("xlog_recover_iodone",
  252. mp, bp, XFS_BUF_ADDR(bp));
  253. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  254. }
  255. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  256. XFS_BUF_CLR_IODONE_FUNC(bp);
  257. xfs_biodone(bp);
  258. }
  259. /*
  260. * This routine finds (to an approximation) the first block in the physical
  261. * log which contains the given cycle. It uses a binary search algorithm.
  262. * Note that the algorithm can not be perfect because the disk will not
  263. * necessarily be perfect.
  264. */
  265. STATIC int
  266. xlog_find_cycle_start(
  267. xlog_t *log,
  268. xfs_buf_t *bp,
  269. xfs_daddr_t first_blk,
  270. xfs_daddr_t *last_blk,
  271. uint cycle)
  272. {
  273. xfs_caddr_t offset;
  274. xfs_daddr_t mid_blk;
  275. uint mid_cycle;
  276. int error;
  277. mid_blk = BLK_AVG(first_blk, *last_blk);
  278. while (mid_blk != first_blk && mid_blk != *last_blk) {
  279. if ((error = xlog_bread(log, mid_blk, 1, bp)))
  280. return error;
  281. offset = xlog_align(log, mid_blk, 1, bp);
  282. mid_cycle = xlog_get_cycle(offset);
  283. if (mid_cycle == cycle) {
  284. *last_blk = mid_blk;
  285. /* last_half_cycle == mid_cycle */
  286. } else {
  287. first_blk = mid_blk;
  288. /* first_half_cycle == mid_cycle */
  289. }
  290. mid_blk = BLK_AVG(first_blk, *last_blk);
  291. }
  292. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  293. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  294. return 0;
  295. }
  296. /*
  297. * Check that the range of blocks does not contain the cycle number
  298. * given. The scan needs to occur from front to back and the ptr into the
  299. * region must be updated since a later routine will need to perform another
  300. * test. If the region is completely good, we end up returning the same
  301. * last block number.
  302. *
  303. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  304. * since we don't ever expect logs to get this large.
  305. */
  306. STATIC int
  307. xlog_find_verify_cycle(
  308. xlog_t *log,
  309. xfs_daddr_t start_blk,
  310. int nbblks,
  311. uint stop_on_cycle_no,
  312. xfs_daddr_t *new_blk)
  313. {
  314. xfs_daddr_t i, j;
  315. uint cycle;
  316. xfs_buf_t *bp;
  317. xfs_daddr_t bufblks;
  318. xfs_caddr_t buf = NULL;
  319. int error = 0;
  320. bufblks = 1 << ffs(nbblks);
  321. while (!(bp = xlog_get_bp(log, bufblks))) {
  322. /* can't get enough memory to do everything in one big buffer */
  323. bufblks >>= 1;
  324. if (bufblks <= log->l_sectbb_log)
  325. return ENOMEM;
  326. }
  327. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  328. int bcount;
  329. bcount = min(bufblks, (start_blk + nbblks - i));
  330. if ((error = xlog_bread(log, i, bcount, bp)))
  331. goto out;
  332. buf = xlog_align(log, i, bcount, bp);
  333. for (j = 0; j < bcount; j++) {
  334. cycle = xlog_get_cycle(buf);
  335. if (cycle == stop_on_cycle_no) {
  336. *new_blk = i+j;
  337. goto out;
  338. }
  339. buf += BBSIZE;
  340. }
  341. }
  342. *new_blk = -1;
  343. out:
  344. xlog_put_bp(bp);
  345. return error;
  346. }
  347. /*
  348. * Potentially backup over partial log record write.
  349. *
  350. * In the typical case, last_blk is the number of the block directly after
  351. * a good log record. Therefore, we subtract one to get the block number
  352. * of the last block in the given buffer. extra_bblks contains the number
  353. * of blocks we would have read on a previous read. This happens when the
  354. * last log record is split over the end of the physical log.
  355. *
  356. * extra_bblks is the number of blocks potentially verified on a previous
  357. * call to this routine.
  358. */
  359. STATIC int
  360. xlog_find_verify_log_record(
  361. xlog_t *log,
  362. xfs_daddr_t start_blk,
  363. xfs_daddr_t *last_blk,
  364. int extra_bblks)
  365. {
  366. xfs_daddr_t i;
  367. xfs_buf_t *bp;
  368. xfs_caddr_t offset = NULL;
  369. xlog_rec_header_t *head = NULL;
  370. int error = 0;
  371. int smallmem = 0;
  372. int num_blks = *last_blk - start_blk;
  373. int xhdrs;
  374. ASSERT(start_blk != 0 || *last_blk != start_blk);
  375. if (!(bp = xlog_get_bp(log, num_blks))) {
  376. if (!(bp = xlog_get_bp(log, 1)))
  377. return ENOMEM;
  378. smallmem = 1;
  379. } else {
  380. if ((error = xlog_bread(log, start_blk, num_blks, bp)))
  381. goto out;
  382. offset = xlog_align(log, start_blk, num_blks, bp);
  383. offset += ((num_blks - 1) << BBSHIFT);
  384. }
  385. for (i = (*last_blk) - 1; i >= 0; i--) {
  386. if (i < start_blk) {
  387. /* valid log record not found */
  388. xlog_warn(
  389. "XFS: Log inconsistent (didn't find previous header)");
  390. ASSERT(0);
  391. error = XFS_ERROR(EIO);
  392. goto out;
  393. }
  394. if (smallmem) {
  395. if ((error = xlog_bread(log, i, 1, bp)))
  396. goto out;
  397. offset = xlog_align(log, i, 1, bp);
  398. }
  399. head = (xlog_rec_header_t *)offset;
  400. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  401. break;
  402. if (!smallmem)
  403. offset -= BBSIZE;
  404. }
  405. /*
  406. * We hit the beginning of the physical log & still no header. Return
  407. * to caller. If caller can handle a return of -1, then this routine
  408. * will be called again for the end of the physical log.
  409. */
  410. if (i == -1) {
  411. error = -1;
  412. goto out;
  413. }
  414. /*
  415. * We have the final block of the good log (the first block
  416. * of the log record _before_ the head. So we check the uuid.
  417. */
  418. if ((error = xlog_header_check_mount(log->l_mp, head)))
  419. goto out;
  420. /*
  421. * We may have found a log record header before we expected one.
  422. * last_blk will be the 1st block # with a given cycle #. We may end
  423. * up reading an entire log record. In this case, we don't want to
  424. * reset last_blk. Only when last_blk points in the middle of a log
  425. * record do we update last_blk.
  426. */
  427. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  428. uint h_size = be32_to_cpu(head->h_size);
  429. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  430. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  431. xhdrs++;
  432. } else {
  433. xhdrs = 1;
  434. }
  435. if (*last_blk - i + extra_bblks !=
  436. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  437. *last_blk = i;
  438. out:
  439. xlog_put_bp(bp);
  440. return error;
  441. }
  442. /*
  443. * Head is defined to be the point of the log where the next log write
  444. * write could go. This means that incomplete LR writes at the end are
  445. * eliminated when calculating the head. We aren't guaranteed that previous
  446. * LR have complete transactions. We only know that a cycle number of
  447. * current cycle number -1 won't be present in the log if we start writing
  448. * from our current block number.
  449. *
  450. * last_blk contains the block number of the first block with a given
  451. * cycle number.
  452. *
  453. * Return: zero if normal, non-zero if error.
  454. */
  455. STATIC int
  456. xlog_find_head(
  457. xlog_t *log,
  458. xfs_daddr_t *return_head_blk)
  459. {
  460. xfs_buf_t *bp;
  461. xfs_caddr_t offset;
  462. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  463. int num_scan_bblks;
  464. uint first_half_cycle, last_half_cycle;
  465. uint stop_on_cycle;
  466. int error, log_bbnum = log->l_logBBsize;
  467. /* Is the end of the log device zeroed? */
  468. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  469. *return_head_blk = first_blk;
  470. /* Is the whole lot zeroed? */
  471. if (!first_blk) {
  472. /* Linux XFS shouldn't generate totally zeroed logs -
  473. * mkfs etc write a dummy unmount record to a fresh
  474. * log so we can store the uuid in there
  475. */
  476. xlog_warn("XFS: totally zeroed log");
  477. }
  478. return 0;
  479. } else if (error) {
  480. xlog_warn("XFS: empty log check failed");
  481. return error;
  482. }
  483. first_blk = 0; /* get cycle # of 1st block */
  484. bp = xlog_get_bp(log, 1);
  485. if (!bp)
  486. return ENOMEM;
  487. if ((error = xlog_bread(log, 0, 1, bp)))
  488. goto bp_err;
  489. offset = xlog_align(log, 0, 1, bp);
  490. first_half_cycle = xlog_get_cycle(offset);
  491. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  492. if ((error = xlog_bread(log, last_blk, 1, bp)))
  493. goto bp_err;
  494. offset = xlog_align(log, last_blk, 1, bp);
  495. last_half_cycle = xlog_get_cycle(offset);
  496. ASSERT(last_half_cycle != 0);
  497. /*
  498. * If the 1st half cycle number is equal to the last half cycle number,
  499. * then the entire log is stamped with the same cycle number. In this
  500. * case, head_blk can't be set to zero (which makes sense). The below
  501. * math doesn't work out properly with head_blk equal to zero. Instead,
  502. * we set it to log_bbnum which is an invalid block number, but this
  503. * value makes the math correct. If head_blk doesn't changed through
  504. * all the tests below, *head_blk is set to zero at the very end rather
  505. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  506. * in a circular file.
  507. */
  508. if (first_half_cycle == last_half_cycle) {
  509. /*
  510. * In this case we believe that the entire log should have
  511. * cycle number last_half_cycle. We need to scan backwards
  512. * from the end verifying that there are no holes still
  513. * containing last_half_cycle - 1. If we find such a hole,
  514. * then the start of that hole will be the new head. The
  515. * simple case looks like
  516. * x | x ... | x - 1 | x
  517. * Another case that fits this picture would be
  518. * x | x + 1 | x ... | x
  519. * In this case the head really is somewhere at the end of the
  520. * log, as one of the latest writes at the beginning was
  521. * incomplete.
  522. * One more case is
  523. * x | x + 1 | x ... | x - 1 | x
  524. * This is really the combination of the above two cases, and
  525. * the head has to end up at the start of the x-1 hole at the
  526. * end of the log.
  527. *
  528. * In the 256k log case, we will read from the beginning to the
  529. * end of the log and search for cycle numbers equal to x-1.
  530. * We don't worry about the x+1 blocks that we encounter,
  531. * because we know that they cannot be the head since the log
  532. * started with x.
  533. */
  534. head_blk = log_bbnum;
  535. stop_on_cycle = last_half_cycle - 1;
  536. } else {
  537. /*
  538. * In this case we want to find the first block with cycle
  539. * number matching last_half_cycle. We expect the log to be
  540. * some variation on
  541. * x + 1 ... | x ...
  542. * The first block with cycle number x (last_half_cycle) will
  543. * be where the new head belongs. First we do a binary search
  544. * for the first occurrence of last_half_cycle. The binary
  545. * search may not be totally accurate, so then we scan back
  546. * from there looking for occurrences of last_half_cycle before
  547. * us. If that backwards scan wraps around the beginning of
  548. * the log, then we look for occurrences of last_half_cycle - 1
  549. * at the end of the log. The cases we're looking for look
  550. * like
  551. * x + 1 ... | x | x + 1 | x ...
  552. * ^ binary search stopped here
  553. * or
  554. * x + 1 ... | x ... | x - 1 | x
  555. * <---------> less than scan distance
  556. */
  557. stop_on_cycle = last_half_cycle;
  558. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  559. &head_blk, last_half_cycle)))
  560. goto bp_err;
  561. }
  562. /*
  563. * Now validate the answer. Scan back some number of maximum possible
  564. * blocks and make sure each one has the expected cycle number. The
  565. * maximum is determined by the total possible amount of buffering
  566. * in the in-core log. The following number can be made tighter if
  567. * we actually look at the block size of the filesystem.
  568. */
  569. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  570. if (head_blk >= num_scan_bblks) {
  571. /*
  572. * We are guaranteed that the entire check can be performed
  573. * in one buffer.
  574. */
  575. start_blk = head_blk - num_scan_bblks;
  576. if ((error = xlog_find_verify_cycle(log,
  577. start_blk, num_scan_bblks,
  578. stop_on_cycle, &new_blk)))
  579. goto bp_err;
  580. if (new_blk != -1)
  581. head_blk = new_blk;
  582. } else { /* need to read 2 parts of log */
  583. /*
  584. * We are going to scan backwards in the log in two parts.
  585. * First we scan the physical end of the log. In this part
  586. * of the log, we are looking for blocks with cycle number
  587. * last_half_cycle - 1.
  588. * If we find one, then we know that the log starts there, as
  589. * we've found a hole that didn't get written in going around
  590. * the end of the physical log. The simple case for this is
  591. * x + 1 ... | x ... | x - 1 | x
  592. * <---------> less than scan distance
  593. * If all of the blocks at the end of the log have cycle number
  594. * last_half_cycle, then we check the blocks at the start of
  595. * the log looking for occurrences of last_half_cycle. If we
  596. * find one, then our current estimate for the location of the
  597. * first occurrence of last_half_cycle is wrong and we move
  598. * back to the hole we've found. This case looks like
  599. * x + 1 ... | x | x + 1 | x ...
  600. * ^ binary search stopped here
  601. * Another case we need to handle that only occurs in 256k
  602. * logs is
  603. * x + 1 ... | x ... | x+1 | x ...
  604. * ^ binary search stops here
  605. * In a 256k log, the scan at the end of the log will see the
  606. * x + 1 blocks. We need to skip past those since that is
  607. * certainly not the head of the log. By searching for
  608. * last_half_cycle-1 we accomplish that.
  609. */
  610. start_blk = log_bbnum - num_scan_bblks + head_blk;
  611. ASSERT(head_blk <= INT_MAX &&
  612. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  613. if ((error = xlog_find_verify_cycle(log, start_blk,
  614. num_scan_bblks - (int)head_blk,
  615. (stop_on_cycle - 1), &new_blk)))
  616. goto bp_err;
  617. if (new_blk != -1) {
  618. head_blk = new_blk;
  619. goto bad_blk;
  620. }
  621. /*
  622. * Scan beginning of log now. The last part of the physical
  623. * log is good. This scan needs to verify that it doesn't find
  624. * the last_half_cycle.
  625. */
  626. start_blk = 0;
  627. ASSERT(head_blk <= INT_MAX);
  628. if ((error = xlog_find_verify_cycle(log,
  629. start_blk, (int)head_blk,
  630. stop_on_cycle, &new_blk)))
  631. goto bp_err;
  632. if (new_blk != -1)
  633. head_blk = new_blk;
  634. }
  635. bad_blk:
  636. /*
  637. * Now we need to make sure head_blk is not pointing to a block in
  638. * the middle of a log record.
  639. */
  640. num_scan_bblks = XLOG_REC_SHIFT(log);
  641. if (head_blk >= num_scan_bblks) {
  642. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  643. /* start ptr at last block ptr before head_blk */
  644. if ((error = xlog_find_verify_log_record(log, start_blk,
  645. &head_blk, 0)) == -1) {
  646. error = XFS_ERROR(EIO);
  647. goto bp_err;
  648. } else if (error)
  649. goto bp_err;
  650. } else {
  651. start_blk = 0;
  652. ASSERT(head_blk <= INT_MAX);
  653. if ((error = xlog_find_verify_log_record(log, start_blk,
  654. &head_blk, 0)) == -1) {
  655. /* We hit the beginning of the log during our search */
  656. start_blk = log_bbnum - num_scan_bblks + head_blk;
  657. new_blk = log_bbnum;
  658. ASSERT(start_blk <= INT_MAX &&
  659. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  660. ASSERT(head_blk <= INT_MAX);
  661. if ((error = xlog_find_verify_log_record(log,
  662. start_blk, &new_blk,
  663. (int)head_blk)) == -1) {
  664. error = XFS_ERROR(EIO);
  665. goto bp_err;
  666. } else if (error)
  667. goto bp_err;
  668. if (new_blk != log_bbnum)
  669. head_blk = new_blk;
  670. } else if (error)
  671. goto bp_err;
  672. }
  673. xlog_put_bp(bp);
  674. if (head_blk == log_bbnum)
  675. *return_head_blk = 0;
  676. else
  677. *return_head_blk = head_blk;
  678. /*
  679. * When returning here, we have a good block number. Bad block
  680. * means that during a previous crash, we didn't have a clean break
  681. * from cycle number N to cycle number N-1. In this case, we need
  682. * to find the first block with cycle number N-1.
  683. */
  684. return 0;
  685. bp_err:
  686. xlog_put_bp(bp);
  687. if (error)
  688. xlog_warn("XFS: failed to find log head");
  689. return error;
  690. }
  691. /*
  692. * Find the sync block number or the tail of the log.
  693. *
  694. * This will be the block number of the last record to have its
  695. * associated buffers synced to disk. Every log record header has
  696. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  697. * to get a sync block number. The only concern is to figure out which
  698. * log record header to believe.
  699. *
  700. * The following algorithm uses the log record header with the largest
  701. * lsn. The entire log record does not need to be valid. We only care
  702. * that the header is valid.
  703. *
  704. * We could speed up search by using current head_blk buffer, but it is not
  705. * available.
  706. */
  707. int
  708. xlog_find_tail(
  709. xlog_t *log,
  710. xfs_daddr_t *head_blk,
  711. xfs_daddr_t *tail_blk)
  712. {
  713. xlog_rec_header_t *rhead;
  714. xlog_op_header_t *op_head;
  715. xfs_caddr_t offset = NULL;
  716. xfs_buf_t *bp;
  717. int error, i, found;
  718. xfs_daddr_t umount_data_blk;
  719. xfs_daddr_t after_umount_blk;
  720. xfs_lsn_t tail_lsn;
  721. int hblks;
  722. found = 0;
  723. /*
  724. * Find previous log record
  725. */
  726. if ((error = xlog_find_head(log, head_blk)))
  727. return error;
  728. bp = xlog_get_bp(log, 1);
  729. if (!bp)
  730. return ENOMEM;
  731. if (*head_blk == 0) { /* special case */
  732. if ((error = xlog_bread(log, 0, 1, bp)))
  733. goto bread_err;
  734. offset = xlog_align(log, 0, 1, bp);
  735. if (xlog_get_cycle(offset) == 0) {
  736. *tail_blk = 0;
  737. /* leave all other log inited values alone */
  738. goto exit;
  739. }
  740. }
  741. /*
  742. * Search backwards looking for log record header block
  743. */
  744. ASSERT(*head_blk < INT_MAX);
  745. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  746. if ((error = xlog_bread(log, i, 1, bp)))
  747. goto bread_err;
  748. offset = xlog_align(log, i, 1, bp);
  749. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  750. found = 1;
  751. break;
  752. }
  753. }
  754. /*
  755. * If we haven't found the log record header block, start looking
  756. * again from the end of the physical log. XXXmiken: There should be
  757. * a check here to make sure we didn't search more than N blocks in
  758. * the previous code.
  759. */
  760. if (!found) {
  761. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  762. if ((error = xlog_bread(log, i, 1, bp)))
  763. goto bread_err;
  764. offset = xlog_align(log, i, 1, bp);
  765. if (XLOG_HEADER_MAGIC_NUM ==
  766. be32_to_cpu(*(__be32 *)offset)) {
  767. found = 2;
  768. break;
  769. }
  770. }
  771. }
  772. if (!found) {
  773. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  774. ASSERT(0);
  775. return XFS_ERROR(EIO);
  776. }
  777. /* find blk_no of tail of log */
  778. rhead = (xlog_rec_header_t *)offset;
  779. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  780. /*
  781. * Reset log values according to the state of the log when we
  782. * crashed. In the case where head_blk == 0, we bump curr_cycle
  783. * one because the next write starts a new cycle rather than
  784. * continuing the cycle of the last good log record. At this
  785. * point we have guaranteed that all partial log records have been
  786. * accounted for. Therefore, we know that the last good log record
  787. * written was complete and ended exactly on the end boundary
  788. * of the physical log.
  789. */
  790. log->l_prev_block = i;
  791. log->l_curr_block = (int)*head_blk;
  792. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  793. if (found == 2)
  794. log->l_curr_cycle++;
  795. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  796. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  797. log->l_grant_reserve_cycle = log->l_curr_cycle;
  798. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  799. log->l_grant_write_cycle = log->l_curr_cycle;
  800. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  801. /*
  802. * Look for unmount record. If we find it, then we know there
  803. * was a clean unmount. Since 'i' could be the last block in
  804. * the physical log, we convert to a log block before comparing
  805. * to the head_blk.
  806. *
  807. * Save the current tail lsn to use to pass to
  808. * xlog_clear_stale_blocks() below. We won't want to clear the
  809. * unmount record if there is one, so we pass the lsn of the
  810. * unmount record rather than the block after it.
  811. */
  812. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  813. int h_size = be32_to_cpu(rhead->h_size);
  814. int h_version = be32_to_cpu(rhead->h_version);
  815. if ((h_version & XLOG_VERSION_2) &&
  816. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  817. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  818. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  819. hblks++;
  820. } else {
  821. hblks = 1;
  822. }
  823. } else {
  824. hblks = 1;
  825. }
  826. after_umount_blk = (i + hblks + (int)
  827. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  828. tail_lsn = log->l_tail_lsn;
  829. if (*head_blk == after_umount_blk &&
  830. be32_to_cpu(rhead->h_num_logops) == 1) {
  831. umount_data_blk = (i + hblks) % log->l_logBBsize;
  832. if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
  833. goto bread_err;
  834. }
  835. offset = xlog_align(log, umount_data_blk, 1, bp);
  836. op_head = (xlog_op_header_t *)offset;
  837. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  838. /*
  839. * Set tail and last sync so that newly written
  840. * log records will point recovery to after the
  841. * current unmount record.
  842. */
  843. log->l_tail_lsn =
  844. xlog_assign_lsn(log->l_curr_cycle,
  845. after_umount_blk);
  846. log->l_last_sync_lsn =
  847. xlog_assign_lsn(log->l_curr_cycle,
  848. after_umount_blk);
  849. *tail_blk = after_umount_blk;
  850. /*
  851. * Note that the unmount was clean. If the unmount
  852. * was not clean, we need to know this to rebuild the
  853. * superblock counters from the perag headers if we
  854. * have a filesystem using non-persistent counters.
  855. */
  856. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  857. }
  858. }
  859. /*
  860. * Make sure that there are no blocks in front of the head
  861. * with the same cycle number as the head. This can happen
  862. * because we allow multiple outstanding log writes concurrently,
  863. * and the later writes might make it out before earlier ones.
  864. *
  865. * We use the lsn from before modifying it so that we'll never
  866. * overwrite the unmount record after a clean unmount.
  867. *
  868. * Do this only if we are going to recover the filesystem
  869. *
  870. * NOTE: This used to say "if (!readonly)"
  871. * However on Linux, we can & do recover a read-only filesystem.
  872. * We only skip recovery if NORECOVERY is specified on mount,
  873. * in which case we would not be here.
  874. *
  875. * But... if the -device- itself is readonly, just skip this.
  876. * We can't recover this device anyway, so it won't matter.
  877. */
  878. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  879. error = xlog_clear_stale_blocks(log, tail_lsn);
  880. }
  881. bread_err:
  882. exit:
  883. xlog_put_bp(bp);
  884. if (error)
  885. xlog_warn("XFS: failed to locate log tail");
  886. return error;
  887. }
  888. /*
  889. * Is the log zeroed at all?
  890. *
  891. * The last binary search should be changed to perform an X block read
  892. * once X becomes small enough. You can then search linearly through
  893. * the X blocks. This will cut down on the number of reads we need to do.
  894. *
  895. * If the log is partially zeroed, this routine will pass back the blkno
  896. * of the first block with cycle number 0. It won't have a complete LR
  897. * preceding it.
  898. *
  899. * Return:
  900. * 0 => the log is completely written to
  901. * -1 => use *blk_no as the first block of the log
  902. * >0 => error has occurred
  903. */
  904. STATIC int
  905. xlog_find_zeroed(
  906. xlog_t *log,
  907. xfs_daddr_t *blk_no)
  908. {
  909. xfs_buf_t *bp;
  910. xfs_caddr_t offset;
  911. uint first_cycle, last_cycle;
  912. xfs_daddr_t new_blk, last_blk, start_blk;
  913. xfs_daddr_t num_scan_bblks;
  914. int error, log_bbnum = log->l_logBBsize;
  915. *blk_no = 0;
  916. /* check totally zeroed log */
  917. bp = xlog_get_bp(log, 1);
  918. if (!bp)
  919. return ENOMEM;
  920. if ((error = xlog_bread(log, 0, 1, bp)))
  921. goto bp_err;
  922. offset = xlog_align(log, 0, 1, bp);
  923. first_cycle = xlog_get_cycle(offset);
  924. if (first_cycle == 0) { /* completely zeroed log */
  925. *blk_no = 0;
  926. xlog_put_bp(bp);
  927. return -1;
  928. }
  929. /* check partially zeroed log */
  930. if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
  931. goto bp_err;
  932. offset = xlog_align(log, log_bbnum-1, 1, bp);
  933. last_cycle = xlog_get_cycle(offset);
  934. if (last_cycle != 0) { /* log completely written to */
  935. xlog_put_bp(bp);
  936. return 0;
  937. } else if (first_cycle != 1) {
  938. /*
  939. * If the cycle of the last block is zero, the cycle of
  940. * the first block must be 1. If it's not, maybe we're
  941. * not looking at a log... Bail out.
  942. */
  943. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  944. return XFS_ERROR(EINVAL);
  945. }
  946. /* we have a partially zeroed log */
  947. last_blk = log_bbnum-1;
  948. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  949. goto bp_err;
  950. /*
  951. * Validate the answer. Because there is no way to guarantee that
  952. * the entire log is made up of log records which are the same size,
  953. * we scan over the defined maximum blocks. At this point, the maximum
  954. * is not chosen to mean anything special. XXXmiken
  955. */
  956. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  957. ASSERT(num_scan_bblks <= INT_MAX);
  958. if (last_blk < num_scan_bblks)
  959. num_scan_bblks = last_blk;
  960. start_blk = last_blk - num_scan_bblks;
  961. /*
  962. * We search for any instances of cycle number 0 that occur before
  963. * our current estimate of the head. What we're trying to detect is
  964. * 1 ... | 0 | 1 | 0...
  965. * ^ binary search ends here
  966. */
  967. if ((error = xlog_find_verify_cycle(log, start_blk,
  968. (int)num_scan_bblks, 0, &new_blk)))
  969. goto bp_err;
  970. if (new_blk != -1)
  971. last_blk = new_blk;
  972. /*
  973. * Potentially backup over partial log record write. We don't need
  974. * to search the end of the log because we know it is zero.
  975. */
  976. if ((error = xlog_find_verify_log_record(log, start_blk,
  977. &last_blk, 0)) == -1) {
  978. error = XFS_ERROR(EIO);
  979. goto bp_err;
  980. } else if (error)
  981. goto bp_err;
  982. *blk_no = last_blk;
  983. bp_err:
  984. xlog_put_bp(bp);
  985. if (error)
  986. return error;
  987. return -1;
  988. }
  989. /*
  990. * These are simple subroutines used by xlog_clear_stale_blocks() below
  991. * to initialize a buffer full of empty log record headers and write
  992. * them into the log.
  993. */
  994. STATIC void
  995. xlog_add_record(
  996. xlog_t *log,
  997. xfs_caddr_t buf,
  998. int cycle,
  999. int block,
  1000. int tail_cycle,
  1001. int tail_block)
  1002. {
  1003. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1004. memset(buf, 0, BBSIZE);
  1005. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1006. recp->h_cycle = cpu_to_be32(cycle);
  1007. recp->h_version = cpu_to_be32(
  1008. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1009. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1010. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1011. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1012. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1013. }
  1014. STATIC int
  1015. xlog_write_log_records(
  1016. xlog_t *log,
  1017. int cycle,
  1018. int start_block,
  1019. int blocks,
  1020. int tail_cycle,
  1021. int tail_block)
  1022. {
  1023. xfs_caddr_t offset;
  1024. xfs_buf_t *bp;
  1025. int balign, ealign;
  1026. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1027. int end_block = start_block + blocks;
  1028. int bufblks;
  1029. int error = 0;
  1030. int i, j = 0;
  1031. bufblks = 1 << ffs(blocks);
  1032. while (!(bp = xlog_get_bp(log, bufblks))) {
  1033. bufblks >>= 1;
  1034. if (bufblks <= log->l_sectbb_log)
  1035. return ENOMEM;
  1036. }
  1037. /* We may need to do a read at the start to fill in part of
  1038. * the buffer in the starting sector not covered by the first
  1039. * write below.
  1040. */
  1041. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1042. if (balign != start_block) {
  1043. if ((error = xlog_bread(log, start_block, 1, bp))) {
  1044. xlog_put_bp(bp);
  1045. return error;
  1046. }
  1047. j = start_block - balign;
  1048. }
  1049. for (i = start_block; i < end_block; i += bufblks) {
  1050. int bcount, endcount;
  1051. bcount = min(bufblks, end_block - start_block);
  1052. endcount = bcount - j;
  1053. /* We may need to do a read at the end to fill in part of
  1054. * the buffer in the final sector not covered by the write.
  1055. * If this is the same sector as the above read, skip it.
  1056. */
  1057. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1058. if (j == 0 && (start_block + endcount > ealign)) {
  1059. offset = XFS_BUF_PTR(bp);
  1060. balign = BBTOB(ealign - start_block);
  1061. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1062. BBTOB(sectbb));
  1063. if (!error)
  1064. error = xlog_bread(log, ealign, sectbb, bp);
  1065. if (!error)
  1066. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1067. if (error)
  1068. break;
  1069. }
  1070. offset = xlog_align(log, start_block, endcount, bp);
  1071. for (; j < endcount; j++) {
  1072. xlog_add_record(log, offset, cycle, i+j,
  1073. tail_cycle, tail_block);
  1074. offset += BBSIZE;
  1075. }
  1076. error = xlog_bwrite(log, start_block, endcount, bp);
  1077. if (error)
  1078. break;
  1079. start_block += endcount;
  1080. j = 0;
  1081. }
  1082. xlog_put_bp(bp);
  1083. return error;
  1084. }
  1085. /*
  1086. * This routine is called to blow away any incomplete log writes out
  1087. * in front of the log head. We do this so that we won't become confused
  1088. * if we come up, write only a little bit more, and then crash again.
  1089. * If we leave the partial log records out there, this situation could
  1090. * cause us to think those partial writes are valid blocks since they
  1091. * have the current cycle number. We get rid of them by overwriting them
  1092. * with empty log records with the old cycle number rather than the
  1093. * current one.
  1094. *
  1095. * The tail lsn is passed in rather than taken from
  1096. * the log so that we will not write over the unmount record after a
  1097. * clean unmount in a 512 block log. Doing so would leave the log without
  1098. * any valid log records in it until a new one was written. If we crashed
  1099. * during that time we would not be able to recover.
  1100. */
  1101. STATIC int
  1102. xlog_clear_stale_blocks(
  1103. xlog_t *log,
  1104. xfs_lsn_t tail_lsn)
  1105. {
  1106. int tail_cycle, head_cycle;
  1107. int tail_block, head_block;
  1108. int tail_distance, max_distance;
  1109. int distance;
  1110. int error;
  1111. tail_cycle = CYCLE_LSN(tail_lsn);
  1112. tail_block = BLOCK_LSN(tail_lsn);
  1113. head_cycle = log->l_curr_cycle;
  1114. head_block = log->l_curr_block;
  1115. /*
  1116. * Figure out the distance between the new head of the log
  1117. * and the tail. We want to write over any blocks beyond the
  1118. * head that we may have written just before the crash, but
  1119. * we don't want to overwrite the tail of the log.
  1120. */
  1121. if (head_cycle == tail_cycle) {
  1122. /*
  1123. * The tail is behind the head in the physical log,
  1124. * so the distance from the head to the tail is the
  1125. * distance from the head to the end of the log plus
  1126. * the distance from the beginning of the log to the
  1127. * tail.
  1128. */
  1129. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1130. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1131. XFS_ERRLEVEL_LOW, log->l_mp);
  1132. return XFS_ERROR(EFSCORRUPTED);
  1133. }
  1134. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1135. } else {
  1136. /*
  1137. * The head is behind the tail in the physical log,
  1138. * so the distance from the head to the tail is just
  1139. * the tail block minus the head block.
  1140. */
  1141. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1142. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1143. XFS_ERRLEVEL_LOW, log->l_mp);
  1144. return XFS_ERROR(EFSCORRUPTED);
  1145. }
  1146. tail_distance = tail_block - head_block;
  1147. }
  1148. /*
  1149. * If the head is right up against the tail, we can't clear
  1150. * anything.
  1151. */
  1152. if (tail_distance <= 0) {
  1153. ASSERT(tail_distance == 0);
  1154. return 0;
  1155. }
  1156. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1157. /*
  1158. * Take the smaller of the maximum amount of outstanding I/O
  1159. * we could have and the distance to the tail to clear out.
  1160. * We take the smaller so that we don't overwrite the tail and
  1161. * we don't waste all day writing from the head to the tail
  1162. * for no reason.
  1163. */
  1164. max_distance = MIN(max_distance, tail_distance);
  1165. if ((head_block + max_distance) <= log->l_logBBsize) {
  1166. /*
  1167. * We can stomp all the blocks we need to without
  1168. * wrapping around the end of the log. Just do it
  1169. * in a single write. Use the cycle number of the
  1170. * current cycle minus one so that the log will look like:
  1171. * n ... | n - 1 ...
  1172. */
  1173. error = xlog_write_log_records(log, (head_cycle - 1),
  1174. head_block, max_distance, tail_cycle,
  1175. tail_block);
  1176. if (error)
  1177. return error;
  1178. } else {
  1179. /*
  1180. * We need to wrap around the end of the physical log in
  1181. * order to clear all the blocks. Do it in two separate
  1182. * I/Os. The first write should be from the head to the
  1183. * end of the physical log, and it should use the current
  1184. * cycle number minus one just like above.
  1185. */
  1186. distance = log->l_logBBsize - head_block;
  1187. error = xlog_write_log_records(log, (head_cycle - 1),
  1188. head_block, distance, tail_cycle,
  1189. tail_block);
  1190. if (error)
  1191. return error;
  1192. /*
  1193. * Now write the blocks at the start of the physical log.
  1194. * This writes the remainder of the blocks we want to clear.
  1195. * It uses the current cycle number since we're now on the
  1196. * same cycle as the head so that we get:
  1197. * n ... n ... | n - 1 ...
  1198. * ^^^^^ blocks we're writing
  1199. */
  1200. distance = max_distance - (log->l_logBBsize - head_block);
  1201. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1202. tail_cycle, tail_block);
  1203. if (error)
  1204. return error;
  1205. }
  1206. return 0;
  1207. }
  1208. /******************************************************************************
  1209. *
  1210. * Log recover routines
  1211. *
  1212. ******************************************************************************
  1213. */
  1214. STATIC xlog_recover_t *
  1215. xlog_recover_find_tid(
  1216. xlog_recover_t *q,
  1217. xlog_tid_t tid)
  1218. {
  1219. xlog_recover_t *p = q;
  1220. while (p != NULL) {
  1221. if (p->r_log_tid == tid)
  1222. break;
  1223. p = p->r_next;
  1224. }
  1225. return p;
  1226. }
  1227. STATIC void
  1228. xlog_recover_put_hashq(
  1229. xlog_recover_t **q,
  1230. xlog_recover_t *trans)
  1231. {
  1232. trans->r_next = *q;
  1233. *q = trans;
  1234. }
  1235. STATIC void
  1236. xlog_recover_add_item(
  1237. xlog_recover_item_t **itemq)
  1238. {
  1239. xlog_recover_item_t *item;
  1240. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1241. xlog_recover_insert_item_backq(itemq, item);
  1242. }
  1243. STATIC int
  1244. xlog_recover_add_to_cont_trans(
  1245. xlog_recover_t *trans,
  1246. xfs_caddr_t dp,
  1247. int len)
  1248. {
  1249. xlog_recover_item_t *item;
  1250. xfs_caddr_t ptr, old_ptr;
  1251. int old_len;
  1252. item = trans->r_itemq;
  1253. if (item == NULL) {
  1254. /* finish copying rest of trans header */
  1255. xlog_recover_add_item(&trans->r_itemq);
  1256. ptr = (xfs_caddr_t) &trans->r_theader +
  1257. sizeof(xfs_trans_header_t) - len;
  1258. memcpy(ptr, dp, len); /* d, s, l */
  1259. return 0;
  1260. }
  1261. item = item->ri_prev;
  1262. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1263. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1264. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1265. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1266. item->ri_buf[item->ri_cnt-1].i_len += len;
  1267. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1268. return 0;
  1269. }
  1270. /*
  1271. * The next region to add is the start of a new region. It could be
  1272. * a whole region or it could be the first part of a new region. Because
  1273. * of this, the assumption here is that the type and size fields of all
  1274. * format structures fit into the first 32 bits of the structure.
  1275. *
  1276. * This works because all regions must be 32 bit aligned. Therefore, we
  1277. * either have both fields or we have neither field. In the case we have
  1278. * neither field, the data part of the region is zero length. We only have
  1279. * a log_op_header and can throw away the header since a new one will appear
  1280. * later. If we have at least 4 bytes, then we can determine how many regions
  1281. * will appear in the current log item.
  1282. */
  1283. STATIC int
  1284. xlog_recover_add_to_trans(
  1285. xlog_recover_t *trans,
  1286. xfs_caddr_t dp,
  1287. int len)
  1288. {
  1289. xfs_inode_log_format_t *in_f; /* any will do */
  1290. xlog_recover_item_t *item;
  1291. xfs_caddr_t ptr;
  1292. if (!len)
  1293. return 0;
  1294. item = trans->r_itemq;
  1295. if (item == NULL) {
  1296. /* we need to catch log corruptions here */
  1297. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1298. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1299. "bad header magic number");
  1300. ASSERT(0);
  1301. return XFS_ERROR(EIO);
  1302. }
  1303. if (len == sizeof(xfs_trans_header_t))
  1304. xlog_recover_add_item(&trans->r_itemq);
  1305. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1306. return 0;
  1307. }
  1308. ptr = kmem_alloc(len, KM_SLEEP);
  1309. memcpy(ptr, dp, len);
  1310. in_f = (xfs_inode_log_format_t *)ptr;
  1311. if (item->ri_prev->ri_total != 0 &&
  1312. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1313. xlog_recover_add_item(&trans->r_itemq);
  1314. }
  1315. item = trans->r_itemq;
  1316. item = item->ri_prev;
  1317. if (item->ri_total == 0) { /* first region to be added */
  1318. item->ri_total = in_f->ilf_size;
  1319. ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
  1320. item->ri_buf = kmem_zalloc((item->ri_total *
  1321. sizeof(xfs_log_iovec_t)), KM_SLEEP);
  1322. }
  1323. ASSERT(item->ri_total > item->ri_cnt);
  1324. /* Description region is ri_buf[0] */
  1325. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1326. item->ri_buf[item->ri_cnt].i_len = len;
  1327. item->ri_cnt++;
  1328. return 0;
  1329. }
  1330. STATIC void
  1331. xlog_recover_new_tid(
  1332. xlog_recover_t **q,
  1333. xlog_tid_t tid,
  1334. xfs_lsn_t lsn)
  1335. {
  1336. xlog_recover_t *trans;
  1337. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1338. trans->r_log_tid = tid;
  1339. trans->r_lsn = lsn;
  1340. xlog_recover_put_hashq(q, trans);
  1341. }
  1342. STATIC int
  1343. xlog_recover_unlink_tid(
  1344. xlog_recover_t **q,
  1345. xlog_recover_t *trans)
  1346. {
  1347. xlog_recover_t *tp;
  1348. int found = 0;
  1349. ASSERT(trans != NULL);
  1350. if (trans == *q) {
  1351. *q = (*q)->r_next;
  1352. } else {
  1353. tp = *q;
  1354. while (tp) {
  1355. if (tp->r_next == trans) {
  1356. found = 1;
  1357. break;
  1358. }
  1359. tp = tp->r_next;
  1360. }
  1361. if (!found) {
  1362. xlog_warn(
  1363. "XFS: xlog_recover_unlink_tid: trans not found");
  1364. ASSERT(0);
  1365. return XFS_ERROR(EIO);
  1366. }
  1367. tp->r_next = tp->r_next->r_next;
  1368. }
  1369. return 0;
  1370. }
  1371. STATIC void
  1372. xlog_recover_insert_item_backq(
  1373. xlog_recover_item_t **q,
  1374. xlog_recover_item_t *item)
  1375. {
  1376. if (*q == NULL) {
  1377. item->ri_prev = item->ri_next = item;
  1378. *q = item;
  1379. } else {
  1380. item->ri_next = *q;
  1381. item->ri_prev = (*q)->ri_prev;
  1382. (*q)->ri_prev = item;
  1383. item->ri_prev->ri_next = item;
  1384. }
  1385. }
  1386. STATIC void
  1387. xlog_recover_insert_item_frontq(
  1388. xlog_recover_item_t **q,
  1389. xlog_recover_item_t *item)
  1390. {
  1391. xlog_recover_insert_item_backq(q, item);
  1392. *q = item;
  1393. }
  1394. STATIC int
  1395. xlog_recover_reorder_trans(
  1396. xlog_recover_t *trans)
  1397. {
  1398. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1399. xfs_buf_log_format_t *buf_f;
  1400. ushort flags = 0;
  1401. first_item = itemq = trans->r_itemq;
  1402. trans->r_itemq = NULL;
  1403. do {
  1404. itemq_next = itemq->ri_next;
  1405. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1406. switch (ITEM_TYPE(itemq)) {
  1407. case XFS_LI_BUF:
  1408. flags = buf_f->blf_flags;
  1409. if (!(flags & XFS_BLI_CANCEL)) {
  1410. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1411. itemq);
  1412. break;
  1413. }
  1414. case XFS_LI_INODE:
  1415. case XFS_LI_DQUOT:
  1416. case XFS_LI_QUOTAOFF:
  1417. case XFS_LI_EFD:
  1418. case XFS_LI_EFI:
  1419. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1420. break;
  1421. default:
  1422. xlog_warn(
  1423. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1424. ASSERT(0);
  1425. return XFS_ERROR(EIO);
  1426. }
  1427. itemq = itemq_next;
  1428. } while (first_item != itemq);
  1429. return 0;
  1430. }
  1431. /*
  1432. * Build up the table of buf cancel records so that we don't replay
  1433. * cancelled data in the second pass. For buffer records that are
  1434. * not cancel records, there is nothing to do here so we just return.
  1435. *
  1436. * If we get a cancel record which is already in the table, this indicates
  1437. * that the buffer was cancelled multiple times. In order to ensure
  1438. * that during pass 2 we keep the record in the table until we reach its
  1439. * last occurrence in the log, we keep a reference count in the cancel
  1440. * record in the table to tell us how many times we expect to see this
  1441. * record during the second pass.
  1442. */
  1443. STATIC void
  1444. xlog_recover_do_buffer_pass1(
  1445. xlog_t *log,
  1446. xfs_buf_log_format_t *buf_f)
  1447. {
  1448. xfs_buf_cancel_t *bcp;
  1449. xfs_buf_cancel_t *nextp;
  1450. xfs_buf_cancel_t *prevp;
  1451. xfs_buf_cancel_t **bucket;
  1452. xfs_daddr_t blkno = 0;
  1453. uint len = 0;
  1454. ushort flags = 0;
  1455. switch (buf_f->blf_type) {
  1456. case XFS_LI_BUF:
  1457. blkno = buf_f->blf_blkno;
  1458. len = buf_f->blf_len;
  1459. flags = buf_f->blf_flags;
  1460. break;
  1461. }
  1462. /*
  1463. * If this isn't a cancel buffer item, then just return.
  1464. */
  1465. if (!(flags & XFS_BLI_CANCEL))
  1466. return;
  1467. /*
  1468. * Insert an xfs_buf_cancel record into the hash table of
  1469. * them. If there is already an identical record, bump
  1470. * its reference count.
  1471. */
  1472. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1473. XLOG_BC_TABLE_SIZE];
  1474. /*
  1475. * If the hash bucket is empty then just insert a new record into
  1476. * the bucket.
  1477. */
  1478. if (*bucket == NULL) {
  1479. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1480. KM_SLEEP);
  1481. bcp->bc_blkno = blkno;
  1482. bcp->bc_len = len;
  1483. bcp->bc_refcount = 1;
  1484. bcp->bc_next = NULL;
  1485. *bucket = bcp;
  1486. return;
  1487. }
  1488. /*
  1489. * The hash bucket is not empty, so search for duplicates of our
  1490. * record. If we find one them just bump its refcount. If not
  1491. * then add us at the end of the list.
  1492. */
  1493. prevp = NULL;
  1494. nextp = *bucket;
  1495. while (nextp != NULL) {
  1496. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1497. nextp->bc_refcount++;
  1498. return;
  1499. }
  1500. prevp = nextp;
  1501. nextp = nextp->bc_next;
  1502. }
  1503. ASSERT(prevp != NULL);
  1504. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1505. KM_SLEEP);
  1506. bcp->bc_blkno = blkno;
  1507. bcp->bc_len = len;
  1508. bcp->bc_refcount = 1;
  1509. bcp->bc_next = NULL;
  1510. prevp->bc_next = bcp;
  1511. }
  1512. /*
  1513. * Check to see whether the buffer being recovered has a corresponding
  1514. * entry in the buffer cancel record table. If it does then return 1
  1515. * so that it will be cancelled, otherwise return 0. If the buffer is
  1516. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1517. * the refcount on the entry in the table and remove it from the table
  1518. * if this is the last reference.
  1519. *
  1520. * We remove the cancel record from the table when we encounter its
  1521. * last occurrence in the log so that if the same buffer is re-used
  1522. * again after its last cancellation we actually replay the changes
  1523. * made at that point.
  1524. */
  1525. STATIC int
  1526. xlog_check_buffer_cancelled(
  1527. xlog_t *log,
  1528. xfs_daddr_t blkno,
  1529. uint len,
  1530. ushort flags)
  1531. {
  1532. xfs_buf_cancel_t *bcp;
  1533. xfs_buf_cancel_t *prevp;
  1534. xfs_buf_cancel_t **bucket;
  1535. if (log->l_buf_cancel_table == NULL) {
  1536. /*
  1537. * There is nothing in the table built in pass one,
  1538. * so this buffer must not be cancelled.
  1539. */
  1540. ASSERT(!(flags & XFS_BLI_CANCEL));
  1541. return 0;
  1542. }
  1543. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1544. XLOG_BC_TABLE_SIZE];
  1545. bcp = *bucket;
  1546. if (bcp == NULL) {
  1547. /*
  1548. * There is no corresponding entry in the table built
  1549. * in pass one, so this buffer has not been cancelled.
  1550. */
  1551. ASSERT(!(flags & XFS_BLI_CANCEL));
  1552. return 0;
  1553. }
  1554. /*
  1555. * Search for an entry in the buffer cancel table that
  1556. * matches our buffer.
  1557. */
  1558. prevp = NULL;
  1559. while (bcp != NULL) {
  1560. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1561. /*
  1562. * We've go a match, so return 1 so that the
  1563. * recovery of this buffer is cancelled.
  1564. * If this buffer is actually a buffer cancel
  1565. * log item, then decrement the refcount on the
  1566. * one in the table and remove it if this is the
  1567. * last reference.
  1568. */
  1569. if (flags & XFS_BLI_CANCEL) {
  1570. bcp->bc_refcount--;
  1571. if (bcp->bc_refcount == 0) {
  1572. if (prevp == NULL) {
  1573. *bucket = bcp->bc_next;
  1574. } else {
  1575. prevp->bc_next = bcp->bc_next;
  1576. }
  1577. kmem_free(bcp);
  1578. }
  1579. }
  1580. return 1;
  1581. }
  1582. prevp = bcp;
  1583. bcp = bcp->bc_next;
  1584. }
  1585. /*
  1586. * We didn't find a corresponding entry in the table, so
  1587. * return 0 so that the buffer is NOT cancelled.
  1588. */
  1589. ASSERT(!(flags & XFS_BLI_CANCEL));
  1590. return 0;
  1591. }
  1592. STATIC int
  1593. xlog_recover_do_buffer_pass2(
  1594. xlog_t *log,
  1595. xfs_buf_log_format_t *buf_f)
  1596. {
  1597. xfs_daddr_t blkno = 0;
  1598. ushort flags = 0;
  1599. uint len = 0;
  1600. switch (buf_f->blf_type) {
  1601. case XFS_LI_BUF:
  1602. blkno = buf_f->blf_blkno;
  1603. flags = buf_f->blf_flags;
  1604. len = buf_f->blf_len;
  1605. break;
  1606. }
  1607. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1608. }
  1609. /*
  1610. * Perform recovery for a buffer full of inodes. In these buffers,
  1611. * the only data which should be recovered is that which corresponds
  1612. * to the di_next_unlinked pointers in the on disk inode structures.
  1613. * The rest of the data for the inodes is always logged through the
  1614. * inodes themselves rather than the inode buffer and is recovered
  1615. * in xlog_recover_do_inode_trans().
  1616. *
  1617. * The only time when buffers full of inodes are fully recovered is
  1618. * when the buffer is full of newly allocated inodes. In this case
  1619. * the buffer will not be marked as an inode buffer and so will be
  1620. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1621. */
  1622. STATIC int
  1623. xlog_recover_do_inode_buffer(
  1624. xfs_mount_t *mp,
  1625. xlog_recover_item_t *item,
  1626. xfs_buf_t *bp,
  1627. xfs_buf_log_format_t *buf_f)
  1628. {
  1629. int i;
  1630. int item_index;
  1631. int bit;
  1632. int nbits;
  1633. int reg_buf_offset;
  1634. int reg_buf_bytes;
  1635. int next_unlinked_offset;
  1636. int inodes_per_buf;
  1637. xfs_agino_t *logged_nextp;
  1638. xfs_agino_t *buffer_nextp;
  1639. unsigned int *data_map = NULL;
  1640. unsigned int map_size = 0;
  1641. switch (buf_f->blf_type) {
  1642. case XFS_LI_BUF:
  1643. data_map = buf_f->blf_data_map;
  1644. map_size = buf_f->blf_map_size;
  1645. break;
  1646. }
  1647. /*
  1648. * Set the variables corresponding to the current region to
  1649. * 0 so that we'll initialize them on the first pass through
  1650. * the loop.
  1651. */
  1652. reg_buf_offset = 0;
  1653. reg_buf_bytes = 0;
  1654. bit = 0;
  1655. nbits = 0;
  1656. item_index = 0;
  1657. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1658. for (i = 0; i < inodes_per_buf; i++) {
  1659. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1660. offsetof(xfs_dinode_t, di_next_unlinked);
  1661. while (next_unlinked_offset >=
  1662. (reg_buf_offset + reg_buf_bytes)) {
  1663. /*
  1664. * The next di_next_unlinked field is beyond
  1665. * the current logged region. Find the next
  1666. * logged region that contains or is beyond
  1667. * the current di_next_unlinked field.
  1668. */
  1669. bit += nbits;
  1670. bit = xfs_next_bit(data_map, map_size, bit);
  1671. /*
  1672. * If there are no more logged regions in the
  1673. * buffer, then we're done.
  1674. */
  1675. if (bit == -1) {
  1676. return 0;
  1677. }
  1678. nbits = xfs_contig_bits(data_map, map_size,
  1679. bit);
  1680. ASSERT(nbits > 0);
  1681. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1682. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1683. item_index++;
  1684. }
  1685. /*
  1686. * If the current logged region starts after the current
  1687. * di_next_unlinked field, then move on to the next
  1688. * di_next_unlinked field.
  1689. */
  1690. if (next_unlinked_offset < reg_buf_offset) {
  1691. continue;
  1692. }
  1693. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1694. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1695. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1696. /*
  1697. * The current logged region contains a copy of the
  1698. * current di_next_unlinked field. Extract its value
  1699. * and copy it to the buffer copy.
  1700. */
  1701. logged_nextp = (xfs_agino_t *)
  1702. ((char *)(item->ri_buf[item_index].i_addr) +
  1703. (next_unlinked_offset - reg_buf_offset));
  1704. if (unlikely(*logged_nextp == 0)) {
  1705. xfs_fs_cmn_err(CE_ALERT, mp,
  1706. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1707. item, bp);
  1708. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1709. XFS_ERRLEVEL_LOW, mp);
  1710. return XFS_ERROR(EFSCORRUPTED);
  1711. }
  1712. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1713. next_unlinked_offset);
  1714. *buffer_nextp = *logged_nextp;
  1715. }
  1716. return 0;
  1717. }
  1718. /*
  1719. * Perform a 'normal' buffer recovery. Each logged region of the
  1720. * buffer should be copied over the corresponding region in the
  1721. * given buffer. The bitmap in the buf log format structure indicates
  1722. * where to place the logged data.
  1723. */
  1724. /*ARGSUSED*/
  1725. STATIC void
  1726. xlog_recover_do_reg_buffer(
  1727. xlog_recover_item_t *item,
  1728. xfs_buf_t *bp,
  1729. xfs_buf_log_format_t *buf_f)
  1730. {
  1731. int i;
  1732. int bit;
  1733. int nbits;
  1734. unsigned int *data_map = NULL;
  1735. unsigned int map_size = 0;
  1736. int error;
  1737. switch (buf_f->blf_type) {
  1738. case XFS_LI_BUF:
  1739. data_map = buf_f->blf_data_map;
  1740. map_size = buf_f->blf_map_size;
  1741. break;
  1742. }
  1743. bit = 0;
  1744. i = 1; /* 0 is the buf format structure */
  1745. while (1) {
  1746. bit = xfs_next_bit(data_map, map_size, bit);
  1747. if (bit == -1)
  1748. break;
  1749. nbits = xfs_contig_bits(data_map, map_size, bit);
  1750. ASSERT(nbits > 0);
  1751. ASSERT(item->ri_buf[i].i_addr != NULL);
  1752. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1753. ASSERT(XFS_BUF_COUNT(bp) >=
  1754. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1755. /*
  1756. * Do a sanity check if this is a dquot buffer. Just checking
  1757. * the first dquot in the buffer should do. XXXThis is
  1758. * probably a good thing to do for other buf types also.
  1759. */
  1760. error = 0;
  1761. if (buf_f->blf_flags &
  1762. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1763. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1764. item->ri_buf[i].i_addr,
  1765. -1, 0, XFS_QMOPT_DOWARN,
  1766. "dquot_buf_recover");
  1767. }
  1768. if (!error)
  1769. memcpy(xfs_buf_offset(bp,
  1770. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1771. item->ri_buf[i].i_addr, /* source */
  1772. nbits<<XFS_BLI_SHIFT); /* length */
  1773. i++;
  1774. bit += nbits;
  1775. }
  1776. /* Shouldn't be any more regions */
  1777. ASSERT(i == item->ri_total);
  1778. }
  1779. /*
  1780. * Do some primitive error checking on ondisk dquot data structures.
  1781. */
  1782. int
  1783. xfs_qm_dqcheck(
  1784. xfs_disk_dquot_t *ddq,
  1785. xfs_dqid_t id,
  1786. uint type, /* used only when IO_dorepair is true */
  1787. uint flags,
  1788. char *str)
  1789. {
  1790. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1791. int errs = 0;
  1792. /*
  1793. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1794. * 1. If we crash while deleting the quotainode(s), and those blks got
  1795. * used for user data. This is because we take the path of regular
  1796. * file deletion; however, the size field of quotainodes is never
  1797. * updated, so all the tricks that we play in itruncate_finish
  1798. * don't quite matter.
  1799. *
  1800. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1801. * But the allocation will be replayed so we'll end up with an
  1802. * uninitialized quota block.
  1803. *
  1804. * This is all fine; things are still consistent, and we haven't lost
  1805. * any quota information. Just don't complain about bad dquot blks.
  1806. */
  1807. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1808. if (flags & XFS_QMOPT_DOWARN)
  1809. cmn_err(CE_ALERT,
  1810. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1811. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1812. errs++;
  1813. }
  1814. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1815. if (flags & XFS_QMOPT_DOWARN)
  1816. cmn_err(CE_ALERT,
  1817. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1818. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1819. errs++;
  1820. }
  1821. if (ddq->d_flags != XFS_DQ_USER &&
  1822. ddq->d_flags != XFS_DQ_PROJ &&
  1823. ddq->d_flags != XFS_DQ_GROUP) {
  1824. if (flags & XFS_QMOPT_DOWARN)
  1825. cmn_err(CE_ALERT,
  1826. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1827. str, id, ddq->d_flags);
  1828. errs++;
  1829. }
  1830. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1831. if (flags & XFS_QMOPT_DOWARN)
  1832. cmn_err(CE_ALERT,
  1833. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1834. "0x%x expected, found id 0x%x",
  1835. str, ddq, id, be32_to_cpu(ddq->d_id));
  1836. errs++;
  1837. }
  1838. if (!errs && ddq->d_id) {
  1839. if (ddq->d_blk_softlimit &&
  1840. be64_to_cpu(ddq->d_bcount) >=
  1841. be64_to_cpu(ddq->d_blk_softlimit)) {
  1842. if (!ddq->d_btimer) {
  1843. if (flags & XFS_QMOPT_DOWARN)
  1844. cmn_err(CE_ALERT,
  1845. "%s : Dquot ID 0x%x (0x%p) "
  1846. "BLK TIMER NOT STARTED",
  1847. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1848. errs++;
  1849. }
  1850. }
  1851. if (ddq->d_ino_softlimit &&
  1852. be64_to_cpu(ddq->d_icount) >=
  1853. be64_to_cpu(ddq->d_ino_softlimit)) {
  1854. if (!ddq->d_itimer) {
  1855. if (flags & XFS_QMOPT_DOWARN)
  1856. cmn_err(CE_ALERT,
  1857. "%s : Dquot ID 0x%x (0x%p) "
  1858. "INODE TIMER NOT STARTED",
  1859. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1860. errs++;
  1861. }
  1862. }
  1863. if (ddq->d_rtb_softlimit &&
  1864. be64_to_cpu(ddq->d_rtbcount) >=
  1865. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1866. if (!ddq->d_rtbtimer) {
  1867. if (flags & XFS_QMOPT_DOWARN)
  1868. cmn_err(CE_ALERT,
  1869. "%s : Dquot ID 0x%x (0x%p) "
  1870. "RTBLK TIMER NOT STARTED",
  1871. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1872. errs++;
  1873. }
  1874. }
  1875. }
  1876. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1877. return errs;
  1878. if (flags & XFS_QMOPT_DOWARN)
  1879. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1880. /*
  1881. * Typically, a repair is only requested by quotacheck.
  1882. */
  1883. ASSERT(id != -1);
  1884. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1885. memset(d, 0, sizeof(xfs_dqblk_t));
  1886. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1887. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1888. d->dd_diskdq.d_flags = type;
  1889. d->dd_diskdq.d_id = cpu_to_be32(id);
  1890. return errs;
  1891. }
  1892. /*
  1893. * Perform a dquot buffer recovery.
  1894. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1895. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1896. * Else, treat it as a regular buffer and do recovery.
  1897. */
  1898. STATIC void
  1899. xlog_recover_do_dquot_buffer(
  1900. xfs_mount_t *mp,
  1901. xlog_t *log,
  1902. xlog_recover_item_t *item,
  1903. xfs_buf_t *bp,
  1904. xfs_buf_log_format_t *buf_f)
  1905. {
  1906. uint type;
  1907. /*
  1908. * Filesystems are required to send in quota flags at mount time.
  1909. */
  1910. if (mp->m_qflags == 0) {
  1911. return;
  1912. }
  1913. type = 0;
  1914. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1915. type |= XFS_DQ_USER;
  1916. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1917. type |= XFS_DQ_PROJ;
  1918. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1919. type |= XFS_DQ_GROUP;
  1920. /*
  1921. * This type of quotas was turned off, so ignore this buffer
  1922. */
  1923. if (log->l_quotaoffs_flag & type)
  1924. return;
  1925. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1926. }
  1927. /*
  1928. * This routine replays a modification made to a buffer at runtime.
  1929. * There are actually two types of buffer, regular and inode, which
  1930. * are handled differently. Inode buffers are handled differently
  1931. * in that we only recover a specific set of data from them, namely
  1932. * the inode di_next_unlinked fields. This is because all other inode
  1933. * data is actually logged via inode records and any data we replay
  1934. * here which overlaps that may be stale.
  1935. *
  1936. * When meta-data buffers are freed at run time we log a buffer item
  1937. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1938. * of the buffer in the log should not be replayed at recovery time.
  1939. * This is so that if the blocks covered by the buffer are reused for
  1940. * file data before we crash we don't end up replaying old, freed
  1941. * meta-data into a user's file.
  1942. *
  1943. * To handle the cancellation of buffer log items, we make two passes
  1944. * over the log during recovery. During the first we build a table of
  1945. * those buffers which have been cancelled, and during the second we
  1946. * only replay those buffers which do not have corresponding cancel
  1947. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1948. * for more details on the implementation of the table of cancel records.
  1949. */
  1950. STATIC int
  1951. xlog_recover_do_buffer_trans(
  1952. xlog_t *log,
  1953. xlog_recover_item_t *item,
  1954. int pass)
  1955. {
  1956. xfs_buf_log_format_t *buf_f;
  1957. xfs_mount_t *mp;
  1958. xfs_buf_t *bp;
  1959. int error;
  1960. int cancel;
  1961. xfs_daddr_t blkno;
  1962. int len;
  1963. ushort flags;
  1964. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1965. if (pass == XLOG_RECOVER_PASS1) {
  1966. /*
  1967. * In this pass we're only looking for buf items
  1968. * with the XFS_BLI_CANCEL bit set.
  1969. */
  1970. xlog_recover_do_buffer_pass1(log, buf_f);
  1971. return 0;
  1972. } else {
  1973. /*
  1974. * In this pass we want to recover all the buffers
  1975. * which have not been cancelled and are not
  1976. * cancellation buffers themselves. The routine
  1977. * we call here will tell us whether or not to
  1978. * continue with the replay of this buffer.
  1979. */
  1980. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  1981. if (cancel) {
  1982. return 0;
  1983. }
  1984. }
  1985. switch (buf_f->blf_type) {
  1986. case XFS_LI_BUF:
  1987. blkno = buf_f->blf_blkno;
  1988. len = buf_f->blf_len;
  1989. flags = buf_f->blf_flags;
  1990. break;
  1991. default:
  1992. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  1993. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  1994. buf_f->blf_type, log->l_mp->m_logname ?
  1995. log->l_mp->m_logname : "internal");
  1996. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  1997. XFS_ERRLEVEL_LOW, log->l_mp);
  1998. return XFS_ERROR(EFSCORRUPTED);
  1999. }
  2000. mp = log->l_mp;
  2001. if (flags & XFS_BLI_INODE_BUF) {
  2002. bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
  2003. XFS_BUF_LOCK);
  2004. } else {
  2005. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
  2006. }
  2007. if (XFS_BUF_ISERROR(bp)) {
  2008. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2009. bp, blkno);
  2010. error = XFS_BUF_GETERROR(bp);
  2011. xfs_buf_relse(bp);
  2012. return error;
  2013. }
  2014. error = 0;
  2015. if (flags & XFS_BLI_INODE_BUF) {
  2016. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2017. } else if (flags &
  2018. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2019. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2020. } else {
  2021. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2022. }
  2023. if (error)
  2024. return XFS_ERROR(error);
  2025. /*
  2026. * Perform delayed write on the buffer. Asynchronous writes will be
  2027. * slower when taking into account all the buffers to be flushed.
  2028. *
  2029. * Also make sure that only inode buffers with good sizes stay in
  2030. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2031. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2032. * buffers in the log can be a different size if the log was generated
  2033. * by an older kernel using unclustered inode buffers or a newer kernel
  2034. * running with a different inode cluster size. Regardless, if the
  2035. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2036. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2037. * the buffer out of the buffer cache so that the buffer won't
  2038. * overlap with future reads of those inodes.
  2039. */
  2040. if (XFS_DINODE_MAGIC ==
  2041. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2042. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2043. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2044. XFS_BUF_STALE(bp);
  2045. error = xfs_bwrite(mp, bp);
  2046. } else {
  2047. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2048. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2049. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2050. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2051. xfs_bdwrite(mp, bp);
  2052. }
  2053. return (error);
  2054. }
  2055. STATIC int
  2056. xlog_recover_do_inode_trans(
  2057. xlog_t *log,
  2058. xlog_recover_item_t *item,
  2059. int pass)
  2060. {
  2061. xfs_inode_log_format_t *in_f;
  2062. xfs_mount_t *mp;
  2063. xfs_buf_t *bp;
  2064. xfs_imap_t imap;
  2065. xfs_dinode_t *dip;
  2066. xfs_ino_t ino;
  2067. int len;
  2068. xfs_caddr_t src;
  2069. xfs_caddr_t dest;
  2070. int error;
  2071. int attr_index;
  2072. uint fields;
  2073. xfs_icdinode_t *dicp;
  2074. int need_free = 0;
  2075. if (pass == XLOG_RECOVER_PASS1) {
  2076. return 0;
  2077. }
  2078. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2079. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2080. } else {
  2081. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2082. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2083. need_free = 1;
  2084. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2085. if (error)
  2086. goto error;
  2087. }
  2088. ino = in_f->ilf_ino;
  2089. mp = log->l_mp;
  2090. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2091. imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
  2092. imap.im_len = in_f->ilf_len;
  2093. imap.im_boffset = in_f->ilf_boffset;
  2094. } else {
  2095. /*
  2096. * It's an old inode format record. We don't know where
  2097. * its cluster is located on disk, and we can't allow
  2098. * xfs_imap() to figure it out because the inode btrees
  2099. * are not ready to be used. Therefore do not pass the
  2100. * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
  2101. * us only the single block in which the inode lives
  2102. * rather than its cluster, so we must make sure to
  2103. * invalidate the buffer when we write it out below.
  2104. */
  2105. imap.im_blkno = 0;
  2106. error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
  2107. if (error)
  2108. goto error;
  2109. }
  2110. /*
  2111. * Inode buffers can be freed, look out for it,
  2112. * and do not replay the inode.
  2113. */
  2114. if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
  2115. error = 0;
  2116. goto error;
  2117. }
  2118. bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
  2119. XFS_BUF_LOCK);
  2120. if (XFS_BUF_ISERROR(bp)) {
  2121. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2122. bp, imap.im_blkno);
  2123. error = XFS_BUF_GETERROR(bp);
  2124. xfs_buf_relse(bp);
  2125. goto error;
  2126. }
  2127. error = 0;
  2128. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2129. dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  2130. /*
  2131. * Make sure the place we're flushing out to really looks
  2132. * like an inode!
  2133. */
  2134. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2135. xfs_buf_relse(bp);
  2136. xfs_fs_cmn_err(CE_ALERT, mp,
  2137. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2138. dip, bp, ino);
  2139. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2140. XFS_ERRLEVEL_LOW, mp);
  2141. error = EFSCORRUPTED;
  2142. goto error;
  2143. }
  2144. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2145. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2146. xfs_buf_relse(bp);
  2147. xfs_fs_cmn_err(CE_ALERT, mp,
  2148. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2149. item, ino);
  2150. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2151. XFS_ERRLEVEL_LOW, mp);
  2152. error = EFSCORRUPTED;
  2153. goto error;
  2154. }
  2155. /* Skip replay when the on disk inode is newer than the log one */
  2156. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2157. /*
  2158. * Deal with the wrap case, DI_MAX_FLUSH is less
  2159. * than smaller numbers
  2160. */
  2161. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2162. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2163. /* do nothing */
  2164. } else {
  2165. xfs_buf_relse(bp);
  2166. error = 0;
  2167. goto error;
  2168. }
  2169. }
  2170. /* Take the opportunity to reset the flush iteration count */
  2171. dicp->di_flushiter = 0;
  2172. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2173. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2174. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2175. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2176. XFS_ERRLEVEL_LOW, mp, dicp);
  2177. xfs_buf_relse(bp);
  2178. xfs_fs_cmn_err(CE_ALERT, mp,
  2179. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2180. item, dip, bp, ino);
  2181. error = EFSCORRUPTED;
  2182. goto error;
  2183. }
  2184. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2185. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2186. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2187. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2188. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2189. XFS_ERRLEVEL_LOW, mp, dicp);
  2190. xfs_buf_relse(bp);
  2191. xfs_fs_cmn_err(CE_ALERT, mp,
  2192. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2193. item, dip, bp, ino);
  2194. error = EFSCORRUPTED;
  2195. goto error;
  2196. }
  2197. }
  2198. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2199. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2200. XFS_ERRLEVEL_LOW, mp, dicp);
  2201. xfs_buf_relse(bp);
  2202. xfs_fs_cmn_err(CE_ALERT, mp,
  2203. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2204. item, dip, bp, ino,
  2205. dicp->di_nextents + dicp->di_anextents,
  2206. dicp->di_nblocks);
  2207. error = EFSCORRUPTED;
  2208. goto error;
  2209. }
  2210. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2211. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2212. XFS_ERRLEVEL_LOW, mp, dicp);
  2213. xfs_buf_relse(bp);
  2214. xfs_fs_cmn_err(CE_ALERT, mp,
  2215. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2216. item, dip, bp, ino, dicp->di_forkoff);
  2217. error = EFSCORRUPTED;
  2218. goto error;
  2219. }
  2220. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2221. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2222. XFS_ERRLEVEL_LOW, mp, dicp);
  2223. xfs_buf_relse(bp);
  2224. xfs_fs_cmn_err(CE_ALERT, mp,
  2225. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2226. item->ri_buf[1].i_len, item);
  2227. error = EFSCORRUPTED;
  2228. goto error;
  2229. }
  2230. /* The core is in in-core format */
  2231. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2232. /* the rest is in on-disk format */
  2233. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2234. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2235. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2236. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2237. }
  2238. fields = in_f->ilf_fields;
  2239. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2240. case XFS_ILOG_DEV:
  2241. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2242. break;
  2243. case XFS_ILOG_UUID:
  2244. memcpy(XFS_DFORK_DPTR(dip),
  2245. &in_f->ilf_u.ilfu_uuid,
  2246. sizeof(uuid_t));
  2247. break;
  2248. }
  2249. if (in_f->ilf_size == 2)
  2250. goto write_inode_buffer;
  2251. len = item->ri_buf[2].i_len;
  2252. src = item->ri_buf[2].i_addr;
  2253. ASSERT(in_f->ilf_size <= 4);
  2254. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2255. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2256. (len == in_f->ilf_dsize));
  2257. switch (fields & XFS_ILOG_DFORK) {
  2258. case XFS_ILOG_DDATA:
  2259. case XFS_ILOG_DEXT:
  2260. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2261. break;
  2262. case XFS_ILOG_DBROOT:
  2263. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2264. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2265. XFS_DFORK_DSIZE(dip, mp));
  2266. break;
  2267. default:
  2268. /*
  2269. * There are no data fork flags set.
  2270. */
  2271. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2272. break;
  2273. }
  2274. /*
  2275. * If we logged any attribute data, recover it. There may or
  2276. * may not have been any other non-core data logged in this
  2277. * transaction.
  2278. */
  2279. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2280. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2281. attr_index = 3;
  2282. } else {
  2283. attr_index = 2;
  2284. }
  2285. len = item->ri_buf[attr_index].i_len;
  2286. src = item->ri_buf[attr_index].i_addr;
  2287. ASSERT(len == in_f->ilf_asize);
  2288. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2289. case XFS_ILOG_ADATA:
  2290. case XFS_ILOG_AEXT:
  2291. dest = XFS_DFORK_APTR(dip);
  2292. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2293. memcpy(dest, src, len);
  2294. break;
  2295. case XFS_ILOG_ABROOT:
  2296. dest = XFS_DFORK_APTR(dip);
  2297. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2298. len, (xfs_bmdr_block_t*)dest,
  2299. XFS_DFORK_ASIZE(dip, mp));
  2300. break;
  2301. default:
  2302. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2303. ASSERT(0);
  2304. xfs_buf_relse(bp);
  2305. error = EIO;
  2306. goto error;
  2307. }
  2308. }
  2309. write_inode_buffer:
  2310. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2311. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2312. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2313. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2314. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2315. xfs_bdwrite(mp, bp);
  2316. } else {
  2317. XFS_BUF_STALE(bp);
  2318. error = xfs_bwrite(mp, bp);
  2319. }
  2320. error:
  2321. if (need_free)
  2322. kmem_free(in_f);
  2323. return XFS_ERROR(error);
  2324. }
  2325. /*
  2326. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2327. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2328. * of that type.
  2329. */
  2330. STATIC int
  2331. xlog_recover_do_quotaoff_trans(
  2332. xlog_t *log,
  2333. xlog_recover_item_t *item,
  2334. int pass)
  2335. {
  2336. xfs_qoff_logformat_t *qoff_f;
  2337. if (pass == XLOG_RECOVER_PASS2) {
  2338. return (0);
  2339. }
  2340. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2341. ASSERT(qoff_f);
  2342. /*
  2343. * The logitem format's flag tells us if this was user quotaoff,
  2344. * group/project quotaoff or both.
  2345. */
  2346. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2347. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2348. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2349. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2350. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2351. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2352. return (0);
  2353. }
  2354. /*
  2355. * Recover a dquot record
  2356. */
  2357. STATIC int
  2358. xlog_recover_do_dquot_trans(
  2359. xlog_t *log,
  2360. xlog_recover_item_t *item,
  2361. int pass)
  2362. {
  2363. xfs_mount_t *mp;
  2364. xfs_buf_t *bp;
  2365. struct xfs_disk_dquot *ddq, *recddq;
  2366. int error;
  2367. xfs_dq_logformat_t *dq_f;
  2368. uint type;
  2369. if (pass == XLOG_RECOVER_PASS1) {
  2370. return 0;
  2371. }
  2372. mp = log->l_mp;
  2373. /*
  2374. * Filesystems are required to send in quota flags at mount time.
  2375. */
  2376. if (mp->m_qflags == 0)
  2377. return (0);
  2378. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2379. ASSERT(recddq);
  2380. /*
  2381. * This type of quotas was turned off, so ignore this record.
  2382. */
  2383. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2384. ASSERT(type);
  2385. if (log->l_quotaoffs_flag & type)
  2386. return (0);
  2387. /*
  2388. * At this point we know that quota was _not_ turned off.
  2389. * Since the mount flags are not indicating to us otherwise, this
  2390. * must mean that quota is on, and the dquot needs to be replayed.
  2391. * Remember that we may not have fully recovered the superblock yet,
  2392. * so we can't do the usual trick of looking at the SB quota bits.
  2393. *
  2394. * The other possibility, of course, is that the quota subsystem was
  2395. * removed since the last mount - ENOSYS.
  2396. */
  2397. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2398. ASSERT(dq_f);
  2399. if ((error = xfs_qm_dqcheck(recddq,
  2400. dq_f->qlf_id,
  2401. 0, XFS_QMOPT_DOWARN,
  2402. "xlog_recover_do_dquot_trans (log copy)"))) {
  2403. return XFS_ERROR(EIO);
  2404. }
  2405. ASSERT(dq_f->qlf_len == 1);
  2406. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2407. dq_f->qlf_blkno,
  2408. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2409. 0, &bp);
  2410. if (error) {
  2411. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2412. bp, dq_f->qlf_blkno);
  2413. return error;
  2414. }
  2415. ASSERT(bp);
  2416. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2417. /*
  2418. * At least the magic num portion should be on disk because this
  2419. * was among a chunk of dquots created earlier, and we did some
  2420. * minimal initialization then.
  2421. */
  2422. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2423. "xlog_recover_do_dquot_trans")) {
  2424. xfs_buf_relse(bp);
  2425. return XFS_ERROR(EIO);
  2426. }
  2427. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2428. ASSERT(dq_f->qlf_size == 2);
  2429. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2430. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2431. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2432. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2433. xfs_bdwrite(mp, bp);
  2434. return (0);
  2435. }
  2436. /*
  2437. * This routine is called to create an in-core extent free intent
  2438. * item from the efi format structure which was logged on disk.
  2439. * It allocates an in-core efi, copies the extents from the format
  2440. * structure into it, and adds the efi to the AIL with the given
  2441. * LSN.
  2442. */
  2443. STATIC int
  2444. xlog_recover_do_efi_trans(
  2445. xlog_t *log,
  2446. xlog_recover_item_t *item,
  2447. xfs_lsn_t lsn,
  2448. int pass)
  2449. {
  2450. int error;
  2451. xfs_mount_t *mp;
  2452. xfs_efi_log_item_t *efip;
  2453. xfs_efi_log_format_t *efi_formatp;
  2454. if (pass == XLOG_RECOVER_PASS1) {
  2455. return 0;
  2456. }
  2457. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2458. mp = log->l_mp;
  2459. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2460. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2461. &(efip->efi_format)))) {
  2462. xfs_efi_item_free(efip);
  2463. return error;
  2464. }
  2465. efip->efi_next_extent = efi_formatp->efi_nextents;
  2466. efip->efi_flags |= XFS_EFI_COMMITTED;
  2467. spin_lock(&log->l_ailp->xa_lock);
  2468. /*
  2469. * xfs_trans_ail_update() drops the AIL lock.
  2470. */
  2471. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2472. return 0;
  2473. }
  2474. /*
  2475. * This routine is called when an efd format structure is found in
  2476. * a committed transaction in the log. It's purpose is to cancel
  2477. * the corresponding efi if it was still in the log. To do this
  2478. * it searches the AIL for the efi with an id equal to that in the
  2479. * efd format structure. If we find it, we remove the efi from the
  2480. * AIL and free it.
  2481. */
  2482. STATIC void
  2483. xlog_recover_do_efd_trans(
  2484. xlog_t *log,
  2485. xlog_recover_item_t *item,
  2486. int pass)
  2487. {
  2488. xfs_efd_log_format_t *efd_formatp;
  2489. xfs_efi_log_item_t *efip = NULL;
  2490. xfs_log_item_t *lip;
  2491. __uint64_t efi_id;
  2492. struct xfs_ail_cursor cur;
  2493. struct xfs_ail *ailp = log->l_ailp;
  2494. if (pass == XLOG_RECOVER_PASS1) {
  2495. return;
  2496. }
  2497. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2498. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2499. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2500. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2501. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2502. efi_id = efd_formatp->efd_efi_id;
  2503. /*
  2504. * Search for the efi with the id in the efd format structure
  2505. * in the AIL.
  2506. */
  2507. spin_lock(&ailp->xa_lock);
  2508. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2509. while (lip != NULL) {
  2510. if (lip->li_type == XFS_LI_EFI) {
  2511. efip = (xfs_efi_log_item_t *)lip;
  2512. if (efip->efi_format.efi_id == efi_id) {
  2513. /*
  2514. * xfs_trans_ail_delete() drops the
  2515. * AIL lock.
  2516. */
  2517. xfs_trans_ail_delete(ailp, lip);
  2518. xfs_efi_item_free(efip);
  2519. spin_lock(&ailp->xa_lock);
  2520. break;
  2521. }
  2522. }
  2523. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2524. }
  2525. xfs_trans_ail_cursor_done(ailp, &cur);
  2526. spin_unlock(&ailp->xa_lock);
  2527. }
  2528. /*
  2529. * Perform the transaction
  2530. *
  2531. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2532. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2533. */
  2534. STATIC int
  2535. xlog_recover_do_trans(
  2536. xlog_t *log,
  2537. xlog_recover_t *trans,
  2538. int pass)
  2539. {
  2540. int error = 0;
  2541. xlog_recover_item_t *item, *first_item;
  2542. if ((error = xlog_recover_reorder_trans(trans)))
  2543. return error;
  2544. first_item = item = trans->r_itemq;
  2545. do {
  2546. /*
  2547. * we don't need to worry about the block number being
  2548. * truncated in > 1 TB buffers because in user-land,
  2549. * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
  2550. * the blknos will get through the user-mode buffer
  2551. * cache properly. The only bad case is o32 kernels
  2552. * where xfs_daddr_t is 32-bits but mount will warn us
  2553. * off a > 1 TB filesystem before we get here.
  2554. */
  2555. if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
  2556. if ((error = xlog_recover_do_buffer_trans(log, item,
  2557. pass)))
  2558. break;
  2559. } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
  2560. if ((error = xlog_recover_do_inode_trans(log, item,
  2561. pass)))
  2562. break;
  2563. } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
  2564. if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
  2565. pass)))
  2566. break;
  2567. } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
  2568. xlog_recover_do_efd_trans(log, item, pass);
  2569. } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
  2570. if ((error = xlog_recover_do_dquot_trans(log, item,
  2571. pass)))
  2572. break;
  2573. } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
  2574. if ((error = xlog_recover_do_quotaoff_trans(log, item,
  2575. pass)))
  2576. break;
  2577. } else {
  2578. xlog_warn("XFS: xlog_recover_do_trans");
  2579. ASSERT(0);
  2580. error = XFS_ERROR(EIO);
  2581. break;
  2582. }
  2583. item = item->ri_next;
  2584. } while (first_item != item);
  2585. return error;
  2586. }
  2587. /*
  2588. * Free up any resources allocated by the transaction
  2589. *
  2590. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2591. */
  2592. STATIC void
  2593. xlog_recover_free_trans(
  2594. xlog_recover_t *trans)
  2595. {
  2596. xlog_recover_item_t *first_item, *item, *free_item;
  2597. int i;
  2598. item = first_item = trans->r_itemq;
  2599. do {
  2600. free_item = item;
  2601. item = item->ri_next;
  2602. /* Free the regions in the item. */
  2603. for (i = 0; i < free_item->ri_cnt; i++) {
  2604. kmem_free(free_item->ri_buf[i].i_addr);
  2605. }
  2606. /* Free the item itself */
  2607. kmem_free(free_item->ri_buf);
  2608. kmem_free(free_item);
  2609. } while (first_item != item);
  2610. /* Free the transaction recover structure */
  2611. kmem_free(trans);
  2612. }
  2613. STATIC int
  2614. xlog_recover_commit_trans(
  2615. xlog_t *log,
  2616. xlog_recover_t **q,
  2617. xlog_recover_t *trans,
  2618. int pass)
  2619. {
  2620. int error;
  2621. if ((error = xlog_recover_unlink_tid(q, trans)))
  2622. return error;
  2623. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2624. return error;
  2625. xlog_recover_free_trans(trans); /* no error */
  2626. return 0;
  2627. }
  2628. STATIC int
  2629. xlog_recover_unmount_trans(
  2630. xlog_recover_t *trans)
  2631. {
  2632. /* Do nothing now */
  2633. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2634. return 0;
  2635. }
  2636. /*
  2637. * There are two valid states of the r_state field. 0 indicates that the
  2638. * transaction structure is in a normal state. We have either seen the
  2639. * start of the transaction or the last operation we added was not a partial
  2640. * operation. If the last operation we added to the transaction was a
  2641. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2642. *
  2643. * NOTE: skip LRs with 0 data length.
  2644. */
  2645. STATIC int
  2646. xlog_recover_process_data(
  2647. xlog_t *log,
  2648. xlog_recover_t *rhash[],
  2649. xlog_rec_header_t *rhead,
  2650. xfs_caddr_t dp,
  2651. int pass)
  2652. {
  2653. xfs_caddr_t lp;
  2654. int num_logops;
  2655. xlog_op_header_t *ohead;
  2656. xlog_recover_t *trans;
  2657. xlog_tid_t tid;
  2658. int error;
  2659. unsigned long hash;
  2660. uint flags;
  2661. lp = dp + be32_to_cpu(rhead->h_len);
  2662. num_logops = be32_to_cpu(rhead->h_num_logops);
  2663. /* check the log format matches our own - else we can't recover */
  2664. if (xlog_header_check_recover(log->l_mp, rhead))
  2665. return (XFS_ERROR(EIO));
  2666. while ((dp < lp) && num_logops) {
  2667. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2668. ohead = (xlog_op_header_t *)dp;
  2669. dp += sizeof(xlog_op_header_t);
  2670. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2671. ohead->oh_clientid != XFS_LOG) {
  2672. xlog_warn(
  2673. "XFS: xlog_recover_process_data: bad clientid");
  2674. ASSERT(0);
  2675. return (XFS_ERROR(EIO));
  2676. }
  2677. tid = be32_to_cpu(ohead->oh_tid);
  2678. hash = XLOG_RHASH(tid);
  2679. trans = xlog_recover_find_tid(rhash[hash], tid);
  2680. if (trans == NULL) { /* not found; add new tid */
  2681. if (ohead->oh_flags & XLOG_START_TRANS)
  2682. xlog_recover_new_tid(&rhash[hash], tid,
  2683. be64_to_cpu(rhead->h_lsn));
  2684. } else {
  2685. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2686. xlog_warn(
  2687. "XFS: xlog_recover_process_data: bad length");
  2688. WARN_ON(1);
  2689. return (XFS_ERROR(EIO));
  2690. }
  2691. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2692. if (flags & XLOG_WAS_CONT_TRANS)
  2693. flags &= ~XLOG_CONTINUE_TRANS;
  2694. switch (flags) {
  2695. case XLOG_COMMIT_TRANS:
  2696. error = xlog_recover_commit_trans(log,
  2697. &rhash[hash], trans, pass);
  2698. break;
  2699. case XLOG_UNMOUNT_TRANS:
  2700. error = xlog_recover_unmount_trans(trans);
  2701. break;
  2702. case XLOG_WAS_CONT_TRANS:
  2703. error = xlog_recover_add_to_cont_trans(trans,
  2704. dp, be32_to_cpu(ohead->oh_len));
  2705. break;
  2706. case XLOG_START_TRANS:
  2707. xlog_warn(
  2708. "XFS: xlog_recover_process_data: bad transaction");
  2709. ASSERT(0);
  2710. error = XFS_ERROR(EIO);
  2711. break;
  2712. case 0:
  2713. case XLOG_CONTINUE_TRANS:
  2714. error = xlog_recover_add_to_trans(trans,
  2715. dp, be32_to_cpu(ohead->oh_len));
  2716. break;
  2717. default:
  2718. xlog_warn(
  2719. "XFS: xlog_recover_process_data: bad flag");
  2720. ASSERT(0);
  2721. error = XFS_ERROR(EIO);
  2722. break;
  2723. }
  2724. if (error)
  2725. return error;
  2726. }
  2727. dp += be32_to_cpu(ohead->oh_len);
  2728. num_logops--;
  2729. }
  2730. return 0;
  2731. }
  2732. /*
  2733. * Process an extent free intent item that was recovered from
  2734. * the log. We need to free the extents that it describes.
  2735. */
  2736. STATIC int
  2737. xlog_recover_process_efi(
  2738. xfs_mount_t *mp,
  2739. xfs_efi_log_item_t *efip)
  2740. {
  2741. xfs_efd_log_item_t *efdp;
  2742. xfs_trans_t *tp;
  2743. int i;
  2744. int error = 0;
  2745. xfs_extent_t *extp;
  2746. xfs_fsblock_t startblock_fsb;
  2747. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2748. /*
  2749. * First check the validity of the extents described by the
  2750. * EFI. If any are bad, then assume that all are bad and
  2751. * just toss the EFI.
  2752. */
  2753. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2754. extp = &(efip->efi_format.efi_extents[i]);
  2755. startblock_fsb = XFS_BB_TO_FSB(mp,
  2756. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2757. if ((startblock_fsb == 0) ||
  2758. (extp->ext_len == 0) ||
  2759. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2760. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2761. /*
  2762. * This will pull the EFI from the AIL and
  2763. * free the memory associated with it.
  2764. */
  2765. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2766. return XFS_ERROR(EIO);
  2767. }
  2768. }
  2769. tp = xfs_trans_alloc(mp, 0);
  2770. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2771. if (error)
  2772. goto abort_error;
  2773. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2774. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2775. extp = &(efip->efi_format.efi_extents[i]);
  2776. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2777. if (error)
  2778. goto abort_error;
  2779. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2780. extp->ext_len);
  2781. }
  2782. efip->efi_flags |= XFS_EFI_RECOVERED;
  2783. error = xfs_trans_commit(tp, 0);
  2784. return error;
  2785. abort_error:
  2786. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2787. return error;
  2788. }
  2789. /*
  2790. * When this is called, all of the EFIs which did not have
  2791. * corresponding EFDs should be in the AIL. What we do now
  2792. * is free the extents associated with each one.
  2793. *
  2794. * Since we process the EFIs in normal transactions, they
  2795. * will be removed at some point after the commit. This prevents
  2796. * us from just walking down the list processing each one.
  2797. * We'll use a flag in the EFI to skip those that we've already
  2798. * processed and use the AIL iteration mechanism's generation
  2799. * count to try to speed this up at least a bit.
  2800. *
  2801. * When we start, we know that the EFIs are the only things in
  2802. * the AIL. As we process them, however, other items are added
  2803. * to the AIL. Since everything added to the AIL must come after
  2804. * everything already in the AIL, we stop processing as soon as
  2805. * we see something other than an EFI in the AIL.
  2806. */
  2807. STATIC int
  2808. xlog_recover_process_efis(
  2809. xlog_t *log)
  2810. {
  2811. xfs_log_item_t *lip;
  2812. xfs_efi_log_item_t *efip;
  2813. int error = 0;
  2814. struct xfs_ail_cursor cur;
  2815. struct xfs_ail *ailp;
  2816. ailp = log->l_ailp;
  2817. spin_lock(&ailp->xa_lock);
  2818. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2819. while (lip != NULL) {
  2820. /*
  2821. * We're done when we see something other than an EFI.
  2822. * There should be no EFIs left in the AIL now.
  2823. */
  2824. if (lip->li_type != XFS_LI_EFI) {
  2825. #ifdef DEBUG
  2826. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2827. ASSERT(lip->li_type != XFS_LI_EFI);
  2828. #endif
  2829. break;
  2830. }
  2831. /*
  2832. * Skip EFIs that we've already processed.
  2833. */
  2834. efip = (xfs_efi_log_item_t *)lip;
  2835. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2836. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2837. continue;
  2838. }
  2839. spin_unlock(&ailp->xa_lock);
  2840. error = xlog_recover_process_efi(log->l_mp, efip);
  2841. spin_lock(&ailp->xa_lock);
  2842. if (error)
  2843. goto out;
  2844. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2845. }
  2846. out:
  2847. xfs_trans_ail_cursor_done(ailp, &cur);
  2848. spin_unlock(&ailp->xa_lock);
  2849. return error;
  2850. }
  2851. /*
  2852. * This routine performs a transaction to null out a bad inode pointer
  2853. * in an agi unlinked inode hash bucket.
  2854. */
  2855. STATIC void
  2856. xlog_recover_clear_agi_bucket(
  2857. xfs_mount_t *mp,
  2858. xfs_agnumber_t agno,
  2859. int bucket)
  2860. {
  2861. xfs_trans_t *tp;
  2862. xfs_agi_t *agi;
  2863. xfs_buf_t *agibp;
  2864. int offset;
  2865. int error;
  2866. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2867. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2868. 0, 0, 0);
  2869. if (error)
  2870. goto out_abort;
  2871. error = xfs_read_agi(mp, tp, agno, &agibp);
  2872. if (error)
  2873. goto out_abort;
  2874. agi = XFS_BUF_TO_AGI(agibp);
  2875. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2876. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2877. (sizeof(xfs_agino_t) * bucket);
  2878. xfs_trans_log_buf(tp, agibp, offset,
  2879. (offset + sizeof(xfs_agino_t) - 1));
  2880. error = xfs_trans_commit(tp, 0);
  2881. if (error)
  2882. goto out_error;
  2883. return;
  2884. out_abort:
  2885. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2886. out_error:
  2887. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2888. "failed to clear agi %d. Continuing.", agno);
  2889. return;
  2890. }
  2891. STATIC xfs_agino_t
  2892. xlog_recover_process_one_iunlink(
  2893. struct xfs_mount *mp,
  2894. xfs_agnumber_t agno,
  2895. xfs_agino_t agino,
  2896. int bucket)
  2897. {
  2898. struct xfs_buf *ibp;
  2899. struct xfs_dinode *dip;
  2900. struct xfs_inode *ip;
  2901. xfs_ino_t ino;
  2902. int error;
  2903. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2904. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2905. if (error)
  2906. goto fail;
  2907. /*
  2908. * Get the on disk inode to find the next inode in the bucket.
  2909. */
  2910. ASSERT(ip != NULL);
  2911. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
  2912. if (error)
  2913. goto fail;
  2914. ASSERT(dip != NULL);
  2915. ASSERT(ip->i_d.di_nlink == 0);
  2916. /* setup for the next pass */
  2917. agino = be32_to_cpu(dip->di_next_unlinked);
  2918. xfs_buf_relse(ibp);
  2919. /*
  2920. * Prevent any DMAPI event from being sent when the reference on
  2921. * the inode is dropped.
  2922. */
  2923. ip->i_d.di_dmevmask = 0;
  2924. /*
  2925. * If this is a new inode, handle it specially. Otherwise, just
  2926. * drop our reference to the inode. If there are no other
  2927. * references, this will send the inode to xfs_inactive() which
  2928. * will truncate the file and free the inode.
  2929. */
  2930. if (ip->i_d.di_mode == 0)
  2931. xfs_iput_new(ip, 0);
  2932. else
  2933. IRELE(ip);
  2934. return agino;
  2935. fail:
  2936. /*
  2937. * We can't read in the inode this bucket points to, or this inode
  2938. * is messed up. Just ditch this bucket of inodes. We will lose
  2939. * some inodes and space, but at least we won't hang.
  2940. *
  2941. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2942. * clear the inode pointer in the bucket.
  2943. */
  2944. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2945. return NULLAGINO;
  2946. }
  2947. /*
  2948. * xlog_iunlink_recover
  2949. *
  2950. * This is called during recovery to process any inodes which
  2951. * we unlinked but not freed when the system crashed. These
  2952. * inodes will be on the lists in the AGI blocks. What we do
  2953. * here is scan all the AGIs and fully truncate and free any
  2954. * inodes found on the lists. Each inode is removed from the
  2955. * lists when it has been fully truncated and is freed. The
  2956. * freeing of the inode and its removal from the list must be
  2957. * atomic.
  2958. */
  2959. void
  2960. xlog_recover_process_iunlinks(
  2961. xlog_t *log)
  2962. {
  2963. xfs_mount_t *mp;
  2964. xfs_agnumber_t agno;
  2965. xfs_agi_t *agi;
  2966. xfs_buf_t *agibp;
  2967. xfs_agino_t agino;
  2968. int bucket;
  2969. int error;
  2970. uint mp_dmevmask;
  2971. mp = log->l_mp;
  2972. /*
  2973. * Prevent any DMAPI event from being sent while in this function.
  2974. */
  2975. mp_dmevmask = mp->m_dmevmask;
  2976. mp->m_dmevmask = 0;
  2977. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2978. /*
  2979. * Find the agi for this ag.
  2980. */
  2981. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2982. if (error) {
  2983. /*
  2984. * AGI is b0rked. Don't process it.
  2985. *
  2986. * We should probably mark the filesystem as corrupt
  2987. * after we've recovered all the ag's we can....
  2988. */
  2989. continue;
  2990. }
  2991. agi = XFS_BUF_TO_AGI(agibp);
  2992. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2993. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2994. while (agino != NULLAGINO) {
  2995. /*
  2996. * Release the agi buffer so that it can
  2997. * be acquired in the normal course of the
  2998. * transaction to truncate and free the inode.
  2999. */
  3000. xfs_buf_relse(agibp);
  3001. agino = xlog_recover_process_one_iunlink(mp,
  3002. agno, agino, bucket);
  3003. /*
  3004. * Reacquire the agibuffer and continue around
  3005. * the loop. This should never fail as we know
  3006. * the buffer was good earlier on.
  3007. */
  3008. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3009. ASSERT(error == 0);
  3010. agi = XFS_BUF_TO_AGI(agibp);
  3011. }
  3012. }
  3013. /*
  3014. * Release the buffer for the current agi so we can
  3015. * go on to the next one.
  3016. */
  3017. xfs_buf_relse(agibp);
  3018. }
  3019. mp->m_dmevmask = mp_dmevmask;
  3020. }
  3021. #ifdef DEBUG
  3022. STATIC void
  3023. xlog_pack_data_checksum(
  3024. xlog_t *log,
  3025. xlog_in_core_t *iclog,
  3026. int size)
  3027. {
  3028. int i;
  3029. __be32 *up;
  3030. uint chksum = 0;
  3031. up = (__be32 *)iclog->ic_datap;
  3032. /* divide length by 4 to get # words */
  3033. for (i = 0; i < (size >> 2); i++) {
  3034. chksum ^= be32_to_cpu(*up);
  3035. up++;
  3036. }
  3037. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3038. }
  3039. #else
  3040. #define xlog_pack_data_checksum(log, iclog, size)
  3041. #endif
  3042. /*
  3043. * Stamp cycle number in every block
  3044. */
  3045. void
  3046. xlog_pack_data(
  3047. xlog_t *log,
  3048. xlog_in_core_t *iclog,
  3049. int roundoff)
  3050. {
  3051. int i, j, k;
  3052. int size = iclog->ic_offset + roundoff;
  3053. __be32 cycle_lsn;
  3054. xfs_caddr_t dp;
  3055. xlog_pack_data_checksum(log, iclog, size);
  3056. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3057. dp = iclog->ic_datap;
  3058. for (i = 0; i < BTOBB(size) &&
  3059. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3060. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3061. *(__be32 *)dp = cycle_lsn;
  3062. dp += BBSIZE;
  3063. }
  3064. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3065. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3066. for ( ; i < BTOBB(size); i++) {
  3067. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3068. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3069. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3070. *(__be32 *)dp = cycle_lsn;
  3071. dp += BBSIZE;
  3072. }
  3073. for (i = 1; i < log->l_iclog_heads; i++) {
  3074. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3075. }
  3076. }
  3077. }
  3078. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3079. STATIC void
  3080. xlog_unpack_data_checksum(
  3081. xlog_rec_header_t *rhead,
  3082. xfs_caddr_t dp,
  3083. xlog_t *log)
  3084. {
  3085. __be32 *up = (__be32 *)dp;
  3086. uint chksum = 0;
  3087. int i;
  3088. /* divide length by 4 to get # words */
  3089. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3090. chksum ^= be32_to_cpu(*up);
  3091. up++;
  3092. }
  3093. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3094. if (rhead->h_chksum ||
  3095. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3096. cmn_err(CE_DEBUG,
  3097. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3098. be32_to_cpu(rhead->h_chksum), chksum);
  3099. cmn_err(CE_DEBUG,
  3100. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3101. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3102. cmn_err(CE_DEBUG,
  3103. "XFS: LogR this is a LogV2 filesystem\n");
  3104. }
  3105. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3106. }
  3107. }
  3108. }
  3109. #else
  3110. #define xlog_unpack_data_checksum(rhead, dp, log)
  3111. #endif
  3112. STATIC void
  3113. xlog_unpack_data(
  3114. xlog_rec_header_t *rhead,
  3115. xfs_caddr_t dp,
  3116. xlog_t *log)
  3117. {
  3118. int i, j, k;
  3119. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3120. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3121. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3122. dp += BBSIZE;
  3123. }
  3124. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3125. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3126. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3127. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3128. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3129. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3130. dp += BBSIZE;
  3131. }
  3132. }
  3133. xlog_unpack_data_checksum(rhead, dp, log);
  3134. }
  3135. STATIC int
  3136. xlog_valid_rec_header(
  3137. xlog_t *log,
  3138. xlog_rec_header_t *rhead,
  3139. xfs_daddr_t blkno)
  3140. {
  3141. int hlen;
  3142. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3143. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3144. XFS_ERRLEVEL_LOW, log->l_mp);
  3145. return XFS_ERROR(EFSCORRUPTED);
  3146. }
  3147. if (unlikely(
  3148. (!rhead->h_version ||
  3149. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3150. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3151. __func__, be32_to_cpu(rhead->h_version));
  3152. return XFS_ERROR(EIO);
  3153. }
  3154. /* LR body must have data or it wouldn't have been written */
  3155. hlen = be32_to_cpu(rhead->h_len);
  3156. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3157. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3158. XFS_ERRLEVEL_LOW, log->l_mp);
  3159. return XFS_ERROR(EFSCORRUPTED);
  3160. }
  3161. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3162. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3163. XFS_ERRLEVEL_LOW, log->l_mp);
  3164. return XFS_ERROR(EFSCORRUPTED);
  3165. }
  3166. return 0;
  3167. }
  3168. /*
  3169. * Read the log from tail to head and process the log records found.
  3170. * Handle the two cases where the tail and head are in the same cycle
  3171. * and where the active portion of the log wraps around the end of
  3172. * the physical log separately. The pass parameter is passed through
  3173. * to the routines called to process the data and is not looked at
  3174. * here.
  3175. */
  3176. STATIC int
  3177. xlog_do_recovery_pass(
  3178. xlog_t *log,
  3179. xfs_daddr_t head_blk,
  3180. xfs_daddr_t tail_blk,
  3181. int pass)
  3182. {
  3183. xlog_rec_header_t *rhead;
  3184. xfs_daddr_t blk_no;
  3185. xfs_caddr_t bufaddr, offset;
  3186. xfs_buf_t *hbp, *dbp;
  3187. int error = 0, h_size;
  3188. int bblks, split_bblks;
  3189. int hblks, split_hblks, wrapped_hblks;
  3190. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3191. ASSERT(head_blk != tail_blk);
  3192. /*
  3193. * Read the header of the tail block and get the iclog buffer size from
  3194. * h_size. Use this to tell how many sectors make up the log header.
  3195. */
  3196. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3197. /*
  3198. * When using variable length iclogs, read first sector of
  3199. * iclog header and extract the header size from it. Get a
  3200. * new hbp that is the correct size.
  3201. */
  3202. hbp = xlog_get_bp(log, 1);
  3203. if (!hbp)
  3204. return ENOMEM;
  3205. if ((error = xlog_bread(log, tail_blk, 1, hbp)))
  3206. goto bread_err1;
  3207. offset = xlog_align(log, tail_blk, 1, hbp);
  3208. rhead = (xlog_rec_header_t *)offset;
  3209. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3210. if (error)
  3211. goto bread_err1;
  3212. h_size = be32_to_cpu(rhead->h_size);
  3213. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3214. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3215. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3216. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3217. hblks++;
  3218. xlog_put_bp(hbp);
  3219. hbp = xlog_get_bp(log, hblks);
  3220. } else {
  3221. hblks = 1;
  3222. }
  3223. } else {
  3224. ASSERT(log->l_sectbb_log == 0);
  3225. hblks = 1;
  3226. hbp = xlog_get_bp(log, 1);
  3227. h_size = XLOG_BIG_RECORD_BSIZE;
  3228. }
  3229. if (!hbp)
  3230. return ENOMEM;
  3231. dbp = xlog_get_bp(log, BTOBB(h_size));
  3232. if (!dbp) {
  3233. xlog_put_bp(hbp);
  3234. return ENOMEM;
  3235. }
  3236. memset(rhash, 0, sizeof(rhash));
  3237. if (tail_blk <= head_blk) {
  3238. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3239. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3240. goto bread_err2;
  3241. offset = xlog_align(log, blk_no, hblks, hbp);
  3242. rhead = (xlog_rec_header_t *)offset;
  3243. error = xlog_valid_rec_header(log, rhead, blk_no);
  3244. if (error)
  3245. goto bread_err2;
  3246. /* blocks in data section */
  3247. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3248. error = xlog_bread(log, blk_no + hblks, bblks, dbp);
  3249. if (error)
  3250. goto bread_err2;
  3251. offset = xlog_align(log, blk_no + hblks, bblks, dbp);
  3252. xlog_unpack_data(rhead, offset, log);
  3253. if ((error = xlog_recover_process_data(log,
  3254. rhash, rhead, offset, pass)))
  3255. goto bread_err2;
  3256. blk_no += bblks + hblks;
  3257. }
  3258. } else {
  3259. /*
  3260. * Perform recovery around the end of the physical log.
  3261. * When the head is not on the same cycle number as the tail,
  3262. * we can't do a sequential recovery as above.
  3263. */
  3264. blk_no = tail_blk;
  3265. while (blk_no < log->l_logBBsize) {
  3266. /*
  3267. * Check for header wrapping around physical end-of-log
  3268. */
  3269. offset = NULL;
  3270. split_hblks = 0;
  3271. wrapped_hblks = 0;
  3272. if (blk_no + hblks <= log->l_logBBsize) {
  3273. /* Read header in one read */
  3274. error = xlog_bread(log, blk_no, hblks, hbp);
  3275. if (error)
  3276. goto bread_err2;
  3277. offset = xlog_align(log, blk_no, hblks, hbp);
  3278. } else {
  3279. /* This LR is split across physical log end */
  3280. if (blk_no != log->l_logBBsize) {
  3281. /* some data before physical log end */
  3282. ASSERT(blk_no <= INT_MAX);
  3283. split_hblks = log->l_logBBsize - (int)blk_no;
  3284. ASSERT(split_hblks > 0);
  3285. if ((error = xlog_bread(log, blk_no,
  3286. split_hblks, hbp)))
  3287. goto bread_err2;
  3288. offset = xlog_align(log, blk_no,
  3289. split_hblks, hbp);
  3290. }
  3291. /*
  3292. * Note: this black magic still works with
  3293. * large sector sizes (non-512) only because:
  3294. * - we increased the buffer size originally
  3295. * by 1 sector giving us enough extra space
  3296. * for the second read;
  3297. * - the log start is guaranteed to be sector
  3298. * aligned;
  3299. * - we read the log end (LR header start)
  3300. * _first_, then the log start (LR header end)
  3301. * - order is important.
  3302. */
  3303. wrapped_hblks = hblks - split_hblks;
  3304. bufaddr = XFS_BUF_PTR(hbp);
  3305. error = XFS_BUF_SET_PTR(hbp,
  3306. bufaddr + BBTOB(split_hblks),
  3307. BBTOB(hblks - split_hblks));
  3308. if (!error)
  3309. error = xlog_bread(log, 0,
  3310. wrapped_hblks, hbp);
  3311. if (!error)
  3312. error = XFS_BUF_SET_PTR(hbp, bufaddr,
  3313. BBTOB(hblks));
  3314. if (error)
  3315. goto bread_err2;
  3316. if (!offset)
  3317. offset = xlog_align(log, 0,
  3318. wrapped_hblks, hbp);
  3319. }
  3320. rhead = (xlog_rec_header_t *)offset;
  3321. error = xlog_valid_rec_header(log, rhead,
  3322. split_hblks ? blk_no : 0);
  3323. if (error)
  3324. goto bread_err2;
  3325. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3326. blk_no += hblks;
  3327. /* Read in data for log record */
  3328. if (blk_no + bblks <= log->l_logBBsize) {
  3329. error = xlog_bread(log, blk_no, bblks, dbp);
  3330. if (error)
  3331. goto bread_err2;
  3332. offset = xlog_align(log, blk_no, bblks, dbp);
  3333. } else {
  3334. /* This log record is split across the
  3335. * physical end of log */
  3336. offset = NULL;
  3337. split_bblks = 0;
  3338. if (blk_no != log->l_logBBsize) {
  3339. /* some data is before the physical
  3340. * end of log */
  3341. ASSERT(!wrapped_hblks);
  3342. ASSERT(blk_no <= INT_MAX);
  3343. split_bblks =
  3344. log->l_logBBsize - (int)blk_no;
  3345. ASSERT(split_bblks > 0);
  3346. if ((error = xlog_bread(log, blk_no,
  3347. split_bblks, dbp)))
  3348. goto bread_err2;
  3349. offset = xlog_align(log, blk_no,
  3350. split_bblks, dbp);
  3351. }
  3352. /*
  3353. * Note: this black magic still works with
  3354. * large sector sizes (non-512) only because:
  3355. * - we increased the buffer size originally
  3356. * by 1 sector giving us enough extra space
  3357. * for the second read;
  3358. * - the log start is guaranteed to be sector
  3359. * aligned;
  3360. * - we read the log end (LR header start)
  3361. * _first_, then the log start (LR header end)
  3362. * - order is important.
  3363. */
  3364. bufaddr = XFS_BUF_PTR(dbp);
  3365. error = XFS_BUF_SET_PTR(dbp,
  3366. bufaddr + BBTOB(split_bblks),
  3367. BBTOB(bblks - split_bblks));
  3368. if (!error)
  3369. error = xlog_bread(log, wrapped_hblks,
  3370. bblks - split_bblks,
  3371. dbp);
  3372. if (!error)
  3373. error = XFS_BUF_SET_PTR(dbp, bufaddr,
  3374. h_size);
  3375. if (error)
  3376. goto bread_err2;
  3377. if (!offset)
  3378. offset = xlog_align(log, wrapped_hblks,
  3379. bblks - split_bblks, dbp);
  3380. }
  3381. xlog_unpack_data(rhead, offset, log);
  3382. if ((error = xlog_recover_process_data(log, rhash,
  3383. rhead, offset, pass)))
  3384. goto bread_err2;
  3385. blk_no += bblks;
  3386. }
  3387. ASSERT(blk_no >= log->l_logBBsize);
  3388. blk_no -= log->l_logBBsize;
  3389. /* read first part of physical log */
  3390. while (blk_no < head_blk) {
  3391. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3392. goto bread_err2;
  3393. offset = xlog_align(log, blk_no, hblks, hbp);
  3394. rhead = (xlog_rec_header_t *)offset;
  3395. error = xlog_valid_rec_header(log, rhead, blk_no);
  3396. if (error)
  3397. goto bread_err2;
  3398. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3399. if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
  3400. goto bread_err2;
  3401. offset = xlog_align(log, blk_no+hblks, bblks, dbp);
  3402. xlog_unpack_data(rhead, offset, log);
  3403. if ((error = xlog_recover_process_data(log, rhash,
  3404. rhead, offset, pass)))
  3405. goto bread_err2;
  3406. blk_no += bblks + hblks;
  3407. }
  3408. }
  3409. bread_err2:
  3410. xlog_put_bp(dbp);
  3411. bread_err1:
  3412. xlog_put_bp(hbp);
  3413. return error;
  3414. }
  3415. /*
  3416. * Do the recovery of the log. We actually do this in two phases.
  3417. * The two passes are necessary in order to implement the function
  3418. * of cancelling a record written into the log. The first pass
  3419. * determines those things which have been cancelled, and the
  3420. * second pass replays log items normally except for those which
  3421. * have been cancelled. The handling of the replay and cancellations
  3422. * takes place in the log item type specific routines.
  3423. *
  3424. * The table of items which have cancel records in the log is allocated
  3425. * and freed at this level, since only here do we know when all of
  3426. * the log recovery has been completed.
  3427. */
  3428. STATIC int
  3429. xlog_do_log_recovery(
  3430. xlog_t *log,
  3431. xfs_daddr_t head_blk,
  3432. xfs_daddr_t tail_blk)
  3433. {
  3434. int error;
  3435. ASSERT(head_blk != tail_blk);
  3436. /*
  3437. * First do a pass to find all of the cancelled buf log items.
  3438. * Store them in the buf_cancel_table for use in the second pass.
  3439. */
  3440. log->l_buf_cancel_table =
  3441. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3442. sizeof(xfs_buf_cancel_t*),
  3443. KM_SLEEP);
  3444. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3445. XLOG_RECOVER_PASS1);
  3446. if (error != 0) {
  3447. kmem_free(log->l_buf_cancel_table);
  3448. log->l_buf_cancel_table = NULL;
  3449. return error;
  3450. }
  3451. /*
  3452. * Then do a second pass to actually recover the items in the log.
  3453. * When it is complete free the table of buf cancel items.
  3454. */
  3455. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3456. XLOG_RECOVER_PASS2);
  3457. #ifdef DEBUG
  3458. if (!error) {
  3459. int i;
  3460. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3461. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3462. }
  3463. #endif /* DEBUG */
  3464. kmem_free(log->l_buf_cancel_table);
  3465. log->l_buf_cancel_table = NULL;
  3466. return error;
  3467. }
  3468. /*
  3469. * Do the actual recovery
  3470. */
  3471. STATIC int
  3472. xlog_do_recover(
  3473. xlog_t *log,
  3474. xfs_daddr_t head_blk,
  3475. xfs_daddr_t tail_blk)
  3476. {
  3477. int error;
  3478. xfs_buf_t *bp;
  3479. xfs_sb_t *sbp;
  3480. /*
  3481. * First replay the images in the log.
  3482. */
  3483. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3484. if (error) {
  3485. return error;
  3486. }
  3487. XFS_bflush(log->l_mp->m_ddev_targp);
  3488. /*
  3489. * If IO errors happened during recovery, bail out.
  3490. */
  3491. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3492. return (EIO);
  3493. }
  3494. /*
  3495. * We now update the tail_lsn since much of the recovery has completed
  3496. * and there may be space available to use. If there were no extent
  3497. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3498. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3499. * lsn of the last known good LR on disk. If there are extent frees
  3500. * or iunlinks they will have some entries in the AIL; so we look at
  3501. * the AIL to determine how to set the tail_lsn.
  3502. */
  3503. xlog_assign_tail_lsn(log->l_mp);
  3504. /*
  3505. * Now that we've finished replaying all buffer and inode
  3506. * updates, re-read in the superblock.
  3507. */
  3508. bp = xfs_getsb(log->l_mp, 0);
  3509. XFS_BUF_UNDONE(bp);
  3510. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3511. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3512. XFS_BUF_READ(bp);
  3513. XFS_BUF_UNASYNC(bp);
  3514. xfsbdstrat(log->l_mp, bp);
  3515. error = xfs_iowait(bp);
  3516. if (error) {
  3517. xfs_ioerror_alert("xlog_do_recover",
  3518. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3519. ASSERT(0);
  3520. xfs_buf_relse(bp);
  3521. return error;
  3522. }
  3523. /* Convert superblock from on-disk format */
  3524. sbp = &log->l_mp->m_sb;
  3525. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3526. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3527. ASSERT(xfs_sb_good_version(sbp));
  3528. xfs_buf_relse(bp);
  3529. /* We've re-read the superblock so re-initialize per-cpu counters */
  3530. xfs_icsb_reinit_counters(log->l_mp);
  3531. xlog_recover_check_summary(log);
  3532. /* Normal transactions can now occur */
  3533. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3534. return 0;
  3535. }
  3536. /*
  3537. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3538. *
  3539. * Return error or zero.
  3540. */
  3541. int
  3542. xlog_recover(
  3543. xlog_t *log)
  3544. {
  3545. xfs_daddr_t head_blk, tail_blk;
  3546. int error;
  3547. /* find the tail of the log */
  3548. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3549. return error;
  3550. if (tail_blk != head_blk) {
  3551. /* There used to be a comment here:
  3552. *
  3553. * disallow recovery on read-only mounts. note -- mount
  3554. * checks for ENOSPC and turns it into an intelligent
  3555. * error message.
  3556. * ...but this is no longer true. Now, unless you specify
  3557. * NORECOVERY (in which case this function would never be
  3558. * called), we just go ahead and recover. We do this all
  3559. * under the vfs layer, so we can get away with it unless
  3560. * the device itself is read-only, in which case we fail.
  3561. */
  3562. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3563. return error;
  3564. }
  3565. cmn_err(CE_NOTE,
  3566. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3567. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3568. log->l_mp->m_logname : "internal");
  3569. error = xlog_do_recover(log, head_blk, tail_blk);
  3570. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3571. }
  3572. return error;
  3573. }
  3574. /*
  3575. * In the first part of recovery we replay inodes and buffers and build
  3576. * up the list of extent free items which need to be processed. Here
  3577. * we process the extent free items and clean up the on disk unlinked
  3578. * inode lists. This is separated from the first part of recovery so
  3579. * that the root and real-time bitmap inodes can be read in from disk in
  3580. * between the two stages. This is necessary so that we can free space
  3581. * in the real-time portion of the file system.
  3582. */
  3583. int
  3584. xlog_recover_finish(
  3585. xlog_t *log)
  3586. {
  3587. /*
  3588. * Now we're ready to do the transactions needed for the
  3589. * rest of recovery. Start with completing all the extent
  3590. * free intent records and then process the unlinked inode
  3591. * lists. At this point, we essentially run in normal mode
  3592. * except that we're still performing recovery actions
  3593. * rather than accepting new requests.
  3594. */
  3595. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3596. int error;
  3597. error = xlog_recover_process_efis(log);
  3598. if (error) {
  3599. cmn_err(CE_ALERT,
  3600. "Failed to recover EFIs on filesystem: %s",
  3601. log->l_mp->m_fsname);
  3602. return error;
  3603. }
  3604. /*
  3605. * Sync the log to get all the EFIs out of the AIL.
  3606. * This isn't absolutely necessary, but it helps in
  3607. * case the unlink transactions would have problems
  3608. * pushing the EFIs out of the way.
  3609. */
  3610. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3611. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3612. xlog_recover_process_iunlinks(log);
  3613. xlog_recover_check_summary(log);
  3614. cmn_err(CE_NOTE,
  3615. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3616. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3617. log->l_mp->m_logname : "internal");
  3618. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3619. } else {
  3620. cmn_err(CE_DEBUG,
  3621. "!Ending clean XFS mount for filesystem: %s\n",
  3622. log->l_mp->m_fsname);
  3623. }
  3624. return 0;
  3625. }
  3626. #if defined(DEBUG)
  3627. /*
  3628. * Read all of the agf and agi counters and check that they
  3629. * are consistent with the superblock counters.
  3630. */
  3631. void
  3632. xlog_recover_check_summary(
  3633. xlog_t *log)
  3634. {
  3635. xfs_mount_t *mp;
  3636. xfs_agf_t *agfp;
  3637. xfs_buf_t *agfbp;
  3638. xfs_buf_t *agibp;
  3639. xfs_buf_t *sbbp;
  3640. #ifdef XFS_LOUD_RECOVERY
  3641. xfs_sb_t *sbp;
  3642. #endif
  3643. xfs_agnumber_t agno;
  3644. __uint64_t freeblks;
  3645. __uint64_t itotal;
  3646. __uint64_t ifree;
  3647. int error;
  3648. mp = log->l_mp;
  3649. freeblks = 0LL;
  3650. itotal = 0LL;
  3651. ifree = 0LL;
  3652. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3653. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3654. if (error) {
  3655. xfs_fs_cmn_err(CE_ALERT, mp,
  3656. "xlog_recover_check_summary(agf)"
  3657. "agf read failed agno %d error %d",
  3658. agno, error);
  3659. } else {
  3660. agfp = XFS_BUF_TO_AGF(agfbp);
  3661. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3662. be32_to_cpu(agfp->agf_flcount);
  3663. xfs_buf_relse(agfbp);
  3664. }
  3665. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3666. if (!error) {
  3667. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3668. itotal += be32_to_cpu(agi->agi_count);
  3669. ifree += be32_to_cpu(agi->agi_freecount);
  3670. xfs_buf_relse(agibp);
  3671. }
  3672. }
  3673. sbbp = xfs_getsb(mp, 0);
  3674. #ifdef XFS_LOUD_RECOVERY
  3675. sbp = &mp->m_sb;
  3676. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3677. cmn_err(CE_NOTE,
  3678. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3679. sbp->sb_icount, itotal);
  3680. cmn_err(CE_NOTE,
  3681. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3682. sbp->sb_ifree, ifree);
  3683. cmn_err(CE_NOTE,
  3684. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3685. sbp->sb_fdblocks, freeblks);
  3686. #if 0
  3687. /*
  3688. * This is turned off until I account for the allocation
  3689. * btree blocks which live in free space.
  3690. */
  3691. ASSERT(sbp->sb_icount == itotal);
  3692. ASSERT(sbp->sb_ifree == ifree);
  3693. ASSERT(sbp->sb_fdblocks == freeblks);
  3694. #endif
  3695. #endif
  3696. xfs_buf_relse(sbbp);
  3697. }
  3698. #endif /* DEBUG */