sched.c 221 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. struct rt_bandwidth {
  145. /* nests inside the rq lock: */
  146. spinlock_t rt_runtime_lock;
  147. ktime_t rt_period;
  148. u64 rt_runtime;
  149. struct hrtimer rt_period_timer;
  150. };
  151. static struct rt_bandwidth def_rt_bandwidth;
  152. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  153. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  154. {
  155. struct rt_bandwidth *rt_b =
  156. container_of(timer, struct rt_bandwidth, rt_period_timer);
  157. ktime_t now;
  158. int overrun;
  159. int idle = 0;
  160. for (;;) {
  161. now = hrtimer_cb_get_time(timer);
  162. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  163. if (!overrun)
  164. break;
  165. idle = do_sched_rt_period_timer(rt_b, overrun);
  166. }
  167. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  168. }
  169. static
  170. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  171. {
  172. rt_b->rt_period = ns_to_ktime(period);
  173. rt_b->rt_runtime = runtime;
  174. spin_lock_init(&rt_b->rt_runtime_lock);
  175. hrtimer_init(&rt_b->rt_period_timer,
  176. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  177. rt_b->rt_period_timer.function = sched_rt_period_timer;
  178. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  179. }
  180. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  181. {
  182. ktime_t now;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return;
  185. if (hrtimer_active(&rt_b->rt_period_timer))
  186. return;
  187. spin_lock(&rt_b->rt_runtime_lock);
  188. for (;;) {
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. break;
  191. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  192. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  193. hrtimer_start(&rt_b->rt_period_timer,
  194. rt_b->rt_period_timer.expires,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else /* !CONFIG_USER_SCHED */
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif /* CONFIG_USER_SCHED */
  267. /*
  268. * A weight of 0 or 1 can cause arithmetics problems.
  269. * A weight of a cfs_rq is the sum of weights of which entities
  270. * are queued on this cfs_rq, so a weight of a entity should not be
  271. * too large, so as the shares value of a task group.
  272. * (The default weight is 1024 - so there's no practical
  273. * limitation from this.)
  274. */
  275. #define MIN_SHARES 2
  276. #define MAX_SHARES (1UL << 18)
  277. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  278. #endif
  279. /* Default task group.
  280. * Every task in system belong to this group at bootup.
  281. */
  282. struct task_group init_task_group;
  283. /* return group to which a task belongs */
  284. static inline struct task_group *task_group(struct task_struct *p)
  285. {
  286. struct task_group *tg;
  287. #ifdef CONFIG_USER_SCHED
  288. tg = p->user->tg;
  289. #elif defined(CONFIG_CGROUP_SCHED)
  290. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  291. struct task_group, css);
  292. #else
  293. tg = &init_task_group;
  294. #endif
  295. return tg;
  296. }
  297. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  299. {
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  302. p->se.parent = task_group(p)->se[cpu];
  303. #endif
  304. #ifdef CONFIG_RT_GROUP_SCHED
  305. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  306. p->rt.parent = task_group(p)->rt_se[cpu];
  307. #endif
  308. }
  309. #else
  310. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  311. #endif /* CONFIG_GROUP_SCHED */
  312. /* CFS-related fields in a runqueue */
  313. struct cfs_rq {
  314. struct load_weight load;
  315. unsigned long nr_running;
  316. u64 exec_clock;
  317. u64 min_vruntime;
  318. struct rb_root tasks_timeline;
  319. struct rb_node *rb_leftmost;
  320. struct list_head tasks;
  321. struct list_head *balance_iterator;
  322. /*
  323. * 'curr' points to currently running entity on this cfs_rq.
  324. * It is set to NULL otherwise (i.e when none are currently running).
  325. */
  326. struct sched_entity *curr, *next;
  327. unsigned long nr_spread_over;
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  330. /*
  331. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  332. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  333. * (like users, containers etc.)
  334. *
  335. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  336. * list is used during load balance.
  337. */
  338. struct list_head leaf_cfs_rq_list;
  339. struct task_group *tg; /* group that "owns" this runqueue */
  340. #ifdef CONFIG_SMP
  341. unsigned long task_weight;
  342. unsigned long shares;
  343. /*
  344. * We need space to build a sched_domain wide view of the full task
  345. * group tree, in order to avoid depending on dynamic memory allocation
  346. * during the load balancing we place this in the per cpu task group
  347. * hierarchy. This limits the load balancing to one instance per cpu,
  348. * but more should not be needed anyway.
  349. */
  350. struct aggregate_struct {
  351. /*
  352. * load = weight(cpus) * f(tg)
  353. *
  354. * Where f(tg) is the recursive weight fraction assigned to
  355. * this group.
  356. */
  357. unsigned long load;
  358. /*
  359. * part of the group weight distributed to this span.
  360. */
  361. unsigned long shares;
  362. /*
  363. * The sum of all runqueue weights within this span.
  364. */
  365. unsigned long rq_weight;
  366. /*
  367. * Weight contributed by tasks; this is the part we can
  368. * influence by moving tasks around.
  369. */
  370. unsigned long task_weight;
  371. } aggregate;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. int highest_prio; /* highest queued rt task prio */
  381. #endif
  382. #ifdef CONFIG_SMP
  383. unsigned long rt_nr_migratory;
  384. int overloaded;
  385. #endif
  386. int rt_throttled;
  387. u64 rt_time;
  388. u64 rt_runtime;
  389. /* Nests inside the rq lock: */
  390. spinlock_t rt_runtime_lock;
  391. #ifdef CONFIG_RT_GROUP_SCHED
  392. unsigned long rt_nr_boosted;
  393. struct rq *rq;
  394. struct list_head leaf_rt_rq_list;
  395. struct task_group *tg;
  396. struct sched_rt_entity *rt_se;
  397. #endif
  398. };
  399. #ifdef CONFIG_SMP
  400. /*
  401. * We add the notion of a root-domain which will be used to define per-domain
  402. * variables. Each exclusive cpuset essentially defines an island domain by
  403. * fully partitioning the member cpus from any other cpuset. Whenever a new
  404. * exclusive cpuset is created, we also create and attach a new root-domain
  405. * object.
  406. *
  407. */
  408. struct root_domain {
  409. atomic_t refcount;
  410. cpumask_t span;
  411. cpumask_t online;
  412. /*
  413. * The "RT overload" flag: it gets set if a CPU has more than
  414. * one runnable RT task.
  415. */
  416. cpumask_t rto_mask;
  417. atomic_t rto_count;
  418. #ifdef CONFIG_SMP
  419. struct cpupri cpupri;
  420. #endif
  421. };
  422. /*
  423. * By default the system creates a single root-domain with all cpus as
  424. * members (mimicking the global state we have today).
  425. */
  426. static struct root_domain def_root_domain;
  427. #endif
  428. /*
  429. * This is the main, per-CPU runqueue data structure.
  430. *
  431. * Locking rule: those places that want to lock multiple runqueues
  432. * (such as the load balancing or the thread migration code), lock
  433. * acquire operations must be ordered by ascending &runqueue.
  434. */
  435. struct rq {
  436. /* runqueue lock: */
  437. spinlock_t lock;
  438. /*
  439. * nr_running and cpu_load should be in the same cacheline because
  440. * remote CPUs use both these fields when doing load calculation.
  441. */
  442. unsigned long nr_running;
  443. #define CPU_LOAD_IDX_MAX 5
  444. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  445. unsigned char idle_at_tick;
  446. #ifdef CONFIG_NO_HZ
  447. unsigned long last_tick_seen;
  448. unsigned char in_nohz_recently;
  449. #endif
  450. /* capture load from *all* tasks on this cpu: */
  451. struct load_weight load;
  452. unsigned long nr_load_updates;
  453. u64 nr_switches;
  454. struct cfs_rq cfs;
  455. struct rt_rq rt;
  456. #ifdef CONFIG_FAIR_GROUP_SCHED
  457. /* list of leaf cfs_rq on this cpu: */
  458. struct list_head leaf_cfs_rq_list;
  459. #endif
  460. #ifdef CONFIG_RT_GROUP_SCHED
  461. struct list_head leaf_rt_rq_list;
  462. #endif
  463. /*
  464. * This is part of a global counter where only the total sum
  465. * over all CPUs matters. A task can increase this counter on
  466. * one CPU and if it got migrated afterwards it may decrease
  467. * it on another CPU. Always updated under the runqueue lock:
  468. */
  469. unsigned long nr_uninterruptible;
  470. struct task_struct *curr, *idle;
  471. unsigned long next_balance;
  472. struct mm_struct *prev_mm;
  473. u64 clock;
  474. atomic_t nr_iowait;
  475. #ifdef CONFIG_SMP
  476. struct root_domain *rd;
  477. struct sched_domain *sd;
  478. /* For active balancing */
  479. int active_balance;
  480. int push_cpu;
  481. /* cpu of this runqueue: */
  482. int cpu;
  483. int online;
  484. struct task_struct *migration_thread;
  485. struct list_head migration_queue;
  486. #endif
  487. #ifdef CONFIG_SCHED_HRTICK
  488. unsigned long hrtick_flags;
  489. ktime_t hrtick_expire;
  490. struct hrtimer hrtick_timer;
  491. #endif
  492. #ifdef CONFIG_SCHEDSTATS
  493. /* latency stats */
  494. struct sched_info rq_sched_info;
  495. /* sys_sched_yield() stats */
  496. unsigned int yld_exp_empty;
  497. unsigned int yld_act_empty;
  498. unsigned int yld_both_empty;
  499. unsigned int yld_count;
  500. /* schedule() stats */
  501. unsigned int sched_switch;
  502. unsigned int sched_count;
  503. unsigned int sched_goidle;
  504. /* try_to_wake_up() stats */
  505. unsigned int ttwu_count;
  506. unsigned int ttwu_local;
  507. /* BKL stats */
  508. unsigned int bkl_count;
  509. #endif
  510. struct lock_class_key rq_lock_key;
  511. };
  512. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  513. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  514. {
  515. rq->curr->sched_class->check_preempt_curr(rq, p);
  516. }
  517. static inline int cpu_of(struct rq *rq)
  518. {
  519. #ifdef CONFIG_SMP
  520. return rq->cpu;
  521. #else
  522. return 0;
  523. #endif
  524. }
  525. /*
  526. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  527. * See detach_destroy_domains: synchronize_sched for details.
  528. *
  529. * The domain tree of any CPU may only be accessed from within
  530. * preempt-disabled sections.
  531. */
  532. #define for_each_domain(cpu, __sd) \
  533. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  534. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  535. #define this_rq() (&__get_cpu_var(runqueues))
  536. #define task_rq(p) cpu_rq(task_cpu(p))
  537. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  538. static inline void update_rq_clock(struct rq *rq)
  539. {
  540. rq->clock = sched_clock_cpu(cpu_of(rq));
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /*
  551. * Debugging: various feature bits
  552. */
  553. #define SCHED_FEAT(name, enabled) \
  554. __SCHED_FEAT_##name ,
  555. enum {
  556. #include "sched_features.h"
  557. };
  558. #undef SCHED_FEAT
  559. #define SCHED_FEAT(name, enabled) \
  560. (1UL << __SCHED_FEAT_##name) * enabled |
  561. const_debug unsigned int sysctl_sched_features =
  562. #include "sched_features.h"
  563. 0;
  564. #undef SCHED_FEAT
  565. #ifdef CONFIG_SCHED_DEBUG
  566. #define SCHED_FEAT(name, enabled) \
  567. #name ,
  568. static __read_mostly char *sched_feat_names[] = {
  569. #include "sched_features.h"
  570. NULL
  571. };
  572. #undef SCHED_FEAT
  573. static int sched_feat_open(struct inode *inode, struct file *filp)
  574. {
  575. filp->private_data = inode->i_private;
  576. return 0;
  577. }
  578. static ssize_t
  579. sched_feat_read(struct file *filp, char __user *ubuf,
  580. size_t cnt, loff_t *ppos)
  581. {
  582. char *buf;
  583. int r = 0;
  584. int len = 0;
  585. int i;
  586. for (i = 0; sched_feat_names[i]; i++) {
  587. len += strlen(sched_feat_names[i]);
  588. len += 4;
  589. }
  590. buf = kmalloc(len + 2, GFP_KERNEL);
  591. if (!buf)
  592. return -ENOMEM;
  593. for (i = 0; sched_feat_names[i]; i++) {
  594. if (sysctl_sched_features & (1UL << i))
  595. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  596. else
  597. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  598. }
  599. r += sprintf(buf + r, "\n");
  600. WARN_ON(r >= len + 2);
  601. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  602. kfree(buf);
  603. return r;
  604. }
  605. static ssize_t
  606. sched_feat_write(struct file *filp, const char __user *ubuf,
  607. size_t cnt, loff_t *ppos)
  608. {
  609. char buf[64];
  610. char *cmp = buf;
  611. int neg = 0;
  612. int i;
  613. if (cnt > 63)
  614. cnt = 63;
  615. if (copy_from_user(&buf, ubuf, cnt))
  616. return -EFAULT;
  617. buf[cnt] = 0;
  618. if (strncmp(buf, "NO_", 3) == 0) {
  619. neg = 1;
  620. cmp += 3;
  621. }
  622. for (i = 0; sched_feat_names[i]; i++) {
  623. int len = strlen(sched_feat_names[i]);
  624. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  625. if (neg)
  626. sysctl_sched_features &= ~(1UL << i);
  627. else
  628. sysctl_sched_features |= (1UL << i);
  629. break;
  630. }
  631. }
  632. if (!sched_feat_names[i])
  633. return -EINVAL;
  634. filp->f_pos += cnt;
  635. return cnt;
  636. }
  637. static struct file_operations sched_feat_fops = {
  638. .open = sched_feat_open,
  639. .read = sched_feat_read,
  640. .write = sched_feat_write,
  641. };
  642. static __init int sched_init_debug(void)
  643. {
  644. debugfs_create_file("sched_features", 0644, NULL, NULL,
  645. &sched_feat_fops);
  646. return 0;
  647. }
  648. late_initcall(sched_init_debug);
  649. #endif
  650. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  651. /*
  652. * Number of tasks to iterate in a single balance run.
  653. * Limited because this is done with IRQs disabled.
  654. */
  655. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  656. /*
  657. * period over which we measure -rt task cpu usage in us.
  658. * default: 1s
  659. */
  660. unsigned int sysctl_sched_rt_period = 1000000;
  661. static __read_mostly int scheduler_running;
  662. /*
  663. * part of the period that we allow rt tasks to run in us.
  664. * default: 0.95s
  665. */
  666. int sysctl_sched_rt_runtime = 950000;
  667. static inline u64 global_rt_period(void)
  668. {
  669. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  670. }
  671. static inline u64 global_rt_runtime(void)
  672. {
  673. if (sysctl_sched_rt_period < 0)
  674. return RUNTIME_INF;
  675. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  676. }
  677. #ifndef prepare_arch_switch
  678. # define prepare_arch_switch(next) do { } while (0)
  679. #endif
  680. #ifndef finish_arch_switch
  681. # define finish_arch_switch(prev) do { } while (0)
  682. #endif
  683. static inline int task_current(struct rq *rq, struct task_struct *p)
  684. {
  685. return rq->curr == p;
  686. }
  687. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  688. static inline int task_running(struct rq *rq, struct task_struct *p)
  689. {
  690. return task_current(rq, p);
  691. }
  692. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  693. {
  694. }
  695. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  696. {
  697. #ifdef CONFIG_DEBUG_SPINLOCK
  698. /* this is a valid case when another task releases the spinlock */
  699. rq->lock.owner = current;
  700. #endif
  701. /*
  702. * If we are tracking spinlock dependencies then we have to
  703. * fix up the runqueue lock - which gets 'carried over' from
  704. * prev into current:
  705. */
  706. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  707. spin_unlock_irq(&rq->lock);
  708. }
  709. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  710. static inline int task_running(struct rq *rq, struct task_struct *p)
  711. {
  712. #ifdef CONFIG_SMP
  713. return p->oncpu;
  714. #else
  715. return task_current(rq, p);
  716. #endif
  717. }
  718. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  719. {
  720. #ifdef CONFIG_SMP
  721. /*
  722. * We can optimise this out completely for !SMP, because the
  723. * SMP rebalancing from interrupt is the only thing that cares
  724. * here.
  725. */
  726. next->oncpu = 1;
  727. #endif
  728. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  729. spin_unlock_irq(&rq->lock);
  730. #else
  731. spin_unlock(&rq->lock);
  732. #endif
  733. }
  734. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  735. {
  736. #ifdef CONFIG_SMP
  737. /*
  738. * After ->oncpu is cleared, the task can be moved to a different CPU.
  739. * We must ensure this doesn't happen until the switch is completely
  740. * finished.
  741. */
  742. smp_wmb();
  743. prev->oncpu = 0;
  744. #endif
  745. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. local_irq_enable();
  747. #endif
  748. }
  749. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  750. /*
  751. * __task_rq_lock - lock the runqueue a given task resides on.
  752. * Must be called interrupts disabled.
  753. */
  754. static inline struct rq *__task_rq_lock(struct task_struct *p)
  755. __acquires(rq->lock)
  756. {
  757. for (;;) {
  758. struct rq *rq = task_rq(p);
  759. spin_lock(&rq->lock);
  760. if (likely(rq == task_rq(p)))
  761. return rq;
  762. spin_unlock(&rq->lock);
  763. }
  764. }
  765. /*
  766. * task_rq_lock - lock the runqueue a given task resides on and disable
  767. * interrupts. Note the ordering: we can safely lookup the task_rq without
  768. * explicitly disabling preemption.
  769. */
  770. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  771. __acquires(rq->lock)
  772. {
  773. struct rq *rq;
  774. for (;;) {
  775. local_irq_save(*flags);
  776. rq = task_rq(p);
  777. spin_lock(&rq->lock);
  778. if (likely(rq == task_rq(p)))
  779. return rq;
  780. spin_unlock_irqrestore(&rq->lock, *flags);
  781. }
  782. }
  783. static void __task_rq_unlock(struct rq *rq)
  784. __releases(rq->lock)
  785. {
  786. spin_unlock(&rq->lock);
  787. }
  788. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  789. __releases(rq->lock)
  790. {
  791. spin_unlock_irqrestore(&rq->lock, *flags);
  792. }
  793. /*
  794. * this_rq_lock - lock this runqueue and disable interrupts.
  795. */
  796. static struct rq *this_rq_lock(void)
  797. __acquires(rq->lock)
  798. {
  799. struct rq *rq;
  800. local_irq_disable();
  801. rq = this_rq();
  802. spin_lock(&rq->lock);
  803. return rq;
  804. }
  805. static void __resched_task(struct task_struct *p, int tif_bit);
  806. static inline void resched_task(struct task_struct *p)
  807. {
  808. __resched_task(p, TIF_NEED_RESCHED);
  809. }
  810. #ifdef CONFIG_SCHED_HRTICK
  811. /*
  812. * Use HR-timers to deliver accurate preemption points.
  813. *
  814. * Its all a bit involved since we cannot program an hrt while holding the
  815. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  816. * reschedule event.
  817. *
  818. * When we get rescheduled we reprogram the hrtick_timer outside of the
  819. * rq->lock.
  820. */
  821. static inline void resched_hrt(struct task_struct *p)
  822. {
  823. __resched_task(p, TIF_HRTICK_RESCHED);
  824. }
  825. static inline void resched_rq(struct rq *rq)
  826. {
  827. unsigned long flags;
  828. spin_lock_irqsave(&rq->lock, flags);
  829. resched_task(rq->curr);
  830. spin_unlock_irqrestore(&rq->lock, flags);
  831. }
  832. enum {
  833. HRTICK_SET, /* re-programm hrtick_timer */
  834. HRTICK_RESET, /* not a new slice */
  835. HRTICK_BLOCK, /* stop hrtick operations */
  836. };
  837. /*
  838. * Use hrtick when:
  839. * - enabled by features
  840. * - hrtimer is actually high res
  841. */
  842. static inline int hrtick_enabled(struct rq *rq)
  843. {
  844. if (!sched_feat(HRTICK))
  845. return 0;
  846. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  847. return 0;
  848. return hrtimer_is_hres_active(&rq->hrtick_timer);
  849. }
  850. /*
  851. * Called to set the hrtick timer state.
  852. *
  853. * called with rq->lock held and irqs disabled
  854. */
  855. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  856. {
  857. assert_spin_locked(&rq->lock);
  858. /*
  859. * preempt at: now + delay
  860. */
  861. rq->hrtick_expire =
  862. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  863. /*
  864. * indicate we need to program the timer
  865. */
  866. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  867. if (reset)
  868. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  869. /*
  870. * New slices are called from the schedule path and don't need a
  871. * forced reschedule.
  872. */
  873. if (reset)
  874. resched_hrt(rq->curr);
  875. }
  876. static void hrtick_clear(struct rq *rq)
  877. {
  878. if (hrtimer_active(&rq->hrtick_timer))
  879. hrtimer_cancel(&rq->hrtick_timer);
  880. }
  881. /*
  882. * Update the timer from the possible pending state.
  883. */
  884. static void hrtick_set(struct rq *rq)
  885. {
  886. ktime_t time;
  887. int set, reset;
  888. unsigned long flags;
  889. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  890. spin_lock_irqsave(&rq->lock, flags);
  891. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  892. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  893. time = rq->hrtick_expire;
  894. clear_thread_flag(TIF_HRTICK_RESCHED);
  895. spin_unlock_irqrestore(&rq->lock, flags);
  896. if (set) {
  897. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  898. if (reset && !hrtimer_active(&rq->hrtick_timer))
  899. resched_rq(rq);
  900. } else
  901. hrtick_clear(rq);
  902. }
  903. /*
  904. * High-resolution timer tick.
  905. * Runs from hardirq context with interrupts disabled.
  906. */
  907. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  908. {
  909. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  910. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  911. spin_lock(&rq->lock);
  912. update_rq_clock(rq);
  913. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  914. spin_unlock(&rq->lock);
  915. return HRTIMER_NORESTART;
  916. }
  917. #ifdef CONFIG_SMP
  918. static void hotplug_hrtick_disable(int cpu)
  919. {
  920. struct rq *rq = cpu_rq(cpu);
  921. unsigned long flags;
  922. spin_lock_irqsave(&rq->lock, flags);
  923. rq->hrtick_flags = 0;
  924. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  925. spin_unlock_irqrestore(&rq->lock, flags);
  926. hrtick_clear(rq);
  927. }
  928. static void hotplug_hrtick_enable(int cpu)
  929. {
  930. struct rq *rq = cpu_rq(cpu);
  931. unsigned long flags;
  932. spin_lock_irqsave(&rq->lock, flags);
  933. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  934. spin_unlock_irqrestore(&rq->lock, flags);
  935. }
  936. static int
  937. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  938. {
  939. int cpu = (int)(long)hcpu;
  940. switch (action) {
  941. case CPU_UP_CANCELED:
  942. case CPU_UP_CANCELED_FROZEN:
  943. case CPU_DOWN_PREPARE:
  944. case CPU_DOWN_PREPARE_FROZEN:
  945. case CPU_DEAD:
  946. case CPU_DEAD_FROZEN:
  947. hotplug_hrtick_disable(cpu);
  948. return NOTIFY_OK;
  949. case CPU_UP_PREPARE:
  950. case CPU_UP_PREPARE_FROZEN:
  951. case CPU_DOWN_FAILED:
  952. case CPU_DOWN_FAILED_FROZEN:
  953. case CPU_ONLINE:
  954. case CPU_ONLINE_FROZEN:
  955. hotplug_hrtick_enable(cpu);
  956. return NOTIFY_OK;
  957. }
  958. return NOTIFY_DONE;
  959. }
  960. static void init_hrtick(void)
  961. {
  962. hotcpu_notifier(hotplug_hrtick, 0);
  963. }
  964. #endif /* CONFIG_SMP */
  965. static void init_rq_hrtick(struct rq *rq)
  966. {
  967. rq->hrtick_flags = 0;
  968. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  969. rq->hrtick_timer.function = hrtick;
  970. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  971. }
  972. void hrtick_resched(void)
  973. {
  974. struct rq *rq;
  975. unsigned long flags;
  976. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  977. return;
  978. local_irq_save(flags);
  979. rq = cpu_rq(smp_processor_id());
  980. hrtick_set(rq);
  981. local_irq_restore(flags);
  982. }
  983. #else
  984. static inline void hrtick_clear(struct rq *rq)
  985. {
  986. }
  987. static inline void hrtick_set(struct rq *rq)
  988. {
  989. }
  990. static inline void init_rq_hrtick(struct rq *rq)
  991. {
  992. }
  993. void hrtick_resched(void)
  994. {
  995. }
  996. static inline void init_hrtick(void)
  997. {
  998. }
  999. #endif
  1000. /*
  1001. * resched_task - mark a task 'to be rescheduled now'.
  1002. *
  1003. * On UP this means the setting of the need_resched flag, on SMP it
  1004. * might also involve a cross-CPU call to trigger the scheduler on
  1005. * the target CPU.
  1006. */
  1007. #ifdef CONFIG_SMP
  1008. #ifndef tsk_is_polling
  1009. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1010. #endif
  1011. static void __resched_task(struct task_struct *p, int tif_bit)
  1012. {
  1013. int cpu;
  1014. assert_spin_locked(&task_rq(p)->lock);
  1015. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1016. return;
  1017. set_tsk_thread_flag(p, tif_bit);
  1018. cpu = task_cpu(p);
  1019. if (cpu == smp_processor_id())
  1020. return;
  1021. /* NEED_RESCHED must be visible before we test polling */
  1022. smp_mb();
  1023. if (!tsk_is_polling(p))
  1024. smp_send_reschedule(cpu);
  1025. }
  1026. static void resched_cpu(int cpu)
  1027. {
  1028. struct rq *rq = cpu_rq(cpu);
  1029. unsigned long flags;
  1030. if (!spin_trylock_irqsave(&rq->lock, flags))
  1031. return;
  1032. resched_task(cpu_curr(cpu));
  1033. spin_unlock_irqrestore(&rq->lock, flags);
  1034. }
  1035. #ifdef CONFIG_NO_HZ
  1036. /*
  1037. * When add_timer_on() enqueues a timer into the timer wheel of an
  1038. * idle CPU then this timer might expire before the next timer event
  1039. * which is scheduled to wake up that CPU. In case of a completely
  1040. * idle system the next event might even be infinite time into the
  1041. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1042. * leaves the inner idle loop so the newly added timer is taken into
  1043. * account when the CPU goes back to idle and evaluates the timer
  1044. * wheel for the next timer event.
  1045. */
  1046. void wake_up_idle_cpu(int cpu)
  1047. {
  1048. struct rq *rq = cpu_rq(cpu);
  1049. if (cpu == smp_processor_id())
  1050. return;
  1051. /*
  1052. * This is safe, as this function is called with the timer
  1053. * wheel base lock of (cpu) held. When the CPU is on the way
  1054. * to idle and has not yet set rq->curr to idle then it will
  1055. * be serialized on the timer wheel base lock and take the new
  1056. * timer into account automatically.
  1057. */
  1058. if (rq->curr != rq->idle)
  1059. return;
  1060. /*
  1061. * We can set TIF_RESCHED on the idle task of the other CPU
  1062. * lockless. The worst case is that the other CPU runs the
  1063. * idle task through an additional NOOP schedule()
  1064. */
  1065. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1066. /* NEED_RESCHED must be visible before we test polling */
  1067. smp_mb();
  1068. if (!tsk_is_polling(rq->idle))
  1069. smp_send_reschedule(cpu);
  1070. }
  1071. #endif /* CONFIG_NO_HZ */
  1072. #else /* !CONFIG_SMP */
  1073. static void __resched_task(struct task_struct *p, int tif_bit)
  1074. {
  1075. assert_spin_locked(&task_rq(p)->lock);
  1076. set_tsk_thread_flag(p, tif_bit);
  1077. }
  1078. #endif /* CONFIG_SMP */
  1079. #if BITS_PER_LONG == 32
  1080. # define WMULT_CONST (~0UL)
  1081. #else
  1082. # define WMULT_CONST (1UL << 32)
  1083. #endif
  1084. #define WMULT_SHIFT 32
  1085. /*
  1086. * Shift right and round:
  1087. */
  1088. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1089. /*
  1090. * delta *= weight / lw
  1091. */
  1092. static unsigned long
  1093. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1094. struct load_weight *lw)
  1095. {
  1096. u64 tmp;
  1097. if (!lw->inv_weight) {
  1098. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1099. lw->inv_weight = 1;
  1100. else
  1101. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1102. / (lw->weight+1);
  1103. }
  1104. tmp = (u64)delta_exec * weight;
  1105. /*
  1106. * Check whether we'd overflow the 64-bit multiplication:
  1107. */
  1108. if (unlikely(tmp > WMULT_CONST))
  1109. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1110. WMULT_SHIFT/2);
  1111. else
  1112. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1113. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1114. }
  1115. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1116. {
  1117. lw->weight += inc;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1121. {
  1122. lw->weight -= dec;
  1123. lw->inv_weight = 0;
  1124. }
  1125. /*
  1126. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1127. * of tasks with abnormal "nice" values across CPUs the contribution that
  1128. * each task makes to its run queue's load is weighted according to its
  1129. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1130. * scaled version of the new time slice allocation that they receive on time
  1131. * slice expiry etc.
  1132. */
  1133. #define WEIGHT_IDLEPRIO 2
  1134. #define WMULT_IDLEPRIO (1 << 31)
  1135. /*
  1136. * Nice levels are multiplicative, with a gentle 10% change for every
  1137. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1138. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1139. * that remained on nice 0.
  1140. *
  1141. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1142. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1143. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1144. * If a task goes up by ~10% and another task goes down by ~10% then
  1145. * the relative distance between them is ~25%.)
  1146. */
  1147. static const int prio_to_weight[40] = {
  1148. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1149. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1150. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1151. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1152. /* 0 */ 1024, 820, 655, 526, 423,
  1153. /* 5 */ 335, 272, 215, 172, 137,
  1154. /* 10 */ 110, 87, 70, 56, 45,
  1155. /* 15 */ 36, 29, 23, 18, 15,
  1156. };
  1157. /*
  1158. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1159. *
  1160. * In cases where the weight does not change often, we can use the
  1161. * precalculated inverse to speed up arithmetics by turning divisions
  1162. * into multiplications:
  1163. */
  1164. static const u32 prio_to_wmult[40] = {
  1165. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1166. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1167. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1168. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1169. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1170. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1171. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1172. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1173. };
  1174. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1175. /*
  1176. * runqueue iterator, to support SMP load-balancing between different
  1177. * scheduling classes, without having to expose their internal data
  1178. * structures to the load-balancing proper:
  1179. */
  1180. struct rq_iterator {
  1181. void *arg;
  1182. struct task_struct *(*start)(void *);
  1183. struct task_struct *(*next)(void *);
  1184. };
  1185. #ifdef CONFIG_SMP
  1186. static unsigned long
  1187. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1188. unsigned long max_load_move, struct sched_domain *sd,
  1189. enum cpu_idle_type idle, int *all_pinned,
  1190. int *this_best_prio, struct rq_iterator *iterator);
  1191. static int
  1192. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1193. struct sched_domain *sd, enum cpu_idle_type idle,
  1194. struct rq_iterator *iterator);
  1195. #endif
  1196. #ifdef CONFIG_CGROUP_CPUACCT
  1197. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1198. #else
  1199. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1200. #endif
  1201. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1202. {
  1203. update_load_add(&rq->load, load);
  1204. }
  1205. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1206. {
  1207. update_load_sub(&rq->load, load);
  1208. }
  1209. #ifdef CONFIG_SMP
  1210. static unsigned long source_load(int cpu, int type);
  1211. static unsigned long target_load(int cpu, int type);
  1212. static unsigned long cpu_avg_load_per_task(int cpu);
  1213. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1214. #ifdef CONFIG_FAIR_GROUP_SCHED
  1215. /*
  1216. * Group load balancing.
  1217. *
  1218. * We calculate a few balance domain wide aggregate numbers; load and weight.
  1219. * Given the pictures below, and assuming each item has equal weight:
  1220. *
  1221. * root 1 - thread
  1222. * / | \ A - group
  1223. * A 1 B
  1224. * /|\ / \
  1225. * C 2 D 3 4
  1226. * | |
  1227. * 5 6
  1228. *
  1229. * load:
  1230. * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
  1231. * which equals 1/9-th of the total load.
  1232. *
  1233. * shares:
  1234. * The weight of this group on the selected cpus.
  1235. *
  1236. * rq_weight:
  1237. * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
  1238. * B would get 2.
  1239. *
  1240. * task_weight:
  1241. * Part of the rq_weight contributed by tasks; all groups except B would
  1242. * get 1, B gets 2.
  1243. */
  1244. static inline struct aggregate_struct *
  1245. aggregate(struct task_group *tg, struct sched_domain *sd)
  1246. {
  1247. return &tg->cfs_rq[sd->first_cpu]->aggregate;
  1248. }
  1249. typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
  1250. /*
  1251. * Iterate the full tree, calling @down when first entering a node and @up when
  1252. * leaving it for the final time.
  1253. */
  1254. static
  1255. void aggregate_walk_tree(aggregate_func down, aggregate_func up,
  1256. struct sched_domain *sd)
  1257. {
  1258. struct task_group *parent, *child;
  1259. rcu_read_lock();
  1260. parent = &root_task_group;
  1261. down:
  1262. (*down)(parent, sd);
  1263. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1264. parent = child;
  1265. goto down;
  1266. up:
  1267. continue;
  1268. }
  1269. (*up)(parent, sd);
  1270. child = parent;
  1271. parent = parent->parent;
  1272. if (parent)
  1273. goto up;
  1274. rcu_read_unlock();
  1275. }
  1276. /*
  1277. * Calculate the aggregate runqueue weight.
  1278. */
  1279. static
  1280. void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
  1281. {
  1282. unsigned long rq_weight = 0;
  1283. unsigned long task_weight = 0;
  1284. int i;
  1285. for_each_cpu_mask(i, sd->span) {
  1286. rq_weight += tg->cfs_rq[i]->load.weight;
  1287. task_weight += tg->cfs_rq[i]->task_weight;
  1288. }
  1289. aggregate(tg, sd)->rq_weight = rq_weight;
  1290. aggregate(tg, sd)->task_weight = task_weight;
  1291. }
  1292. /*
  1293. * Compute the weight of this group on the given cpus.
  1294. */
  1295. static
  1296. void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
  1297. {
  1298. unsigned long shares = 0;
  1299. int i;
  1300. for_each_cpu_mask(i, sd->span)
  1301. shares += tg->cfs_rq[i]->shares;
  1302. if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
  1303. shares = tg->shares;
  1304. aggregate(tg, sd)->shares = shares;
  1305. }
  1306. /*
  1307. * Compute the load fraction assigned to this group, relies on the aggregate
  1308. * weight and this group's parent's load, i.e. top-down.
  1309. */
  1310. static
  1311. void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
  1312. {
  1313. unsigned long load;
  1314. if (!tg->parent) {
  1315. int i;
  1316. load = 0;
  1317. for_each_cpu_mask(i, sd->span)
  1318. load += cpu_rq(i)->load.weight;
  1319. } else {
  1320. load = aggregate(tg->parent, sd)->load;
  1321. /*
  1322. * shares is our weight in the parent's rq so
  1323. * shares/parent->rq_weight gives our fraction of the load
  1324. */
  1325. load *= aggregate(tg, sd)->shares;
  1326. load /= aggregate(tg->parent, sd)->rq_weight + 1;
  1327. }
  1328. aggregate(tg, sd)->load = load;
  1329. }
  1330. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1331. /*
  1332. * Calculate and set the cpu's group shares.
  1333. */
  1334. static void
  1335. __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
  1336. int tcpu)
  1337. {
  1338. int boost = 0;
  1339. unsigned long shares;
  1340. unsigned long rq_weight;
  1341. if (!tg->se[tcpu])
  1342. return;
  1343. rq_weight = tg->cfs_rq[tcpu]->load.weight;
  1344. /*
  1345. * If there are currently no tasks on the cpu pretend there is one of
  1346. * average load so that when a new task gets to run here it will not
  1347. * get delayed by group starvation.
  1348. */
  1349. if (!rq_weight) {
  1350. boost = 1;
  1351. rq_weight = NICE_0_LOAD;
  1352. }
  1353. /*
  1354. * \Sum shares * rq_weight
  1355. * shares = -----------------------
  1356. * \Sum rq_weight
  1357. *
  1358. */
  1359. shares = aggregate(tg, sd)->shares * rq_weight;
  1360. shares /= aggregate(tg, sd)->rq_weight + 1;
  1361. /*
  1362. * record the actual number of shares, not the boosted amount.
  1363. */
  1364. tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
  1365. if (shares < MIN_SHARES)
  1366. shares = MIN_SHARES;
  1367. else if (shares > MAX_SHARES)
  1368. shares = MAX_SHARES;
  1369. __set_se_shares(tg->se[tcpu], shares);
  1370. }
  1371. /*
  1372. * Re-adjust the weights on the cpu the task came from and on the cpu the
  1373. * task went to.
  1374. */
  1375. static void
  1376. __move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1377. int scpu, int dcpu)
  1378. {
  1379. unsigned long shares;
  1380. shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1381. __update_group_shares_cpu(tg, sd, scpu);
  1382. __update_group_shares_cpu(tg, sd, dcpu);
  1383. /*
  1384. * ensure we never loose shares due to rounding errors in the
  1385. * above redistribution.
  1386. */
  1387. shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1388. if (shares)
  1389. tg->cfs_rq[dcpu]->shares += shares;
  1390. }
  1391. /*
  1392. * Because changing a group's shares changes the weight of the super-group
  1393. * we need to walk up the tree and change all shares until we hit the root.
  1394. */
  1395. static void
  1396. move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1397. int scpu, int dcpu)
  1398. {
  1399. while (tg) {
  1400. __move_group_shares(tg, sd, scpu, dcpu);
  1401. tg = tg->parent;
  1402. }
  1403. }
  1404. static
  1405. void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
  1406. {
  1407. unsigned long shares = aggregate(tg, sd)->shares;
  1408. int i;
  1409. for_each_cpu_mask(i, sd->span) {
  1410. struct rq *rq = cpu_rq(i);
  1411. unsigned long flags;
  1412. spin_lock_irqsave(&rq->lock, flags);
  1413. __update_group_shares_cpu(tg, sd, i);
  1414. spin_unlock_irqrestore(&rq->lock, flags);
  1415. }
  1416. aggregate_group_shares(tg, sd);
  1417. /*
  1418. * ensure we never loose shares due to rounding errors in the
  1419. * above redistribution.
  1420. */
  1421. shares -= aggregate(tg, sd)->shares;
  1422. if (shares) {
  1423. tg->cfs_rq[sd->first_cpu]->shares += shares;
  1424. aggregate(tg, sd)->shares += shares;
  1425. }
  1426. }
  1427. /*
  1428. * Calculate the accumulative weight and recursive load of each task group
  1429. * while walking down the tree.
  1430. */
  1431. static
  1432. void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
  1433. {
  1434. aggregate_group_weight(tg, sd);
  1435. aggregate_group_shares(tg, sd);
  1436. aggregate_group_load(tg, sd);
  1437. }
  1438. /*
  1439. * Rebalance the cpu shares while walking back up the tree.
  1440. */
  1441. static
  1442. void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
  1443. {
  1444. aggregate_group_set_shares(tg, sd);
  1445. }
  1446. static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
  1447. static void __init init_aggregate(void)
  1448. {
  1449. int i;
  1450. for_each_possible_cpu(i)
  1451. spin_lock_init(&per_cpu(aggregate_lock, i));
  1452. }
  1453. static int get_aggregate(struct sched_domain *sd)
  1454. {
  1455. if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
  1456. return 0;
  1457. aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
  1458. return 1;
  1459. }
  1460. static void put_aggregate(struct sched_domain *sd)
  1461. {
  1462. spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
  1463. }
  1464. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1465. {
  1466. cfs_rq->shares = shares;
  1467. }
  1468. #else
  1469. static inline void init_aggregate(void)
  1470. {
  1471. }
  1472. static inline int get_aggregate(struct sched_domain *sd)
  1473. {
  1474. return 0;
  1475. }
  1476. static inline void put_aggregate(struct sched_domain *sd)
  1477. {
  1478. }
  1479. #endif
  1480. #endif
  1481. #include "sched_stats.h"
  1482. #include "sched_idletask.c"
  1483. #include "sched_fair.c"
  1484. #include "sched_rt.c"
  1485. #ifdef CONFIG_SCHED_DEBUG
  1486. # include "sched_debug.c"
  1487. #endif
  1488. #define sched_class_highest (&rt_sched_class)
  1489. #define for_each_class(class) \
  1490. for (class = sched_class_highest; class; class = class->next)
  1491. static void inc_nr_running(struct rq *rq)
  1492. {
  1493. rq->nr_running++;
  1494. }
  1495. static void dec_nr_running(struct rq *rq)
  1496. {
  1497. rq->nr_running--;
  1498. }
  1499. static void set_load_weight(struct task_struct *p)
  1500. {
  1501. if (task_has_rt_policy(p)) {
  1502. p->se.load.weight = prio_to_weight[0] * 2;
  1503. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1504. return;
  1505. }
  1506. /*
  1507. * SCHED_IDLE tasks get minimal weight:
  1508. */
  1509. if (p->policy == SCHED_IDLE) {
  1510. p->se.load.weight = WEIGHT_IDLEPRIO;
  1511. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1512. return;
  1513. }
  1514. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1515. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1516. }
  1517. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1518. {
  1519. sched_info_queued(p);
  1520. p->sched_class->enqueue_task(rq, p, wakeup);
  1521. p->se.on_rq = 1;
  1522. }
  1523. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1524. {
  1525. p->sched_class->dequeue_task(rq, p, sleep);
  1526. p->se.on_rq = 0;
  1527. }
  1528. /*
  1529. * __normal_prio - return the priority that is based on the static prio
  1530. */
  1531. static inline int __normal_prio(struct task_struct *p)
  1532. {
  1533. return p->static_prio;
  1534. }
  1535. /*
  1536. * Calculate the expected normal priority: i.e. priority
  1537. * without taking RT-inheritance into account. Might be
  1538. * boosted by interactivity modifiers. Changes upon fork,
  1539. * setprio syscalls, and whenever the interactivity
  1540. * estimator recalculates.
  1541. */
  1542. static inline int normal_prio(struct task_struct *p)
  1543. {
  1544. int prio;
  1545. if (task_has_rt_policy(p))
  1546. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1547. else
  1548. prio = __normal_prio(p);
  1549. return prio;
  1550. }
  1551. /*
  1552. * Calculate the current priority, i.e. the priority
  1553. * taken into account by the scheduler. This value might
  1554. * be boosted by RT tasks, or might be boosted by
  1555. * interactivity modifiers. Will be RT if the task got
  1556. * RT-boosted. If not then it returns p->normal_prio.
  1557. */
  1558. static int effective_prio(struct task_struct *p)
  1559. {
  1560. p->normal_prio = normal_prio(p);
  1561. /*
  1562. * If we are RT tasks or we were boosted to RT priority,
  1563. * keep the priority unchanged. Otherwise, update priority
  1564. * to the normal priority:
  1565. */
  1566. if (!rt_prio(p->prio))
  1567. return p->normal_prio;
  1568. return p->prio;
  1569. }
  1570. /*
  1571. * activate_task - move a task to the runqueue.
  1572. */
  1573. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1574. {
  1575. if (task_contributes_to_load(p))
  1576. rq->nr_uninterruptible--;
  1577. enqueue_task(rq, p, wakeup);
  1578. inc_nr_running(rq);
  1579. }
  1580. /*
  1581. * deactivate_task - remove a task from the runqueue.
  1582. */
  1583. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1584. {
  1585. if (task_contributes_to_load(p))
  1586. rq->nr_uninterruptible++;
  1587. dequeue_task(rq, p, sleep);
  1588. dec_nr_running(rq);
  1589. }
  1590. /**
  1591. * task_curr - is this task currently executing on a CPU?
  1592. * @p: the task in question.
  1593. */
  1594. inline int task_curr(const struct task_struct *p)
  1595. {
  1596. return cpu_curr(task_cpu(p)) == p;
  1597. }
  1598. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1599. {
  1600. set_task_rq(p, cpu);
  1601. #ifdef CONFIG_SMP
  1602. /*
  1603. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1604. * successfuly executed on another CPU. We must ensure that updates of
  1605. * per-task data have been completed by this moment.
  1606. */
  1607. smp_wmb();
  1608. task_thread_info(p)->cpu = cpu;
  1609. #endif
  1610. }
  1611. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1612. const struct sched_class *prev_class,
  1613. int oldprio, int running)
  1614. {
  1615. if (prev_class != p->sched_class) {
  1616. if (prev_class->switched_from)
  1617. prev_class->switched_from(rq, p, running);
  1618. p->sched_class->switched_to(rq, p, running);
  1619. } else
  1620. p->sched_class->prio_changed(rq, p, oldprio, running);
  1621. }
  1622. #ifdef CONFIG_SMP
  1623. /* Used instead of source_load when we know the type == 0 */
  1624. static unsigned long weighted_cpuload(const int cpu)
  1625. {
  1626. return cpu_rq(cpu)->load.weight;
  1627. }
  1628. /*
  1629. * Is this task likely cache-hot:
  1630. */
  1631. static int
  1632. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1633. {
  1634. s64 delta;
  1635. /*
  1636. * Buddy candidates are cache hot:
  1637. */
  1638. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1639. return 1;
  1640. if (p->sched_class != &fair_sched_class)
  1641. return 0;
  1642. if (sysctl_sched_migration_cost == -1)
  1643. return 1;
  1644. if (sysctl_sched_migration_cost == 0)
  1645. return 0;
  1646. delta = now - p->se.exec_start;
  1647. return delta < (s64)sysctl_sched_migration_cost;
  1648. }
  1649. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1650. {
  1651. int old_cpu = task_cpu(p);
  1652. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1653. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1654. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1655. u64 clock_offset;
  1656. clock_offset = old_rq->clock - new_rq->clock;
  1657. #ifdef CONFIG_SCHEDSTATS
  1658. if (p->se.wait_start)
  1659. p->se.wait_start -= clock_offset;
  1660. if (p->se.sleep_start)
  1661. p->se.sleep_start -= clock_offset;
  1662. if (p->se.block_start)
  1663. p->se.block_start -= clock_offset;
  1664. if (old_cpu != new_cpu) {
  1665. schedstat_inc(p, se.nr_migrations);
  1666. if (task_hot(p, old_rq->clock, NULL))
  1667. schedstat_inc(p, se.nr_forced2_migrations);
  1668. }
  1669. #endif
  1670. p->se.vruntime -= old_cfsrq->min_vruntime -
  1671. new_cfsrq->min_vruntime;
  1672. __set_task_cpu(p, new_cpu);
  1673. }
  1674. struct migration_req {
  1675. struct list_head list;
  1676. struct task_struct *task;
  1677. int dest_cpu;
  1678. struct completion done;
  1679. };
  1680. /*
  1681. * The task's runqueue lock must be held.
  1682. * Returns true if you have to wait for migration thread.
  1683. */
  1684. static int
  1685. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1686. {
  1687. struct rq *rq = task_rq(p);
  1688. /*
  1689. * If the task is not on a runqueue (and not running), then
  1690. * it is sufficient to simply update the task's cpu field.
  1691. */
  1692. if (!p->se.on_rq && !task_running(rq, p)) {
  1693. set_task_cpu(p, dest_cpu);
  1694. return 0;
  1695. }
  1696. init_completion(&req->done);
  1697. req->task = p;
  1698. req->dest_cpu = dest_cpu;
  1699. list_add(&req->list, &rq->migration_queue);
  1700. return 1;
  1701. }
  1702. /*
  1703. * wait_task_inactive - wait for a thread to unschedule.
  1704. *
  1705. * The caller must ensure that the task *will* unschedule sometime soon,
  1706. * else this function might spin for a *long* time. This function can't
  1707. * be called with interrupts off, or it may introduce deadlock with
  1708. * smp_call_function() if an IPI is sent by the same process we are
  1709. * waiting to become inactive.
  1710. */
  1711. void wait_task_inactive(struct task_struct *p)
  1712. {
  1713. unsigned long flags;
  1714. int running, on_rq;
  1715. struct rq *rq;
  1716. for (;;) {
  1717. /*
  1718. * We do the initial early heuristics without holding
  1719. * any task-queue locks at all. We'll only try to get
  1720. * the runqueue lock when things look like they will
  1721. * work out!
  1722. */
  1723. rq = task_rq(p);
  1724. /*
  1725. * If the task is actively running on another CPU
  1726. * still, just relax and busy-wait without holding
  1727. * any locks.
  1728. *
  1729. * NOTE! Since we don't hold any locks, it's not
  1730. * even sure that "rq" stays as the right runqueue!
  1731. * But we don't care, since "task_running()" will
  1732. * return false if the runqueue has changed and p
  1733. * is actually now running somewhere else!
  1734. */
  1735. while (task_running(rq, p))
  1736. cpu_relax();
  1737. /*
  1738. * Ok, time to look more closely! We need the rq
  1739. * lock now, to be *sure*. If we're wrong, we'll
  1740. * just go back and repeat.
  1741. */
  1742. rq = task_rq_lock(p, &flags);
  1743. running = task_running(rq, p);
  1744. on_rq = p->se.on_rq;
  1745. task_rq_unlock(rq, &flags);
  1746. /*
  1747. * Was it really running after all now that we
  1748. * checked with the proper locks actually held?
  1749. *
  1750. * Oops. Go back and try again..
  1751. */
  1752. if (unlikely(running)) {
  1753. cpu_relax();
  1754. continue;
  1755. }
  1756. /*
  1757. * It's not enough that it's not actively running,
  1758. * it must be off the runqueue _entirely_, and not
  1759. * preempted!
  1760. *
  1761. * So if it wa still runnable (but just not actively
  1762. * running right now), it's preempted, and we should
  1763. * yield - it could be a while.
  1764. */
  1765. if (unlikely(on_rq)) {
  1766. schedule_timeout_uninterruptible(1);
  1767. continue;
  1768. }
  1769. /*
  1770. * Ahh, all good. It wasn't running, and it wasn't
  1771. * runnable, which means that it will never become
  1772. * running in the future either. We're all done!
  1773. */
  1774. break;
  1775. }
  1776. }
  1777. /***
  1778. * kick_process - kick a running thread to enter/exit the kernel
  1779. * @p: the to-be-kicked thread
  1780. *
  1781. * Cause a process which is running on another CPU to enter
  1782. * kernel-mode, without any delay. (to get signals handled.)
  1783. *
  1784. * NOTE: this function doesnt have to take the runqueue lock,
  1785. * because all it wants to ensure is that the remote task enters
  1786. * the kernel. If the IPI races and the task has been migrated
  1787. * to another CPU then no harm is done and the purpose has been
  1788. * achieved as well.
  1789. */
  1790. void kick_process(struct task_struct *p)
  1791. {
  1792. int cpu;
  1793. preempt_disable();
  1794. cpu = task_cpu(p);
  1795. if ((cpu != smp_processor_id()) && task_curr(p))
  1796. smp_send_reschedule(cpu);
  1797. preempt_enable();
  1798. }
  1799. /*
  1800. * Return a low guess at the load of a migration-source cpu weighted
  1801. * according to the scheduling class and "nice" value.
  1802. *
  1803. * We want to under-estimate the load of migration sources, to
  1804. * balance conservatively.
  1805. */
  1806. static unsigned long source_load(int cpu, int type)
  1807. {
  1808. struct rq *rq = cpu_rq(cpu);
  1809. unsigned long total = weighted_cpuload(cpu);
  1810. if (type == 0)
  1811. return total;
  1812. return min(rq->cpu_load[type-1], total);
  1813. }
  1814. /*
  1815. * Return a high guess at the load of a migration-target cpu weighted
  1816. * according to the scheduling class and "nice" value.
  1817. */
  1818. static unsigned long target_load(int cpu, int type)
  1819. {
  1820. struct rq *rq = cpu_rq(cpu);
  1821. unsigned long total = weighted_cpuload(cpu);
  1822. if (type == 0)
  1823. return total;
  1824. return max(rq->cpu_load[type-1], total);
  1825. }
  1826. /*
  1827. * Return the average load per task on the cpu's run queue
  1828. */
  1829. static unsigned long cpu_avg_load_per_task(int cpu)
  1830. {
  1831. struct rq *rq = cpu_rq(cpu);
  1832. unsigned long total = weighted_cpuload(cpu);
  1833. unsigned long n = rq->nr_running;
  1834. return n ? total / n : SCHED_LOAD_SCALE;
  1835. }
  1836. /*
  1837. * find_idlest_group finds and returns the least busy CPU group within the
  1838. * domain.
  1839. */
  1840. static struct sched_group *
  1841. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1842. {
  1843. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1844. unsigned long min_load = ULONG_MAX, this_load = 0;
  1845. int load_idx = sd->forkexec_idx;
  1846. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1847. do {
  1848. unsigned long load, avg_load;
  1849. int local_group;
  1850. int i;
  1851. /* Skip over this group if it has no CPUs allowed */
  1852. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1853. continue;
  1854. local_group = cpu_isset(this_cpu, group->cpumask);
  1855. /* Tally up the load of all CPUs in the group */
  1856. avg_load = 0;
  1857. for_each_cpu_mask(i, group->cpumask) {
  1858. /* Bias balancing toward cpus of our domain */
  1859. if (local_group)
  1860. load = source_load(i, load_idx);
  1861. else
  1862. load = target_load(i, load_idx);
  1863. avg_load += load;
  1864. }
  1865. /* Adjust by relative CPU power of the group */
  1866. avg_load = sg_div_cpu_power(group,
  1867. avg_load * SCHED_LOAD_SCALE);
  1868. if (local_group) {
  1869. this_load = avg_load;
  1870. this = group;
  1871. } else if (avg_load < min_load) {
  1872. min_load = avg_load;
  1873. idlest = group;
  1874. }
  1875. } while (group = group->next, group != sd->groups);
  1876. if (!idlest || 100*this_load < imbalance*min_load)
  1877. return NULL;
  1878. return idlest;
  1879. }
  1880. /*
  1881. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1882. */
  1883. static int
  1884. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1885. cpumask_t *tmp)
  1886. {
  1887. unsigned long load, min_load = ULONG_MAX;
  1888. int idlest = -1;
  1889. int i;
  1890. /* Traverse only the allowed CPUs */
  1891. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1892. for_each_cpu_mask(i, *tmp) {
  1893. load = weighted_cpuload(i);
  1894. if (load < min_load || (load == min_load && i == this_cpu)) {
  1895. min_load = load;
  1896. idlest = i;
  1897. }
  1898. }
  1899. return idlest;
  1900. }
  1901. /*
  1902. * sched_balance_self: balance the current task (running on cpu) in domains
  1903. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1904. * SD_BALANCE_EXEC.
  1905. *
  1906. * Balance, ie. select the least loaded group.
  1907. *
  1908. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1909. *
  1910. * preempt must be disabled.
  1911. */
  1912. static int sched_balance_self(int cpu, int flag)
  1913. {
  1914. struct task_struct *t = current;
  1915. struct sched_domain *tmp, *sd = NULL;
  1916. for_each_domain(cpu, tmp) {
  1917. /*
  1918. * If power savings logic is enabled for a domain, stop there.
  1919. */
  1920. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1921. break;
  1922. if (tmp->flags & flag)
  1923. sd = tmp;
  1924. }
  1925. while (sd) {
  1926. cpumask_t span, tmpmask;
  1927. struct sched_group *group;
  1928. int new_cpu, weight;
  1929. if (!(sd->flags & flag)) {
  1930. sd = sd->child;
  1931. continue;
  1932. }
  1933. span = sd->span;
  1934. group = find_idlest_group(sd, t, cpu);
  1935. if (!group) {
  1936. sd = sd->child;
  1937. continue;
  1938. }
  1939. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1940. if (new_cpu == -1 || new_cpu == cpu) {
  1941. /* Now try balancing at a lower domain level of cpu */
  1942. sd = sd->child;
  1943. continue;
  1944. }
  1945. /* Now try balancing at a lower domain level of new_cpu */
  1946. cpu = new_cpu;
  1947. sd = NULL;
  1948. weight = cpus_weight(span);
  1949. for_each_domain(cpu, tmp) {
  1950. if (weight <= cpus_weight(tmp->span))
  1951. break;
  1952. if (tmp->flags & flag)
  1953. sd = tmp;
  1954. }
  1955. /* while loop will break here if sd == NULL */
  1956. }
  1957. return cpu;
  1958. }
  1959. #endif /* CONFIG_SMP */
  1960. /***
  1961. * try_to_wake_up - wake up a thread
  1962. * @p: the to-be-woken-up thread
  1963. * @state: the mask of task states that can be woken
  1964. * @sync: do a synchronous wakeup?
  1965. *
  1966. * Put it on the run-queue if it's not already there. The "current"
  1967. * thread is always on the run-queue (except when the actual
  1968. * re-schedule is in progress), and as such you're allowed to do
  1969. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1970. * runnable without the overhead of this.
  1971. *
  1972. * returns failure only if the task is already active.
  1973. */
  1974. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1975. {
  1976. int cpu, orig_cpu, this_cpu, success = 0;
  1977. unsigned long flags;
  1978. long old_state;
  1979. struct rq *rq;
  1980. if (!sched_feat(SYNC_WAKEUPS))
  1981. sync = 0;
  1982. smp_wmb();
  1983. rq = task_rq_lock(p, &flags);
  1984. old_state = p->state;
  1985. if (!(old_state & state))
  1986. goto out;
  1987. if (p->se.on_rq)
  1988. goto out_running;
  1989. cpu = task_cpu(p);
  1990. orig_cpu = cpu;
  1991. this_cpu = smp_processor_id();
  1992. #ifdef CONFIG_SMP
  1993. if (unlikely(task_running(rq, p)))
  1994. goto out_activate;
  1995. cpu = p->sched_class->select_task_rq(p, sync);
  1996. if (cpu != orig_cpu) {
  1997. set_task_cpu(p, cpu);
  1998. task_rq_unlock(rq, &flags);
  1999. /* might preempt at this point */
  2000. rq = task_rq_lock(p, &flags);
  2001. old_state = p->state;
  2002. if (!(old_state & state))
  2003. goto out;
  2004. if (p->se.on_rq)
  2005. goto out_running;
  2006. this_cpu = smp_processor_id();
  2007. cpu = task_cpu(p);
  2008. }
  2009. #ifdef CONFIG_SCHEDSTATS
  2010. schedstat_inc(rq, ttwu_count);
  2011. if (cpu == this_cpu)
  2012. schedstat_inc(rq, ttwu_local);
  2013. else {
  2014. struct sched_domain *sd;
  2015. for_each_domain(this_cpu, sd) {
  2016. if (cpu_isset(cpu, sd->span)) {
  2017. schedstat_inc(sd, ttwu_wake_remote);
  2018. break;
  2019. }
  2020. }
  2021. }
  2022. #endif /* CONFIG_SCHEDSTATS */
  2023. out_activate:
  2024. #endif /* CONFIG_SMP */
  2025. schedstat_inc(p, se.nr_wakeups);
  2026. if (sync)
  2027. schedstat_inc(p, se.nr_wakeups_sync);
  2028. if (orig_cpu != cpu)
  2029. schedstat_inc(p, se.nr_wakeups_migrate);
  2030. if (cpu == this_cpu)
  2031. schedstat_inc(p, se.nr_wakeups_local);
  2032. else
  2033. schedstat_inc(p, se.nr_wakeups_remote);
  2034. update_rq_clock(rq);
  2035. activate_task(rq, p, 1);
  2036. success = 1;
  2037. out_running:
  2038. check_preempt_curr(rq, p);
  2039. p->state = TASK_RUNNING;
  2040. #ifdef CONFIG_SMP
  2041. if (p->sched_class->task_wake_up)
  2042. p->sched_class->task_wake_up(rq, p);
  2043. #endif
  2044. out:
  2045. task_rq_unlock(rq, &flags);
  2046. return success;
  2047. }
  2048. int wake_up_process(struct task_struct *p)
  2049. {
  2050. return try_to_wake_up(p, TASK_ALL, 0);
  2051. }
  2052. EXPORT_SYMBOL(wake_up_process);
  2053. int wake_up_state(struct task_struct *p, unsigned int state)
  2054. {
  2055. return try_to_wake_up(p, state, 0);
  2056. }
  2057. /*
  2058. * Perform scheduler related setup for a newly forked process p.
  2059. * p is forked by current.
  2060. *
  2061. * __sched_fork() is basic setup used by init_idle() too:
  2062. */
  2063. static void __sched_fork(struct task_struct *p)
  2064. {
  2065. p->se.exec_start = 0;
  2066. p->se.sum_exec_runtime = 0;
  2067. p->se.prev_sum_exec_runtime = 0;
  2068. p->se.last_wakeup = 0;
  2069. p->se.avg_overlap = 0;
  2070. #ifdef CONFIG_SCHEDSTATS
  2071. p->se.wait_start = 0;
  2072. p->se.sum_sleep_runtime = 0;
  2073. p->se.sleep_start = 0;
  2074. p->se.block_start = 0;
  2075. p->se.sleep_max = 0;
  2076. p->se.block_max = 0;
  2077. p->se.exec_max = 0;
  2078. p->se.slice_max = 0;
  2079. p->se.wait_max = 0;
  2080. #endif
  2081. INIT_LIST_HEAD(&p->rt.run_list);
  2082. p->se.on_rq = 0;
  2083. INIT_LIST_HEAD(&p->se.group_node);
  2084. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2085. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2086. #endif
  2087. /*
  2088. * We mark the process as running here, but have not actually
  2089. * inserted it onto the runqueue yet. This guarantees that
  2090. * nobody will actually run it, and a signal or other external
  2091. * event cannot wake it up and insert it on the runqueue either.
  2092. */
  2093. p->state = TASK_RUNNING;
  2094. }
  2095. /*
  2096. * fork()/clone()-time setup:
  2097. */
  2098. void sched_fork(struct task_struct *p, int clone_flags)
  2099. {
  2100. int cpu = get_cpu();
  2101. __sched_fork(p);
  2102. #ifdef CONFIG_SMP
  2103. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2104. #endif
  2105. set_task_cpu(p, cpu);
  2106. /*
  2107. * Make sure we do not leak PI boosting priority to the child:
  2108. */
  2109. p->prio = current->normal_prio;
  2110. if (!rt_prio(p->prio))
  2111. p->sched_class = &fair_sched_class;
  2112. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2113. if (likely(sched_info_on()))
  2114. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2115. #endif
  2116. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2117. p->oncpu = 0;
  2118. #endif
  2119. #ifdef CONFIG_PREEMPT
  2120. /* Want to start with kernel preemption disabled. */
  2121. task_thread_info(p)->preempt_count = 1;
  2122. #endif
  2123. put_cpu();
  2124. }
  2125. /*
  2126. * wake_up_new_task - wake up a newly created task for the first time.
  2127. *
  2128. * This function will do some initial scheduler statistics housekeeping
  2129. * that must be done for every newly created context, then puts the task
  2130. * on the runqueue and wakes it.
  2131. */
  2132. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2133. {
  2134. unsigned long flags;
  2135. struct rq *rq;
  2136. rq = task_rq_lock(p, &flags);
  2137. BUG_ON(p->state != TASK_RUNNING);
  2138. update_rq_clock(rq);
  2139. p->prio = effective_prio(p);
  2140. if (!p->sched_class->task_new || !current->se.on_rq) {
  2141. activate_task(rq, p, 0);
  2142. } else {
  2143. /*
  2144. * Let the scheduling class do new task startup
  2145. * management (if any):
  2146. */
  2147. p->sched_class->task_new(rq, p);
  2148. inc_nr_running(rq);
  2149. }
  2150. check_preempt_curr(rq, p);
  2151. #ifdef CONFIG_SMP
  2152. if (p->sched_class->task_wake_up)
  2153. p->sched_class->task_wake_up(rq, p);
  2154. #endif
  2155. task_rq_unlock(rq, &flags);
  2156. }
  2157. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2158. /**
  2159. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2160. * @notifier: notifier struct to register
  2161. */
  2162. void preempt_notifier_register(struct preempt_notifier *notifier)
  2163. {
  2164. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2165. }
  2166. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2167. /**
  2168. * preempt_notifier_unregister - no longer interested in preemption notifications
  2169. * @notifier: notifier struct to unregister
  2170. *
  2171. * This is safe to call from within a preemption notifier.
  2172. */
  2173. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2174. {
  2175. hlist_del(&notifier->link);
  2176. }
  2177. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2178. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2179. {
  2180. struct preempt_notifier *notifier;
  2181. struct hlist_node *node;
  2182. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2183. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2184. }
  2185. static void
  2186. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2187. struct task_struct *next)
  2188. {
  2189. struct preempt_notifier *notifier;
  2190. struct hlist_node *node;
  2191. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2192. notifier->ops->sched_out(notifier, next);
  2193. }
  2194. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2195. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2196. {
  2197. }
  2198. static void
  2199. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2200. struct task_struct *next)
  2201. {
  2202. }
  2203. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2204. /**
  2205. * prepare_task_switch - prepare to switch tasks
  2206. * @rq: the runqueue preparing to switch
  2207. * @prev: the current task that is being switched out
  2208. * @next: the task we are going to switch to.
  2209. *
  2210. * This is called with the rq lock held and interrupts off. It must
  2211. * be paired with a subsequent finish_task_switch after the context
  2212. * switch.
  2213. *
  2214. * prepare_task_switch sets up locking and calls architecture specific
  2215. * hooks.
  2216. */
  2217. static inline void
  2218. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2219. struct task_struct *next)
  2220. {
  2221. fire_sched_out_preempt_notifiers(prev, next);
  2222. prepare_lock_switch(rq, next);
  2223. prepare_arch_switch(next);
  2224. }
  2225. /**
  2226. * finish_task_switch - clean up after a task-switch
  2227. * @rq: runqueue associated with task-switch
  2228. * @prev: the thread we just switched away from.
  2229. *
  2230. * finish_task_switch must be called after the context switch, paired
  2231. * with a prepare_task_switch call before the context switch.
  2232. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2233. * and do any other architecture-specific cleanup actions.
  2234. *
  2235. * Note that we may have delayed dropping an mm in context_switch(). If
  2236. * so, we finish that here outside of the runqueue lock. (Doing it
  2237. * with the lock held can cause deadlocks; see schedule() for
  2238. * details.)
  2239. */
  2240. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2241. __releases(rq->lock)
  2242. {
  2243. struct mm_struct *mm = rq->prev_mm;
  2244. long prev_state;
  2245. rq->prev_mm = NULL;
  2246. /*
  2247. * A task struct has one reference for the use as "current".
  2248. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2249. * schedule one last time. The schedule call will never return, and
  2250. * the scheduled task must drop that reference.
  2251. * The test for TASK_DEAD must occur while the runqueue locks are
  2252. * still held, otherwise prev could be scheduled on another cpu, die
  2253. * there before we look at prev->state, and then the reference would
  2254. * be dropped twice.
  2255. * Manfred Spraul <manfred@colorfullife.com>
  2256. */
  2257. prev_state = prev->state;
  2258. finish_arch_switch(prev);
  2259. finish_lock_switch(rq, prev);
  2260. #ifdef CONFIG_SMP
  2261. if (current->sched_class->post_schedule)
  2262. current->sched_class->post_schedule(rq);
  2263. #endif
  2264. fire_sched_in_preempt_notifiers(current);
  2265. if (mm)
  2266. mmdrop(mm);
  2267. if (unlikely(prev_state == TASK_DEAD)) {
  2268. /*
  2269. * Remove function-return probe instances associated with this
  2270. * task and put them back on the free list.
  2271. */
  2272. kprobe_flush_task(prev);
  2273. put_task_struct(prev);
  2274. }
  2275. }
  2276. /**
  2277. * schedule_tail - first thing a freshly forked thread must call.
  2278. * @prev: the thread we just switched away from.
  2279. */
  2280. asmlinkage void schedule_tail(struct task_struct *prev)
  2281. __releases(rq->lock)
  2282. {
  2283. struct rq *rq = this_rq();
  2284. finish_task_switch(rq, prev);
  2285. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2286. /* In this case, finish_task_switch does not reenable preemption */
  2287. preempt_enable();
  2288. #endif
  2289. if (current->set_child_tid)
  2290. put_user(task_pid_vnr(current), current->set_child_tid);
  2291. }
  2292. /*
  2293. * context_switch - switch to the new MM and the new
  2294. * thread's register state.
  2295. */
  2296. static inline void
  2297. context_switch(struct rq *rq, struct task_struct *prev,
  2298. struct task_struct *next)
  2299. {
  2300. struct mm_struct *mm, *oldmm;
  2301. prepare_task_switch(rq, prev, next);
  2302. mm = next->mm;
  2303. oldmm = prev->active_mm;
  2304. /*
  2305. * For paravirt, this is coupled with an exit in switch_to to
  2306. * combine the page table reload and the switch backend into
  2307. * one hypercall.
  2308. */
  2309. arch_enter_lazy_cpu_mode();
  2310. if (unlikely(!mm)) {
  2311. next->active_mm = oldmm;
  2312. atomic_inc(&oldmm->mm_count);
  2313. enter_lazy_tlb(oldmm, next);
  2314. } else
  2315. switch_mm(oldmm, mm, next);
  2316. if (unlikely(!prev->mm)) {
  2317. prev->active_mm = NULL;
  2318. rq->prev_mm = oldmm;
  2319. }
  2320. /*
  2321. * Since the runqueue lock will be released by the next
  2322. * task (which is an invalid locking op but in the case
  2323. * of the scheduler it's an obvious special-case), so we
  2324. * do an early lockdep release here:
  2325. */
  2326. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2327. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2328. #endif
  2329. /* Here we just switch the register state and the stack. */
  2330. switch_to(prev, next, prev);
  2331. barrier();
  2332. /*
  2333. * this_rq must be evaluated again because prev may have moved
  2334. * CPUs since it called schedule(), thus the 'rq' on its stack
  2335. * frame will be invalid.
  2336. */
  2337. finish_task_switch(this_rq(), prev);
  2338. }
  2339. /*
  2340. * nr_running, nr_uninterruptible and nr_context_switches:
  2341. *
  2342. * externally visible scheduler statistics: current number of runnable
  2343. * threads, current number of uninterruptible-sleeping threads, total
  2344. * number of context switches performed since bootup.
  2345. */
  2346. unsigned long nr_running(void)
  2347. {
  2348. unsigned long i, sum = 0;
  2349. for_each_online_cpu(i)
  2350. sum += cpu_rq(i)->nr_running;
  2351. return sum;
  2352. }
  2353. unsigned long nr_uninterruptible(void)
  2354. {
  2355. unsigned long i, sum = 0;
  2356. for_each_possible_cpu(i)
  2357. sum += cpu_rq(i)->nr_uninterruptible;
  2358. /*
  2359. * Since we read the counters lockless, it might be slightly
  2360. * inaccurate. Do not allow it to go below zero though:
  2361. */
  2362. if (unlikely((long)sum < 0))
  2363. sum = 0;
  2364. return sum;
  2365. }
  2366. unsigned long long nr_context_switches(void)
  2367. {
  2368. int i;
  2369. unsigned long long sum = 0;
  2370. for_each_possible_cpu(i)
  2371. sum += cpu_rq(i)->nr_switches;
  2372. return sum;
  2373. }
  2374. unsigned long nr_iowait(void)
  2375. {
  2376. unsigned long i, sum = 0;
  2377. for_each_possible_cpu(i)
  2378. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2379. return sum;
  2380. }
  2381. unsigned long nr_active(void)
  2382. {
  2383. unsigned long i, running = 0, uninterruptible = 0;
  2384. for_each_online_cpu(i) {
  2385. running += cpu_rq(i)->nr_running;
  2386. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2387. }
  2388. if (unlikely((long)uninterruptible < 0))
  2389. uninterruptible = 0;
  2390. return running + uninterruptible;
  2391. }
  2392. /*
  2393. * Update rq->cpu_load[] statistics. This function is usually called every
  2394. * scheduler tick (TICK_NSEC).
  2395. */
  2396. static void update_cpu_load(struct rq *this_rq)
  2397. {
  2398. unsigned long this_load = this_rq->load.weight;
  2399. int i, scale;
  2400. this_rq->nr_load_updates++;
  2401. /* Update our load: */
  2402. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2403. unsigned long old_load, new_load;
  2404. /* scale is effectively 1 << i now, and >> i divides by scale */
  2405. old_load = this_rq->cpu_load[i];
  2406. new_load = this_load;
  2407. /*
  2408. * Round up the averaging division if load is increasing. This
  2409. * prevents us from getting stuck on 9 if the load is 10, for
  2410. * example.
  2411. */
  2412. if (new_load > old_load)
  2413. new_load += scale-1;
  2414. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2415. }
  2416. }
  2417. #ifdef CONFIG_SMP
  2418. /*
  2419. * double_rq_lock - safely lock two runqueues
  2420. *
  2421. * Note this does not disable interrupts like task_rq_lock,
  2422. * you need to do so manually before calling.
  2423. */
  2424. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2425. __acquires(rq1->lock)
  2426. __acquires(rq2->lock)
  2427. {
  2428. BUG_ON(!irqs_disabled());
  2429. if (rq1 == rq2) {
  2430. spin_lock(&rq1->lock);
  2431. __acquire(rq2->lock); /* Fake it out ;) */
  2432. } else {
  2433. if (rq1 < rq2) {
  2434. spin_lock(&rq1->lock);
  2435. spin_lock(&rq2->lock);
  2436. } else {
  2437. spin_lock(&rq2->lock);
  2438. spin_lock(&rq1->lock);
  2439. }
  2440. }
  2441. update_rq_clock(rq1);
  2442. update_rq_clock(rq2);
  2443. }
  2444. /*
  2445. * double_rq_unlock - safely unlock two runqueues
  2446. *
  2447. * Note this does not restore interrupts like task_rq_unlock,
  2448. * you need to do so manually after calling.
  2449. */
  2450. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2451. __releases(rq1->lock)
  2452. __releases(rq2->lock)
  2453. {
  2454. spin_unlock(&rq1->lock);
  2455. if (rq1 != rq2)
  2456. spin_unlock(&rq2->lock);
  2457. else
  2458. __release(rq2->lock);
  2459. }
  2460. /*
  2461. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2462. */
  2463. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2464. __releases(this_rq->lock)
  2465. __acquires(busiest->lock)
  2466. __acquires(this_rq->lock)
  2467. {
  2468. int ret = 0;
  2469. if (unlikely(!irqs_disabled())) {
  2470. /* printk() doesn't work good under rq->lock */
  2471. spin_unlock(&this_rq->lock);
  2472. BUG_ON(1);
  2473. }
  2474. if (unlikely(!spin_trylock(&busiest->lock))) {
  2475. if (busiest < this_rq) {
  2476. spin_unlock(&this_rq->lock);
  2477. spin_lock(&busiest->lock);
  2478. spin_lock(&this_rq->lock);
  2479. ret = 1;
  2480. } else
  2481. spin_lock(&busiest->lock);
  2482. }
  2483. return ret;
  2484. }
  2485. /*
  2486. * If dest_cpu is allowed for this process, migrate the task to it.
  2487. * This is accomplished by forcing the cpu_allowed mask to only
  2488. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2489. * the cpu_allowed mask is restored.
  2490. */
  2491. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2492. {
  2493. struct migration_req req;
  2494. unsigned long flags;
  2495. struct rq *rq;
  2496. rq = task_rq_lock(p, &flags);
  2497. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2498. || unlikely(cpu_is_offline(dest_cpu)))
  2499. goto out;
  2500. /* force the process onto the specified CPU */
  2501. if (migrate_task(p, dest_cpu, &req)) {
  2502. /* Need to wait for migration thread (might exit: take ref). */
  2503. struct task_struct *mt = rq->migration_thread;
  2504. get_task_struct(mt);
  2505. task_rq_unlock(rq, &flags);
  2506. wake_up_process(mt);
  2507. put_task_struct(mt);
  2508. wait_for_completion(&req.done);
  2509. return;
  2510. }
  2511. out:
  2512. task_rq_unlock(rq, &flags);
  2513. }
  2514. /*
  2515. * sched_exec - execve() is a valuable balancing opportunity, because at
  2516. * this point the task has the smallest effective memory and cache footprint.
  2517. */
  2518. void sched_exec(void)
  2519. {
  2520. int new_cpu, this_cpu = get_cpu();
  2521. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2522. put_cpu();
  2523. if (new_cpu != this_cpu)
  2524. sched_migrate_task(current, new_cpu);
  2525. }
  2526. /*
  2527. * pull_task - move a task from a remote runqueue to the local runqueue.
  2528. * Both runqueues must be locked.
  2529. */
  2530. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2531. struct rq *this_rq, int this_cpu)
  2532. {
  2533. deactivate_task(src_rq, p, 0);
  2534. set_task_cpu(p, this_cpu);
  2535. activate_task(this_rq, p, 0);
  2536. /*
  2537. * Note that idle threads have a prio of MAX_PRIO, for this test
  2538. * to be always true for them.
  2539. */
  2540. check_preempt_curr(this_rq, p);
  2541. }
  2542. /*
  2543. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2544. */
  2545. static
  2546. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2547. struct sched_domain *sd, enum cpu_idle_type idle,
  2548. int *all_pinned)
  2549. {
  2550. /*
  2551. * We do not migrate tasks that are:
  2552. * 1) running (obviously), or
  2553. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2554. * 3) are cache-hot on their current CPU.
  2555. */
  2556. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2557. schedstat_inc(p, se.nr_failed_migrations_affine);
  2558. return 0;
  2559. }
  2560. *all_pinned = 0;
  2561. if (task_running(rq, p)) {
  2562. schedstat_inc(p, se.nr_failed_migrations_running);
  2563. return 0;
  2564. }
  2565. /*
  2566. * Aggressive migration if:
  2567. * 1) task is cache cold, or
  2568. * 2) too many balance attempts have failed.
  2569. */
  2570. if (!task_hot(p, rq->clock, sd) ||
  2571. sd->nr_balance_failed > sd->cache_nice_tries) {
  2572. #ifdef CONFIG_SCHEDSTATS
  2573. if (task_hot(p, rq->clock, sd)) {
  2574. schedstat_inc(sd, lb_hot_gained[idle]);
  2575. schedstat_inc(p, se.nr_forced_migrations);
  2576. }
  2577. #endif
  2578. return 1;
  2579. }
  2580. if (task_hot(p, rq->clock, sd)) {
  2581. schedstat_inc(p, se.nr_failed_migrations_hot);
  2582. return 0;
  2583. }
  2584. return 1;
  2585. }
  2586. static unsigned long
  2587. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2588. unsigned long max_load_move, struct sched_domain *sd,
  2589. enum cpu_idle_type idle, int *all_pinned,
  2590. int *this_best_prio, struct rq_iterator *iterator)
  2591. {
  2592. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2593. struct task_struct *p;
  2594. long rem_load_move = max_load_move;
  2595. if (max_load_move == 0)
  2596. goto out;
  2597. pinned = 1;
  2598. /*
  2599. * Start the load-balancing iterator:
  2600. */
  2601. p = iterator->start(iterator->arg);
  2602. next:
  2603. if (!p || loops++ > sysctl_sched_nr_migrate)
  2604. goto out;
  2605. /*
  2606. * To help distribute high priority tasks across CPUs we don't
  2607. * skip a task if it will be the highest priority task (i.e. smallest
  2608. * prio value) on its new queue regardless of its load weight
  2609. */
  2610. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2611. SCHED_LOAD_SCALE_FUZZ;
  2612. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2613. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2614. p = iterator->next(iterator->arg);
  2615. goto next;
  2616. }
  2617. pull_task(busiest, p, this_rq, this_cpu);
  2618. pulled++;
  2619. rem_load_move -= p->se.load.weight;
  2620. /*
  2621. * We only want to steal up to the prescribed amount of weighted load.
  2622. */
  2623. if (rem_load_move > 0) {
  2624. if (p->prio < *this_best_prio)
  2625. *this_best_prio = p->prio;
  2626. p = iterator->next(iterator->arg);
  2627. goto next;
  2628. }
  2629. out:
  2630. /*
  2631. * Right now, this is one of only two places pull_task() is called,
  2632. * so we can safely collect pull_task() stats here rather than
  2633. * inside pull_task().
  2634. */
  2635. schedstat_add(sd, lb_gained[idle], pulled);
  2636. if (all_pinned)
  2637. *all_pinned = pinned;
  2638. return max_load_move - rem_load_move;
  2639. }
  2640. /*
  2641. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2642. * this_rq, as part of a balancing operation within domain "sd".
  2643. * Returns 1 if successful and 0 otherwise.
  2644. *
  2645. * Called with both runqueues locked.
  2646. */
  2647. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2648. unsigned long max_load_move,
  2649. struct sched_domain *sd, enum cpu_idle_type idle,
  2650. int *all_pinned)
  2651. {
  2652. const struct sched_class *class = sched_class_highest;
  2653. unsigned long total_load_moved = 0;
  2654. int this_best_prio = this_rq->curr->prio;
  2655. do {
  2656. total_load_moved +=
  2657. class->load_balance(this_rq, this_cpu, busiest,
  2658. max_load_move - total_load_moved,
  2659. sd, idle, all_pinned, &this_best_prio);
  2660. class = class->next;
  2661. } while (class && max_load_move > total_load_moved);
  2662. return total_load_moved > 0;
  2663. }
  2664. static int
  2665. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2666. struct sched_domain *sd, enum cpu_idle_type idle,
  2667. struct rq_iterator *iterator)
  2668. {
  2669. struct task_struct *p = iterator->start(iterator->arg);
  2670. int pinned = 0;
  2671. while (p) {
  2672. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2673. pull_task(busiest, p, this_rq, this_cpu);
  2674. /*
  2675. * Right now, this is only the second place pull_task()
  2676. * is called, so we can safely collect pull_task()
  2677. * stats here rather than inside pull_task().
  2678. */
  2679. schedstat_inc(sd, lb_gained[idle]);
  2680. return 1;
  2681. }
  2682. p = iterator->next(iterator->arg);
  2683. }
  2684. return 0;
  2685. }
  2686. /*
  2687. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2688. * part of active balancing operations within "domain".
  2689. * Returns 1 if successful and 0 otherwise.
  2690. *
  2691. * Called with both runqueues locked.
  2692. */
  2693. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2694. struct sched_domain *sd, enum cpu_idle_type idle)
  2695. {
  2696. const struct sched_class *class;
  2697. for (class = sched_class_highest; class; class = class->next)
  2698. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2699. return 1;
  2700. return 0;
  2701. }
  2702. /*
  2703. * find_busiest_group finds and returns the busiest CPU group within the
  2704. * domain. It calculates and returns the amount of weighted load which
  2705. * should be moved to restore balance via the imbalance parameter.
  2706. */
  2707. static struct sched_group *
  2708. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2709. unsigned long *imbalance, enum cpu_idle_type idle,
  2710. int *sd_idle, const cpumask_t *cpus, int *balance)
  2711. {
  2712. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2713. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2714. unsigned long max_pull;
  2715. unsigned long busiest_load_per_task, busiest_nr_running;
  2716. unsigned long this_load_per_task, this_nr_running;
  2717. int load_idx, group_imb = 0;
  2718. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2719. int power_savings_balance = 1;
  2720. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2721. unsigned long min_nr_running = ULONG_MAX;
  2722. struct sched_group *group_min = NULL, *group_leader = NULL;
  2723. #endif
  2724. max_load = this_load = total_load = total_pwr = 0;
  2725. busiest_load_per_task = busiest_nr_running = 0;
  2726. this_load_per_task = this_nr_running = 0;
  2727. if (idle == CPU_NOT_IDLE)
  2728. load_idx = sd->busy_idx;
  2729. else if (idle == CPU_NEWLY_IDLE)
  2730. load_idx = sd->newidle_idx;
  2731. else
  2732. load_idx = sd->idle_idx;
  2733. do {
  2734. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2735. int local_group;
  2736. int i;
  2737. int __group_imb = 0;
  2738. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2739. unsigned long sum_nr_running, sum_weighted_load;
  2740. local_group = cpu_isset(this_cpu, group->cpumask);
  2741. if (local_group)
  2742. balance_cpu = first_cpu(group->cpumask);
  2743. /* Tally up the load of all CPUs in the group */
  2744. sum_weighted_load = sum_nr_running = avg_load = 0;
  2745. max_cpu_load = 0;
  2746. min_cpu_load = ~0UL;
  2747. for_each_cpu_mask(i, group->cpumask) {
  2748. struct rq *rq;
  2749. if (!cpu_isset(i, *cpus))
  2750. continue;
  2751. rq = cpu_rq(i);
  2752. if (*sd_idle && rq->nr_running)
  2753. *sd_idle = 0;
  2754. /* Bias balancing toward cpus of our domain */
  2755. if (local_group) {
  2756. if (idle_cpu(i) && !first_idle_cpu) {
  2757. first_idle_cpu = 1;
  2758. balance_cpu = i;
  2759. }
  2760. load = target_load(i, load_idx);
  2761. } else {
  2762. load = source_load(i, load_idx);
  2763. if (load > max_cpu_load)
  2764. max_cpu_load = load;
  2765. if (min_cpu_load > load)
  2766. min_cpu_load = load;
  2767. }
  2768. avg_load += load;
  2769. sum_nr_running += rq->nr_running;
  2770. sum_weighted_load += weighted_cpuload(i);
  2771. }
  2772. /*
  2773. * First idle cpu or the first cpu(busiest) in this sched group
  2774. * is eligible for doing load balancing at this and above
  2775. * domains. In the newly idle case, we will allow all the cpu's
  2776. * to do the newly idle load balance.
  2777. */
  2778. if (idle != CPU_NEWLY_IDLE && local_group &&
  2779. balance_cpu != this_cpu && balance) {
  2780. *balance = 0;
  2781. goto ret;
  2782. }
  2783. total_load += avg_load;
  2784. total_pwr += group->__cpu_power;
  2785. /* Adjust by relative CPU power of the group */
  2786. avg_load = sg_div_cpu_power(group,
  2787. avg_load * SCHED_LOAD_SCALE);
  2788. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2789. __group_imb = 1;
  2790. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2791. if (local_group) {
  2792. this_load = avg_load;
  2793. this = group;
  2794. this_nr_running = sum_nr_running;
  2795. this_load_per_task = sum_weighted_load;
  2796. } else if (avg_load > max_load &&
  2797. (sum_nr_running > group_capacity || __group_imb)) {
  2798. max_load = avg_load;
  2799. busiest = group;
  2800. busiest_nr_running = sum_nr_running;
  2801. busiest_load_per_task = sum_weighted_load;
  2802. group_imb = __group_imb;
  2803. }
  2804. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2805. /*
  2806. * Busy processors will not participate in power savings
  2807. * balance.
  2808. */
  2809. if (idle == CPU_NOT_IDLE ||
  2810. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2811. goto group_next;
  2812. /*
  2813. * If the local group is idle or completely loaded
  2814. * no need to do power savings balance at this domain
  2815. */
  2816. if (local_group && (this_nr_running >= group_capacity ||
  2817. !this_nr_running))
  2818. power_savings_balance = 0;
  2819. /*
  2820. * If a group is already running at full capacity or idle,
  2821. * don't include that group in power savings calculations
  2822. */
  2823. if (!power_savings_balance || sum_nr_running >= group_capacity
  2824. || !sum_nr_running)
  2825. goto group_next;
  2826. /*
  2827. * Calculate the group which has the least non-idle load.
  2828. * This is the group from where we need to pick up the load
  2829. * for saving power
  2830. */
  2831. if ((sum_nr_running < min_nr_running) ||
  2832. (sum_nr_running == min_nr_running &&
  2833. first_cpu(group->cpumask) <
  2834. first_cpu(group_min->cpumask))) {
  2835. group_min = group;
  2836. min_nr_running = sum_nr_running;
  2837. min_load_per_task = sum_weighted_load /
  2838. sum_nr_running;
  2839. }
  2840. /*
  2841. * Calculate the group which is almost near its
  2842. * capacity but still has some space to pick up some load
  2843. * from other group and save more power
  2844. */
  2845. if (sum_nr_running <= group_capacity - 1) {
  2846. if (sum_nr_running > leader_nr_running ||
  2847. (sum_nr_running == leader_nr_running &&
  2848. first_cpu(group->cpumask) >
  2849. first_cpu(group_leader->cpumask))) {
  2850. group_leader = group;
  2851. leader_nr_running = sum_nr_running;
  2852. }
  2853. }
  2854. group_next:
  2855. #endif
  2856. group = group->next;
  2857. } while (group != sd->groups);
  2858. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2859. goto out_balanced;
  2860. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2861. if (this_load >= avg_load ||
  2862. 100*max_load <= sd->imbalance_pct*this_load)
  2863. goto out_balanced;
  2864. busiest_load_per_task /= busiest_nr_running;
  2865. if (group_imb)
  2866. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2867. /*
  2868. * We're trying to get all the cpus to the average_load, so we don't
  2869. * want to push ourselves above the average load, nor do we wish to
  2870. * reduce the max loaded cpu below the average load, as either of these
  2871. * actions would just result in more rebalancing later, and ping-pong
  2872. * tasks around. Thus we look for the minimum possible imbalance.
  2873. * Negative imbalances (*we* are more loaded than anyone else) will
  2874. * be counted as no imbalance for these purposes -- we can't fix that
  2875. * by pulling tasks to us. Be careful of negative numbers as they'll
  2876. * appear as very large values with unsigned longs.
  2877. */
  2878. if (max_load <= busiest_load_per_task)
  2879. goto out_balanced;
  2880. /*
  2881. * In the presence of smp nice balancing, certain scenarios can have
  2882. * max load less than avg load(as we skip the groups at or below
  2883. * its cpu_power, while calculating max_load..)
  2884. */
  2885. if (max_load < avg_load) {
  2886. *imbalance = 0;
  2887. goto small_imbalance;
  2888. }
  2889. /* Don't want to pull so many tasks that a group would go idle */
  2890. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2891. /* How much load to actually move to equalise the imbalance */
  2892. *imbalance = min(max_pull * busiest->__cpu_power,
  2893. (avg_load - this_load) * this->__cpu_power)
  2894. / SCHED_LOAD_SCALE;
  2895. /*
  2896. * if *imbalance is less than the average load per runnable task
  2897. * there is no gaurantee that any tasks will be moved so we'll have
  2898. * a think about bumping its value to force at least one task to be
  2899. * moved
  2900. */
  2901. if (*imbalance < busiest_load_per_task) {
  2902. unsigned long tmp, pwr_now, pwr_move;
  2903. unsigned int imbn;
  2904. small_imbalance:
  2905. pwr_move = pwr_now = 0;
  2906. imbn = 2;
  2907. if (this_nr_running) {
  2908. this_load_per_task /= this_nr_running;
  2909. if (busiest_load_per_task > this_load_per_task)
  2910. imbn = 1;
  2911. } else
  2912. this_load_per_task = SCHED_LOAD_SCALE;
  2913. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2914. busiest_load_per_task * imbn) {
  2915. *imbalance = busiest_load_per_task;
  2916. return busiest;
  2917. }
  2918. /*
  2919. * OK, we don't have enough imbalance to justify moving tasks,
  2920. * however we may be able to increase total CPU power used by
  2921. * moving them.
  2922. */
  2923. pwr_now += busiest->__cpu_power *
  2924. min(busiest_load_per_task, max_load);
  2925. pwr_now += this->__cpu_power *
  2926. min(this_load_per_task, this_load);
  2927. pwr_now /= SCHED_LOAD_SCALE;
  2928. /* Amount of load we'd subtract */
  2929. tmp = sg_div_cpu_power(busiest,
  2930. busiest_load_per_task * SCHED_LOAD_SCALE);
  2931. if (max_load > tmp)
  2932. pwr_move += busiest->__cpu_power *
  2933. min(busiest_load_per_task, max_load - tmp);
  2934. /* Amount of load we'd add */
  2935. if (max_load * busiest->__cpu_power <
  2936. busiest_load_per_task * SCHED_LOAD_SCALE)
  2937. tmp = sg_div_cpu_power(this,
  2938. max_load * busiest->__cpu_power);
  2939. else
  2940. tmp = sg_div_cpu_power(this,
  2941. busiest_load_per_task * SCHED_LOAD_SCALE);
  2942. pwr_move += this->__cpu_power *
  2943. min(this_load_per_task, this_load + tmp);
  2944. pwr_move /= SCHED_LOAD_SCALE;
  2945. /* Move if we gain throughput */
  2946. if (pwr_move > pwr_now)
  2947. *imbalance = busiest_load_per_task;
  2948. }
  2949. return busiest;
  2950. out_balanced:
  2951. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2952. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2953. goto ret;
  2954. if (this == group_leader && group_leader != group_min) {
  2955. *imbalance = min_load_per_task;
  2956. return group_min;
  2957. }
  2958. #endif
  2959. ret:
  2960. *imbalance = 0;
  2961. return NULL;
  2962. }
  2963. /*
  2964. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2965. */
  2966. static struct rq *
  2967. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2968. unsigned long imbalance, const cpumask_t *cpus)
  2969. {
  2970. struct rq *busiest = NULL, *rq;
  2971. unsigned long max_load = 0;
  2972. int i;
  2973. for_each_cpu_mask(i, group->cpumask) {
  2974. unsigned long wl;
  2975. if (!cpu_isset(i, *cpus))
  2976. continue;
  2977. rq = cpu_rq(i);
  2978. wl = weighted_cpuload(i);
  2979. if (rq->nr_running == 1 && wl > imbalance)
  2980. continue;
  2981. if (wl > max_load) {
  2982. max_load = wl;
  2983. busiest = rq;
  2984. }
  2985. }
  2986. return busiest;
  2987. }
  2988. /*
  2989. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2990. * so long as it is large enough.
  2991. */
  2992. #define MAX_PINNED_INTERVAL 512
  2993. /*
  2994. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2995. * tasks if there is an imbalance.
  2996. */
  2997. static int load_balance(int this_cpu, struct rq *this_rq,
  2998. struct sched_domain *sd, enum cpu_idle_type idle,
  2999. int *balance, cpumask_t *cpus)
  3000. {
  3001. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3002. struct sched_group *group;
  3003. unsigned long imbalance;
  3004. struct rq *busiest;
  3005. unsigned long flags;
  3006. int unlock_aggregate;
  3007. cpus_setall(*cpus);
  3008. unlock_aggregate = get_aggregate(sd);
  3009. /*
  3010. * When power savings policy is enabled for the parent domain, idle
  3011. * sibling can pick up load irrespective of busy siblings. In this case,
  3012. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3013. * portraying it as CPU_NOT_IDLE.
  3014. */
  3015. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3016. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3017. sd_idle = 1;
  3018. schedstat_inc(sd, lb_count[idle]);
  3019. redo:
  3020. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3021. cpus, balance);
  3022. if (*balance == 0)
  3023. goto out_balanced;
  3024. if (!group) {
  3025. schedstat_inc(sd, lb_nobusyg[idle]);
  3026. goto out_balanced;
  3027. }
  3028. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3029. if (!busiest) {
  3030. schedstat_inc(sd, lb_nobusyq[idle]);
  3031. goto out_balanced;
  3032. }
  3033. BUG_ON(busiest == this_rq);
  3034. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3035. ld_moved = 0;
  3036. if (busiest->nr_running > 1) {
  3037. /*
  3038. * Attempt to move tasks. If find_busiest_group has found
  3039. * an imbalance but busiest->nr_running <= 1, the group is
  3040. * still unbalanced. ld_moved simply stays zero, so it is
  3041. * correctly treated as an imbalance.
  3042. */
  3043. local_irq_save(flags);
  3044. double_rq_lock(this_rq, busiest);
  3045. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3046. imbalance, sd, idle, &all_pinned);
  3047. double_rq_unlock(this_rq, busiest);
  3048. local_irq_restore(flags);
  3049. /*
  3050. * some other cpu did the load balance for us.
  3051. */
  3052. if (ld_moved && this_cpu != smp_processor_id())
  3053. resched_cpu(this_cpu);
  3054. /* All tasks on this runqueue were pinned by CPU affinity */
  3055. if (unlikely(all_pinned)) {
  3056. cpu_clear(cpu_of(busiest), *cpus);
  3057. if (!cpus_empty(*cpus))
  3058. goto redo;
  3059. goto out_balanced;
  3060. }
  3061. }
  3062. if (!ld_moved) {
  3063. schedstat_inc(sd, lb_failed[idle]);
  3064. sd->nr_balance_failed++;
  3065. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3066. spin_lock_irqsave(&busiest->lock, flags);
  3067. /* don't kick the migration_thread, if the curr
  3068. * task on busiest cpu can't be moved to this_cpu
  3069. */
  3070. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3071. spin_unlock_irqrestore(&busiest->lock, flags);
  3072. all_pinned = 1;
  3073. goto out_one_pinned;
  3074. }
  3075. if (!busiest->active_balance) {
  3076. busiest->active_balance = 1;
  3077. busiest->push_cpu = this_cpu;
  3078. active_balance = 1;
  3079. }
  3080. spin_unlock_irqrestore(&busiest->lock, flags);
  3081. if (active_balance)
  3082. wake_up_process(busiest->migration_thread);
  3083. /*
  3084. * We've kicked active balancing, reset the failure
  3085. * counter.
  3086. */
  3087. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3088. }
  3089. } else
  3090. sd->nr_balance_failed = 0;
  3091. if (likely(!active_balance)) {
  3092. /* We were unbalanced, so reset the balancing interval */
  3093. sd->balance_interval = sd->min_interval;
  3094. } else {
  3095. /*
  3096. * If we've begun active balancing, start to back off. This
  3097. * case may not be covered by the all_pinned logic if there
  3098. * is only 1 task on the busy runqueue (because we don't call
  3099. * move_tasks).
  3100. */
  3101. if (sd->balance_interval < sd->max_interval)
  3102. sd->balance_interval *= 2;
  3103. }
  3104. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3105. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3106. ld_moved = -1;
  3107. goto out;
  3108. out_balanced:
  3109. schedstat_inc(sd, lb_balanced[idle]);
  3110. sd->nr_balance_failed = 0;
  3111. out_one_pinned:
  3112. /* tune up the balancing interval */
  3113. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3114. (sd->balance_interval < sd->max_interval))
  3115. sd->balance_interval *= 2;
  3116. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3117. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3118. ld_moved = -1;
  3119. else
  3120. ld_moved = 0;
  3121. out:
  3122. if (unlock_aggregate)
  3123. put_aggregate(sd);
  3124. return ld_moved;
  3125. }
  3126. /*
  3127. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3128. * tasks if there is an imbalance.
  3129. *
  3130. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3131. * this_rq is locked.
  3132. */
  3133. static int
  3134. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3135. cpumask_t *cpus)
  3136. {
  3137. struct sched_group *group;
  3138. struct rq *busiest = NULL;
  3139. unsigned long imbalance;
  3140. int ld_moved = 0;
  3141. int sd_idle = 0;
  3142. int all_pinned = 0;
  3143. cpus_setall(*cpus);
  3144. /*
  3145. * When power savings policy is enabled for the parent domain, idle
  3146. * sibling can pick up load irrespective of busy siblings. In this case,
  3147. * let the state of idle sibling percolate up as IDLE, instead of
  3148. * portraying it as CPU_NOT_IDLE.
  3149. */
  3150. if (sd->flags & SD_SHARE_CPUPOWER &&
  3151. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3152. sd_idle = 1;
  3153. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3154. redo:
  3155. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3156. &sd_idle, cpus, NULL);
  3157. if (!group) {
  3158. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3159. goto out_balanced;
  3160. }
  3161. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3162. if (!busiest) {
  3163. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3164. goto out_balanced;
  3165. }
  3166. BUG_ON(busiest == this_rq);
  3167. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3168. ld_moved = 0;
  3169. if (busiest->nr_running > 1) {
  3170. /* Attempt to move tasks */
  3171. double_lock_balance(this_rq, busiest);
  3172. /* this_rq->clock is already updated */
  3173. update_rq_clock(busiest);
  3174. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3175. imbalance, sd, CPU_NEWLY_IDLE,
  3176. &all_pinned);
  3177. spin_unlock(&busiest->lock);
  3178. if (unlikely(all_pinned)) {
  3179. cpu_clear(cpu_of(busiest), *cpus);
  3180. if (!cpus_empty(*cpus))
  3181. goto redo;
  3182. }
  3183. }
  3184. if (!ld_moved) {
  3185. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3186. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3187. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3188. return -1;
  3189. } else
  3190. sd->nr_balance_failed = 0;
  3191. return ld_moved;
  3192. out_balanced:
  3193. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3194. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3195. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3196. return -1;
  3197. sd->nr_balance_failed = 0;
  3198. return 0;
  3199. }
  3200. /*
  3201. * idle_balance is called by schedule() if this_cpu is about to become
  3202. * idle. Attempts to pull tasks from other CPUs.
  3203. */
  3204. static void idle_balance(int this_cpu, struct rq *this_rq)
  3205. {
  3206. struct sched_domain *sd;
  3207. int pulled_task = -1;
  3208. unsigned long next_balance = jiffies + HZ;
  3209. cpumask_t tmpmask;
  3210. for_each_domain(this_cpu, sd) {
  3211. unsigned long interval;
  3212. if (!(sd->flags & SD_LOAD_BALANCE))
  3213. continue;
  3214. if (sd->flags & SD_BALANCE_NEWIDLE)
  3215. /* If we've pulled tasks over stop searching: */
  3216. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3217. sd, &tmpmask);
  3218. interval = msecs_to_jiffies(sd->balance_interval);
  3219. if (time_after(next_balance, sd->last_balance + interval))
  3220. next_balance = sd->last_balance + interval;
  3221. if (pulled_task)
  3222. break;
  3223. }
  3224. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3225. /*
  3226. * We are going idle. next_balance may be set based on
  3227. * a busy processor. So reset next_balance.
  3228. */
  3229. this_rq->next_balance = next_balance;
  3230. }
  3231. }
  3232. /*
  3233. * active_load_balance is run by migration threads. It pushes running tasks
  3234. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3235. * running on each physical CPU where possible, and avoids physical /
  3236. * logical imbalances.
  3237. *
  3238. * Called with busiest_rq locked.
  3239. */
  3240. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3241. {
  3242. int target_cpu = busiest_rq->push_cpu;
  3243. struct sched_domain *sd;
  3244. struct rq *target_rq;
  3245. /* Is there any task to move? */
  3246. if (busiest_rq->nr_running <= 1)
  3247. return;
  3248. target_rq = cpu_rq(target_cpu);
  3249. /*
  3250. * This condition is "impossible", if it occurs
  3251. * we need to fix it. Originally reported by
  3252. * Bjorn Helgaas on a 128-cpu setup.
  3253. */
  3254. BUG_ON(busiest_rq == target_rq);
  3255. /* move a task from busiest_rq to target_rq */
  3256. double_lock_balance(busiest_rq, target_rq);
  3257. update_rq_clock(busiest_rq);
  3258. update_rq_clock(target_rq);
  3259. /* Search for an sd spanning us and the target CPU. */
  3260. for_each_domain(target_cpu, sd) {
  3261. if ((sd->flags & SD_LOAD_BALANCE) &&
  3262. cpu_isset(busiest_cpu, sd->span))
  3263. break;
  3264. }
  3265. if (likely(sd)) {
  3266. schedstat_inc(sd, alb_count);
  3267. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3268. sd, CPU_IDLE))
  3269. schedstat_inc(sd, alb_pushed);
  3270. else
  3271. schedstat_inc(sd, alb_failed);
  3272. }
  3273. spin_unlock(&target_rq->lock);
  3274. }
  3275. #ifdef CONFIG_NO_HZ
  3276. static struct {
  3277. atomic_t load_balancer;
  3278. cpumask_t cpu_mask;
  3279. } nohz ____cacheline_aligned = {
  3280. .load_balancer = ATOMIC_INIT(-1),
  3281. .cpu_mask = CPU_MASK_NONE,
  3282. };
  3283. /*
  3284. * This routine will try to nominate the ilb (idle load balancing)
  3285. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3286. * load balancing on behalf of all those cpus. If all the cpus in the system
  3287. * go into this tickless mode, then there will be no ilb owner (as there is
  3288. * no need for one) and all the cpus will sleep till the next wakeup event
  3289. * arrives...
  3290. *
  3291. * For the ilb owner, tick is not stopped. And this tick will be used
  3292. * for idle load balancing. ilb owner will still be part of
  3293. * nohz.cpu_mask..
  3294. *
  3295. * While stopping the tick, this cpu will become the ilb owner if there
  3296. * is no other owner. And will be the owner till that cpu becomes busy
  3297. * or if all cpus in the system stop their ticks at which point
  3298. * there is no need for ilb owner.
  3299. *
  3300. * When the ilb owner becomes busy, it nominates another owner, during the
  3301. * next busy scheduler_tick()
  3302. */
  3303. int select_nohz_load_balancer(int stop_tick)
  3304. {
  3305. int cpu = smp_processor_id();
  3306. if (stop_tick) {
  3307. cpu_set(cpu, nohz.cpu_mask);
  3308. cpu_rq(cpu)->in_nohz_recently = 1;
  3309. /*
  3310. * If we are going offline and still the leader, give up!
  3311. */
  3312. if (cpu_is_offline(cpu) &&
  3313. atomic_read(&nohz.load_balancer) == cpu) {
  3314. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3315. BUG();
  3316. return 0;
  3317. }
  3318. /* time for ilb owner also to sleep */
  3319. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3320. if (atomic_read(&nohz.load_balancer) == cpu)
  3321. atomic_set(&nohz.load_balancer, -1);
  3322. return 0;
  3323. }
  3324. if (atomic_read(&nohz.load_balancer) == -1) {
  3325. /* make me the ilb owner */
  3326. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3327. return 1;
  3328. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3329. return 1;
  3330. } else {
  3331. if (!cpu_isset(cpu, nohz.cpu_mask))
  3332. return 0;
  3333. cpu_clear(cpu, nohz.cpu_mask);
  3334. if (atomic_read(&nohz.load_balancer) == cpu)
  3335. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3336. BUG();
  3337. }
  3338. return 0;
  3339. }
  3340. #endif
  3341. static DEFINE_SPINLOCK(balancing);
  3342. /*
  3343. * It checks each scheduling domain to see if it is due to be balanced,
  3344. * and initiates a balancing operation if so.
  3345. *
  3346. * Balancing parameters are set up in arch_init_sched_domains.
  3347. */
  3348. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3349. {
  3350. int balance = 1;
  3351. struct rq *rq = cpu_rq(cpu);
  3352. unsigned long interval;
  3353. struct sched_domain *sd;
  3354. /* Earliest time when we have to do rebalance again */
  3355. unsigned long next_balance = jiffies + 60*HZ;
  3356. int update_next_balance = 0;
  3357. int need_serialize;
  3358. cpumask_t tmp;
  3359. for_each_domain(cpu, sd) {
  3360. if (!(sd->flags & SD_LOAD_BALANCE))
  3361. continue;
  3362. interval = sd->balance_interval;
  3363. if (idle != CPU_IDLE)
  3364. interval *= sd->busy_factor;
  3365. /* scale ms to jiffies */
  3366. interval = msecs_to_jiffies(interval);
  3367. if (unlikely(!interval))
  3368. interval = 1;
  3369. if (interval > HZ*NR_CPUS/10)
  3370. interval = HZ*NR_CPUS/10;
  3371. need_serialize = sd->flags & SD_SERIALIZE;
  3372. if (need_serialize) {
  3373. if (!spin_trylock(&balancing))
  3374. goto out;
  3375. }
  3376. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3377. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3378. /*
  3379. * We've pulled tasks over so either we're no
  3380. * longer idle, or one of our SMT siblings is
  3381. * not idle.
  3382. */
  3383. idle = CPU_NOT_IDLE;
  3384. }
  3385. sd->last_balance = jiffies;
  3386. }
  3387. if (need_serialize)
  3388. spin_unlock(&balancing);
  3389. out:
  3390. if (time_after(next_balance, sd->last_balance + interval)) {
  3391. next_balance = sd->last_balance + interval;
  3392. update_next_balance = 1;
  3393. }
  3394. /*
  3395. * Stop the load balance at this level. There is another
  3396. * CPU in our sched group which is doing load balancing more
  3397. * actively.
  3398. */
  3399. if (!balance)
  3400. break;
  3401. }
  3402. /*
  3403. * next_balance will be updated only when there is a need.
  3404. * When the cpu is attached to null domain for ex, it will not be
  3405. * updated.
  3406. */
  3407. if (likely(update_next_balance))
  3408. rq->next_balance = next_balance;
  3409. }
  3410. /*
  3411. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3412. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3413. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3414. */
  3415. static void run_rebalance_domains(struct softirq_action *h)
  3416. {
  3417. int this_cpu = smp_processor_id();
  3418. struct rq *this_rq = cpu_rq(this_cpu);
  3419. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3420. CPU_IDLE : CPU_NOT_IDLE;
  3421. rebalance_domains(this_cpu, idle);
  3422. #ifdef CONFIG_NO_HZ
  3423. /*
  3424. * If this cpu is the owner for idle load balancing, then do the
  3425. * balancing on behalf of the other idle cpus whose ticks are
  3426. * stopped.
  3427. */
  3428. if (this_rq->idle_at_tick &&
  3429. atomic_read(&nohz.load_balancer) == this_cpu) {
  3430. cpumask_t cpus = nohz.cpu_mask;
  3431. struct rq *rq;
  3432. int balance_cpu;
  3433. cpu_clear(this_cpu, cpus);
  3434. for_each_cpu_mask(balance_cpu, cpus) {
  3435. /*
  3436. * If this cpu gets work to do, stop the load balancing
  3437. * work being done for other cpus. Next load
  3438. * balancing owner will pick it up.
  3439. */
  3440. if (need_resched())
  3441. break;
  3442. rebalance_domains(balance_cpu, CPU_IDLE);
  3443. rq = cpu_rq(balance_cpu);
  3444. if (time_after(this_rq->next_balance, rq->next_balance))
  3445. this_rq->next_balance = rq->next_balance;
  3446. }
  3447. }
  3448. #endif
  3449. }
  3450. /*
  3451. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3452. *
  3453. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3454. * idle load balancing owner or decide to stop the periodic load balancing,
  3455. * if the whole system is idle.
  3456. */
  3457. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3458. {
  3459. #ifdef CONFIG_NO_HZ
  3460. /*
  3461. * If we were in the nohz mode recently and busy at the current
  3462. * scheduler tick, then check if we need to nominate new idle
  3463. * load balancer.
  3464. */
  3465. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3466. rq->in_nohz_recently = 0;
  3467. if (atomic_read(&nohz.load_balancer) == cpu) {
  3468. cpu_clear(cpu, nohz.cpu_mask);
  3469. atomic_set(&nohz.load_balancer, -1);
  3470. }
  3471. if (atomic_read(&nohz.load_balancer) == -1) {
  3472. /*
  3473. * simple selection for now: Nominate the
  3474. * first cpu in the nohz list to be the next
  3475. * ilb owner.
  3476. *
  3477. * TBD: Traverse the sched domains and nominate
  3478. * the nearest cpu in the nohz.cpu_mask.
  3479. */
  3480. int ilb = first_cpu(nohz.cpu_mask);
  3481. if (ilb < nr_cpu_ids)
  3482. resched_cpu(ilb);
  3483. }
  3484. }
  3485. /*
  3486. * If this cpu is idle and doing idle load balancing for all the
  3487. * cpus with ticks stopped, is it time for that to stop?
  3488. */
  3489. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3490. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3491. resched_cpu(cpu);
  3492. return;
  3493. }
  3494. /*
  3495. * If this cpu is idle and the idle load balancing is done by
  3496. * someone else, then no need raise the SCHED_SOFTIRQ
  3497. */
  3498. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3499. cpu_isset(cpu, nohz.cpu_mask))
  3500. return;
  3501. #endif
  3502. if (time_after_eq(jiffies, rq->next_balance))
  3503. raise_softirq(SCHED_SOFTIRQ);
  3504. }
  3505. #else /* CONFIG_SMP */
  3506. /*
  3507. * on UP we do not need to balance between CPUs:
  3508. */
  3509. static inline void idle_balance(int cpu, struct rq *rq)
  3510. {
  3511. }
  3512. #endif
  3513. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3514. EXPORT_PER_CPU_SYMBOL(kstat);
  3515. /*
  3516. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3517. * that have not yet been banked in case the task is currently running.
  3518. */
  3519. unsigned long long task_sched_runtime(struct task_struct *p)
  3520. {
  3521. unsigned long flags;
  3522. u64 ns, delta_exec;
  3523. struct rq *rq;
  3524. rq = task_rq_lock(p, &flags);
  3525. ns = p->se.sum_exec_runtime;
  3526. if (task_current(rq, p)) {
  3527. update_rq_clock(rq);
  3528. delta_exec = rq->clock - p->se.exec_start;
  3529. if ((s64)delta_exec > 0)
  3530. ns += delta_exec;
  3531. }
  3532. task_rq_unlock(rq, &flags);
  3533. return ns;
  3534. }
  3535. /*
  3536. * Account user cpu time to a process.
  3537. * @p: the process that the cpu time gets accounted to
  3538. * @cputime: the cpu time spent in user space since the last update
  3539. */
  3540. void account_user_time(struct task_struct *p, cputime_t cputime)
  3541. {
  3542. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3543. cputime64_t tmp;
  3544. p->utime = cputime_add(p->utime, cputime);
  3545. /* Add user time to cpustat. */
  3546. tmp = cputime_to_cputime64(cputime);
  3547. if (TASK_NICE(p) > 0)
  3548. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3549. else
  3550. cpustat->user = cputime64_add(cpustat->user, tmp);
  3551. }
  3552. /*
  3553. * Account guest cpu time to a process.
  3554. * @p: the process that the cpu time gets accounted to
  3555. * @cputime: the cpu time spent in virtual machine since the last update
  3556. */
  3557. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3558. {
  3559. cputime64_t tmp;
  3560. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3561. tmp = cputime_to_cputime64(cputime);
  3562. p->utime = cputime_add(p->utime, cputime);
  3563. p->gtime = cputime_add(p->gtime, cputime);
  3564. cpustat->user = cputime64_add(cpustat->user, tmp);
  3565. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3566. }
  3567. /*
  3568. * Account scaled user cpu time to a process.
  3569. * @p: the process that the cpu time gets accounted to
  3570. * @cputime: the cpu time spent in user space since the last update
  3571. */
  3572. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3573. {
  3574. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3575. }
  3576. /*
  3577. * Account system cpu time to a process.
  3578. * @p: the process that the cpu time gets accounted to
  3579. * @hardirq_offset: the offset to subtract from hardirq_count()
  3580. * @cputime: the cpu time spent in kernel space since the last update
  3581. */
  3582. void account_system_time(struct task_struct *p, int hardirq_offset,
  3583. cputime_t cputime)
  3584. {
  3585. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3586. struct rq *rq = this_rq();
  3587. cputime64_t tmp;
  3588. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3589. account_guest_time(p, cputime);
  3590. return;
  3591. }
  3592. p->stime = cputime_add(p->stime, cputime);
  3593. /* Add system time to cpustat. */
  3594. tmp = cputime_to_cputime64(cputime);
  3595. if (hardirq_count() - hardirq_offset)
  3596. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3597. else if (softirq_count())
  3598. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3599. else if (p != rq->idle)
  3600. cpustat->system = cputime64_add(cpustat->system, tmp);
  3601. else if (atomic_read(&rq->nr_iowait) > 0)
  3602. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3603. else
  3604. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3605. /* Account for system time used */
  3606. acct_update_integrals(p);
  3607. }
  3608. /*
  3609. * Account scaled system cpu time to a process.
  3610. * @p: the process that the cpu time gets accounted to
  3611. * @hardirq_offset: the offset to subtract from hardirq_count()
  3612. * @cputime: the cpu time spent in kernel space since the last update
  3613. */
  3614. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3615. {
  3616. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3617. }
  3618. /*
  3619. * Account for involuntary wait time.
  3620. * @p: the process from which the cpu time has been stolen
  3621. * @steal: the cpu time spent in involuntary wait
  3622. */
  3623. void account_steal_time(struct task_struct *p, cputime_t steal)
  3624. {
  3625. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3626. cputime64_t tmp = cputime_to_cputime64(steal);
  3627. struct rq *rq = this_rq();
  3628. if (p == rq->idle) {
  3629. p->stime = cputime_add(p->stime, steal);
  3630. if (atomic_read(&rq->nr_iowait) > 0)
  3631. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3632. else
  3633. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3634. } else
  3635. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3636. }
  3637. /*
  3638. * This function gets called by the timer code, with HZ frequency.
  3639. * We call it with interrupts disabled.
  3640. *
  3641. * It also gets called by the fork code, when changing the parent's
  3642. * timeslices.
  3643. */
  3644. void scheduler_tick(void)
  3645. {
  3646. int cpu = smp_processor_id();
  3647. struct rq *rq = cpu_rq(cpu);
  3648. struct task_struct *curr = rq->curr;
  3649. sched_clock_tick();
  3650. spin_lock(&rq->lock);
  3651. update_rq_clock(rq);
  3652. update_cpu_load(rq);
  3653. curr->sched_class->task_tick(rq, curr, 0);
  3654. spin_unlock(&rq->lock);
  3655. #ifdef CONFIG_SMP
  3656. rq->idle_at_tick = idle_cpu(cpu);
  3657. trigger_load_balance(rq, cpu);
  3658. #endif
  3659. }
  3660. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3661. void __kprobes add_preempt_count(int val)
  3662. {
  3663. /*
  3664. * Underflow?
  3665. */
  3666. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3667. return;
  3668. preempt_count() += val;
  3669. /*
  3670. * Spinlock count overflowing soon?
  3671. */
  3672. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3673. PREEMPT_MASK - 10);
  3674. }
  3675. EXPORT_SYMBOL(add_preempt_count);
  3676. void __kprobes sub_preempt_count(int val)
  3677. {
  3678. /*
  3679. * Underflow?
  3680. */
  3681. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3682. return;
  3683. /*
  3684. * Is the spinlock portion underflowing?
  3685. */
  3686. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3687. !(preempt_count() & PREEMPT_MASK)))
  3688. return;
  3689. preempt_count() -= val;
  3690. }
  3691. EXPORT_SYMBOL(sub_preempt_count);
  3692. #endif
  3693. /*
  3694. * Print scheduling while atomic bug:
  3695. */
  3696. static noinline void __schedule_bug(struct task_struct *prev)
  3697. {
  3698. struct pt_regs *regs = get_irq_regs();
  3699. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3700. prev->comm, prev->pid, preempt_count());
  3701. debug_show_held_locks(prev);
  3702. print_modules();
  3703. if (irqs_disabled())
  3704. print_irqtrace_events(prev);
  3705. if (regs)
  3706. show_regs(regs);
  3707. else
  3708. dump_stack();
  3709. }
  3710. /*
  3711. * Various schedule()-time debugging checks and statistics:
  3712. */
  3713. static inline void schedule_debug(struct task_struct *prev)
  3714. {
  3715. /*
  3716. * Test if we are atomic. Since do_exit() needs to call into
  3717. * schedule() atomically, we ignore that path for now.
  3718. * Otherwise, whine if we are scheduling when we should not be.
  3719. */
  3720. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3721. __schedule_bug(prev);
  3722. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3723. schedstat_inc(this_rq(), sched_count);
  3724. #ifdef CONFIG_SCHEDSTATS
  3725. if (unlikely(prev->lock_depth >= 0)) {
  3726. schedstat_inc(this_rq(), bkl_count);
  3727. schedstat_inc(prev, sched_info.bkl_count);
  3728. }
  3729. #endif
  3730. }
  3731. /*
  3732. * Pick up the highest-prio task:
  3733. */
  3734. static inline struct task_struct *
  3735. pick_next_task(struct rq *rq, struct task_struct *prev)
  3736. {
  3737. const struct sched_class *class;
  3738. struct task_struct *p;
  3739. /*
  3740. * Optimization: we know that if all tasks are in
  3741. * the fair class we can call that function directly:
  3742. */
  3743. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3744. p = fair_sched_class.pick_next_task(rq);
  3745. if (likely(p))
  3746. return p;
  3747. }
  3748. class = sched_class_highest;
  3749. for ( ; ; ) {
  3750. p = class->pick_next_task(rq);
  3751. if (p)
  3752. return p;
  3753. /*
  3754. * Will never be NULL as the idle class always
  3755. * returns a non-NULL p:
  3756. */
  3757. class = class->next;
  3758. }
  3759. }
  3760. /*
  3761. * schedule() is the main scheduler function.
  3762. */
  3763. asmlinkage void __sched schedule(void)
  3764. {
  3765. struct task_struct *prev, *next;
  3766. unsigned long *switch_count;
  3767. struct rq *rq;
  3768. int cpu, hrtick = sched_feat(HRTICK);
  3769. need_resched:
  3770. preempt_disable();
  3771. cpu = smp_processor_id();
  3772. rq = cpu_rq(cpu);
  3773. rcu_qsctr_inc(cpu);
  3774. prev = rq->curr;
  3775. switch_count = &prev->nivcsw;
  3776. release_kernel_lock(prev);
  3777. need_resched_nonpreemptible:
  3778. schedule_debug(prev);
  3779. if (hrtick)
  3780. hrtick_clear(rq);
  3781. /*
  3782. * Do the rq-clock update outside the rq lock:
  3783. */
  3784. local_irq_disable();
  3785. update_rq_clock(rq);
  3786. spin_lock(&rq->lock);
  3787. clear_tsk_need_resched(prev);
  3788. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3789. if (unlikely(signal_pending_state(prev->state, prev)))
  3790. prev->state = TASK_RUNNING;
  3791. else
  3792. deactivate_task(rq, prev, 1);
  3793. switch_count = &prev->nvcsw;
  3794. }
  3795. #ifdef CONFIG_SMP
  3796. if (prev->sched_class->pre_schedule)
  3797. prev->sched_class->pre_schedule(rq, prev);
  3798. #endif
  3799. if (unlikely(!rq->nr_running))
  3800. idle_balance(cpu, rq);
  3801. prev->sched_class->put_prev_task(rq, prev);
  3802. next = pick_next_task(rq, prev);
  3803. if (likely(prev != next)) {
  3804. sched_info_switch(prev, next);
  3805. rq->nr_switches++;
  3806. rq->curr = next;
  3807. ++*switch_count;
  3808. context_switch(rq, prev, next); /* unlocks the rq */
  3809. /*
  3810. * the context switch might have flipped the stack from under
  3811. * us, hence refresh the local variables.
  3812. */
  3813. cpu = smp_processor_id();
  3814. rq = cpu_rq(cpu);
  3815. } else
  3816. spin_unlock_irq(&rq->lock);
  3817. if (hrtick)
  3818. hrtick_set(rq);
  3819. if (unlikely(reacquire_kernel_lock(current) < 0))
  3820. goto need_resched_nonpreemptible;
  3821. preempt_enable_no_resched();
  3822. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3823. goto need_resched;
  3824. }
  3825. EXPORT_SYMBOL(schedule);
  3826. #ifdef CONFIG_PREEMPT
  3827. /*
  3828. * this is the entry point to schedule() from in-kernel preemption
  3829. * off of preempt_enable. Kernel preemptions off return from interrupt
  3830. * occur there and call schedule directly.
  3831. */
  3832. asmlinkage void __sched preempt_schedule(void)
  3833. {
  3834. struct thread_info *ti = current_thread_info();
  3835. /*
  3836. * If there is a non-zero preempt_count or interrupts are disabled,
  3837. * we do not want to preempt the current task. Just return..
  3838. */
  3839. if (likely(ti->preempt_count || irqs_disabled()))
  3840. return;
  3841. do {
  3842. add_preempt_count(PREEMPT_ACTIVE);
  3843. schedule();
  3844. sub_preempt_count(PREEMPT_ACTIVE);
  3845. /*
  3846. * Check again in case we missed a preemption opportunity
  3847. * between schedule and now.
  3848. */
  3849. barrier();
  3850. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3851. }
  3852. EXPORT_SYMBOL(preempt_schedule);
  3853. /*
  3854. * this is the entry point to schedule() from kernel preemption
  3855. * off of irq context.
  3856. * Note, that this is called and return with irqs disabled. This will
  3857. * protect us against recursive calling from irq.
  3858. */
  3859. asmlinkage void __sched preempt_schedule_irq(void)
  3860. {
  3861. struct thread_info *ti = current_thread_info();
  3862. /* Catch callers which need to be fixed */
  3863. BUG_ON(ti->preempt_count || !irqs_disabled());
  3864. do {
  3865. add_preempt_count(PREEMPT_ACTIVE);
  3866. local_irq_enable();
  3867. schedule();
  3868. local_irq_disable();
  3869. sub_preempt_count(PREEMPT_ACTIVE);
  3870. /*
  3871. * Check again in case we missed a preemption opportunity
  3872. * between schedule and now.
  3873. */
  3874. barrier();
  3875. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3876. }
  3877. #endif /* CONFIG_PREEMPT */
  3878. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3879. void *key)
  3880. {
  3881. return try_to_wake_up(curr->private, mode, sync);
  3882. }
  3883. EXPORT_SYMBOL(default_wake_function);
  3884. /*
  3885. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3886. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3887. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3888. *
  3889. * There are circumstances in which we can try to wake a task which has already
  3890. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3891. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3892. */
  3893. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3894. int nr_exclusive, int sync, void *key)
  3895. {
  3896. wait_queue_t *curr, *next;
  3897. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3898. unsigned flags = curr->flags;
  3899. if (curr->func(curr, mode, sync, key) &&
  3900. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3901. break;
  3902. }
  3903. }
  3904. /**
  3905. * __wake_up - wake up threads blocked on a waitqueue.
  3906. * @q: the waitqueue
  3907. * @mode: which threads
  3908. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3909. * @key: is directly passed to the wakeup function
  3910. */
  3911. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3912. int nr_exclusive, void *key)
  3913. {
  3914. unsigned long flags;
  3915. spin_lock_irqsave(&q->lock, flags);
  3916. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3917. spin_unlock_irqrestore(&q->lock, flags);
  3918. }
  3919. EXPORT_SYMBOL(__wake_up);
  3920. /*
  3921. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3922. */
  3923. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3924. {
  3925. __wake_up_common(q, mode, 1, 0, NULL);
  3926. }
  3927. /**
  3928. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3929. * @q: the waitqueue
  3930. * @mode: which threads
  3931. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3932. *
  3933. * The sync wakeup differs that the waker knows that it will schedule
  3934. * away soon, so while the target thread will be woken up, it will not
  3935. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3936. * with each other. This can prevent needless bouncing between CPUs.
  3937. *
  3938. * On UP it can prevent extra preemption.
  3939. */
  3940. void
  3941. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3942. {
  3943. unsigned long flags;
  3944. int sync = 1;
  3945. if (unlikely(!q))
  3946. return;
  3947. if (unlikely(!nr_exclusive))
  3948. sync = 0;
  3949. spin_lock_irqsave(&q->lock, flags);
  3950. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3951. spin_unlock_irqrestore(&q->lock, flags);
  3952. }
  3953. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3954. void complete(struct completion *x)
  3955. {
  3956. unsigned long flags;
  3957. spin_lock_irqsave(&x->wait.lock, flags);
  3958. x->done++;
  3959. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3960. spin_unlock_irqrestore(&x->wait.lock, flags);
  3961. }
  3962. EXPORT_SYMBOL(complete);
  3963. void complete_all(struct completion *x)
  3964. {
  3965. unsigned long flags;
  3966. spin_lock_irqsave(&x->wait.lock, flags);
  3967. x->done += UINT_MAX/2;
  3968. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3969. spin_unlock_irqrestore(&x->wait.lock, flags);
  3970. }
  3971. EXPORT_SYMBOL(complete_all);
  3972. static inline long __sched
  3973. do_wait_for_common(struct completion *x, long timeout, int state)
  3974. {
  3975. if (!x->done) {
  3976. DECLARE_WAITQUEUE(wait, current);
  3977. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3978. __add_wait_queue_tail(&x->wait, &wait);
  3979. do {
  3980. if ((state == TASK_INTERRUPTIBLE &&
  3981. signal_pending(current)) ||
  3982. (state == TASK_KILLABLE &&
  3983. fatal_signal_pending(current))) {
  3984. timeout = -ERESTARTSYS;
  3985. break;
  3986. }
  3987. __set_current_state(state);
  3988. spin_unlock_irq(&x->wait.lock);
  3989. timeout = schedule_timeout(timeout);
  3990. spin_lock_irq(&x->wait.lock);
  3991. } while (!x->done && timeout);
  3992. __remove_wait_queue(&x->wait, &wait);
  3993. if (!x->done)
  3994. return timeout;
  3995. }
  3996. x->done--;
  3997. return timeout ?: 1;
  3998. }
  3999. static long __sched
  4000. wait_for_common(struct completion *x, long timeout, int state)
  4001. {
  4002. might_sleep();
  4003. spin_lock_irq(&x->wait.lock);
  4004. timeout = do_wait_for_common(x, timeout, state);
  4005. spin_unlock_irq(&x->wait.lock);
  4006. return timeout;
  4007. }
  4008. void __sched wait_for_completion(struct completion *x)
  4009. {
  4010. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4011. }
  4012. EXPORT_SYMBOL(wait_for_completion);
  4013. unsigned long __sched
  4014. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4015. {
  4016. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4017. }
  4018. EXPORT_SYMBOL(wait_for_completion_timeout);
  4019. int __sched wait_for_completion_interruptible(struct completion *x)
  4020. {
  4021. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4022. if (t == -ERESTARTSYS)
  4023. return t;
  4024. return 0;
  4025. }
  4026. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4027. unsigned long __sched
  4028. wait_for_completion_interruptible_timeout(struct completion *x,
  4029. unsigned long timeout)
  4030. {
  4031. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4032. }
  4033. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4034. int __sched wait_for_completion_killable(struct completion *x)
  4035. {
  4036. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4037. if (t == -ERESTARTSYS)
  4038. return t;
  4039. return 0;
  4040. }
  4041. EXPORT_SYMBOL(wait_for_completion_killable);
  4042. static long __sched
  4043. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4044. {
  4045. unsigned long flags;
  4046. wait_queue_t wait;
  4047. init_waitqueue_entry(&wait, current);
  4048. __set_current_state(state);
  4049. spin_lock_irqsave(&q->lock, flags);
  4050. __add_wait_queue(q, &wait);
  4051. spin_unlock(&q->lock);
  4052. timeout = schedule_timeout(timeout);
  4053. spin_lock_irq(&q->lock);
  4054. __remove_wait_queue(q, &wait);
  4055. spin_unlock_irqrestore(&q->lock, flags);
  4056. return timeout;
  4057. }
  4058. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4059. {
  4060. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4061. }
  4062. EXPORT_SYMBOL(interruptible_sleep_on);
  4063. long __sched
  4064. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4065. {
  4066. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4067. }
  4068. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4069. void __sched sleep_on(wait_queue_head_t *q)
  4070. {
  4071. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4072. }
  4073. EXPORT_SYMBOL(sleep_on);
  4074. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4075. {
  4076. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4077. }
  4078. EXPORT_SYMBOL(sleep_on_timeout);
  4079. #ifdef CONFIG_RT_MUTEXES
  4080. /*
  4081. * rt_mutex_setprio - set the current priority of a task
  4082. * @p: task
  4083. * @prio: prio value (kernel-internal form)
  4084. *
  4085. * This function changes the 'effective' priority of a task. It does
  4086. * not touch ->normal_prio like __setscheduler().
  4087. *
  4088. * Used by the rt_mutex code to implement priority inheritance logic.
  4089. */
  4090. void rt_mutex_setprio(struct task_struct *p, int prio)
  4091. {
  4092. unsigned long flags;
  4093. int oldprio, on_rq, running;
  4094. struct rq *rq;
  4095. const struct sched_class *prev_class = p->sched_class;
  4096. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4097. rq = task_rq_lock(p, &flags);
  4098. update_rq_clock(rq);
  4099. oldprio = p->prio;
  4100. on_rq = p->se.on_rq;
  4101. running = task_current(rq, p);
  4102. if (on_rq)
  4103. dequeue_task(rq, p, 0);
  4104. if (running)
  4105. p->sched_class->put_prev_task(rq, p);
  4106. if (rt_prio(prio))
  4107. p->sched_class = &rt_sched_class;
  4108. else
  4109. p->sched_class = &fair_sched_class;
  4110. p->prio = prio;
  4111. if (running)
  4112. p->sched_class->set_curr_task(rq);
  4113. if (on_rq) {
  4114. enqueue_task(rq, p, 0);
  4115. check_class_changed(rq, p, prev_class, oldprio, running);
  4116. }
  4117. task_rq_unlock(rq, &flags);
  4118. }
  4119. #endif
  4120. void set_user_nice(struct task_struct *p, long nice)
  4121. {
  4122. int old_prio, delta, on_rq;
  4123. unsigned long flags;
  4124. struct rq *rq;
  4125. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4126. return;
  4127. /*
  4128. * We have to be careful, if called from sys_setpriority(),
  4129. * the task might be in the middle of scheduling on another CPU.
  4130. */
  4131. rq = task_rq_lock(p, &flags);
  4132. update_rq_clock(rq);
  4133. /*
  4134. * The RT priorities are set via sched_setscheduler(), but we still
  4135. * allow the 'normal' nice value to be set - but as expected
  4136. * it wont have any effect on scheduling until the task is
  4137. * SCHED_FIFO/SCHED_RR:
  4138. */
  4139. if (task_has_rt_policy(p)) {
  4140. p->static_prio = NICE_TO_PRIO(nice);
  4141. goto out_unlock;
  4142. }
  4143. on_rq = p->se.on_rq;
  4144. if (on_rq)
  4145. dequeue_task(rq, p, 0);
  4146. p->static_prio = NICE_TO_PRIO(nice);
  4147. set_load_weight(p);
  4148. old_prio = p->prio;
  4149. p->prio = effective_prio(p);
  4150. delta = p->prio - old_prio;
  4151. if (on_rq) {
  4152. enqueue_task(rq, p, 0);
  4153. /*
  4154. * If the task increased its priority or is running and
  4155. * lowered its priority, then reschedule its CPU:
  4156. */
  4157. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4158. resched_task(rq->curr);
  4159. }
  4160. out_unlock:
  4161. task_rq_unlock(rq, &flags);
  4162. }
  4163. EXPORT_SYMBOL(set_user_nice);
  4164. /*
  4165. * can_nice - check if a task can reduce its nice value
  4166. * @p: task
  4167. * @nice: nice value
  4168. */
  4169. int can_nice(const struct task_struct *p, const int nice)
  4170. {
  4171. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4172. int nice_rlim = 20 - nice;
  4173. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4174. capable(CAP_SYS_NICE));
  4175. }
  4176. #ifdef __ARCH_WANT_SYS_NICE
  4177. /*
  4178. * sys_nice - change the priority of the current process.
  4179. * @increment: priority increment
  4180. *
  4181. * sys_setpriority is a more generic, but much slower function that
  4182. * does similar things.
  4183. */
  4184. asmlinkage long sys_nice(int increment)
  4185. {
  4186. long nice, retval;
  4187. /*
  4188. * Setpriority might change our priority at the same moment.
  4189. * We don't have to worry. Conceptually one call occurs first
  4190. * and we have a single winner.
  4191. */
  4192. if (increment < -40)
  4193. increment = -40;
  4194. if (increment > 40)
  4195. increment = 40;
  4196. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4197. if (nice < -20)
  4198. nice = -20;
  4199. if (nice > 19)
  4200. nice = 19;
  4201. if (increment < 0 && !can_nice(current, nice))
  4202. return -EPERM;
  4203. retval = security_task_setnice(current, nice);
  4204. if (retval)
  4205. return retval;
  4206. set_user_nice(current, nice);
  4207. return 0;
  4208. }
  4209. #endif
  4210. /**
  4211. * task_prio - return the priority value of a given task.
  4212. * @p: the task in question.
  4213. *
  4214. * This is the priority value as seen by users in /proc.
  4215. * RT tasks are offset by -200. Normal tasks are centered
  4216. * around 0, value goes from -16 to +15.
  4217. */
  4218. int task_prio(const struct task_struct *p)
  4219. {
  4220. return p->prio - MAX_RT_PRIO;
  4221. }
  4222. /**
  4223. * task_nice - return the nice value of a given task.
  4224. * @p: the task in question.
  4225. */
  4226. int task_nice(const struct task_struct *p)
  4227. {
  4228. return TASK_NICE(p);
  4229. }
  4230. EXPORT_SYMBOL(task_nice);
  4231. /**
  4232. * idle_cpu - is a given cpu idle currently?
  4233. * @cpu: the processor in question.
  4234. */
  4235. int idle_cpu(int cpu)
  4236. {
  4237. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4238. }
  4239. /**
  4240. * idle_task - return the idle task for a given cpu.
  4241. * @cpu: the processor in question.
  4242. */
  4243. struct task_struct *idle_task(int cpu)
  4244. {
  4245. return cpu_rq(cpu)->idle;
  4246. }
  4247. /**
  4248. * find_process_by_pid - find a process with a matching PID value.
  4249. * @pid: the pid in question.
  4250. */
  4251. static struct task_struct *find_process_by_pid(pid_t pid)
  4252. {
  4253. return pid ? find_task_by_vpid(pid) : current;
  4254. }
  4255. /* Actually do priority change: must hold rq lock. */
  4256. static void
  4257. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4258. {
  4259. BUG_ON(p->se.on_rq);
  4260. p->policy = policy;
  4261. switch (p->policy) {
  4262. case SCHED_NORMAL:
  4263. case SCHED_BATCH:
  4264. case SCHED_IDLE:
  4265. p->sched_class = &fair_sched_class;
  4266. break;
  4267. case SCHED_FIFO:
  4268. case SCHED_RR:
  4269. p->sched_class = &rt_sched_class;
  4270. break;
  4271. }
  4272. p->rt_priority = prio;
  4273. p->normal_prio = normal_prio(p);
  4274. /* we are holding p->pi_lock already */
  4275. p->prio = rt_mutex_getprio(p);
  4276. set_load_weight(p);
  4277. }
  4278. /**
  4279. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4280. * @p: the task in question.
  4281. * @policy: new policy.
  4282. * @param: structure containing the new RT priority.
  4283. *
  4284. * NOTE that the task may be already dead.
  4285. */
  4286. int sched_setscheduler(struct task_struct *p, int policy,
  4287. struct sched_param *param)
  4288. {
  4289. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4290. unsigned long flags;
  4291. const struct sched_class *prev_class = p->sched_class;
  4292. struct rq *rq;
  4293. /* may grab non-irq protected spin_locks */
  4294. BUG_ON(in_interrupt());
  4295. recheck:
  4296. /* double check policy once rq lock held */
  4297. if (policy < 0)
  4298. policy = oldpolicy = p->policy;
  4299. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4300. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4301. policy != SCHED_IDLE)
  4302. return -EINVAL;
  4303. /*
  4304. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4305. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4306. * SCHED_BATCH and SCHED_IDLE is 0.
  4307. */
  4308. if (param->sched_priority < 0 ||
  4309. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4310. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4311. return -EINVAL;
  4312. if (rt_policy(policy) != (param->sched_priority != 0))
  4313. return -EINVAL;
  4314. /*
  4315. * Allow unprivileged RT tasks to decrease priority:
  4316. */
  4317. if (!capable(CAP_SYS_NICE)) {
  4318. if (rt_policy(policy)) {
  4319. unsigned long rlim_rtprio;
  4320. if (!lock_task_sighand(p, &flags))
  4321. return -ESRCH;
  4322. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4323. unlock_task_sighand(p, &flags);
  4324. /* can't set/change the rt policy */
  4325. if (policy != p->policy && !rlim_rtprio)
  4326. return -EPERM;
  4327. /* can't increase priority */
  4328. if (param->sched_priority > p->rt_priority &&
  4329. param->sched_priority > rlim_rtprio)
  4330. return -EPERM;
  4331. }
  4332. /*
  4333. * Like positive nice levels, dont allow tasks to
  4334. * move out of SCHED_IDLE either:
  4335. */
  4336. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4337. return -EPERM;
  4338. /* can't change other user's priorities */
  4339. if ((current->euid != p->euid) &&
  4340. (current->euid != p->uid))
  4341. return -EPERM;
  4342. }
  4343. #ifdef CONFIG_RT_GROUP_SCHED
  4344. /*
  4345. * Do not allow realtime tasks into groups that have no runtime
  4346. * assigned.
  4347. */
  4348. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4349. return -EPERM;
  4350. #endif
  4351. retval = security_task_setscheduler(p, policy, param);
  4352. if (retval)
  4353. return retval;
  4354. /*
  4355. * make sure no PI-waiters arrive (or leave) while we are
  4356. * changing the priority of the task:
  4357. */
  4358. spin_lock_irqsave(&p->pi_lock, flags);
  4359. /*
  4360. * To be able to change p->policy safely, the apropriate
  4361. * runqueue lock must be held.
  4362. */
  4363. rq = __task_rq_lock(p);
  4364. /* recheck policy now with rq lock held */
  4365. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4366. policy = oldpolicy = -1;
  4367. __task_rq_unlock(rq);
  4368. spin_unlock_irqrestore(&p->pi_lock, flags);
  4369. goto recheck;
  4370. }
  4371. update_rq_clock(rq);
  4372. on_rq = p->se.on_rq;
  4373. running = task_current(rq, p);
  4374. if (on_rq)
  4375. deactivate_task(rq, p, 0);
  4376. if (running)
  4377. p->sched_class->put_prev_task(rq, p);
  4378. oldprio = p->prio;
  4379. __setscheduler(rq, p, policy, param->sched_priority);
  4380. if (running)
  4381. p->sched_class->set_curr_task(rq);
  4382. if (on_rq) {
  4383. activate_task(rq, p, 0);
  4384. check_class_changed(rq, p, prev_class, oldprio, running);
  4385. }
  4386. __task_rq_unlock(rq);
  4387. spin_unlock_irqrestore(&p->pi_lock, flags);
  4388. rt_mutex_adjust_pi(p);
  4389. return 0;
  4390. }
  4391. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4392. static int
  4393. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4394. {
  4395. struct sched_param lparam;
  4396. struct task_struct *p;
  4397. int retval;
  4398. if (!param || pid < 0)
  4399. return -EINVAL;
  4400. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4401. return -EFAULT;
  4402. rcu_read_lock();
  4403. retval = -ESRCH;
  4404. p = find_process_by_pid(pid);
  4405. if (p != NULL)
  4406. retval = sched_setscheduler(p, policy, &lparam);
  4407. rcu_read_unlock();
  4408. return retval;
  4409. }
  4410. /**
  4411. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4412. * @pid: the pid in question.
  4413. * @policy: new policy.
  4414. * @param: structure containing the new RT priority.
  4415. */
  4416. asmlinkage long
  4417. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4418. {
  4419. /* negative values for policy are not valid */
  4420. if (policy < 0)
  4421. return -EINVAL;
  4422. return do_sched_setscheduler(pid, policy, param);
  4423. }
  4424. /**
  4425. * sys_sched_setparam - set/change the RT priority of a thread
  4426. * @pid: the pid in question.
  4427. * @param: structure containing the new RT priority.
  4428. */
  4429. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4430. {
  4431. return do_sched_setscheduler(pid, -1, param);
  4432. }
  4433. /**
  4434. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4435. * @pid: the pid in question.
  4436. */
  4437. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4438. {
  4439. struct task_struct *p;
  4440. int retval;
  4441. if (pid < 0)
  4442. return -EINVAL;
  4443. retval = -ESRCH;
  4444. read_lock(&tasklist_lock);
  4445. p = find_process_by_pid(pid);
  4446. if (p) {
  4447. retval = security_task_getscheduler(p);
  4448. if (!retval)
  4449. retval = p->policy;
  4450. }
  4451. read_unlock(&tasklist_lock);
  4452. return retval;
  4453. }
  4454. /**
  4455. * sys_sched_getscheduler - get the RT priority of a thread
  4456. * @pid: the pid in question.
  4457. * @param: structure containing the RT priority.
  4458. */
  4459. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4460. {
  4461. struct sched_param lp;
  4462. struct task_struct *p;
  4463. int retval;
  4464. if (!param || pid < 0)
  4465. return -EINVAL;
  4466. read_lock(&tasklist_lock);
  4467. p = find_process_by_pid(pid);
  4468. retval = -ESRCH;
  4469. if (!p)
  4470. goto out_unlock;
  4471. retval = security_task_getscheduler(p);
  4472. if (retval)
  4473. goto out_unlock;
  4474. lp.sched_priority = p->rt_priority;
  4475. read_unlock(&tasklist_lock);
  4476. /*
  4477. * This one might sleep, we cannot do it with a spinlock held ...
  4478. */
  4479. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4480. return retval;
  4481. out_unlock:
  4482. read_unlock(&tasklist_lock);
  4483. return retval;
  4484. }
  4485. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4486. {
  4487. cpumask_t cpus_allowed;
  4488. cpumask_t new_mask = *in_mask;
  4489. struct task_struct *p;
  4490. int retval;
  4491. get_online_cpus();
  4492. read_lock(&tasklist_lock);
  4493. p = find_process_by_pid(pid);
  4494. if (!p) {
  4495. read_unlock(&tasklist_lock);
  4496. put_online_cpus();
  4497. return -ESRCH;
  4498. }
  4499. /*
  4500. * It is not safe to call set_cpus_allowed with the
  4501. * tasklist_lock held. We will bump the task_struct's
  4502. * usage count and then drop tasklist_lock.
  4503. */
  4504. get_task_struct(p);
  4505. read_unlock(&tasklist_lock);
  4506. retval = -EPERM;
  4507. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4508. !capable(CAP_SYS_NICE))
  4509. goto out_unlock;
  4510. retval = security_task_setscheduler(p, 0, NULL);
  4511. if (retval)
  4512. goto out_unlock;
  4513. cpuset_cpus_allowed(p, &cpus_allowed);
  4514. cpus_and(new_mask, new_mask, cpus_allowed);
  4515. again:
  4516. retval = set_cpus_allowed_ptr(p, &new_mask);
  4517. if (!retval) {
  4518. cpuset_cpus_allowed(p, &cpus_allowed);
  4519. if (!cpus_subset(new_mask, cpus_allowed)) {
  4520. /*
  4521. * We must have raced with a concurrent cpuset
  4522. * update. Just reset the cpus_allowed to the
  4523. * cpuset's cpus_allowed
  4524. */
  4525. new_mask = cpus_allowed;
  4526. goto again;
  4527. }
  4528. }
  4529. out_unlock:
  4530. put_task_struct(p);
  4531. put_online_cpus();
  4532. return retval;
  4533. }
  4534. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4535. cpumask_t *new_mask)
  4536. {
  4537. if (len < sizeof(cpumask_t)) {
  4538. memset(new_mask, 0, sizeof(cpumask_t));
  4539. } else if (len > sizeof(cpumask_t)) {
  4540. len = sizeof(cpumask_t);
  4541. }
  4542. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4543. }
  4544. /**
  4545. * sys_sched_setaffinity - set the cpu affinity of a process
  4546. * @pid: pid of the process
  4547. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4548. * @user_mask_ptr: user-space pointer to the new cpu mask
  4549. */
  4550. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4551. unsigned long __user *user_mask_ptr)
  4552. {
  4553. cpumask_t new_mask;
  4554. int retval;
  4555. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4556. if (retval)
  4557. return retval;
  4558. return sched_setaffinity(pid, &new_mask);
  4559. }
  4560. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4561. {
  4562. struct task_struct *p;
  4563. int retval;
  4564. get_online_cpus();
  4565. read_lock(&tasklist_lock);
  4566. retval = -ESRCH;
  4567. p = find_process_by_pid(pid);
  4568. if (!p)
  4569. goto out_unlock;
  4570. retval = security_task_getscheduler(p);
  4571. if (retval)
  4572. goto out_unlock;
  4573. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4574. out_unlock:
  4575. read_unlock(&tasklist_lock);
  4576. put_online_cpus();
  4577. return retval;
  4578. }
  4579. /**
  4580. * sys_sched_getaffinity - get the cpu affinity of a process
  4581. * @pid: pid of the process
  4582. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4583. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4584. */
  4585. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4586. unsigned long __user *user_mask_ptr)
  4587. {
  4588. int ret;
  4589. cpumask_t mask;
  4590. if (len < sizeof(cpumask_t))
  4591. return -EINVAL;
  4592. ret = sched_getaffinity(pid, &mask);
  4593. if (ret < 0)
  4594. return ret;
  4595. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4596. return -EFAULT;
  4597. return sizeof(cpumask_t);
  4598. }
  4599. /**
  4600. * sys_sched_yield - yield the current processor to other threads.
  4601. *
  4602. * This function yields the current CPU to other tasks. If there are no
  4603. * other threads running on this CPU then this function will return.
  4604. */
  4605. asmlinkage long sys_sched_yield(void)
  4606. {
  4607. struct rq *rq = this_rq_lock();
  4608. schedstat_inc(rq, yld_count);
  4609. current->sched_class->yield_task(rq);
  4610. /*
  4611. * Since we are going to call schedule() anyway, there's
  4612. * no need to preempt or enable interrupts:
  4613. */
  4614. __release(rq->lock);
  4615. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4616. _raw_spin_unlock(&rq->lock);
  4617. preempt_enable_no_resched();
  4618. schedule();
  4619. return 0;
  4620. }
  4621. static void __cond_resched(void)
  4622. {
  4623. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4624. __might_sleep(__FILE__, __LINE__);
  4625. #endif
  4626. /*
  4627. * The BKS might be reacquired before we have dropped
  4628. * PREEMPT_ACTIVE, which could trigger a second
  4629. * cond_resched() call.
  4630. */
  4631. do {
  4632. add_preempt_count(PREEMPT_ACTIVE);
  4633. schedule();
  4634. sub_preempt_count(PREEMPT_ACTIVE);
  4635. } while (need_resched());
  4636. }
  4637. int __sched _cond_resched(void)
  4638. {
  4639. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4640. system_state == SYSTEM_RUNNING) {
  4641. __cond_resched();
  4642. return 1;
  4643. }
  4644. return 0;
  4645. }
  4646. EXPORT_SYMBOL(_cond_resched);
  4647. /*
  4648. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4649. * call schedule, and on return reacquire the lock.
  4650. *
  4651. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4652. * operations here to prevent schedule() from being called twice (once via
  4653. * spin_unlock(), once by hand).
  4654. */
  4655. int cond_resched_lock(spinlock_t *lock)
  4656. {
  4657. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4658. int ret = 0;
  4659. if (spin_needbreak(lock) || resched) {
  4660. spin_unlock(lock);
  4661. if (resched && need_resched())
  4662. __cond_resched();
  4663. else
  4664. cpu_relax();
  4665. ret = 1;
  4666. spin_lock(lock);
  4667. }
  4668. return ret;
  4669. }
  4670. EXPORT_SYMBOL(cond_resched_lock);
  4671. int __sched cond_resched_softirq(void)
  4672. {
  4673. BUG_ON(!in_softirq());
  4674. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4675. local_bh_enable();
  4676. __cond_resched();
  4677. local_bh_disable();
  4678. return 1;
  4679. }
  4680. return 0;
  4681. }
  4682. EXPORT_SYMBOL(cond_resched_softirq);
  4683. /**
  4684. * yield - yield the current processor to other threads.
  4685. *
  4686. * This is a shortcut for kernel-space yielding - it marks the
  4687. * thread runnable and calls sys_sched_yield().
  4688. */
  4689. void __sched yield(void)
  4690. {
  4691. set_current_state(TASK_RUNNING);
  4692. sys_sched_yield();
  4693. }
  4694. EXPORT_SYMBOL(yield);
  4695. /*
  4696. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4697. * that process accounting knows that this is a task in IO wait state.
  4698. *
  4699. * But don't do that if it is a deliberate, throttling IO wait (this task
  4700. * has set its backing_dev_info: the queue against which it should throttle)
  4701. */
  4702. void __sched io_schedule(void)
  4703. {
  4704. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4705. delayacct_blkio_start();
  4706. atomic_inc(&rq->nr_iowait);
  4707. schedule();
  4708. atomic_dec(&rq->nr_iowait);
  4709. delayacct_blkio_end();
  4710. }
  4711. EXPORT_SYMBOL(io_schedule);
  4712. long __sched io_schedule_timeout(long timeout)
  4713. {
  4714. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4715. long ret;
  4716. delayacct_blkio_start();
  4717. atomic_inc(&rq->nr_iowait);
  4718. ret = schedule_timeout(timeout);
  4719. atomic_dec(&rq->nr_iowait);
  4720. delayacct_blkio_end();
  4721. return ret;
  4722. }
  4723. /**
  4724. * sys_sched_get_priority_max - return maximum RT priority.
  4725. * @policy: scheduling class.
  4726. *
  4727. * this syscall returns the maximum rt_priority that can be used
  4728. * by a given scheduling class.
  4729. */
  4730. asmlinkage long sys_sched_get_priority_max(int policy)
  4731. {
  4732. int ret = -EINVAL;
  4733. switch (policy) {
  4734. case SCHED_FIFO:
  4735. case SCHED_RR:
  4736. ret = MAX_USER_RT_PRIO-1;
  4737. break;
  4738. case SCHED_NORMAL:
  4739. case SCHED_BATCH:
  4740. case SCHED_IDLE:
  4741. ret = 0;
  4742. break;
  4743. }
  4744. return ret;
  4745. }
  4746. /**
  4747. * sys_sched_get_priority_min - return minimum RT priority.
  4748. * @policy: scheduling class.
  4749. *
  4750. * this syscall returns the minimum rt_priority that can be used
  4751. * by a given scheduling class.
  4752. */
  4753. asmlinkage long sys_sched_get_priority_min(int policy)
  4754. {
  4755. int ret = -EINVAL;
  4756. switch (policy) {
  4757. case SCHED_FIFO:
  4758. case SCHED_RR:
  4759. ret = 1;
  4760. break;
  4761. case SCHED_NORMAL:
  4762. case SCHED_BATCH:
  4763. case SCHED_IDLE:
  4764. ret = 0;
  4765. }
  4766. return ret;
  4767. }
  4768. /**
  4769. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4770. * @pid: pid of the process.
  4771. * @interval: userspace pointer to the timeslice value.
  4772. *
  4773. * this syscall writes the default timeslice value of a given process
  4774. * into the user-space timespec buffer. A value of '0' means infinity.
  4775. */
  4776. asmlinkage
  4777. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4778. {
  4779. struct task_struct *p;
  4780. unsigned int time_slice;
  4781. int retval;
  4782. struct timespec t;
  4783. if (pid < 0)
  4784. return -EINVAL;
  4785. retval = -ESRCH;
  4786. read_lock(&tasklist_lock);
  4787. p = find_process_by_pid(pid);
  4788. if (!p)
  4789. goto out_unlock;
  4790. retval = security_task_getscheduler(p);
  4791. if (retval)
  4792. goto out_unlock;
  4793. /*
  4794. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4795. * tasks that are on an otherwise idle runqueue:
  4796. */
  4797. time_slice = 0;
  4798. if (p->policy == SCHED_RR) {
  4799. time_slice = DEF_TIMESLICE;
  4800. } else if (p->policy != SCHED_FIFO) {
  4801. struct sched_entity *se = &p->se;
  4802. unsigned long flags;
  4803. struct rq *rq;
  4804. rq = task_rq_lock(p, &flags);
  4805. if (rq->cfs.load.weight)
  4806. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4807. task_rq_unlock(rq, &flags);
  4808. }
  4809. read_unlock(&tasklist_lock);
  4810. jiffies_to_timespec(time_slice, &t);
  4811. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4812. return retval;
  4813. out_unlock:
  4814. read_unlock(&tasklist_lock);
  4815. return retval;
  4816. }
  4817. static const char stat_nam[] = "RSDTtZX";
  4818. void sched_show_task(struct task_struct *p)
  4819. {
  4820. unsigned long free = 0;
  4821. unsigned state;
  4822. state = p->state ? __ffs(p->state) + 1 : 0;
  4823. printk(KERN_INFO "%-13.13s %c", p->comm,
  4824. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4825. #if BITS_PER_LONG == 32
  4826. if (state == TASK_RUNNING)
  4827. printk(KERN_CONT " running ");
  4828. else
  4829. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4830. #else
  4831. if (state == TASK_RUNNING)
  4832. printk(KERN_CONT " running task ");
  4833. else
  4834. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4835. #endif
  4836. #ifdef CONFIG_DEBUG_STACK_USAGE
  4837. {
  4838. unsigned long *n = end_of_stack(p);
  4839. while (!*n)
  4840. n++;
  4841. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4842. }
  4843. #endif
  4844. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4845. task_pid_nr(p), task_pid_nr(p->real_parent));
  4846. show_stack(p, NULL);
  4847. }
  4848. void show_state_filter(unsigned long state_filter)
  4849. {
  4850. struct task_struct *g, *p;
  4851. #if BITS_PER_LONG == 32
  4852. printk(KERN_INFO
  4853. " task PC stack pid father\n");
  4854. #else
  4855. printk(KERN_INFO
  4856. " task PC stack pid father\n");
  4857. #endif
  4858. read_lock(&tasklist_lock);
  4859. do_each_thread(g, p) {
  4860. /*
  4861. * reset the NMI-timeout, listing all files on a slow
  4862. * console might take alot of time:
  4863. */
  4864. touch_nmi_watchdog();
  4865. if (!state_filter || (p->state & state_filter))
  4866. sched_show_task(p);
  4867. } while_each_thread(g, p);
  4868. touch_all_softlockup_watchdogs();
  4869. #ifdef CONFIG_SCHED_DEBUG
  4870. sysrq_sched_debug_show();
  4871. #endif
  4872. read_unlock(&tasklist_lock);
  4873. /*
  4874. * Only show locks if all tasks are dumped:
  4875. */
  4876. if (state_filter == -1)
  4877. debug_show_all_locks();
  4878. }
  4879. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4880. {
  4881. idle->sched_class = &idle_sched_class;
  4882. }
  4883. /**
  4884. * init_idle - set up an idle thread for a given CPU
  4885. * @idle: task in question
  4886. * @cpu: cpu the idle task belongs to
  4887. *
  4888. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4889. * flag, to make booting more robust.
  4890. */
  4891. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4892. {
  4893. struct rq *rq = cpu_rq(cpu);
  4894. unsigned long flags;
  4895. __sched_fork(idle);
  4896. idle->se.exec_start = sched_clock();
  4897. idle->prio = idle->normal_prio = MAX_PRIO;
  4898. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4899. __set_task_cpu(idle, cpu);
  4900. spin_lock_irqsave(&rq->lock, flags);
  4901. rq->curr = rq->idle = idle;
  4902. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4903. idle->oncpu = 1;
  4904. #endif
  4905. spin_unlock_irqrestore(&rq->lock, flags);
  4906. /* Set the preempt count _outside_ the spinlocks! */
  4907. #if defined(CONFIG_PREEMPT)
  4908. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4909. #else
  4910. task_thread_info(idle)->preempt_count = 0;
  4911. #endif
  4912. /*
  4913. * The idle tasks have their own, simple scheduling class:
  4914. */
  4915. idle->sched_class = &idle_sched_class;
  4916. }
  4917. /*
  4918. * In a system that switches off the HZ timer nohz_cpu_mask
  4919. * indicates which cpus entered this state. This is used
  4920. * in the rcu update to wait only for active cpus. For system
  4921. * which do not switch off the HZ timer nohz_cpu_mask should
  4922. * always be CPU_MASK_NONE.
  4923. */
  4924. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4925. /*
  4926. * Increase the granularity value when there are more CPUs,
  4927. * because with more CPUs the 'effective latency' as visible
  4928. * to users decreases. But the relationship is not linear,
  4929. * so pick a second-best guess by going with the log2 of the
  4930. * number of CPUs.
  4931. *
  4932. * This idea comes from the SD scheduler of Con Kolivas:
  4933. */
  4934. static inline void sched_init_granularity(void)
  4935. {
  4936. unsigned int factor = 1 + ilog2(num_online_cpus());
  4937. const unsigned long limit = 200000000;
  4938. sysctl_sched_min_granularity *= factor;
  4939. if (sysctl_sched_min_granularity > limit)
  4940. sysctl_sched_min_granularity = limit;
  4941. sysctl_sched_latency *= factor;
  4942. if (sysctl_sched_latency > limit)
  4943. sysctl_sched_latency = limit;
  4944. sysctl_sched_wakeup_granularity *= factor;
  4945. }
  4946. #ifdef CONFIG_SMP
  4947. /*
  4948. * This is how migration works:
  4949. *
  4950. * 1) we queue a struct migration_req structure in the source CPU's
  4951. * runqueue and wake up that CPU's migration thread.
  4952. * 2) we down() the locked semaphore => thread blocks.
  4953. * 3) migration thread wakes up (implicitly it forces the migrated
  4954. * thread off the CPU)
  4955. * 4) it gets the migration request and checks whether the migrated
  4956. * task is still in the wrong runqueue.
  4957. * 5) if it's in the wrong runqueue then the migration thread removes
  4958. * it and puts it into the right queue.
  4959. * 6) migration thread up()s the semaphore.
  4960. * 7) we wake up and the migration is done.
  4961. */
  4962. /*
  4963. * Change a given task's CPU affinity. Migrate the thread to a
  4964. * proper CPU and schedule it away if the CPU it's executing on
  4965. * is removed from the allowed bitmask.
  4966. *
  4967. * NOTE: the caller must have a valid reference to the task, the
  4968. * task must not exit() & deallocate itself prematurely. The
  4969. * call is not atomic; no spinlocks may be held.
  4970. */
  4971. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4972. {
  4973. struct migration_req req;
  4974. unsigned long flags;
  4975. struct rq *rq;
  4976. int ret = 0;
  4977. rq = task_rq_lock(p, &flags);
  4978. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4979. ret = -EINVAL;
  4980. goto out;
  4981. }
  4982. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4983. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4984. ret = -EINVAL;
  4985. goto out;
  4986. }
  4987. if (p->sched_class->set_cpus_allowed)
  4988. p->sched_class->set_cpus_allowed(p, new_mask);
  4989. else {
  4990. p->cpus_allowed = *new_mask;
  4991. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4992. }
  4993. /* Can the task run on the task's current CPU? If so, we're done */
  4994. if (cpu_isset(task_cpu(p), *new_mask))
  4995. goto out;
  4996. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4997. /* Need help from migration thread: drop lock and wait. */
  4998. task_rq_unlock(rq, &flags);
  4999. wake_up_process(rq->migration_thread);
  5000. wait_for_completion(&req.done);
  5001. tlb_migrate_finish(p->mm);
  5002. return 0;
  5003. }
  5004. out:
  5005. task_rq_unlock(rq, &flags);
  5006. return ret;
  5007. }
  5008. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5009. /*
  5010. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5011. * this because either it can't run here any more (set_cpus_allowed()
  5012. * away from this CPU, or CPU going down), or because we're
  5013. * attempting to rebalance this task on exec (sched_exec).
  5014. *
  5015. * So we race with normal scheduler movements, but that's OK, as long
  5016. * as the task is no longer on this CPU.
  5017. *
  5018. * Returns non-zero if task was successfully migrated.
  5019. */
  5020. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5021. {
  5022. struct rq *rq_dest, *rq_src;
  5023. int ret = 0, on_rq;
  5024. if (unlikely(cpu_is_offline(dest_cpu)))
  5025. return ret;
  5026. rq_src = cpu_rq(src_cpu);
  5027. rq_dest = cpu_rq(dest_cpu);
  5028. double_rq_lock(rq_src, rq_dest);
  5029. /* Already moved. */
  5030. if (task_cpu(p) != src_cpu)
  5031. goto out;
  5032. /* Affinity changed (again). */
  5033. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5034. goto out;
  5035. on_rq = p->se.on_rq;
  5036. if (on_rq)
  5037. deactivate_task(rq_src, p, 0);
  5038. set_task_cpu(p, dest_cpu);
  5039. if (on_rq) {
  5040. activate_task(rq_dest, p, 0);
  5041. check_preempt_curr(rq_dest, p);
  5042. }
  5043. ret = 1;
  5044. out:
  5045. double_rq_unlock(rq_src, rq_dest);
  5046. return ret;
  5047. }
  5048. /*
  5049. * migration_thread - this is a highprio system thread that performs
  5050. * thread migration by bumping thread off CPU then 'pushing' onto
  5051. * another runqueue.
  5052. */
  5053. static int migration_thread(void *data)
  5054. {
  5055. int cpu = (long)data;
  5056. struct rq *rq;
  5057. rq = cpu_rq(cpu);
  5058. BUG_ON(rq->migration_thread != current);
  5059. set_current_state(TASK_INTERRUPTIBLE);
  5060. while (!kthread_should_stop()) {
  5061. struct migration_req *req;
  5062. struct list_head *head;
  5063. spin_lock_irq(&rq->lock);
  5064. if (cpu_is_offline(cpu)) {
  5065. spin_unlock_irq(&rq->lock);
  5066. goto wait_to_die;
  5067. }
  5068. if (rq->active_balance) {
  5069. active_load_balance(rq, cpu);
  5070. rq->active_balance = 0;
  5071. }
  5072. head = &rq->migration_queue;
  5073. if (list_empty(head)) {
  5074. spin_unlock_irq(&rq->lock);
  5075. schedule();
  5076. set_current_state(TASK_INTERRUPTIBLE);
  5077. continue;
  5078. }
  5079. req = list_entry(head->next, struct migration_req, list);
  5080. list_del_init(head->next);
  5081. spin_unlock(&rq->lock);
  5082. __migrate_task(req->task, cpu, req->dest_cpu);
  5083. local_irq_enable();
  5084. complete(&req->done);
  5085. }
  5086. __set_current_state(TASK_RUNNING);
  5087. return 0;
  5088. wait_to_die:
  5089. /* Wait for kthread_stop */
  5090. set_current_state(TASK_INTERRUPTIBLE);
  5091. while (!kthread_should_stop()) {
  5092. schedule();
  5093. set_current_state(TASK_INTERRUPTIBLE);
  5094. }
  5095. __set_current_state(TASK_RUNNING);
  5096. return 0;
  5097. }
  5098. #ifdef CONFIG_HOTPLUG_CPU
  5099. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5100. {
  5101. int ret;
  5102. local_irq_disable();
  5103. ret = __migrate_task(p, src_cpu, dest_cpu);
  5104. local_irq_enable();
  5105. return ret;
  5106. }
  5107. /*
  5108. * Figure out where task on dead CPU should go, use force if necessary.
  5109. * NOTE: interrupts should be disabled by the caller
  5110. */
  5111. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5112. {
  5113. unsigned long flags;
  5114. cpumask_t mask;
  5115. struct rq *rq;
  5116. int dest_cpu;
  5117. do {
  5118. /* On same node? */
  5119. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5120. cpus_and(mask, mask, p->cpus_allowed);
  5121. dest_cpu = any_online_cpu(mask);
  5122. /* On any allowed CPU? */
  5123. if (dest_cpu >= nr_cpu_ids)
  5124. dest_cpu = any_online_cpu(p->cpus_allowed);
  5125. /* No more Mr. Nice Guy. */
  5126. if (dest_cpu >= nr_cpu_ids) {
  5127. cpumask_t cpus_allowed;
  5128. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5129. /*
  5130. * Try to stay on the same cpuset, where the
  5131. * current cpuset may be a subset of all cpus.
  5132. * The cpuset_cpus_allowed_locked() variant of
  5133. * cpuset_cpus_allowed() will not block. It must be
  5134. * called within calls to cpuset_lock/cpuset_unlock.
  5135. */
  5136. rq = task_rq_lock(p, &flags);
  5137. p->cpus_allowed = cpus_allowed;
  5138. dest_cpu = any_online_cpu(p->cpus_allowed);
  5139. task_rq_unlock(rq, &flags);
  5140. /*
  5141. * Don't tell them about moving exiting tasks or
  5142. * kernel threads (both mm NULL), since they never
  5143. * leave kernel.
  5144. */
  5145. if (p->mm && printk_ratelimit()) {
  5146. printk(KERN_INFO "process %d (%s) no "
  5147. "longer affine to cpu%d\n",
  5148. task_pid_nr(p), p->comm, dead_cpu);
  5149. }
  5150. }
  5151. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5152. }
  5153. /*
  5154. * While a dead CPU has no uninterruptible tasks queued at this point,
  5155. * it might still have a nonzero ->nr_uninterruptible counter, because
  5156. * for performance reasons the counter is not stricly tracking tasks to
  5157. * their home CPUs. So we just add the counter to another CPU's counter,
  5158. * to keep the global sum constant after CPU-down:
  5159. */
  5160. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5161. {
  5162. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5163. unsigned long flags;
  5164. local_irq_save(flags);
  5165. double_rq_lock(rq_src, rq_dest);
  5166. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5167. rq_src->nr_uninterruptible = 0;
  5168. double_rq_unlock(rq_src, rq_dest);
  5169. local_irq_restore(flags);
  5170. }
  5171. /* Run through task list and migrate tasks from the dead cpu. */
  5172. static void migrate_live_tasks(int src_cpu)
  5173. {
  5174. struct task_struct *p, *t;
  5175. read_lock(&tasklist_lock);
  5176. do_each_thread(t, p) {
  5177. if (p == current)
  5178. continue;
  5179. if (task_cpu(p) == src_cpu)
  5180. move_task_off_dead_cpu(src_cpu, p);
  5181. } while_each_thread(t, p);
  5182. read_unlock(&tasklist_lock);
  5183. }
  5184. /*
  5185. * Schedules idle task to be the next runnable task on current CPU.
  5186. * It does so by boosting its priority to highest possible.
  5187. * Used by CPU offline code.
  5188. */
  5189. void sched_idle_next(void)
  5190. {
  5191. int this_cpu = smp_processor_id();
  5192. struct rq *rq = cpu_rq(this_cpu);
  5193. struct task_struct *p = rq->idle;
  5194. unsigned long flags;
  5195. /* cpu has to be offline */
  5196. BUG_ON(cpu_online(this_cpu));
  5197. /*
  5198. * Strictly not necessary since rest of the CPUs are stopped by now
  5199. * and interrupts disabled on the current cpu.
  5200. */
  5201. spin_lock_irqsave(&rq->lock, flags);
  5202. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5203. update_rq_clock(rq);
  5204. activate_task(rq, p, 0);
  5205. spin_unlock_irqrestore(&rq->lock, flags);
  5206. }
  5207. /*
  5208. * Ensures that the idle task is using init_mm right before its cpu goes
  5209. * offline.
  5210. */
  5211. void idle_task_exit(void)
  5212. {
  5213. struct mm_struct *mm = current->active_mm;
  5214. BUG_ON(cpu_online(smp_processor_id()));
  5215. if (mm != &init_mm)
  5216. switch_mm(mm, &init_mm, current);
  5217. mmdrop(mm);
  5218. }
  5219. /* called under rq->lock with disabled interrupts */
  5220. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5221. {
  5222. struct rq *rq = cpu_rq(dead_cpu);
  5223. /* Must be exiting, otherwise would be on tasklist. */
  5224. BUG_ON(!p->exit_state);
  5225. /* Cannot have done final schedule yet: would have vanished. */
  5226. BUG_ON(p->state == TASK_DEAD);
  5227. get_task_struct(p);
  5228. /*
  5229. * Drop lock around migration; if someone else moves it,
  5230. * that's OK. No task can be added to this CPU, so iteration is
  5231. * fine.
  5232. */
  5233. spin_unlock_irq(&rq->lock);
  5234. move_task_off_dead_cpu(dead_cpu, p);
  5235. spin_lock_irq(&rq->lock);
  5236. put_task_struct(p);
  5237. }
  5238. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5239. static void migrate_dead_tasks(unsigned int dead_cpu)
  5240. {
  5241. struct rq *rq = cpu_rq(dead_cpu);
  5242. struct task_struct *next;
  5243. for ( ; ; ) {
  5244. if (!rq->nr_running)
  5245. break;
  5246. update_rq_clock(rq);
  5247. next = pick_next_task(rq, rq->curr);
  5248. if (!next)
  5249. break;
  5250. migrate_dead(dead_cpu, next);
  5251. }
  5252. }
  5253. #endif /* CONFIG_HOTPLUG_CPU */
  5254. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5255. static struct ctl_table sd_ctl_dir[] = {
  5256. {
  5257. .procname = "sched_domain",
  5258. .mode = 0555,
  5259. },
  5260. {0, },
  5261. };
  5262. static struct ctl_table sd_ctl_root[] = {
  5263. {
  5264. .ctl_name = CTL_KERN,
  5265. .procname = "kernel",
  5266. .mode = 0555,
  5267. .child = sd_ctl_dir,
  5268. },
  5269. {0, },
  5270. };
  5271. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5272. {
  5273. struct ctl_table *entry =
  5274. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5275. return entry;
  5276. }
  5277. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5278. {
  5279. struct ctl_table *entry;
  5280. /*
  5281. * In the intermediate directories, both the child directory and
  5282. * procname are dynamically allocated and could fail but the mode
  5283. * will always be set. In the lowest directory the names are
  5284. * static strings and all have proc handlers.
  5285. */
  5286. for (entry = *tablep; entry->mode; entry++) {
  5287. if (entry->child)
  5288. sd_free_ctl_entry(&entry->child);
  5289. if (entry->proc_handler == NULL)
  5290. kfree(entry->procname);
  5291. }
  5292. kfree(*tablep);
  5293. *tablep = NULL;
  5294. }
  5295. static void
  5296. set_table_entry(struct ctl_table *entry,
  5297. const char *procname, void *data, int maxlen,
  5298. mode_t mode, proc_handler *proc_handler)
  5299. {
  5300. entry->procname = procname;
  5301. entry->data = data;
  5302. entry->maxlen = maxlen;
  5303. entry->mode = mode;
  5304. entry->proc_handler = proc_handler;
  5305. }
  5306. static struct ctl_table *
  5307. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5308. {
  5309. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5310. if (table == NULL)
  5311. return NULL;
  5312. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5313. sizeof(long), 0644, proc_doulongvec_minmax);
  5314. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5315. sizeof(long), 0644, proc_doulongvec_minmax);
  5316. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5317. sizeof(int), 0644, proc_dointvec_minmax);
  5318. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5319. sizeof(int), 0644, proc_dointvec_minmax);
  5320. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5321. sizeof(int), 0644, proc_dointvec_minmax);
  5322. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5323. sizeof(int), 0644, proc_dointvec_minmax);
  5324. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5325. sizeof(int), 0644, proc_dointvec_minmax);
  5326. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5327. sizeof(int), 0644, proc_dointvec_minmax);
  5328. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5329. sizeof(int), 0644, proc_dointvec_minmax);
  5330. set_table_entry(&table[9], "cache_nice_tries",
  5331. &sd->cache_nice_tries,
  5332. sizeof(int), 0644, proc_dointvec_minmax);
  5333. set_table_entry(&table[10], "flags", &sd->flags,
  5334. sizeof(int), 0644, proc_dointvec_minmax);
  5335. /* &table[11] is terminator */
  5336. return table;
  5337. }
  5338. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5339. {
  5340. struct ctl_table *entry, *table;
  5341. struct sched_domain *sd;
  5342. int domain_num = 0, i;
  5343. char buf[32];
  5344. for_each_domain(cpu, sd)
  5345. domain_num++;
  5346. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5347. if (table == NULL)
  5348. return NULL;
  5349. i = 0;
  5350. for_each_domain(cpu, sd) {
  5351. snprintf(buf, 32, "domain%d", i);
  5352. entry->procname = kstrdup(buf, GFP_KERNEL);
  5353. entry->mode = 0555;
  5354. entry->child = sd_alloc_ctl_domain_table(sd);
  5355. entry++;
  5356. i++;
  5357. }
  5358. return table;
  5359. }
  5360. static struct ctl_table_header *sd_sysctl_header;
  5361. static void register_sched_domain_sysctl(void)
  5362. {
  5363. int i, cpu_num = num_online_cpus();
  5364. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5365. char buf[32];
  5366. WARN_ON(sd_ctl_dir[0].child);
  5367. sd_ctl_dir[0].child = entry;
  5368. if (entry == NULL)
  5369. return;
  5370. for_each_online_cpu(i) {
  5371. snprintf(buf, 32, "cpu%d", i);
  5372. entry->procname = kstrdup(buf, GFP_KERNEL);
  5373. entry->mode = 0555;
  5374. entry->child = sd_alloc_ctl_cpu_table(i);
  5375. entry++;
  5376. }
  5377. WARN_ON(sd_sysctl_header);
  5378. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5379. }
  5380. /* may be called multiple times per register */
  5381. static void unregister_sched_domain_sysctl(void)
  5382. {
  5383. if (sd_sysctl_header)
  5384. unregister_sysctl_table(sd_sysctl_header);
  5385. sd_sysctl_header = NULL;
  5386. if (sd_ctl_dir[0].child)
  5387. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5388. }
  5389. #else
  5390. static void register_sched_domain_sysctl(void)
  5391. {
  5392. }
  5393. static void unregister_sched_domain_sysctl(void)
  5394. {
  5395. }
  5396. #endif
  5397. static void set_rq_online(struct rq *rq)
  5398. {
  5399. if (!rq->online) {
  5400. const struct sched_class *class;
  5401. cpu_set(rq->cpu, rq->rd->online);
  5402. rq->online = 1;
  5403. for_each_class(class) {
  5404. if (class->rq_online)
  5405. class->rq_online(rq);
  5406. }
  5407. }
  5408. }
  5409. static void set_rq_offline(struct rq *rq)
  5410. {
  5411. if (rq->online) {
  5412. const struct sched_class *class;
  5413. for_each_class(class) {
  5414. if (class->rq_offline)
  5415. class->rq_offline(rq);
  5416. }
  5417. cpu_clear(rq->cpu, rq->rd->online);
  5418. rq->online = 0;
  5419. }
  5420. }
  5421. /*
  5422. * migration_call - callback that gets triggered when a CPU is added.
  5423. * Here we can start up the necessary migration thread for the new CPU.
  5424. */
  5425. static int __cpuinit
  5426. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5427. {
  5428. struct task_struct *p;
  5429. int cpu = (long)hcpu;
  5430. unsigned long flags;
  5431. struct rq *rq;
  5432. switch (action) {
  5433. case CPU_UP_PREPARE:
  5434. case CPU_UP_PREPARE_FROZEN:
  5435. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5436. if (IS_ERR(p))
  5437. return NOTIFY_BAD;
  5438. kthread_bind(p, cpu);
  5439. /* Must be high prio: stop_machine expects to yield to it. */
  5440. rq = task_rq_lock(p, &flags);
  5441. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5442. task_rq_unlock(rq, &flags);
  5443. cpu_rq(cpu)->migration_thread = p;
  5444. break;
  5445. case CPU_ONLINE:
  5446. case CPU_ONLINE_FROZEN:
  5447. /* Strictly unnecessary, as first user will wake it. */
  5448. wake_up_process(cpu_rq(cpu)->migration_thread);
  5449. /* Update our root-domain */
  5450. rq = cpu_rq(cpu);
  5451. spin_lock_irqsave(&rq->lock, flags);
  5452. if (rq->rd) {
  5453. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5454. set_rq_online(rq);
  5455. }
  5456. spin_unlock_irqrestore(&rq->lock, flags);
  5457. break;
  5458. #ifdef CONFIG_HOTPLUG_CPU
  5459. case CPU_UP_CANCELED:
  5460. case CPU_UP_CANCELED_FROZEN:
  5461. if (!cpu_rq(cpu)->migration_thread)
  5462. break;
  5463. /* Unbind it from offline cpu so it can run. Fall thru. */
  5464. kthread_bind(cpu_rq(cpu)->migration_thread,
  5465. any_online_cpu(cpu_online_map));
  5466. kthread_stop(cpu_rq(cpu)->migration_thread);
  5467. cpu_rq(cpu)->migration_thread = NULL;
  5468. break;
  5469. case CPU_DEAD:
  5470. case CPU_DEAD_FROZEN:
  5471. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5472. migrate_live_tasks(cpu);
  5473. rq = cpu_rq(cpu);
  5474. kthread_stop(rq->migration_thread);
  5475. rq->migration_thread = NULL;
  5476. /* Idle task back to normal (off runqueue, low prio) */
  5477. spin_lock_irq(&rq->lock);
  5478. update_rq_clock(rq);
  5479. deactivate_task(rq, rq->idle, 0);
  5480. rq->idle->static_prio = MAX_PRIO;
  5481. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5482. rq->idle->sched_class = &idle_sched_class;
  5483. migrate_dead_tasks(cpu);
  5484. spin_unlock_irq(&rq->lock);
  5485. cpuset_unlock();
  5486. migrate_nr_uninterruptible(rq);
  5487. BUG_ON(rq->nr_running != 0);
  5488. /*
  5489. * No need to migrate the tasks: it was best-effort if
  5490. * they didn't take sched_hotcpu_mutex. Just wake up
  5491. * the requestors.
  5492. */
  5493. spin_lock_irq(&rq->lock);
  5494. while (!list_empty(&rq->migration_queue)) {
  5495. struct migration_req *req;
  5496. req = list_entry(rq->migration_queue.next,
  5497. struct migration_req, list);
  5498. list_del_init(&req->list);
  5499. complete(&req->done);
  5500. }
  5501. spin_unlock_irq(&rq->lock);
  5502. break;
  5503. case CPU_DYING:
  5504. case CPU_DYING_FROZEN:
  5505. /* Update our root-domain */
  5506. rq = cpu_rq(cpu);
  5507. spin_lock_irqsave(&rq->lock, flags);
  5508. if (rq->rd) {
  5509. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5510. set_rq_offline(rq);
  5511. }
  5512. spin_unlock_irqrestore(&rq->lock, flags);
  5513. break;
  5514. #endif
  5515. }
  5516. return NOTIFY_OK;
  5517. }
  5518. /* Register at highest priority so that task migration (migrate_all_tasks)
  5519. * happens before everything else.
  5520. */
  5521. static struct notifier_block __cpuinitdata migration_notifier = {
  5522. .notifier_call = migration_call,
  5523. .priority = 10
  5524. };
  5525. void __init migration_init(void)
  5526. {
  5527. void *cpu = (void *)(long)smp_processor_id();
  5528. int err;
  5529. /* Start one for the boot CPU: */
  5530. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5531. BUG_ON(err == NOTIFY_BAD);
  5532. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5533. register_cpu_notifier(&migration_notifier);
  5534. }
  5535. #endif
  5536. #ifdef CONFIG_SMP
  5537. #ifdef CONFIG_SCHED_DEBUG
  5538. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5539. {
  5540. switch (lvl) {
  5541. case SD_LV_NONE:
  5542. return "NONE";
  5543. case SD_LV_SIBLING:
  5544. return "SIBLING";
  5545. case SD_LV_MC:
  5546. return "MC";
  5547. case SD_LV_CPU:
  5548. return "CPU";
  5549. case SD_LV_NODE:
  5550. return "NODE";
  5551. case SD_LV_ALLNODES:
  5552. return "ALLNODES";
  5553. case SD_LV_MAX:
  5554. return "MAX";
  5555. }
  5556. return "MAX";
  5557. }
  5558. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5559. cpumask_t *groupmask)
  5560. {
  5561. struct sched_group *group = sd->groups;
  5562. char str[256];
  5563. cpulist_scnprintf(str, sizeof(str), sd->span);
  5564. cpus_clear(*groupmask);
  5565. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5566. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5567. printk("does not load-balance\n");
  5568. if (sd->parent)
  5569. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5570. " has parent");
  5571. return -1;
  5572. }
  5573. printk(KERN_CONT "span %s level %s\n",
  5574. str, sd_level_to_string(sd->level));
  5575. if (!cpu_isset(cpu, sd->span)) {
  5576. printk(KERN_ERR "ERROR: domain->span does not contain "
  5577. "CPU%d\n", cpu);
  5578. }
  5579. if (!cpu_isset(cpu, group->cpumask)) {
  5580. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5581. " CPU%d\n", cpu);
  5582. }
  5583. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5584. do {
  5585. if (!group) {
  5586. printk("\n");
  5587. printk(KERN_ERR "ERROR: group is NULL\n");
  5588. break;
  5589. }
  5590. if (!group->__cpu_power) {
  5591. printk(KERN_CONT "\n");
  5592. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5593. "set\n");
  5594. break;
  5595. }
  5596. if (!cpus_weight(group->cpumask)) {
  5597. printk(KERN_CONT "\n");
  5598. printk(KERN_ERR "ERROR: empty group\n");
  5599. break;
  5600. }
  5601. if (cpus_intersects(*groupmask, group->cpumask)) {
  5602. printk(KERN_CONT "\n");
  5603. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5604. break;
  5605. }
  5606. cpus_or(*groupmask, *groupmask, group->cpumask);
  5607. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5608. printk(KERN_CONT " %s", str);
  5609. group = group->next;
  5610. } while (group != sd->groups);
  5611. printk(KERN_CONT "\n");
  5612. if (!cpus_equal(sd->span, *groupmask))
  5613. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5614. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5615. printk(KERN_ERR "ERROR: parent span is not a superset "
  5616. "of domain->span\n");
  5617. return 0;
  5618. }
  5619. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5620. {
  5621. cpumask_t *groupmask;
  5622. int level = 0;
  5623. if (!sd) {
  5624. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5625. return;
  5626. }
  5627. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5628. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5629. if (!groupmask) {
  5630. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5631. return;
  5632. }
  5633. for (;;) {
  5634. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5635. break;
  5636. level++;
  5637. sd = sd->parent;
  5638. if (!sd)
  5639. break;
  5640. }
  5641. kfree(groupmask);
  5642. }
  5643. #else /* !CONFIG_SCHED_DEBUG */
  5644. # define sched_domain_debug(sd, cpu) do { } while (0)
  5645. #endif /* CONFIG_SCHED_DEBUG */
  5646. static int sd_degenerate(struct sched_domain *sd)
  5647. {
  5648. if (cpus_weight(sd->span) == 1)
  5649. return 1;
  5650. /* Following flags need at least 2 groups */
  5651. if (sd->flags & (SD_LOAD_BALANCE |
  5652. SD_BALANCE_NEWIDLE |
  5653. SD_BALANCE_FORK |
  5654. SD_BALANCE_EXEC |
  5655. SD_SHARE_CPUPOWER |
  5656. SD_SHARE_PKG_RESOURCES)) {
  5657. if (sd->groups != sd->groups->next)
  5658. return 0;
  5659. }
  5660. /* Following flags don't use groups */
  5661. if (sd->flags & (SD_WAKE_IDLE |
  5662. SD_WAKE_AFFINE |
  5663. SD_WAKE_BALANCE))
  5664. return 0;
  5665. return 1;
  5666. }
  5667. static int
  5668. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5669. {
  5670. unsigned long cflags = sd->flags, pflags = parent->flags;
  5671. if (sd_degenerate(parent))
  5672. return 1;
  5673. if (!cpus_equal(sd->span, parent->span))
  5674. return 0;
  5675. /* Does parent contain flags not in child? */
  5676. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5677. if (cflags & SD_WAKE_AFFINE)
  5678. pflags &= ~SD_WAKE_BALANCE;
  5679. /* Flags needing groups don't count if only 1 group in parent */
  5680. if (parent->groups == parent->groups->next) {
  5681. pflags &= ~(SD_LOAD_BALANCE |
  5682. SD_BALANCE_NEWIDLE |
  5683. SD_BALANCE_FORK |
  5684. SD_BALANCE_EXEC |
  5685. SD_SHARE_CPUPOWER |
  5686. SD_SHARE_PKG_RESOURCES);
  5687. }
  5688. if (~cflags & pflags)
  5689. return 0;
  5690. return 1;
  5691. }
  5692. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5693. {
  5694. unsigned long flags;
  5695. spin_lock_irqsave(&rq->lock, flags);
  5696. if (rq->rd) {
  5697. struct root_domain *old_rd = rq->rd;
  5698. if (cpu_isset(rq->cpu, old_rd->online))
  5699. set_rq_offline(rq);
  5700. cpu_clear(rq->cpu, old_rd->span);
  5701. if (atomic_dec_and_test(&old_rd->refcount))
  5702. kfree(old_rd);
  5703. }
  5704. atomic_inc(&rd->refcount);
  5705. rq->rd = rd;
  5706. cpu_set(rq->cpu, rd->span);
  5707. if (cpu_isset(rq->cpu, cpu_online_map))
  5708. set_rq_online(rq);
  5709. spin_unlock_irqrestore(&rq->lock, flags);
  5710. }
  5711. static void init_rootdomain(struct root_domain *rd)
  5712. {
  5713. memset(rd, 0, sizeof(*rd));
  5714. cpus_clear(rd->span);
  5715. cpus_clear(rd->online);
  5716. cpupri_init(&rd->cpupri);
  5717. }
  5718. static void init_defrootdomain(void)
  5719. {
  5720. init_rootdomain(&def_root_domain);
  5721. atomic_set(&def_root_domain.refcount, 1);
  5722. }
  5723. static struct root_domain *alloc_rootdomain(void)
  5724. {
  5725. struct root_domain *rd;
  5726. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5727. if (!rd)
  5728. return NULL;
  5729. init_rootdomain(rd);
  5730. return rd;
  5731. }
  5732. /*
  5733. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5734. * hold the hotplug lock.
  5735. */
  5736. static void
  5737. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5738. {
  5739. struct rq *rq = cpu_rq(cpu);
  5740. struct sched_domain *tmp;
  5741. /* Remove the sched domains which do not contribute to scheduling. */
  5742. for (tmp = sd; tmp; tmp = tmp->parent) {
  5743. struct sched_domain *parent = tmp->parent;
  5744. if (!parent)
  5745. break;
  5746. if (sd_parent_degenerate(tmp, parent)) {
  5747. tmp->parent = parent->parent;
  5748. if (parent->parent)
  5749. parent->parent->child = tmp;
  5750. }
  5751. }
  5752. if (sd && sd_degenerate(sd)) {
  5753. sd = sd->parent;
  5754. if (sd)
  5755. sd->child = NULL;
  5756. }
  5757. sched_domain_debug(sd, cpu);
  5758. rq_attach_root(rq, rd);
  5759. rcu_assign_pointer(rq->sd, sd);
  5760. }
  5761. /* cpus with isolated domains */
  5762. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5763. /* Setup the mask of cpus configured for isolated domains */
  5764. static int __init isolated_cpu_setup(char *str)
  5765. {
  5766. int ints[NR_CPUS], i;
  5767. str = get_options(str, ARRAY_SIZE(ints), ints);
  5768. cpus_clear(cpu_isolated_map);
  5769. for (i = 1; i <= ints[0]; i++)
  5770. if (ints[i] < NR_CPUS)
  5771. cpu_set(ints[i], cpu_isolated_map);
  5772. return 1;
  5773. }
  5774. __setup("isolcpus=", isolated_cpu_setup);
  5775. /*
  5776. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5777. * to a function which identifies what group(along with sched group) a CPU
  5778. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5779. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5780. *
  5781. * init_sched_build_groups will build a circular linked list of the groups
  5782. * covered by the given span, and will set each group's ->cpumask correctly,
  5783. * and ->cpu_power to 0.
  5784. */
  5785. static void
  5786. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5787. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5788. struct sched_group **sg,
  5789. cpumask_t *tmpmask),
  5790. cpumask_t *covered, cpumask_t *tmpmask)
  5791. {
  5792. struct sched_group *first = NULL, *last = NULL;
  5793. int i;
  5794. cpus_clear(*covered);
  5795. for_each_cpu_mask(i, *span) {
  5796. struct sched_group *sg;
  5797. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5798. int j;
  5799. if (cpu_isset(i, *covered))
  5800. continue;
  5801. cpus_clear(sg->cpumask);
  5802. sg->__cpu_power = 0;
  5803. for_each_cpu_mask(j, *span) {
  5804. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5805. continue;
  5806. cpu_set(j, *covered);
  5807. cpu_set(j, sg->cpumask);
  5808. }
  5809. if (!first)
  5810. first = sg;
  5811. if (last)
  5812. last->next = sg;
  5813. last = sg;
  5814. }
  5815. last->next = first;
  5816. }
  5817. #define SD_NODES_PER_DOMAIN 16
  5818. #ifdef CONFIG_NUMA
  5819. /**
  5820. * find_next_best_node - find the next node to include in a sched_domain
  5821. * @node: node whose sched_domain we're building
  5822. * @used_nodes: nodes already in the sched_domain
  5823. *
  5824. * Find the next node to include in a given scheduling domain. Simply
  5825. * finds the closest node not already in the @used_nodes map.
  5826. *
  5827. * Should use nodemask_t.
  5828. */
  5829. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5830. {
  5831. int i, n, val, min_val, best_node = 0;
  5832. min_val = INT_MAX;
  5833. for (i = 0; i < MAX_NUMNODES; i++) {
  5834. /* Start at @node */
  5835. n = (node + i) % MAX_NUMNODES;
  5836. if (!nr_cpus_node(n))
  5837. continue;
  5838. /* Skip already used nodes */
  5839. if (node_isset(n, *used_nodes))
  5840. continue;
  5841. /* Simple min distance search */
  5842. val = node_distance(node, n);
  5843. if (val < min_val) {
  5844. min_val = val;
  5845. best_node = n;
  5846. }
  5847. }
  5848. node_set(best_node, *used_nodes);
  5849. return best_node;
  5850. }
  5851. /**
  5852. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5853. * @node: node whose cpumask we're constructing
  5854. * @span: resulting cpumask
  5855. *
  5856. * Given a node, construct a good cpumask for its sched_domain to span. It
  5857. * should be one that prevents unnecessary balancing, but also spreads tasks
  5858. * out optimally.
  5859. */
  5860. static void sched_domain_node_span(int node, cpumask_t *span)
  5861. {
  5862. nodemask_t used_nodes;
  5863. node_to_cpumask_ptr(nodemask, node);
  5864. int i;
  5865. cpus_clear(*span);
  5866. nodes_clear(used_nodes);
  5867. cpus_or(*span, *span, *nodemask);
  5868. node_set(node, used_nodes);
  5869. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5870. int next_node = find_next_best_node(node, &used_nodes);
  5871. node_to_cpumask_ptr_next(nodemask, next_node);
  5872. cpus_or(*span, *span, *nodemask);
  5873. }
  5874. }
  5875. #endif /* CONFIG_NUMA */
  5876. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5877. /*
  5878. * SMT sched-domains:
  5879. */
  5880. #ifdef CONFIG_SCHED_SMT
  5881. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5882. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5883. static int
  5884. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5885. cpumask_t *unused)
  5886. {
  5887. if (sg)
  5888. *sg = &per_cpu(sched_group_cpus, cpu);
  5889. return cpu;
  5890. }
  5891. #endif /* CONFIG_SCHED_SMT */
  5892. /*
  5893. * multi-core sched-domains:
  5894. */
  5895. #ifdef CONFIG_SCHED_MC
  5896. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5897. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5898. #endif /* CONFIG_SCHED_MC */
  5899. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5900. static int
  5901. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5902. cpumask_t *mask)
  5903. {
  5904. int group;
  5905. *mask = per_cpu(cpu_sibling_map, cpu);
  5906. cpus_and(*mask, *mask, *cpu_map);
  5907. group = first_cpu(*mask);
  5908. if (sg)
  5909. *sg = &per_cpu(sched_group_core, group);
  5910. return group;
  5911. }
  5912. #elif defined(CONFIG_SCHED_MC)
  5913. static int
  5914. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5915. cpumask_t *unused)
  5916. {
  5917. if (sg)
  5918. *sg = &per_cpu(sched_group_core, cpu);
  5919. return cpu;
  5920. }
  5921. #endif
  5922. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5923. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5924. static int
  5925. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5926. cpumask_t *mask)
  5927. {
  5928. int group;
  5929. #ifdef CONFIG_SCHED_MC
  5930. *mask = cpu_coregroup_map(cpu);
  5931. cpus_and(*mask, *mask, *cpu_map);
  5932. group = first_cpu(*mask);
  5933. #elif defined(CONFIG_SCHED_SMT)
  5934. *mask = per_cpu(cpu_sibling_map, cpu);
  5935. cpus_and(*mask, *mask, *cpu_map);
  5936. group = first_cpu(*mask);
  5937. #else
  5938. group = cpu;
  5939. #endif
  5940. if (sg)
  5941. *sg = &per_cpu(sched_group_phys, group);
  5942. return group;
  5943. }
  5944. #ifdef CONFIG_NUMA
  5945. /*
  5946. * The init_sched_build_groups can't handle what we want to do with node
  5947. * groups, so roll our own. Now each node has its own list of groups which
  5948. * gets dynamically allocated.
  5949. */
  5950. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5951. static struct sched_group ***sched_group_nodes_bycpu;
  5952. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5953. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5954. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5955. struct sched_group **sg, cpumask_t *nodemask)
  5956. {
  5957. int group;
  5958. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5959. cpus_and(*nodemask, *nodemask, *cpu_map);
  5960. group = first_cpu(*nodemask);
  5961. if (sg)
  5962. *sg = &per_cpu(sched_group_allnodes, group);
  5963. return group;
  5964. }
  5965. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5966. {
  5967. struct sched_group *sg = group_head;
  5968. int j;
  5969. if (!sg)
  5970. return;
  5971. do {
  5972. for_each_cpu_mask(j, sg->cpumask) {
  5973. struct sched_domain *sd;
  5974. sd = &per_cpu(phys_domains, j);
  5975. if (j != first_cpu(sd->groups->cpumask)) {
  5976. /*
  5977. * Only add "power" once for each
  5978. * physical package.
  5979. */
  5980. continue;
  5981. }
  5982. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5983. }
  5984. sg = sg->next;
  5985. } while (sg != group_head);
  5986. }
  5987. #endif /* CONFIG_NUMA */
  5988. #ifdef CONFIG_NUMA
  5989. /* Free memory allocated for various sched_group structures */
  5990. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5991. {
  5992. int cpu, i;
  5993. for_each_cpu_mask(cpu, *cpu_map) {
  5994. struct sched_group **sched_group_nodes
  5995. = sched_group_nodes_bycpu[cpu];
  5996. if (!sched_group_nodes)
  5997. continue;
  5998. for (i = 0; i < MAX_NUMNODES; i++) {
  5999. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6000. *nodemask = node_to_cpumask(i);
  6001. cpus_and(*nodemask, *nodemask, *cpu_map);
  6002. if (cpus_empty(*nodemask))
  6003. continue;
  6004. if (sg == NULL)
  6005. continue;
  6006. sg = sg->next;
  6007. next_sg:
  6008. oldsg = sg;
  6009. sg = sg->next;
  6010. kfree(oldsg);
  6011. if (oldsg != sched_group_nodes[i])
  6012. goto next_sg;
  6013. }
  6014. kfree(sched_group_nodes);
  6015. sched_group_nodes_bycpu[cpu] = NULL;
  6016. }
  6017. }
  6018. #else /* !CONFIG_NUMA */
  6019. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6020. {
  6021. }
  6022. #endif /* CONFIG_NUMA */
  6023. /*
  6024. * Initialize sched groups cpu_power.
  6025. *
  6026. * cpu_power indicates the capacity of sched group, which is used while
  6027. * distributing the load between different sched groups in a sched domain.
  6028. * Typically cpu_power for all the groups in a sched domain will be same unless
  6029. * there are asymmetries in the topology. If there are asymmetries, group
  6030. * having more cpu_power will pickup more load compared to the group having
  6031. * less cpu_power.
  6032. *
  6033. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6034. * the maximum number of tasks a group can handle in the presence of other idle
  6035. * or lightly loaded groups in the same sched domain.
  6036. */
  6037. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6038. {
  6039. struct sched_domain *child;
  6040. struct sched_group *group;
  6041. WARN_ON(!sd || !sd->groups);
  6042. if (cpu != first_cpu(sd->groups->cpumask))
  6043. return;
  6044. child = sd->child;
  6045. sd->groups->__cpu_power = 0;
  6046. /*
  6047. * For perf policy, if the groups in child domain share resources
  6048. * (for example cores sharing some portions of the cache hierarchy
  6049. * or SMT), then set this domain groups cpu_power such that each group
  6050. * can handle only one task, when there are other idle groups in the
  6051. * same sched domain.
  6052. */
  6053. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6054. (child->flags &
  6055. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6056. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6057. return;
  6058. }
  6059. /*
  6060. * add cpu_power of each child group to this groups cpu_power
  6061. */
  6062. group = child->groups;
  6063. do {
  6064. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6065. group = group->next;
  6066. } while (group != child->groups);
  6067. }
  6068. /*
  6069. * Initializers for schedule domains
  6070. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6071. */
  6072. #define SD_INIT(sd, type) sd_init_##type(sd)
  6073. #define SD_INIT_FUNC(type) \
  6074. static noinline void sd_init_##type(struct sched_domain *sd) \
  6075. { \
  6076. memset(sd, 0, sizeof(*sd)); \
  6077. *sd = SD_##type##_INIT; \
  6078. sd->level = SD_LV_##type; \
  6079. }
  6080. SD_INIT_FUNC(CPU)
  6081. #ifdef CONFIG_NUMA
  6082. SD_INIT_FUNC(ALLNODES)
  6083. SD_INIT_FUNC(NODE)
  6084. #endif
  6085. #ifdef CONFIG_SCHED_SMT
  6086. SD_INIT_FUNC(SIBLING)
  6087. #endif
  6088. #ifdef CONFIG_SCHED_MC
  6089. SD_INIT_FUNC(MC)
  6090. #endif
  6091. /*
  6092. * To minimize stack usage kmalloc room for cpumasks and share the
  6093. * space as the usage in build_sched_domains() dictates. Used only
  6094. * if the amount of space is significant.
  6095. */
  6096. struct allmasks {
  6097. cpumask_t tmpmask; /* make this one first */
  6098. union {
  6099. cpumask_t nodemask;
  6100. cpumask_t this_sibling_map;
  6101. cpumask_t this_core_map;
  6102. };
  6103. cpumask_t send_covered;
  6104. #ifdef CONFIG_NUMA
  6105. cpumask_t domainspan;
  6106. cpumask_t covered;
  6107. cpumask_t notcovered;
  6108. #endif
  6109. };
  6110. #if NR_CPUS > 128
  6111. #define SCHED_CPUMASK_ALLOC 1
  6112. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6113. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6114. #else
  6115. #define SCHED_CPUMASK_ALLOC 0
  6116. #define SCHED_CPUMASK_FREE(v)
  6117. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6118. #endif
  6119. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6120. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6121. static int default_relax_domain_level = -1;
  6122. static int __init setup_relax_domain_level(char *str)
  6123. {
  6124. unsigned long val;
  6125. val = simple_strtoul(str, NULL, 0);
  6126. if (val < SD_LV_MAX)
  6127. default_relax_domain_level = val;
  6128. return 1;
  6129. }
  6130. __setup("relax_domain_level=", setup_relax_domain_level);
  6131. static void set_domain_attribute(struct sched_domain *sd,
  6132. struct sched_domain_attr *attr)
  6133. {
  6134. int request;
  6135. if (!attr || attr->relax_domain_level < 0) {
  6136. if (default_relax_domain_level < 0)
  6137. return;
  6138. else
  6139. request = default_relax_domain_level;
  6140. } else
  6141. request = attr->relax_domain_level;
  6142. if (request < sd->level) {
  6143. /* turn off idle balance on this domain */
  6144. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6145. } else {
  6146. /* turn on idle balance on this domain */
  6147. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6148. }
  6149. }
  6150. /*
  6151. * Build sched domains for a given set of cpus and attach the sched domains
  6152. * to the individual cpus
  6153. */
  6154. static int __build_sched_domains(const cpumask_t *cpu_map,
  6155. struct sched_domain_attr *attr)
  6156. {
  6157. int i;
  6158. struct root_domain *rd;
  6159. SCHED_CPUMASK_DECLARE(allmasks);
  6160. cpumask_t *tmpmask;
  6161. #ifdef CONFIG_NUMA
  6162. struct sched_group **sched_group_nodes = NULL;
  6163. int sd_allnodes = 0;
  6164. /*
  6165. * Allocate the per-node list of sched groups
  6166. */
  6167. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6168. GFP_KERNEL);
  6169. if (!sched_group_nodes) {
  6170. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6171. return -ENOMEM;
  6172. }
  6173. #endif
  6174. rd = alloc_rootdomain();
  6175. if (!rd) {
  6176. printk(KERN_WARNING "Cannot alloc root domain\n");
  6177. #ifdef CONFIG_NUMA
  6178. kfree(sched_group_nodes);
  6179. #endif
  6180. return -ENOMEM;
  6181. }
  6182. #if SCHED_CPUMASK_ALLOC
  6183. /* get space for all scratch cpumask variables */
  6184. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6185. if (!allmasks) {
  6186. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6187. kfree(rd);
  6188. #ifdef CONFIG_NUMA
  6189. kfree(sched_group_nodes);
  6190. #endif
  6191. return -ENOMEM;
  6192. }
  6193. #endif
  6194. tmpmask = (cpumask_t *)allmasks;
  6195. #ifdef CONFIG_NUMA
  6196. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6197. #endif
  6198. /*
  6199. * Set up domains for cpus specified by the cpu_map.
  6200. */
  6201. for_each_cpu_mask(i, *cpu_map) {
  6202. struct sched_domain *sd = NULL, *p;
  6203. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6204. *nodemask = node_to_cpumask(cpu_to_node(i));
  6205. cpus_and(*nodemask, *nodemask, *cpu_map);
  6206. #ifdef CONFIG_NUMA
  6207. if (cpus_weight(*cpu_map) >
  6208. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6209. sd = &per_cpu(allnodes_domains, i);
  6210. SD_INIT(sd, ALLNODES);
  6211. set_domain_attribute(sd, attr);
  6212. sd->span = *cpu_map;
  6213. sd->first_cpu = first_cpu(sd->span);
  6214. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6215. p = sd;
  6216. sd_allnodes = 1;
  6217. } else
  6218. p = NULL;
  6219. sd = &per_cpu(node_domains, i);
  6220. SD_INIT(sd, NODE);
  6221. set_domain_attribute(sd, attr);
  6222. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6223. sd->first_cpu = first_cpu(sd->span);
  6224. sd->parent = p;
  6225. if (p)
  6226. p->child = sd;
  6227. cpus_and(sd->span, sd->span, *cpu_map);
  6228. #endif
  6229. p = sd;
  6230. sd = &per_cpu(phys_domains, i);
  6231. SD_INIT(sd, CPU);
  6232. set_domain_attribute(sd, attr);
  6233. sd->span = *nodemask;
  6234. sd->first_cpu = first_cpu(sd->span);
  6235. sd->parent = p;
  6236. if (p)
  6237. p->child = sd;
  6238. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6239. #ifdef CONFIG_SCHED_MC
  6240. p = sd;
  6241. sd = &per_cpu(core_domains, i);
  6242. SD_INIT(sd, MC);
  6243. set_domain_attribute(sd, attr);
  6244. sd->span = cpu_coregroup_map(i);
  6245. sd->first_cpu = first_cpu(sd->span);
  6246. cpus_and(sd->span, sd->span, *cpu_map);
  6247. sd->parent = p;
  6248. p->child = sd;
  6249. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6250. #endif
  6251. #ifdef CONFIG_SCHED_SMT
  6252. p = sd;
  6253. sd = &per_cpu(cpu_domains, i);
  6254. SD_INIT(sd, SIBLING);
  6255. set_domain_attribute(sd, attr);
  6256. sd->span = per_cpu(cpu_sibling_map, i);
  6257. sd->first_cpu = first_cpu(sd->span);
  6258. cpus_and(sd->span, sd->span, *cpu_map);
  6259. sd->parent = p;
  6260. p->child = sd;
  6261. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6262. #endif
  6263. }
  6264. #ifdef CONFIG_SCHED_SMT
  6265. /* Set up CPU (sibling) groups */
  6266. for_each_cpu_mask(i, *cpu_map) {
  6267. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6268. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6269. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6270. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6271. if (i != first_cpu(*this_sibling_map))
  6272. continue;
  6273. init_sched_build_groups(this_sibling_map, cpu_map,
  6274. &cpu_to_cpu_group,
  6275. send_covered, tmpmask);
  6276. }
  6277. #endif
  6278. #ifdef CONFIG_SCHED_MC
  6279. /* Set up multi-core groups */
  6280. for_each_cpu_mask(i, *cpu_map) {
  6281. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6282. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6283. *this_core_map = cpu_coregroup_map(i);
  6284. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6285. if (i != first_cpu(*this_core_map))
  6286. continue;
  6287. init_sched_build_groups(this_core_map, cpu_map,
  6288. &cpu_to_core_group,
  6289. send_covered, tmpmask);
  6290. }
  6291. #endif
  6292. /* Set up physical groups */
  6293. for (i = 0; i < MAX_NUMNODES; i++) {
  6294. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6295. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6296. *nodemask = node_to_cpumask(i);
  6297. cpus_and(*nodemask, *nodemask, *cpu_map);
  6298. if (cpus_empty(*nodemask))
  6299. continue;
  6300. init_sched_build_groups(nodemask, cpu_map,
  6301. &cpu_to_phys_group,
  6302. send_covered, tmpmask);
  6303. }
  6304. #ifdef CONFIG_NUMA
  6305. /* Set up node groups */
  6306. if (sd_allnodes) {
  6307. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6308. init_sched_build_groups(cpu_map, cpu_map,
  6309. &cpu_to_allnodes_group,
  6310. send_covered, tmpmask);
  6311. }
  6312. for (i = 0; i < MAX_NUMNODES; i++) {
  6313. /* Set up node groups */
  6314. struct sched_group *sg, *prev;
  6315. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6316. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6317. SCHED_CPUMASK_VAR(covered, allmasks);
  6318. int j;
  6319. *nodemask = node_to_cpumask(i);
  6320. cpus_clear(*covered);
  6321. cpus_and(*nodemask, *nodemask, *cpu_map);
  6322. if (cpus_empty(*nodemask)) {
  6323. sched_group_nodes[i] = NULL;
  6324. continue;
  6325. }
  6326. sched_domain_node_span(i, domainspan);
  6327. cpus_and(*domainspan, *domainspan, *cpu_map);
  6328. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6329. if (!sg) {
  6330. printk(KERN_WARNING "Can not alloc domain group for "
  6331. "node %d\n", i);
  6332. goto error;
  6333. }
  6334. sched_group_nodes[i] = sg;
  6335. for_each_cpu_mask(j, *nodemask) {
  6336. struct sched_domain *sd;
  6337. sd = &per_cpu(node_domains, j);
  6338. sd->groups = sg;
  6339. }
  6340. sg->__cpu_power = 0;
  6341. sg->cpumask = *nodemask;
  6342. sg->next = sg;
  6343. cpus_or(*covered, *covered, *nodemask);
  6344. prev = sg;
  6345. for (j = 0; j < MAX_NUMNODES; j++) {
  6346. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6347. int n = (i + j) % MAX_NUMNODES;
  6348. node_to_cpumask_ptr(pnodemask, n);
  6349. cpus_complement(*notcovered, *covered);
  6350. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6351. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6352. if (cpus_empty(*tmpmask))
  6353. break;
  6354. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6355. if (cpus_empty(*tmpmask))
  6356. continue;
  6357. sg = kmalloc_node(sizeof(struct sched_group),
  6358. GFP_KERNEL, i);
  6359. if (!sg) {
  6360. printk(KERN_WARNING
  6361. "Can not alloc domain group for node %d\n", j);
  6362. goto error;
  6363. }
  6364. sg->__cpu_power = 0;
  6365. sg->cpumask = *tmpmask;
  6366. sg->next = prev->next;
  6367. cpus_or(*covered, *covered, *tmpmask);
  6368. prev->next = sg;
  6369. prev = sg;
  6370. }
  6371. }
  6372. #endif
  6373. /* Calculate CPU power for physical packages and nodes */
  6374. #ifdef CONFIG_SCHED_SMT
  6375. for_each_cpu_mask(i, *cpu_map) {
  6376. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6377. init_sched_groups_power(i, sd);
  6378. }
  6379. #endif
  6380. #ifdef CONFIG_SCHED_MC
  6381. for_each_cpu_mask(i, *cpu_map) {
  6382. struct sched_domain *sd = &per_cpu(core_domains, i);
  6383. init_sched_groups_power(i, sd);
  6384. }
  6385. #endif
  6386. for_each_cpu_mask(i, *cpu_map) {
  6387. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6388. init_sched_groups_power(i, sd);
  6389. }
  6390. #ifdef CONFIG_NUMA
  6391. for (i = 0; i < MAX_NUMNODES; i++)
  6392. init_numa_sched_groups_power(sched_group_nodes[i]);
  6393. if (sd_allnodes) {
  6394. struct sched_group *sg;
  6395. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6396. tmpmask);
  6397. init_numa_sched_groups_power(sg);
  6398. }
  6399. #endif
  6400. /* Attach the domains */
  6401. for_each_cpu_mask(i, *cpu_map) {
  6402. struct sched_domain *sd;
  6403. #ifdef CONFIG_SCHED_SMT
  6404. sd = &per_cpu(cpu_domains, i);
  6405. #elif defined(CONFIG_SCHED_MC)
  6406. sd = &per_cpu(core_domains, i);
  6407. #else
  6408. sd = &per_cpu(phys_domains, i);
  6409. #endif
  6410. cpu_attach_domain(sd, rd, i);
  6411. }
  6412. SCHED_CPUMASK_FREE((void *)allmasks);
  6413. return 0;
  6414. #ifdef CONFIG_NUMA
  6415. error:
  6416. free_sched_groups(cpu_map, tmpmask);
  6417. SCHED_CPUMASK_FREE((void *)allmasks);
  6418. return -ENOMEM;
  6419. #endif
  6420. }
  6421. static int build_sched_domains(const cpumask_t *cpu_map)
  6422. {
  6423. return __build_sched_domains(cpu_map, NULL);
  6424. }
  6425. static cpumask_t *doms_cur; /* current sched domains */
  6426. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6427. static struct sched_domain_attr *dattr_cur;
  6428. /* attribues of custom domains in 'doms_cur' */
  6429. /*
  6430. * Special case: If a kmalloc of a doms_cur partition (array of
  6431. * cpumask_t) fails, then fallback to a single sched domain,
  6432. * as determined by the single cpumask_t fallback_doms.
  6433. */
  6434. static cpumask_t fallback_doms;
  6435. void __attribute__((weak)) arch_update_cpu_topology(void)
  6436. {
  6437. }
  6438. /*
  6439. * Free current domain masks.
  6440. * Called after all cpus are attached to NULL domain.
  6441. */
  6442. static void free_sched_domains(void)
  6443. {
  6444. ndoms_cur = 0;
  6445. if (doms_cur != &fallback_doms)
  6446. kfree(doms_cur);
  6447. doms_cur = &fallback_doms;
  6448. }
  6449. /*
  6450. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6451. * For now this just excludes isolated cpus, but could be used to
  6452. * exclude other special cases in the future.
  6453. */
  6454. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6455. {
  6456. int err;
  6457. arch_update_cpu_topology();
  6458. ndoms_cur = 1;
  6459. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6460. if (!doms_cur)
  6461. doms_cur = &fallback_doms;
  6462. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6463. dattr_cur = NULL;
  6464. err = build_sched_domains(doms_cur);
  6465. register_sched_domain_sysctl();
  6466. return err;
  6467. }
  6468. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6469. cpumask_t *tmpmask)
  6470. {
  6471. free_sched_groups(cpu_map, tmpmask);
  6472. }
  6473. /*
  6474. * Detach sched domains from a group of cpus specified in cpu_map
  6475. * These cpus will now be attached to the NULL domain
  6476. */
  6477. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6478. {
  6479. cpumask_t tmpmask;
  6480. int i;
  6481. unregister_sched_domain_sysctl();
  6482. for_each_cpu_mask(i, *cpu_map)
  6483. cpu_attach_domain(NULL, &def_root_domain, i);
  6484. synchronize_sched();
  6485. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6486. }
  6487. /* handle null as "default" */
  6488. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6489. struct sched_domain_attr *new, int idx_new)
  6490. {
  6491. struct sched_domain_attr tmp;
  6492. /* fast path */
  6493. if (!new && !cur)
  6494. return 1;
  6495. tmp = SD_ATTR_INIT;
  6496. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6497. new ? (new + idx_new) : &tmp,
  6498. sizeof(struct sched_domain_attr));
  6499. }
  6500. /*
  6501. * Partition sched domains as specified by the 'ndoms_new'
  6502. * cpumasks in the array doms_new[] of cpumasks. This compares
  6503. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6504. * It destroys each deleted domain and builds each new domain.
  6505. *
  6506. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6507. * The masks don't intersect (don't overlap.) We should setup one
  6508. * sched domain for each mask. CPUs not in any of the cpumasks will
  6509. * not be load balanced. If the same cpumask appears both in the
  6510. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6511. * it as it is.
  6512. *
  6513. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6514. * ownership of it and will kfree it when done with it. If the caller
  6515. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6516. * and partition_sched_domains() will fallback to the single partition
  6517. * 'fallback_doms'.
  6518. *
  6519. * Call with hotplug lock held
  6520. */
  6521. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6522. struct sched_domain_attr *dattr_new)
  6523. {
  6524. int i, j;
  6525. mutex_lock(&sched_domains_mutex);
  6526. /* always unregister in case we don't destroy any domains */
  6527. unregister_sched_domain_sysctl();
  6528. if (doms_new == NULL) {
  6529. ndoms_new = 1;
  6530. doms_new = &fallback_doms;
  6531. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6532. dattr_new = NULL;
  6533. }
  6534. /* Destroy deleted domains */
  6535. for (i = 0; i < ndoms_cur; i++) {
  6536. for (j = 0; j < ndoms_new; j++) {
  6537. if (cpus_equal(doms_cur[i], doms_new[j])
  6538. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6539. goto match1;
  6540. }
  6541. /* no match - a current sched domain not in new doms_new[] */
  6542. detach_destroy_domains(doms_cur + i);
  6543. match1:
  6544. ;
  6545. }
  6546. /* Build new domains */
  6547. for (i = 0; i < ndoms_new; i++) {
  6548. for (j = 0; j < ndoms_cur; j++) {
  6549. if (cpus_equal(doms_new[i], doms_cur[j])
  6550. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6551. goto match2;
  6552. }
  6553. /* no match - add a new doms_new */
  6554. __build_sched_domains(doms_new + i,
  6555. dattr_new ? dattr_new + i : NULL);
  6556. match2:
  6557. ;
  6558. }
  6559. /* Remember the new sched domains */
  6560. if (doms_cur != &fallback_doms)
  6561. kfree(doms_cur);
  6562. kfree(dattr_cur); /* kfree(NULL) is safe */
  6563. doms_cur = doms_new;
  6564. dattr_cur = dattr_new;
  6565. ndoms_cur = ndoms_new;
  6566. register_sched_domain_sysctl();
  6567. mutex_unlock(&sched_domains_mutex);
  6568. }
  6569. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6570. int arch_reinit_sched_domains(void)
  6571. {
  6572. int err;
  6573. get_online_cpus();
  6574. mutex_lock(&sched_domains_mutex);
  6575. detach_destroy_domains(&cpu_online_map);
  6576. free_sched_domains();
  6577. err = arch_init_sched_domains(&cpu_online_map);
  6578. mutex_unlock(&sched_domains_mutex);
  6579. put_online_cpus();
  6580. return err;
  6581. }
  6582. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6583. {
  6584. int ret;
  6585. if (buf[0] != '0' && buf[0] != '1')
  6586. return -EINVAL;
  6587. if (smt)
  6588. sched_smt_power_savings = (buf[0] == '1');
  6589. else
  6590. sched_mc_power_savings = (buf[0] == '1');
  6591. ret = arch_reinit_sched_domains();
  6592. return ret ? ret : count;
  6593. }
  6594. #ifdef CONFIG_SCHED_MC
  6595. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6596. {
  6597. return sprintf(page, "%u\n", sched_mc_power_savings);
  6598. }
  6599. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6600. const char *buf, size_t count)
  6601. {
  6602. return sched_power_savings_store(buf, count, 0);
  6603. }
  6604. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6605. sched_mc_power_savings_store);
  6606. #endif
  6607. #ifdef CONFIG_SCHED_SMT
  6608. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6609. {
  6610. return sprintf(page, "%u\n", sched_smt_power_savings);
  6611. }
  6612. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6613. const char *buf, size_t count)
  6614. {
  6615. return sched_power_savings_store(buf, count, 1);
  6616. }
  6617. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6618. sched_smt_power_savings_store);
  6619. #endif
  6620. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6621. {
  6622. int err = 0;
  6623. #ifdef CONFIG_SCHED_SMT
  6624. if (smt_capable())
  6625. err = sysfs_create_file(&cls->kset.kobj,
  6626. &attr_sched_smt_power_savings.attr);
  6627. #endif
  6628. #ifdef CONFIG_SCHED_MC
  6629. if (!err && mc_capable())
  6630. err = sysfs_create_file(&cls->kset.kobj,
  6631. &attr_sched_mc_power_savings.attr);
  6632. #endif
  6633. return err;
  6634. }
  6635. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6636. /*
  6637. * Force a reinitialization of the sched domains hierarchy. The domains
  6638. * and groups cannot be updated in place without racing with the balancing
  6639. * code, so we temporarily attach all running cpus to the NULL domain
  6640. * which will prevent rebalancing while the sched domains are recalculated.
  6641. */
  6642. static int update_sched_domains(struct notifier_block *nfb,
  6643. unsigned long action, void *hcpu)
  6644. {
  6645. int cpu = (int)(long)hcpu;
  6646. switch (action) {
  6647. case CPU_DOWN_PREPARE:
  6648. case CPU_DOWN_PREPARE_FROZEN:
  6649. disable_runtime(cpu_rq(cpu));
  6650. /* fall-through */
  6651. case CPU_UP_PREPARE:
  6652. case CPU_UP_PREPARE_FROZEN:
  6653. detach_destroy_domains(&cpu_online_map);
  6654. free_sched_domains();
  6655. return NOTIFY_OK;
  6656. case CPU_DOWN_FAILED:
  6657. case CPU_DOWN_FAILED_FROZEN:
  6658. case CPU_ONLINE:
  6659. case CPU_ONLINE_FROZEN:
  6660. enable_runtime(cpu_rq(cpu));
  6661. /* fall-through */
  6662. case CPU_UP_CANCELED:
  6663. case CPU_UP_CANCELED_FROZEN:
  6664. case CPU_DEAD:
  6665. case CPU_DEAD_FROZEN:
  6666. /*
  6667. * Fall through and re-initialise the domains.
  6668. */
  6669. break;
  6670. default:
  6671. return NOTIFY_DONE;
  6672. }
  6673. #ifndef CONFIG_CPUSETS
  6674. /*
  6675. * Create default domain partitioning if cpusets are disabled.
  6676. * Otherwise we let cpusets rebuild the domains based on the
  6677. * current setup.
  6678. */
  6679. /* The hotplug lock is already held by cpu_up/cpu_down */
  6680. arch_init_sched_domains(&cpu_online_map);
  6681. #endif
  6682. return NOTIFY_OK;
  6683. }
  6684. void __init sched_init_smp(void)
  6685. {
  6686. cpumask_t non_isolated_cpus;
  6687. #if defined(CONFIG_NUMA)
  6688. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6689. GFP_KERNEL);
  6690. BUG_ON(sched_group_nodes_bycpu == NULL);
  6691. #endif
  6692. get_online_cpus();
  6693. mutex_lock(&sched_domains_mutex);
  6694. arch_init_sched_domains(&cpu_online_map);
  6695. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6696. if (cpus_empty(non_isolated_cpus))
  6697. cpu_set(smp_processor_id(), non_isolated_cpus);
  6698. mutex_unlock(&sched_domains_mutex);
  6699. put_online_cpus();
  6700. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6701. hotcpu_notifier(update_sched_domains, 0);
  6702. init_hrtick();
  6703. /* Move init over to a non-isolated CPU */
  6704. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6705. BUG();
  6706. sched_init_granularity();
  6707. }
  6708. #else
  6709. void __init sched_init_smp(void)
  6710. {
  6711. sched_init_granularity();
  6712. }
  6713. #endif /* CONFIG_SMP */
  6714. int in_sched_functions(unsigned long addr)
  6715. {
  6716. return in_lock_functions(addr) ||
  6717. (addr >= (unsigned long)__sched_text_start
  6718. && addr < (unsigned long)__sched_text_end);
  6719. }
  6720. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6721. {
  6722. cfs_rq->tasks_timeline = RB_ROOT;
  6723. INIT_LIST_HEAD(&cfs_rq->tasks);
  6724. #ifdef CONFIG_FAIR_GROUP_SCHED
  6725. cfs_rq->rq = rq;
  6726. #endif
  6727. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6728. }
  6729. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6730. {
  6731. struct rt_prio_array *array;
  6732. int i;
  6733. array = &rt_rq->active;
  6734. for (i = 0; i < MAX_RT_PRIO; i++) {
  6735. INIT_LIST_HEAD(array->queue + i);
  6736. __clear_bit(i, array->bitmap);
  6737. }
  6738. /* delimiter for bitsearch: */
  6739. __set_bit(MAX_RT_PRIO, array->bitmap);
  6740. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6741. rt_rq->highest_prio = MAX_RT_PRIO;
  6742. #endif
  6743. #ifdef CONFIG_SMP
  6744. rt_rq->rt_nr_migratory = 0;
  6745. rt_rq->overloaded = 0;
  6746. #endif
  6747. rt_rq->rt_time = 0;
  6748. rt_rq->rt_throttled = 0;
  6749. rt_rq->rt_runtime = 0;
  6750. spin_lock_init(&rt_rq->rt_runtime_lock);
  6751. #ifdef CONFIG_RT_GROUP_SCHED
  6752. rt_rq->rt_nr_boosted = 0;
  6753. rt_rq->rq = rq;
  6754. #endif
  6755. }
  6756. #ifdef CONFIG_FAIR_GROUP_SCHED
  6757. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6758. struct sched_entity *se, int cpu, int add,
  6759. struct sched_entity *parent)
  6760. {
  6761. struct rq *rq = cpu_rq(cpu);
  6762. tg->cfs_rq[cpu] = cfs_rq;
  6763. init_cfs_rq(cfs_rq, rq);
  6764. cfs_rq->tg = tg;
  6765. if (add)
  6766. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6767. tg->se[cpu] = se;
  6768. /* se could be NULL for init_task_group */
  6769. if (!se)
  6770. return;
  6771. if (!parent)
  6772. se->cfs_rq = &rq->cfs;
  6773. else
  6774. se->cfs_rq = parent->my_q;
  6775. se->my_q = cfs_rq;
  6776. se->load.weight = tg->shares;
  6777. se->load.inv_weight = 0;
  6778. se->parent = parent;
  6779. }
  6780. #endif
  6781. #ifdef CONFIG_RT_GROUP_SCHED
  6782. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6783. struct sched_rt_entity *rt_se, int cpu, int add,
  6784. struct sched_rt_entity *parent)
  6785. {
  6786. struct rq *rq = cpu_rq(cpu);
  6787. tg->rt_rq[cpu] = rt_rq;
  6788. init_rt_rq(rt_rq, rq);
  6789. rt_rq->tg = tg;
  6790. rt_rq->rt_se = rt_se;
  6791. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6792. if (add)
  6793. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6794. tg->rt_se[cpu] = rt_se;
  6795. if (!rt_se)
  6796. return;
  6797. if (!parent)
  6798. rt_se->rt_rq = &rq->rt;
  6799. else
  6800. rt_se->rt_rq = parent->my_q;
  6801. rt_se->my_q = rt_rq;
  6802. rt_se->parent = parent;
  6803. INIT_LIST_HEAD(&rt_se->run_list);
  6804. }
  6805. #endif
  6806. void __init sched_init(void)
  6807. {
  6808. int i, j;
  6809. unsigned long alloc_size = 0, ptr;
  6810. #ifdef CONFIG_FAIR_GROUP_SCHED
  6811. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6812. #endif
  6813. #ifdef CONFIG_RT_GROUP_SCHED
  6814. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6815. #endif
  6816. #ifdef CONFIG_USER_SCHED
  6817. alloc_size *= 2;
  6818. #endif
  6819. /*
  6820. * As sched_init() is called before page_alloc is setup,
  6821. * we use alloc_bootmem().
  6822. */
  6823. if (alloc_size) {
  6824. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6825. #ifdef CONFIG_FAIR_GROUP_SCHED
  6826. init_task_group.se = (struct sched_entity **)ptr;
  6827. ptr += nr_cpu_ids * sizeof(void **);
  6828. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6829. ptr += nr_cpu_ids * sizeof(void **);
  6830. #ifdef CONFIG_USER_SCHED
  6831. root_task_group.se = (struct sched_entity **)ptr;
  6832. ptr += nr_cpu_ids * sizeof(void **);
  6833. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6834. ptr += nr_cpu_ids * sizeof(void **);
  6835. #endif /* CONFIG_USER_SCHED */
  6836. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6837. #ifdef CONFIG_RT_GROUP_SCHED
  6838. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6839. ptr += nr_cpu_ids * sizeof(void **);
  6840. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6841. ptr += nr_cpu_ids * sizeof(void **);
  6842. #ifdef CONFIG_USER_SCHED
  6843. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6844. ptr += nr_cpu_ids * sizeof(void **);
  6845. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6846. ptr += nr_cpu_ids * sizeof(void **);
  6847. #endif /* CONFIG_USER_SCHED */
  6848. #endif /* CONFIG_RT_GROUP_SCHED */
  6849. }
  6850. #ifdef CONFIG_SMP
  6851. init_aggregate();
  6852. init_defrootdomain();
  6853. #endif
  6854. init_rt_bandwidth(&def_rt_bandwidth,
  6855. global_rt_period(), global_rt_runtime());
  6856. #ifdef CONFIG_RT_GROUP_SCHED
  6857. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6858. global_rt_period(), global_rt_runtime());
  6859. #ifdef CONFIG_USER_SCHED
  6860. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6861. global_rt_period(), RUNTIME_INF);
  6862. #endif /* CONFIG_USER_SCHED */
  6863. #endif /* CONFIG_RT_GROUP_SCHED */
  6864. #ifdef CONFIG_GROUP_SCHED
  6865. list_add(&init_task_group.list, &task_groups);
  6866. INIT_LIST_HEAD(&init_task_group.children);
  6867. #ifdef CONFIG_USER_SCHED
  6868. INIT_LIST_HEAD(&root_task_group.children);
  6869. init_task_group.parent = &root_task_group;
  6870. list_add(&init_task_group.siblings, &root_task_group.children);
  6871. #endif /* CONFIG_USER_SCHED */
  6872. #endif /* CONFIG_GROUP_SCHED */
  6873. for_each_possible_cpu(i) {
  6874. struct rq *rq;
  6875. rq = cpu_rq(i);
  6876. spin_lock_init(&rq->lock);
  6877. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6878. rq->nr_running = 0;
  6879. init_cfs_rq(&rq->cfs, rq);
  6880. init_rt_rq(&rq->rt, rq);
  6881. #ifdef CONFIG_FAIR_GROUP_SCHED
  6882. init_task_group.shares = init_task_group_load;
  6883. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6884. #ifdef CONFIG_CGROUP_SCHED
  6885. /*
  6886. * How much cpu bandwidth does init_task_group get?
  6887. *
  6888. * In case of task-groups formed thr' the cgroup filesystem, it
  6889. * gets 100% of the cpu resources in the system. This overall
  6890. * system cpu resource is divided among the tasks of
  6891. * init_task_group and its child task-groups in a fair manner,
  6892. * based on each entity's (task or task-group's) weight
  6893. * (se->load.weight).
  6894. *
  6895. * In other words, if init_task_group has 10 tasks of weight
  6896. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6897. * then A0's share of the cpu resource is:
  6898. *
  6899. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6900. *
  6901. * We achieve this by letting init_task_group's tasks sit
  6902. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6903. */
  6904. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6905. #elif defined CONFIG_USER_SCHED
  6906. root_task_group.shares = NICE_0_LOAD;
  6907. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6908. /*
  6909. * In case of task-groups formed thr' the user id of tasks,
  6910. * init_task_group represents tasks belonging to root user.
  6911. * Hence it forms a sibling of all subsequent groups formed.
  6912. * In this case, init_task_group gets only a fraction of overall
  6913. * system cpu resource, based on the weight assigned to root
  6914. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6915. * by letting tasks of init_task_group sit in a separate cfs_rq
  6916. * (init_cfs_rq) and having one entity represent this group of
  6917. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6918. */
  6919. init_tg_cfs_entry(&init_task_group,
  6920. &per_cpu(init_cfs_rq, i),
  6921. &per_cpu(init_sched_entity, i), i, 1,
  6922. root_task_group.se[i]);
  6923. #endif
  6924. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6925. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6926. #ifdef CONFIG_RT_GROUP_SCHED
  6927. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6928. #ifdef CONFIG_CGROUP_SCHED
  6929. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6930. #elif defined CONFIG_USER_SCHED
  6931. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6932. init_tg_rt_entry(&init_task_group,
  6933. &per_cpu(init_rt_rq, i),
  6934. &per_cpu(init_sched_rt_entity, i), i, 1,
  6935. root_task_group.rt_se[i]);
  6936. #endif
  6937. #endif
  6938. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6939. rq->cpu_load[j] = 0;
  6940. #ifdef CONFIG_SMP
  6941. rq->sd = NULL;
  6942. rq->rd = NULL;
  6943. rq->active_balance = 0;
  6944. rq->next_balance = jiffies;
  6945. rq->push_cpu = 0;
  6946. rq->cpu = i;
  6947. rq->online = 0;
  6948. rq->migration_thread = NULL;
  6949. INIT_LIST_HEAD(&rq->migration_queue);
  6950. rq_attach_root(rq, &def_root_domain);
  6951. #endif
  6952. init_rq_hrtick(rq);
  6953. atomic_set(&rq->nr_iowait, 0);
  6954. }
  6955. set_load_weight(&init_task);
  6956. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6957. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6958. #endif
  6959. #ifdef CONFIG_SMP
  6960. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6961. #endif
  6962. #ifdef CONFIG_RT_MUTEXES
  6963. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6964. #endif
  6965. /*
  6966. * The boot idle thread does lazy MMU switching as well:
  6967. */
  6968. atomic_inc(&init_mm.mm_count);
  6969. enter_lazy_tlb(&init_mm, current);
  6970. /*
  6971. * Make us the idle thread. Technically, schedule() should not be
  6972. * called from this thread, however somewhere below it might be,
  6973. * but because we are the idle thread, we just pick up running again
  6974. * when this runqueue becomes "idle".
  6975. */
  6976. init_idle(current, smp_processor_id());
  6977. /*
  6978. * During early bootup we pretend to be a normal task:
  6979. */
  6980. current->sched_class = &fair_sched_class;
  6981. scheduler_running = 1;
  6982. }
  6983. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6984. void __might_sleep(char *file, int line)
  6985. {
  6986. #ifdef in_atomic
  6987. static unsigned long prev_jiffy; /* ratelimiting */
  6988. if ((in_atomic() || irqs_disabled()) &&
  6989. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6990. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6991. return;
  6992. prev_jiffy = jiffies;
  6993. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6994. " context at %s:%d\n", file, line);
  6995. printk("in_atomic():%d, irqs_disabled():%d\n",
  6996. in_atomic(), irqs_disabled());
  6997. debug_show_held_locks(current);
  6998. if (irqs_disabled())
  6999. print_irqtrace_events(current);
  7000. dump_stack();
  7001. }
  7002. #endif
  7003. }
  7004. EXPORT_SYMBOL(__might_sleep);
  7005. #endif
  7006. #ifdef CONFIG_MAGIC_SYSRQ
  7007. static void normalize_task(struct rq *rq, struct task_struct *p)
  7008. {
  7009. int on_rq;
  7010. update_rq_clock(rq);
  7011. on_rq = p->se.on_rq;
  7012. if (on_rq)
  7013. deactivate_task(rq, p, 0);
  7014. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7015. if (on_rq) {
  7016. activate_task(rq, p, 0);
  7017. resched_task(rq->curr);
  7018. }
  7019. }
  7020. void normalize_rt_tasks(void)
  7021. {
  7022. struct task_struct *g, *p;
  7023. unsigned long flags;
  7024. struct rq *rq;
  7025. read_lock_irqsave(&tasklist_lock, flags);
  7026. do_each_thread(g, p) {
  7027. /*
  7028. * Only normalize user tasks:
  7029. */
  7030. if (!p->mm)
  7031. continue;
  7032. p->se.exec_start = 0;
  7033. #ifdef CONFIG_SCHEDSTATS
  7034. p->se.wait_start = 0;
  7035. p->se.sleep_start = 0;
  7036. p->se.block_start = 0;
  7037. #endif
  7038. if (!rt_task(p)) {
  7039. /*
  7040. * Renice negative nice level userspace
  7041. * tasks back to 0:
  7042. */
  7043. if (TASK_NICE(p) < 0 && p->mm)
  7044. set_user_nice(p, 0);
  7045. continue;
  7046. }
  7047. spin_lock(&p->pi_lock);
  7048. rq = __task_rq_lock(p);
  7049. normalize_task(rq, p);
  7050. __task_rq_unlock(rq);
  7051. spin_unlock(&p->pi_lock);
  7052. } while_each_thread(g, p);
  7053. read_unlock_irqrestore(&tasklist_lock, flags);
  7054. }
  7055. #endif /* CONFIG_MAGIC_SYSRQ */
  7056. #ifdef CONFIG_IA64
  7057. /*
  7058. * These functions are only useful for the IA64 MCA handling.
  7059. *
  7060. * They can only be called when the whole system has been
  7061. * stopped - every CPU needs to be quiescent, and no scheduling
  7062. * activity can take place. Using them for anything else would
  7063. * be a serious bug, and as a result, they aren't even visible
  7064. * under any other configuration.
  7065. */
  7066. /**
  7067. * curr_task - return the current task for a given cpu.
  7068. * @cpu: the processor in question.
  7069. *
  7070. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7071. */
  7072. struct task_struct *curr_task(int cpu)
  7073. {
  7074. return cpu_curr(cpu);
  7075. }
  7076. /**
  7077. * set_curr_task - set the current task for a given cpu.
  7078. * @cpu: the processor in question.
  7079. * @p: the task pointer to set.
  7080. *
  7081. * Description: This function must only be used when non-maskable interrupts
  7082. * are serviced on a separate stack. It allows the architecture to switch the
  7083. * notion of the current task on a cpu in a non-blocking manner. This function
  7084. * must be called with all CPU's synchronized, and interrupts disabled, the
  7085. * and caller must save the original value of the current task (see
  7086. * curr_task() above) and restore that value before reenabling interrupts and
  7087. * re-starting the system.
  7088. *
  7089. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7090. */
  7091. void set_curr_task(int cpu, struct task_struct *p)
  7092. {
  7093. cpu_curr(cpu) = p;
  7094. }
  7095. #endif
  7096. #ifdef CONFIG_FAIR_GROUP_SCHED
  7097. static void free_fair_sched_group(struct task_group *tg)
  7098. {
  7099. int i;
  7100. for_each_possible_cpu(i) {
  7101. if (tg->cfs_rq)
  7102. kfree(tg->cfs_rq[i]);
  7103. if (tg->se)
  7104. kfree(tg->se[i]);
  7105. }
  7106. kfree(tg->cfs_rq);
  7107. kfree(tg->se);
  7108. }
  7109. static
  7110. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7111. {
  7112. struct cfs_rq *cfs_rq;
  7113. struct sched_entity *se, *parent_se;
  7114. struct rq *rq;
  7115. int i;
  7116. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7117. if (!tg->cfs_rq)
  7118. goto err;
  7119. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7120. if (!tg->se)
  7121. goto err;
  7122. tg->shares = NICE_0_LOAD;
  7123. for_each_possible_cpu(i) {
  7124. rq = cpu_rq(i);
  7125. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7126. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7127. if (!cfs_rq)
  7128. goto err;
  7129. se = kmalloc_node(sizeof(struct sched_entity),
  7130. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7131. if (!se)
  7132. goto err;
  7133. parent_se = parent ? parent->se[i] : NULL;
  7134. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7135. }
  7136. return 1;
  7137. err:
  7138. return 0;
  7139. }
  7140. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7141. {
  7142. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7143. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7144. }
  7145. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7146. {
  7147. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7148. }
  7149. #else /* !CONFG_FAIR_GROUP_SCHED */
  7150. static inline void free_fair_sched_group(struct task_group *tg)
  7151. {
  7152. }
  7153. static inline
  7154. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7155. {
  7156. return 1;
  7157. }
  7158. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7159. {
  7160. }
  7161. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7162. {
  7163. }
  7164. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7165. #ifdef CONFIG_RT_GROUP_SCHED
  7166. static void free_rt_sched_group(struct task_group *tg)
  7167. {
  7168. int i;
  7169. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7170. for_each_possible_cpu(i) {
  7171. if (tg->rt_rq)
  7172. kfree(tg->rt_rq[i]);
  7173. if (tg->rt_se)
  7174. kfree(tg->rt_se[i]);
  7175. }
  7176. kfree(tg->rt_rq);
  7177. kfree(tg->rt_se);
  7178. }
  7179. static
  7180. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7181. {
  7182. struct rt_rq *rt_rq;
  7183. struct sched_rt_entity *rt_se, *parent_se;
  7184. struct rq *rq;
  7185. int i;
  7186. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7187. if (!tg->rt_rq)
  7188. goto err;
  7189. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7190. if (!tg->rt_se)
  7191. goto err;
  7192. init_rt_bandwidth(&tg->rt_bandwidth,
  7193. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7194. for_each_possible_cpu(i) {
  7195. rq = cpu_rq(i);
  7196. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7197. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7198. if (!rt_rq)
  7199. goto err;
  7200. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7201. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7202. if (!rt_se)
  7203. goto err;
  7204. parent_se = parent ? parent->rt_se[i] : NULL;
  7205. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7206. }
  7207. return 1;
  7208. err:
  7209. return 0;
  7210. }
  7211. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7212. {
  7213. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7214. &cpu_rq(cpu)->leaf_rt_rq_list);
  7215. }
  7216. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7217. {
  7218. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7219. }
  7220. #else /* !CONFIG_RT_GROUP_SCHED */
  7221. static inline void free_rt_sched_group(struct task_group *tg)
  7222. {
  7223. }
  7224. static inline
  7225. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7226. {
  7227. return 1;
  7228. }
  7229. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7230. {
  7231. }
  7232. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7233. {
  7234. }
  7235. #endif /* CONFIG_RT_GROUP_SCHED */
  7236. #ifdef CONFIG_GROUP_SCHED
  7237. static void free_sched_group(struct task_group *tg)
  7238. {
  7239. free_fair_sched_group(tg);
  7240. free_rt_sched_group(tg);
  7241. kfree(tg);
  7242. }
  7243. /* allocate runqueue etc for a new task group */
  7244. struct task_group *sched_create_group(struct task_group *parent)
  7245. {
  7246. struct task_group *tg;
  7247. unsigned long flags;
  7248. int i;
  7249. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7250. if (!tg)
  7251. return ERR_PTR(-ENOMEM);
  7252. if (!alloc_fair_sched_group(tg, parent))
  7253. goto err;
  7254. if (!alloc_rt_sched_group(tg, parent))
  7255. goto err;
  7256. spin_lock_irqsave(&task_group_lock, flags);
  7257. for_each_possible_cpu(i) {
  7258. register_fair_sched_group(tg, i);
  7259. register_rt_sched_group(tg, i);
  7260. }
  7261. list_add_rcu(&tg->list, &task_groups);
  7262. WARN_ON(!parent); /* root should already exist */
  7263. tg->parent = parent;
  7264. list_add_rcu(&tg->siblings, &parent->children);
  7265. INIT_LIST_HEAD(&tg->children);
  7266. spin_unlock_irqrestore(&task_group_lock, flags);
  7267. return tg;
  7268. err:
  7269. free_sched_group(tg);
  7270. return ERR_PTR(-ENOMEM);
  7271. }
  7272. /* rcu callback to free various structures associated with a task group */
  7273. static void free_sched_group_rcu(struct rcu_head *rhp)
  7274. {
  7275. /* now it should be safe to free those cfs_rqs */
  7276. free_sched_group(container_of(rhp, struct task_group, rcu));
  7277. }
  7278. /* Destroy runqueue etc associated with a task group */
  7279. void sched_destroy_group(struct task_group *tg)
  7280. {
  7281. unsigned long flags;
  7282. int i;
  7283. spin_lock_irqsave(&task_group_lock, flags);
  7284. for_each_possible_cpu(i) {
  7285. unregister_fair_sched_group(tg, i);
  7286. unregister_rt_sched_group(tg, i);
  7287. }
  7288. list_del_rcu(&tg->list);
  7289. list_del_rcu(&tg->siblings);
  7290. spin_unlock_irqrestore(&task_group_lock, flags);
  7291. /* wait for possible concurrent references to cfs_rqs complete */
  7292. call_rcu(&tg->rcu, free_sched_group_rcu);
  7293. }
  7294. /* change task's runqueue when it moves between groups.
  7295. * The caller of this function should have put the task in its new group
  7296. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7297. * reflect its new group.
  7298. */
  7299. void sched_move_task(struct task_struct *tsk)
  7300. {
  7301. int on_rq, running;
  7302. unsigned long flags;
  7303. struct rq *rq;
  7304. rq = task_rq_lock(tsk, &flags);
  7305. update_rq_clock(rq);
  7306. running = task_current(rq, tsk);
  7307. on_rq = tsk->se.on_rq;
  7308. if (on_rq)
  7309. dequeue_task(rq, tsk, 0);
  7310. if (unlikely(running))
  7311. tsk->sched_class->put_prev_task(rq, tsk);
  7312. set_task_rq(tsk, task_cpu(tsk));
  7313. #ifdef CONFIG_FAIR_GROUP_SCHED
  7314. if (tsk->sched_class->moved_group)
  7315. tsk->sched_class->moved_group(tsk);
  7316. #endif
  7317. if (unlikely(running))
  7318. tsk->sched_class->set_curr_task(rq);
  7319. if (on_rq)
  7320. enqueue_task(rq, tsk, 0);
  7321. task_rq_unlock(rq, &flags);
  7322. }
  7323. #endif /* CONFIG_GROUP_SCHED */
  7324. #ifdef CONFIG_FAIR_GROUP_SCHED
  7325. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7326. {
  7327. struct cfs_rq *cfs_rq = se->cfs_rq;
  7328. int on_rq;
  7329. on_rq = se->on_rq;
  7330. if (on_rq)
  7331. dequeue_entity(cfs_rq, se, 0);
  7332. se->load.weight = shares;
  7333. se->load.inv_weight = 0;
  7334. if (on_rq)
  7335. enqueue_entity(cfs_rq, se, 0);
  7336. }
  7337. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7338. {
  7339. struct cfs_rq *cfs_rq = se->cfs_rq;
  7340. struct rq *rq = cfs_rq->rq;
  7341. unsigned long flags;
  7342. spin_lock_irqsave(&rq->lock, flags);
  7343. __set_se_shares(se, shares);
  7344. spin_unlock_irqrestore(&rq->lock, flags);
  7345. }
  7346. static DEFINE_MUTEX(shares_mutex);
  7347. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7348. {
  7349. int i;
  7350. unsigned long flags;
  7351. /*
  7352. * We can't change the weight of the root cgroup.
  7353. */
  7354. if (!tg->se[0])
  7355. return -EINVAL;
  7356. if (shares < MIN_SHARES)
  7357. shares = MIN_SHARES;
  7358. else if (shares > MAX_SHARES)
  7359. shares = MAX_SHARES;
  7360. mutex_lock(&shares_mutex);
  7361. if (tg->shares == shares)
  7362. goto done;
  7363. spin_lock_irqsave(&task_group_lock, flags);
  7364. for_each_possible_cpu(i)
  7365. unregister_fair_sched_group(tg, i);
  7366. list_del_rcu(&tg->siblings);
  7367. spin_unlock_irqrestore(&task_group_lock, flags);
  7368. /* wait for any ongoing reference to this group to finish */
  7369. synchronize_sched();
  7370. /*
  7371. * Now we are free to modify the group's share on each cpu
  7372. * w/o tripping rebalance_share or load_balance_fair.
  7373. */
  7374. tg->shares = shares;
  7375. for_each_possible_cpu(i) {
  7376. /*
  7377. * force a rebalance
  7378. */
  7379. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7380. set_se_shares(tg->se[i], shares);
  7381. }
  7382. /*
  7383. * Enable load balance activity on this group, by inserting it back on
  7384. * each cpu's rq->leaf_cfs_rq_list.
  7385. */
  7386. spin_lock_irqsave(&task_group_lock, flags);
  7387. for_each_possible_cpu(i)
  7388. register_fair_sched_group(tg, i);
  7389. list_add_rcu(&tg->siblings, &tg->parent->children);
  7390. spin_unlock_irqrestore(&task_group_lock, flags);
  7391. done:
  7392. mutex_unlock(&shares_mutex);
  7393. return 0;
  7394. }
  7395. unsigned long sched_group_shares(struct task_group *tg)
  7396. {
  7397. return tg->shares;
  7398. }
  7399. #endif
  7400. #ifdef CONFIG_RT_GROUP_SCHED
  7401. /*
  7402. * Ensure that the real time constraints are schedulable.
  7403. */
  7404. static DEFINE_MUTEX(rt_constraints_mutex);
  7405. static unsigned long to_ratio(u64 period, u64 runtime)
  7406. {
  7407. if (runtime == RUNTIME_INF)
  7408. return 1ULL << 16;
  7409. return div64_u64(runtime << 16, period);
  7410. }
  7411. #ifdef CONFIG_CGROUP_SCHED
  7412. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7413. {
  7414. struct task_group *tgi, *parent = tg->parent;
  7415. unsigned long total = 0;
  7416. if (!parent) {
  7417. if (global_rt_period() < period)
  7418. return 0;
  7419. return to_ratio(period, runtime) <
  7420. to_ratio(global_rt_period(), global_rt_runtime());
  7421. }
  7422. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7423. return 0;
  7424. rcu_read_lock();
  7425. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7426. if (tgi == tg)
  7427. continue;
  7428. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7429. tgi->rt_bandwidth.rt_runtime);
  7430. }
  7431. rcu_read_unlock();
  7432. return total + to_ratio(period, runtime) <=
  7433. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7434. parent->rt_bandwidth.rt_runtime);
  7435. }
  7436. #elif defined CONFIG_USER_SCHED
  7437. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7438. {
  7439. struct task_group *tgi;
  7440. unsigned long total = 0;
  7441. unsigned long global_ratio =
  7442. to_ratio(global_rt_period(), global_rt_runtime());
  7443. rcu_read_lock();
  7444. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7445. if (tgi == tg)
  7446. continue;
  7447. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7448. tgi->rt_bandwidth.rt_runtime);
  7449. }
  7450. rcu_read_unlock();
  7451. return total + to_ratio(period, runtime) < global_ratio;
  7452. }
  7453. #endif
  7454. /* Must be called with tasklist_lock held */
  7455. static inline int tg_has_rt_tasks(struct task_group *tg)
  7456. {
  7457. struct task_struct *g, *p;
  7458. do_each_thread(g, p) {
  7459. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7460. return 1;
  7461. } while_each_thread(g, p);
  7462. return 0;
  7463. }
  7464. static int tg_set_bandwidth(struct task_group *tg,
  7465. u64 rt_period, u64 rt_runtime)
  7466. {
  7467. int i, err = 0;
  7468. mutex_lock(&rt_constraints_mutex);
  7469. read_lock(&tasklist_lock);
  7470. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7471. err = -EBUSY;
  7472. goto unlock;
  7473. }
  7474. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7475. err = -EINVAL;
  7476. goto unlock;
  7477. }
  7478. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7479. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7480. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7481. for_each_possible_cpu(i) {
  7482. struct rt_rq *rt_rq = tg->rt_rq[i];
  7483. spin_lock(&rt_rq->rt_runtime_lock);
  7484. rt_rq->rt_runtime = rt_runtime;
  7485. spin_unlock(&rt_rq->rt_runtime_lock);
  7486. }
  7487. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7488. unlock:
  7489. read_unlock(&tasklist_lock);
  7490. mutex_unlock(&rt_constraints_mutex);
  7491. return err;
  7492. }
  7493. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7494. {
  7495. u64 rt_runtime, rt_period;
  7496. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7497. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7498. if (rt_runtime_us < 0)
  7499. rt_runtime = RUNTIME_INF;
  7500. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7501. }
  7502. long sched_group_rt_runtime(struct task_group *tg)
  7503. {
  7504. u64 rt_runtime_us;
  7505. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7506. return -1;
  7507. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7508. do_div(rt_runtime_us, NSEC_PER_USEC);
  7509. return rt_runtime_us;
  7510. }
  7511. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7512. {
  7513. u64 rt_runtime, rt_period;
  7514. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7515. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7516. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7517. }
  7518. long sched_group_rt_period(struct task_group *tg)
  7519. {
  7520. u64 rt_period_us;
  7521. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7522. do_div(rt_period_us, NSEC_PER_USEC);
  7523. return rt_period_us;
  7524. }
  7525. static int sched_rt_global_constraints(void)
  7526. {
  7527. struct task_group *tg = &root_task_group;
  7528. u64 rt_runtime, rt_period;
  7529. int ret = 0;
  7530. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7531. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7532. mutex_lock(&rt_constraints_mutex);
  7533. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7534. ret = -EINVAL;
  7535. mutex_unlock(&rt_constraints_mutex);
  7536. return ret;
  7537. }
  7538. #else /* !CONFIG_RT_GROUP_SCHED */
  7539. static int sched_rt_global_constraints(void)
  7540. {
  7541. unsigned long flags;
  7542. int i;
  7543. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7544. for_each_possible_cpu(i) {
  7545. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7546. spin_lock(&rt_rq->rt_runtime_lock);
  7547. rt_rq->rt_runtime = global_rt_runtime();
  7548. spin_unlock(&rt_rq->rt_runtime_lock);
  7549. }
  7550. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7551. return 0;
  7552. }
  7553. #endif /* CONFIG_RT_GROUP_SCHED */
  7554. int sched_rt_handler(struct ctl_table *table, int write,
  7555. struct file *filp, void __user *buffer, size_t *lenp,
  7556. loff_t *ppos)
  7557. {
  7558. int ret;
  7559. int old_period, old_runtime;
  7560. static DEFINE_MUTEX(mutex);
  7561. mutex_lock(&mutex);
  7562. old_period = sysctl_sched_rt_period;
  7563. old_runtime = sysctl_sched_rt_runtime;
  7564. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7565. if (!ret && write) {
  7566. ret = sched_rt_global_constraints();
  7567. if (ret) {
  7568. sysctl_sched_rt_period = old_period;
  7569. sysctl_sched_rt_runtime = old_runtime;
  7570. } else {
  7571. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7572. def_rt_bandwidth.rt_period =
  7573. ns_to_ktime(global_rt_period());
  7574. }
  7575. }
  7576. mutex_unlock(&mutex);
  7577. return ret;
  7578. }
  7579. #ifdef CONFIG_CGROUP_SCHED
  7580. /* return corresponding task_group object of a cgroup */
  7581. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7582. {
  7583. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7584. struct task_group, css);
  7585. }
  7586. static struct cgroup_subsys_state *
  7587. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7588. {
  7589. struct task_group *tg, *parent;
  7590. if (!cgrp->parent) {
  7591. /* This is early initialization for the top cgroup */
  7592. init_task_group.css.cgroup = cgrp;
  7593. return &init_task_group.css;
  7594. }
  7595. parent = cgroup_tg(cgrp->parent);
  7596. tg = sched_create_group(parent);
  7597. if (IS_ERR(tg))
  7598. return ERR_PTR(-ENOMEM);
  7599. /* Bind the cgroup to task_group object we just created */
  7600. tg->css.cgroup = cgrp;
  7601. return &tg->css;
  7602. }
  7603. static void
  7604. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7605. {
  7606. struct task_group *tg = cgroup_tg(cgrp);
  7607. sched_destroy_group(tg);
  7608. }
  7609. static int
  7610. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7611. struct task_struct *tsk)
  7612. {
  7613. #ifdef CONFIG_RT_GROUP_SCHED
  7614. /* Don't accept realtime tasks when there is no way for them to run */
  7615. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7616. return -EINVAL;
  7617. #else
  7618. /* We don't support RT-tasks being in separate groups */
  7619. if (tsk->sched_class != &fair_sched_class)
  7620. return -EINVAL;
  7621. #endif
  7622. return 0;
  7623. }
  7624. static void
  7625. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7626. struct cgroup *old_cont, struct task_struct *tsk)
  7627. {
  7628. sched_move_task(tsk);
  7629. }
  7630. #ifdef CONFIG_FAIR_GROUP_SCHED
  7631. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7632. u64 shareval)
  7633. {
  7634. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7635. }
  7636. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7637. {
  7638. struct task_group *tg = cgroup_tg(cgrp);
  7639. return (u64) tg->shares;
  7640. }
  7641. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7642. #ifdef CONFIG_RT_GROUP_SCHED
  7643. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7644. s64 val)
  7645. {
  7646. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7647. }
  7648. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7649. {
  7650. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7651. }
  7652. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7653. u64 rt_period_us)
  7654. {
  7655. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7656. }
  7657. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7658. {
  7659. return sched_group_rt_period(cgroup_tg(cgrp));
  7660. }
  7661. #endif /* CONFIG_RT_GROUP_SCHED */
  7662. static struct cftype cpu_files[] = {
  7663. #ifdef CONFIG_FAIR_GROUP_SCHED
  7664. {
  7665. .name = "shares",
  7666. .read_u64 = cpu_shares_read_u64,
  7667. .write_u64 = cpu_shares_write_u64,
  7668. },
  7669. #endif
  7670. #ifdef CONFIG_RT_GROUP_SCHED
  7671. {
  7672. .name = "rt_runtime_us",
  7673. .read_s64 = cpu_rt_runtime_read,
  7674. .write_s64 = cpu_rt_runtime_write,
  7675. },
  7676. {
  7677. .name = "rt_period_us",
  7678. .read_u64 = cpu_rt_period_read_uint,
  7679. .write_u64 = cpu_rt_period_write_uint,
  7680. },
  7681. #endif
  7682. };
  7683. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7684. {
  7685. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7686. }
  7687. struct cgroup_subsys cpu_cgroup_subsys = {
  7688. .name = "cpu",
  7689. .create = cpu_cgroup_create,
  7690. .destroy = cpu_cgroup_destroy,
  7691. .can_attach = cpu_cgroup_can_attach,
  7692. .attach = cpu_cgroup_attach,
  7693. .populate = cpu_cgroup_populate,
  7694. .subsys_id = cpu_cgroup_subsys_id,
  7695. .early_init = 1,
  7696. };
  7697. #endif /* CONFIG_CGROUP_SCHED */
  7698. #ifdef CONFIG_CGROUP_CPUACCT
  7699. /*
  7700. * CPU accounting code for task groups.
  7701. *
  7702. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7703. * (balbir@in.ibm.com).
  7704. */
  7705. /* track cpu usage of a group of tasks */
  7706. struct cpuacct {
  7707. struct cgroup_subsys_state css;
  7708. /* cpuusage holds pointer to a u64-type object on every cpu */
  7709. u64 *cpuusage;
  7710. };
  7711. struct cgroup_subsys cpuacct_subsys;
  7712. /* return cpu accounting group corresponding to this container */
  7713. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7714. {
  7715. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7716. struct cpuacct, css);
  7717. }
  7718. /* return cpu accounting group to which this task belongs */
  7719. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7720. {
  7721. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7722. struct cpuacct, css);
  7723. }
  7724. /* create a new cpu accounting group */
  7725. static struct cgroup_subsys_state *cpuacct_create(
  7726. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7727. {
  7728. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7729. if (!ca)
  7730. return ERR_PTR(-ENOMEM);
  7731. ca->cpuusage = alloc_percpu(u64);
  7732. if (!ca->cpuusage) {
  7733. kfree(ca);
  7734. return ERR_PTR(-ENOMEM);
  7735. }
  7736. return &ca->css;
  7737. }
  7738. /* destroy an existing cpu accounting group */
  7739. static void
  7740. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7741. {
  7742. struct cpuacct *ca = cgroup_ca(cgrp);
  7743. free_percpu(ca->cpuusage);
  7744. kfree(ca);
  7745. }
  7746. /* return total cpu usage (in nanoseconds) of a group */
  7747. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7748. {
  7749. struct cpuacct *ca = cgroup_ca(cgrp);
  7750. u64 totalcpuusage = 0;
  7751. int i;
  7752. for_each_possible_cpu(i) {
  7753. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7754. /*
  7755. * Take rq->lock to make 64-bit addition safe on 32-bit
  7756. * platforms.
  7757. */
  7758. spin_lock_irq(&cpu_rq(i)->lock);
  7759. totalcpuusage += *cpuusage;
  7760. spin_unlock_irq(&cpu_rq(i)->lock);
  7761. }
  7762. return totalcpuusage;
  7763. }
  7764. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7765. u64 reset)
  7766. {
  7767. struct cpuacct *ca = cgroup_ca(cgrp);
  7768. int err = 0;
  7769. int i;
  7770. if (reset) {
  7771. err = -EINVAL;
  7772. goto out;
  7773. }
  7774. for_each_possible_cpu(i) {
  7775. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7776. spin_lock_irq(&cpu_rq(i)->lock);
  7777. *cpuusage = 0;
  7778. spin_unlock_irq(&cpu_rq(i)->lock);
  7779. }
  7780. out:
  7781. return err;
  7782. }
  7783. static struct cftype files[] = {
  7784. {
  7785. .name = "usage",
  7786. .read_u64 = cpuusage_read,
  7787. .write_u64 = cpuusage_write,
  7788. },
  7789. };
  7790. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7791. {
  7792. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7793. }
  7794. /*
  7795. * charge this task's execution time to its accounting group.
  7796. *
  7797. * called with rq->lock held.
  7798. */
  7799. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7800. {
  7801. struct cpuacct *ca;
  7802. if (!cpuacct_subsys.active)
  7803. return;
  7804. ca = task_ca(tsk);
  7805. if (ca) {
  7806. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7807. *cpuusage += cputime;
  7808. }
  7809. }
  7810. struct cgroup_subsys cpuacct_subsys = {
  7811. .name = "cpuacct",
  7812. .create = cpuacct_create,
  7813. .destroy = cpuacct_destroy,
  7814. .populate = cpuacct_populate,
  7815. .subsys_id = cpuacct_subsys_id,
  7816. };
  7817. #endif /* CONFIG_CGROUP_CPUACCT */