perf_event.c 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/percpu.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/reboot.h>
  25. #include <linux/vmstat.h>
  26. #include <linux/device.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/hardirq.h>
  29. #include <linux/rculist.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/syscalls.h>
  32. #include <linux/anon_inodes.h>
  33. #include <linux/kernel_stat.h>
  34. #include <linux/perf_event.h>
  35. #include <linux/ftrace_event.h>
  36. #include <linux/hw_breakpoint.h>
  37. #include <asm/irq_regs.h>
  38. struct remote_function_call {
  39. struct task_struct *p;
  40. int (*func)(void *info);
  41. void *info;
  42. int ret;
  43. };
  44. static void remote_function(void *data)
  45. {
  46. struct remote_function_call *tfc = data;
  47. struct task_struct *p = tfc->p;
  48. if (p) {
  49. tfc->ret = -EAGAIN;
  50. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  51. return;
  52. }
  53. tfc->ret = tfc->func(tfc->info);
  54. }
  55. /**
  56. * task_function_call - call a function on the cpu on which a task runs
  57. * @p: the task to evaluate
  58. * @func: the function to be called
  59. * @info: the function call argument
  60. *
  61. * Calls the function @func when the task is currently running. This might
  62. * be on the current CPU, which just calls the function directly
  63. *
  64. * returns: @func return value, or
  65. * -ESRCH - when the process isn't running
  66. * -EAGAIN - when the process moved away
  67. */
  68. static int
  69. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  70. {
  71. struct remote_function_call data = {
  72. .p = p,
  73. .func = func,
  74. .info = info,
  75. .ret = -ESRCH, /* No such (running) process */
  76. };
  77. if (task_curr(p))
  78. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  79. return data.ret;
  80. }
  81. /**
  82. * cpu_function_call - call a function on the cpu
  83. * @func: the function to be called
  84. * @info: the function call argument
  85. *
  86. * Calls the function @func on the remote cpu.
  87. *
  88. * returns: @func return value or -ENXIO when the cpu is offline
  89. */
  90. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  91. {
  92. struct remote_function_call data = {
  93. .p = NULL,
  94. .func = func,
  95. .info = info,
  96. .ret = -ENXIO, /* No such CPU */
  97. };
  98. smp_call_function_single(cpu, remote_function, &data, 1);
  99. return data.ret;
  100. }
  101. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  102. PERF_FLAG_FD_OUTPUT |\
  103. PERF_FLAG_PID_CGROUP)
  104. enum event_type_t {
  105. EVENT_FLEXIBLE = 0x1,
  106. EVENT_PINNED = 0x2,
  107. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  108. };
  109. /*
  110. * perf_sched_events : >0 events exist
  111. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  112. */
  113. atomic_t perf_sched_events __read_mostly;
  114. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  115. static atomic_t nr_mmap_events __read_mostly;
  116. static atomic_t nr_comm_events __read_mostly;
  117. static atomic_t nr_task_events __read_mostly;
  118. static LIST_HEAD(pmus);
  119. static DEFINE_MUTEX(pmus_lock);
  120. static struct srcu_struct pmus_srcu;
  121. /*
  122. * perf event paranoia level:
  123. * -1 - not paranoid at all
  124. * 0 - disallow raw tracepoint access for unpriv
  125. * 1 - disallow cpu events for unpriv
  126. * 2 - disallow kernel profiling for unpriv
  127. */
  128. int sysctl_perf_event_paranoid __read_mostly = 1;
  129. int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
  130. /*
  131. * max perf event sample rate
  132. */
  133. #define DEFAULT_MAX_SAMPLE_RATE 100000
  134. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  135. static int max_samples_per_tick __read_mostly =
  136. DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  137. int perf_proc_update_handler(struct ctl_table *table, int write,
  138. void __user *buffer, size_t *lenp,
  139. loff_t *ppos)
  140. {
  141. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  142. if (ret || !write)
  143. return ret;
  144. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  145. return 0;
  146. }
  147. static atomic64_t perf_event_id;
  148. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  149. enum event_type_t event_type);
  150. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  151. enum event_type_t event_type,
  152. struct task_struct *task);
  153. static void update_context_time(struct perf_event_context *ctx);
  154. static u64 perf_event_time(struct perf_event *event);
  155. void __weak perf_event_print_debug(void) { }
  156. extern __weak const char *perf_pmu_name(void)
  157. {
  158. return "pmu";
  159. }
  160. static inline u64 perf_clock(void)
  161. {
  162. return local_clock();
  163. }
  164. static inline struct perf_cpu_context *
  165. __get_cpu_context(struct perf_event_context *ctx)
  166. {
  167. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  168. }
  169. #ifdef CONFIG_CGROUP_PERF
  170. /*
  171. * Must ensure cgroup is pinned (css_get) before calling
  172. * this function. In other words, we cannot call this function
  173. * if there is no cgroup event for the current CPU context.
  174. */
  175. static inline struct perf_cgroup *
  176. perf_cgroup_from_task(struct task_struct *task)
  177. {
  178. return container_of(task_subsys_state(task, perf_subsys_id),
  179. struct perf_cgroup, css);
  180. }
  181. static inline bool
  182. perf_cgroup_match(struct perf_event *event)
  183. {
  184. struct perf_event_context *ctx = event->ctx;
  185. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  186. return !event->cgrp || event->cgrp == cpuctx->cgrp;
  187. }
  188. static inline void perf_get_cgroup(struct perf_event *event)
  189. {
  190. css_get(&event->cgrp->css);
  191. }
  192. static inline void perf_put_cgroup(struct perf_event *event)
  193. {
  194. css_put(&event->cgrp->css);
  195. }
  196. static inline void perf_detach_cgroup(struct perf_event *event)
  197. {
  198. perf_put_cgroup(event);
  199. event->cgrp = NULL;
  200. }
  201. static inline int is_cgroup_event(struct perf_event *event)
  202. {
  203. return event->cgrp != NULL;
  204. }
  205. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  206. {
  207. struct perf_cgroup_info *t;
  208. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  209. return t->time;
  210. }
  211. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  212. {
  213. struct perf_cgroup_info *info;
  214. u64 now;
  215. now = perf_clock();
  216. info = this_cpu_ptr(cgrp->info);
  217. info->time += now - info->timestamp;
  218. info->timestamp = now;
  219. }
  220. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  221. {
  222. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  223. if (cgrp_out)
  224. __update_cgrp_time(cgrp_out);
  225. }
  226. static inline void update_cgrp_time_from_event(struct perf_event *event)
  227. {
  228. struct perf_cgroup *cgrp;
  229. /*
  230. * ensure we access cgroup data only when needed and
  231. * when we know the cgroup is pinned (css_get)
  232. */
  233. if (!is_cgroup_event(event))
  234. return;
  235. cgrp = perf_cgroup_from_task(current);
  236. /*
  237. * Do not update time when cgroup is not active
  238. */
  239. if (cgrp == event->cgrp)
  240. __update_cgrp_time(event->cgrp);
  241. }
  242. static inline void
  243. perf_cgroup_set_timestamp(struct task_struct *task,
  244. struct perf_event_context *ctx)
  245. {
  246. struct perf_cgroup *cgrp;
  247. struct perf_cgroup_info *info;
  248. /*
  249. * ctx->lock held by caller
  250. * ensure we do not access cgroup data
  251. * unless we have the cgroup pinned (css_get)
  252. */
  253. if (!task || !ctx->nr_cgroups)
  254. return;
  255. cgrp = perf_cgroup_from_task(task);
  256. info = this_cpu_ptr(cgrp->info);
  257. info->timestamp = ctx->timestamp;
  258. }
  259. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  260. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  261. /*
  262. * reschedule events based on the cgroup constraint of task.
  263. *
  264. * mode SWOUT : schedule out everything
  265. * mode SWIN : schedule in based on cgroup for next
  266. */
  267. void perf_cgroup_switch(struct task_struct *task, int mode)
  268. {
  269. struct perf_cpu_context *cpuctx;
  270. struct pmu *pmu;
  271. unsigned long flags;
  272. /*
  273. * disable interrupts to avoid geting nr_cgroup
  274. * changes via __perf_event_disable(). Also
  275. * avoids preemption.
  276. */
  277. local_irq_save(flags);
  278. /*
  279. * we reschedule only in the presence of cgroup
  280. * constrained events.
  281. */
  282. rcu_read_lock();
  283. list_for_each_entry_rcu(pmu, &pmus, entry) {
  284. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  285. perf_pmu_disable(cpuctx->ctx.pmu);
  286. /*
  287. * perf_cgroup_events says at least one
  288. * context on this CPU has cgroup events.
  289. *
  290. * ctx->nr_cgroups reports the number of cgroup
  291. * events for a context.
  292. */
  293. if (cpuctx->ctx.nr_cgroups > 0) {
  294. if (mode & PERF_CGROUP_SWOUT) {
  295. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  296. /*
  297. * must not be done before ctxswout due
  298. * to event_filter_match() in event_sched_out()
  299. */
  300. cpuctx->cgrp = NULL;
  301. }
  302. if (mode & PERF_CGROUP_SWIN) {
  303. /* set cgrp before ctxsw in to
  304. * allow event_filter_match() to not
  305. * have to pass task around
  306. */
  307. cpuctx->cgrp = perf_cgroup_from_task(task);
  308. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  309. }
  310. }
  311. perf_pmu_enable(cpuctx->ctx.pmu);
  312. }
  313. rcu_read_unlock();
  314. local_irq_restore(flags);
  315. }
  316. static inline void perf_cgroup_sched_out(struct task_struct *task)
  317. {
  318. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  319. }
  320. static inline void perf_cgroup_sched_in(struct task_struct *task)
  321. {
  322. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  323. }
  324. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  325. struct perf_event_attr *attr,
  326. struct perf_event *group_leader)
  327. {
  328. struct perf_cgroup *cgrp;
  329. struct cgroup_subsys_state *css;
  330. struct file *file;
  331. int ret = 0, fput_needed;
  332. file = fget_light(fd, &fput_needed);
  333. if (!file)
  334. return -EBADF;
  335. css = cgroup_css_from_dir(file, perf_subsys_id);
  336. if (IS_ERR(css))
  337. return PTR_ERR(css);
  338. cgrp = container_of(css, struct perf_cgroup, css);
  339. event->cgrp = cgrp;
  340. /*
  341. * all events in a group must monitor
  342. * the same cgroup because a task belongs
  343. * to only one perf cgroup at a time
  344. */
  345. if (group_leader && group_leader->cgrp != cgrp) {
  346. perf_detach_cgroup(event);
  347. ret = -EINVAL;
  348. } else {
  349. /* must be done before we fput() the file */
  350. perf_get_cgroup(event);
  351. }
  352. fput_light(file, fput_needed);
  353. return ret;
  354. }
  355. static inline void
  356. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  357. {
  358. struct perf_cgroup_info *t;
  359. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  360. event->shadow_ctx_time = now - t->timestamp;
  361. }
  362. static inline void
  363. perf_cgroup_defer_enabled(struct perf_event *event)
  364. {
  365. /*
  366. * when the current task's perf cgroup does not match
  367. * the event's, we need to remember to call the
  368. * perf_mark_enable() function the first time a task with
  369. * a matching perf cgroup is scheduled in.
  370. */
  371. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  372. event->cgrp_defer_enabled = 1;
  373. }
  374. static inline void
  375. perf_cgroup_mark_enabled(struct perf_event *event,
  376. struct perf_event_context *ctx)
  377. {
  378. struct perf_event *sub;
  379. u64 tstamp = perf_event_time(event);
  380. if (!event->cgrp_defer_enabled)
  381. return;
  382. event->cgrp_defer_enabled = 0;
  383. event->tstamp_enabled = tstamp - event->total_time_enabled;
  384. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  385. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  386. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  387. sub->cgrp_defer_enabled = 0;
  388. }
  389. }
  390. }
  391. #else /* !CONFIG_CGROUP_PERF */
  392. static inline bool
  393. perf_cgroup_match(struct perf_event *event)
  394. {
  395. return true;
  396. }
  397. static inline void perf_detach_cgroup(struct perf_event *event)
  398. {}
  399. static inline int is_cgroup_event(struct perf_event *event)
  400. {
  401. return 0;
  402. }
  403. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  404. {
  405. return 0;
  406. }
  407. static inline void update_cgrp_time_from_event(struct perf_event *event)
  408. {
  409. }
  410. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  411. {
  412. }
  413. static inline void perf_cgroup_sched_out(struct task_struct *task)
  414. {
  415. }
  416. static inline void perf_cgroup_sched_in(struct task_struct *task)
  417. {
  418. }
  419. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  420. struct perf_event_attr *attr,
  421. struct perf_event *group_leader)
  422. {
  423. return -EINVAL;
  424. }
  425. static inline void
  426. perf_cgroup_set_timestamp(struct task_struct *task,
  427. struct perf_event_context *ctx)
  428. {
  429. }
  430. void
  431. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  432. {
  433. }
  434. static inline void
  435. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  436. {
  437. }
  438. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  439. {
  440. return 0;
  441. }
  442. static inline void
  443. perf_cgroup_defer_enabled(struct perf_event *event)
  444. {
  445. }
  446. static inline void
  447. perf_cgroup_mark_enabled(struct perf_event *event,
  448. struct perf_event_context *ctx)
  449. {
  450. }
  451. #endif
  452. void perf_pmu_disable(struct pmu *pmu)
  453. {
  454. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  455. if (!(*count)++)
  456. pmu->pmu_disable(pmu);
  457. }
  458. void perf_pmu_enable(struct pmu *pmu)
  459. {
  460. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  461. if (!--(*count))
  462. pmu->pmu_enable(pmu);
  463. }
  464. static DEFINE_PER_CPU(struct list_head, rotation_list);
  465. /*
  466. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  467. * because they're strictly cpu affine and rotate_start is called with IRQs
  468. * disabled, while rotate_context is called from IRQ context.
  469. */
  470. static void perf_pmu_rotate_start(struct pmu *pmu)
  471. {
  472. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  473. struct list_head *head = &__get_cpu_var(rotation_list);
  474. WARN_ON(!irqs_disabled());
  475. if (list_empty(&cpuctx->rotation_list))
  476. list_add(&cpuctx->rotation_list, head);
  477. }
  478. static void get_ctx(struct perf_event_context *ctx)
  479. {
  480. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  481. }
  482. static void free_ctx(struct rcu_head *head)
  483. {
  484. struct perf_event_context *ctx;
  485. ctx = container_of(head, struct perf_event_context, rcu_head);
  486. kfree(ctx);
  487. }
  488. static void put_ctx(struct perf_event_context *ctx)
  489. {
  490. if (atomic_dec_and_test(&ctx->refcount)) {
  491. if (ctx->parent_ctx)
  492. put_ctx(ctx->parent_ctx);
  493. if (ctx->task)
  494. put_task_struct(ctx->task);
  495. call_rcu(&ctx->rcu_head, free_ctx);
  496. }
  497. }
  498. static void unclone_ctx(struct perf_event_context *ctx)
  499. {
  500. if (ctx->parent_ctx) {
  501. put_ctx(ctx->parent_ctx);
  502. ctx->parent_ctx = NULL;
  503. }
  504. }
  505. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  506. {
  507. /*
  508. * only top level events have the pid namespace they were created in
  509. */
  510. if (event->parent)
  511. event = event->parent;
  512. return task_tgid_nr_ns(p, event->ns);
  513. }
  514. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  515. {
  516. /*
  517. * only top level events have the pid namespace they were created in
  518. */
  519. if (event->parent)
  520. event = event->parent;
  521. return task_pid_nr_ns(p, event->ns);
  522. }
  523. /*
  524. * If we inherit events we want to return the parent event id
  525. * to userspace.
  526. */
  527. static u64 primary_event_id(struct perf_event *event)
  528. {
  529. u64 id = event->id;
  530. if (event->parent)
  531. id = event->parent->id;
  532. return id;
  533. }
  534. /*
  535. * Get the perf_event_context for a task and lock it.
  536. * This has to cope with with the fact that until it is locked,
  537. * the context could get moved to another task.
  538. */
  539. static struct perf_event_context *
  540. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  541. {
  542. struct perf_event_context *ctx;
  543. rcu_read_lock();
  544. retry:
  545. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  546. if (ctx) {
  547. /*
  548. * If this context is a clone of another, it might
  549. * get swapped for another underneath us by
  550. * perf_event_task_sched_out, though the
  551. * rcu_read_lock() protects us from any context
  552. * getting freed. Lock the context and check if it
  553. * got swapped before we could get the lock, and retry
  554. * if so. If we locked the right context, then it
  555. * can't get swapped on us any more.
  556. */
  557. raw_spin_lock_irqsave(&ctx->lock, *flags);
  558. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  559. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  560. goto retry;
  561. }
  562. if (!atomic_inc_not_zero(&ctx->refcount)) {
  563. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  564. ctx = NULL;
  565. }
  566. }
  567. rcu_read_unlock();
  568. return ctx;
  569. }
  570. /*
  571. * Get the context for a task and increment its pin_count so it
  572. * can't get swapped to another task. This also increments its
  573. * reference count so that the context can't get freed.
  574. */
  575. static struct perf_event_context *
  576. perf_pin_task_context(struct task_struct *task, int ctxn)
  577. {
  578. struct perf_event_context *ctx;
  579. unsigned long flags;
  580. ctx = perf_lock_task_context(task, ctxn, &flags);
  581. if (ctx) {
  582. ++ctx->pin_count;
  583. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  584. }
  585. return ctx;
  586. }
  587. static void perf_unpin_context(struct perf_event_context *ctx)
  588. {
  589. unsigned long flags;
  590. raw_spin_lock_irqsave(&ctx->lock, flags);
  591. --ctx->pin_count;
  592. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  593. }
  594. /*
  595. * Update the record of the current time in a context.
  596. */
  597. static void update_context_time(struct perf_event_context *ctx)
  598. {
  599. u64 now = perf_clock();
  600. ctx->time += now - ctx->timestamp;
  601. ctx->timestamp = now;
  602. }
  603. static u64 perf_event_time(struct perf_event *event)
  604. {
  605. struct perf_event_context *ctx = event->ctx;
  606. if (is_cgroup_event(event))
  607. return perf_cgroup_event_time(event);
  608. return ctx ? ctx->time : 0;
  609. }
  610. /*
  611. * Update the total_time_enabled and total_time_running fields for a event.
  612. */
  613. static void update_event_times(struct perf_event *event)
  614. {
  615. struct perf_event_context *ctx = event->ctx;
  616. u64 run_end;
  617. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  618. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  619. return;
  620. /*
  621. * in cgroup mode, time_enabled represents
  622. * the time the event was enabled AND active
  623. * tasks were in the monitored cgroup. This is
  624. * independent of the activity of the context as
  625. * there may be a mix of cgroup and non-cgroup events.
  626. *
  627. * That is why we treat cgroup events differently
  628. * here.
  629. */
  630. if (is_cgroup_event(event))
  631. run_end = perf_event_time(event);
  632. else if (ctx->is_active)
  633. run_end = ctx->time;
  634. else
  635. run_end = event->tstamp_stopped;
  636. event->total_time_enabled = run_end - event->tstamp_enabled;
  637. if (event->state == PERF_EVENT_STATE_INACTIVE)
  638. run_end = event->tstamp_stopped;
  639. else
  640. run_end = perf_event_time(event);
  641. event->total_time_running = run_end - event->tstamp_running;
  642. }
  643. /*
  644. * Update total_time_enabled and total_time_running for all events in a group.
  645. */
  646. static void update_group_times(struct perf_event *leader)
  647. {
  648. struct perf_event *event;
  649. update_event_times(leader);
  650. list_for_each_entry(event, &leader->sibling_list, group_entry)
  651. update_event_times(event);
  652. }
  653. static struct list_head *
  654. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  655. {
  656. if (event->attr.pinned)
  657. return &ctx->pinned_groups;
  658. else
  659. return &ctx->flexible_groups;
  660. }
  661. /*
  662. * Add a event from the lists for its context.
  663. * Must be called with ctx->mutex and ctx->lock held.
  664. */
  665. static void
  666. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  667. {
  668. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  669. event->attach_state |= PERF_ATTACH_CONTEXT;
  670. /*
  671. * If we're a stand alone event or group leader, we go to the context
  672. * list, group events are kept attached to the group so that
  673. * perf_group_detach can, at all times, locate all siblings.
  674. */
  675. if (event->group_leader == event) {
  676. struct list_head *list;
  677. if (is_software_event(event))
  678. event->group_flags |= PERF_GROUP_SOFTWARE;
  679. list = ctx_group_list(event, ctx);
  680. list_add_tail(&event->group_entry, list);
  681. }
  682. if (is_cgroup_event(event)) {
  683. ctx->nr_cgroups++;
  684. /*
  685. * one more event:
  686. * - that has cgroup constraint on event->cpu
  687. * - that may need work on context switch
  688. */
  689. atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
  690. jump_label_inc(&perf_sched_events);
  691. }
  692. list_add_rcu(&event->event_entry, &ctx->event_list);
  693. if (!ctx->nr_events)
  694. perf_pmu_rotate_start(ctx->pmu);
  695. ctx->nr_events++;
  696. if (event->attr.inherit_stat)
  697. ctx->nr_stat++;
  698. }
  699. /*
  700. * Called at perf_event creation and when events are attached/detached from a
  701. * group.
  702. */
  703. static void perf_event__read_size(struct perf_event *event)
  704. {
  705. int entry = sizeof(u64); /* value */
  706. int size = 0;
  707. int nr = 1;
  708. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  709. size += sizeof(u64);
  710. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  711. size += sizeof(u64);
  712. if (event->attr.read_format & PERF_FORMAT_ID)
  713. entry += sizeof(u64);
  714. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  715. nr += event->group_leader->nr_siblings;
  716. size += sizeof(u64);
  717. }
  718. size += entry * nr;
  719. event->read_size = size;
  720. }
  721. static void perf_event__header_size(struct perf_event *event)
  722. {
  723. struct perf_sample_data *data;
  724. u64 sample_type = event->attr.sample_type;
  725. u16 size = 0;
  726. perf_event__read_size(event);
  727. if (sample_type & PERF_SAMPLE_IP)
  728. size += sizeof(data->ip);
  729. if (sample_type & PERF_SAMPLE_ADDR)
  730. size += sizeof(data->addr);
  731. if (sample_type & PERF_SAMPLE_PERIOD)
  732. size += sizeof(data->period);
  733. if (sample_type & PERF_SAMPLE_READ)
  734. size += event->read_size;
  735. event->header_size = size;
  736. }
  737. static void perf_event__id_header_size(struct perf_event *event)
  738. {
  739. struct perf_sample_data *data;
  740. u64 sample_type = event->attr.sample_type;
  741. u16 size = 0;
  742. if (sample_type & PERF_SAMPLE_TID)
  743. size += sizeof(data->tid_entry);
  744. if (sample_type & PERF_SAMPLE_TIME)
  745. size += sizeof(data->time);
  746. if (sample_type & PERF_SAMPLE_ID)
  747. size += sizeof(data->id);
  748. if (sample_type & PERF_SAMPLE_STREAM_ID)
  749. size += sizeof(data->stream_id);
  750. if (sample_type & PERF_SAMPLE_CPU)
  751. size += sizeof(data->cpu_entry);
  752. event->id_header_size = size;
  753. }
  754. static void perf_group_attach(struct perf_event *event)
  755. {
  756. struct perf_event *group_leader = event->group_leader, *pos;
  757. /*
  758. * We can have double attach due to group movement in perf_event_open.
  759. */
  760. if (event->attach_state & PERF_ATTACH_GROUP)
  761. return;
  762. event->attach_state |= PERF_ATTACH_GROUP;
  763. if (group_leader == event)
  764. return;
  765. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  766. !is_software_event(event))
  767. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  768. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  769. group_leader->nr_siblings++;
  770. perf_event__header_size(group_leader);
  771. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  772. perf_event__header_size(pos);
  773. }
  774. /*
  775. * Remove a event from the lists for its context.
  776. * Must be called with ctx->mutex and ctx->lock held.
  777. */
  778. static void
  779. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  780. {
  781. /*
  782. * We can have double detach due to exit/hot-unplug + close.
  783. */
  784. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  785. return;
  786. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  787. if (is_cgroup_event(event)) {
  788. ctx->nr_cgroups--;
  789. atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
  790. jump_label_dec(&perf_sched_events);
  791. }
  792. ctx->nr_events--;
  793. if (event->attr.inherit_stat)
  794. ctx->nr_stat--;
  795. list_del_rcu(&event->event_entry);
  796. if (event->group_leader == event)
  797. list_del_init(&event->group_entry);
  798. update_group_times(event);
  799. /*
  800. * If event was in error state, then keep it
  801. * that way, otherwise bogus counts will be
  802. * returned on read(). The only way to get out
  803. * of error state is by explicit re-enabling
  804. * of the event
  805. */
  806. if (event->state > PERF_EVENT_STATE_OFF)
  807. event->state = PERF_EVENT_STATE_OFF;
  808. }
  809. static void perf_group_detach(struct perf_event *event)
  810. {
  811. struct perf_event *sibling, *tmp;
  812. struct list_head *list = NULL;
  813. /*
  814. * We can have double detach due to exit/hot-unplug + close.
  815. */
  816. if (!(event->attach_state & PERF_ATTACH_GROUP))
  817. return;
  818. event->attach_state &= ~PERF_ATTACH_GROUP;
  819. /*
  820. * If this is a sibling, remove it from its group.
  821. */
  822. if (event->group_leader != event) {
  823. list_del_init(&event->group_entry);
  824. event->group_leader->nr_siblings--;
  825. goto out;
  826. }
  827. if (!list_empty(&event->group_entry))
  828. list = &event->group_entry;
  829. /*
  830. * If this was a group event with sibling events then
  831. * upgrade the siblings to singleton events by adding them
  832. * to whatever list we are on.
  833. */
  834. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  835. if (list)
  836. list_move_tail(&sibling->group_entry, list);
  837. sibling->group_leader = sibling;
  838. /* Inherit group flags from the previous leader */
  839. sibling->group_flags = event->group_flags;
  840. }
  841. out:
  842. perf_event__header_size(event->group_leader);
  843. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  844. perf_event__header_size(tmp);
  845. }
  846. static inline int
  847. event_filter_match(struct perf_event *event)
  848. {
  849. return (event->cpu == -1 || event->cpu == smp_processor_id())
  850. && perf_cgroup_match(event);
  851. }
  852. static void
  853. event_sched_out(struct perf_event *event,
  854. struct perf_cpu_context *cpuctx,
  855. struct perf_event_context *ctx)
  856. {
  857. u64 tstamp = perf_event_time(event);
  858. u64 delta;
  859. /*
  860. * An event which could not be activated because of
  861. * filter mismatch still needs to have its timings
  862. * maintained, otherwise bogus information is return
  863. * via read() for time_enabled, time_running:
  864. */
  865. if (event->state == PERF_EVENT_STATE_INACTIVE
  866. && !event_filter_match(event)) {
  867. delta = tstamp - event->tstamp_stopped;
  868. event->tstamp_running += delta;
  869. event->tstamp_stopped = tstamp;
  870. }
  871. if (event->state != PERF_EVENT_STATE_ACTIVE)
  872. return;
  873. event->state = PERF_EVENT_STATE_INACTIVE;
  874. if (event->pending_disable) {
  875. event->pending_disable = 0;
  876. event->state = PERF_EVENT_STATE_OFF;
  877. }
  878. event->tstamp_stopped = tstamp;
  879. event->pmu->del(event, 0);
  880. event->oncpu = -1;
  881. if (!is_software_event(event))
  882. cpuctx->active_oncpu--;
  883. ctx->nr_active--;
  884. if (event->attr.exclusive || !cpuctx->active_oncpu)
  885. cpuctx->exclusive = 0;
  886. }
  887. static void
  888. group_sched_out(struct perf_event *group_event,
  889. struct perf_cpu_context *cpuctx,
  890. struct perf_event_context *ctx)
  891. {
  892. struct perf_event *event;
  893. int state = group_event->state;
  894. event_sched_out(group_event, cpuctx, ctx);
  895. /*
  896. * Schedule out siblings (if any):
  897. */
  898. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  899. event_sched_out(event, cpuctx, ctx);
  900. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  901. cpuctx->exclusive = 0;
  902. }
  903. /*
  904. * Cross CPU call to remove a performance event
  905. *
  906. * We disable the event on the hardware level first. After that we
  907. * remove it from the context list.
  908. */
  909. static int __perf_remove_from_context(void *info)
  910. {
  911. struct perf_event *event = info;
  912. struct perf_event_context *ctx = event->ctx;
  913. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  914. raw_spin_lock(&ctx->lock);
  915. event_sched_out(event, cpuctx, ctx);
  916. list_del_event(event, ctx);
  917. raw_spin_unlock(&ctx->lock);
  918. return 0;
  919. }
  920. /*
  921. * Remove the event from a task's (or a CPU's) list of events.
  922. *
  923. * CPU events are removed with a smp call. For task events we only
  924. * call when the task is on a CPU.
  925. *
  926. * If event->ctx is a cloned context, callers must make sure that
  927. * every task struct that event->ctx->task could possibly point to
  928. * remains valid. This is OK when called from perf_release since
  929. * that only calls us on the top-level context, which can't be a clone.
  930. * When called from perf_event_exit_task, it's OK because the
  931. * context has been detached from its task.
  932. */
  933. static void perf_remove_from_context(struct perf_event *event)
  934. {
  935. struct perf_event_context *ctx = event->ctx;
  936. struct task_struct *task = ctx->task;
  937. lockdep_assert_held(&ctx->mutex);
  938. if (!task) {
  939. /*
  940. * Per cpu events are removed via an smp call and
  941. * the removal is always successful.
  942. */
  943. cpu_function_call(event->cpu, __perf_remove_from_context, event);
  944. return;
  945. }
  946. retry:
  947. if (!task_function_call(task, __perf_remove_from_context, event))
  948. return;
  949. raw_spin_lock_irq(&ctx->lock);
  950. /*
  951. * If we failed to find a running task, but find the context active now
  952. * that we've acquired the ctx->lock, retry.
  953. */
  954. if (ctx->is_active) {
  955. raw_spin_unlock_irq(&ctx->lock);
  956. goto retry;
  957. }
  958. /*
  959. * Since the task isn't running, its safe to remove the event, us
  960. * holding the ctx->lock ensures the task won't get scheduled in.
  961. */
  962. list_del_event(event, ctx);
  963. raw_spin_unlock_irq(&ctx->lock);
  964. }
  965. /*
  966. * Cross CPU call to disable a performance event
  967. */
  968. static int __perf_event_disable(void *info)
  969. {
  970. struct perf_event *event = info;
  971. struct perf_event_context *ctx = event->ctx;
  972. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  973. /*
  974. * If this is a per-task event, need to check whether this
  975. * event's task is the current task on this cpu.
  976. *
  977. * Can trigger due to concurrent perf_event_context_sched_out()
  978. * flipping contexts around.
  979. */
  980. if (ctx->task && cpuctx->task_ctx != ctx)
  981. return -EINVAL;
  982. raw_spin_lock(&ctx->lock);
  983. /*
  984. * If the event is on, turn it off.
  985. * If it is in error state, leave it in error state.
  986. */
  987. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  988. update_context_time(ctx);
  989. update_cgrp_time_from_event(event);
  990. update_group_times(event);
  991. if (event == event->group_leader)
  992. group_sched_out(event, cpuctx, ctx);
  993. else
  994. event_sched_out(event, cpuctx, ctx);
  995. event->state = PERF_EVENT_STATE_OFF;
  996. }
  997. raw_spin_unlock(&ctx->lock);
  998. return 0;
  999. }
  1000. /*
  1001. * Disable a event.
  1002. *
  1003. * If event->ctx is a cloned context, callers must make sure that
  1004. * every task struct that event->ctx->task could possibly point to
  1005. * remains valid. This condition is satisifed when called through
  1006. * perf_event_for_each_child or perf_event_for_each because they
  1007. * hold the top-level event's child_mutex, so any descendant that
  1008. * goes to exit will block in sync_child_event.
  1009. * When called from perf_pending_event it's OK because event->ctx
  1010. * is the current context on this CPU and preemption is disabled,
  1011. * hence we can't get into perf_event_task_sched_out for this context.
  1012. */
  1013. void perf_event_disable(struct perf_event *event)
  1014. {
  1015. struct perf_event_context *ctx = event->ctx;
  1016. struct task_struct *task = ctx->task;
  1017. if (!task) {
  1018. /*
  1019. * Disable the event on the cpu that it's on
  1020. */
  1021. cpu_function_call(event->cpu, __perf_event_disable, event);
  1022. return;
  1023. }
  1024. retry:
  1025. if (!task_function_call(task, __perf_event_disable, event))
  1026. return;
  1027. raw_spin_lock_irq(&ctx->lock);
  1028. /*
  1029. * If the event is still active, we need to retry the cross-call.
  1030. */
  1031. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1032. raw_spin_unlock_irq(&ctx->lock);
  1033. /*
  1034. * Reload the task pointer, it might have been changed by
  1035. * a concurrent perf_event_context_sched_out().
  1036. */
  1037. task = ctx->task;
  1038. goto retry;
  1039. }
  1040. /*
  1041. * Since we have the lock this context can't be scheduled
  1042. * in, so we can change the state safely.
  1043. */
  1044. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1045. update_group_times(event);
  1046. event->state = PERF_EVENT_STATE_OFF;
  1047. }
  1048. raw_spin_unlock_irq(&ctx->lock);
  1049. }
  1050. static void perf_set_shadow_time(struct perf_event *event,
  1051. struct perf_event_context *ctx,
  1052. u64 tstamp)
  1053. {
  1054. /*
  1055. * use the correct time source for the time snapshot
  1056. *
  1057. * We could get by without this by leveraging the
  1058. * fact that to get to this function, the caller
  1059. * has most likely already called update_context_time()
  1060. * and update_cgrp_time_xx() and thus both timestamp
  1061. * are identical (or very close). Given that tstamp is,
  1062. * already adjusted for cgroup, we could say that:
  1063. * tstamp - ctx->timestamp
  1064. * is equivalent to
  1065. * tstamp - cgrp->timestamp.
  1066. *
  1067. * Then, in perf_output_read(), the calculation would
  1068. * work with no changes because:
  1069. * - event is guaranteed scheduled in
  1070. * - no scheduled out in between
  1071. * - thus the timestamp would be the same
  1072. *
  1073. * But this is a bit hairy.
  1074. *
  1075. * So instead, we have an explicit cgroup call to remain
  1076. * within the time time source all along. We believe it
  1077. * is cleaner and simpler to understand.
  1078. */
  1079. if (is_cgroup_event(event))
  1080. perf_cgroup_set_shadow_time(event, tstamp);
  1081. else
  1082. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1083. }
  1084. #define MAX_INTERRUPTS (~0ULL)
  1085. static void perf_log_throttle(struct perf_event *event, int enable);
  1086. static int
  1087. event_sched_in(struct perf_event *event,
  1088. struct perf_cpu_context *cpuctx,
  1089. struct perf_event_context *ctx)
  1090. {
  1091. u64 tstamp = perf_event_time(event);
  1092. if (event->state <= PERF_EVENT_STATE_OFF)
  1093. return 0;
  1094. event->state = PERF_EVENT_STATE_ACTIVE;
  1095. event->oncpu = smp_processor_id();
  1096. /*
  1097. * Unthrottle events, since we scheduled we might have missed several
  1098. * ticks already, also for a heavily scheduling task there is little
  1099. * guarantee it'll get a tick in a timely manner.
  1100. */
  1101. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1102. perf_log_throttle(event, 1);
  1103. event->hw.interrupts = 0;
  1104. }
  1105. /*
  1106. * The new state must be visible before we turn it on in the hardware:
  1107. */
  1108. smp_wmb();
  1109. if (event->pmu->add(event, PERF_EF_START)) {
  1110. event->state = PERF_EVENT_STATE_INACTIVE;
  1111. event->oncpu = -1;
  1112. return -EAGAIN;
  1113. }
  1114. event->tstamp_running += tstamp - event->tstamp_stopped;
  1115. perf_set_shadow_time(event, ctx, tstamp);
  1116. if (!is_software_event(event))
  1117. cpuctx->active_oncpu++;
  1118. ctx->nr_active++;
  1119. if (event->attr.exclusive)
  1120. cpuctx->exclusive = 1;
  1121. return 0;
  1122. }
  1123. static int
  1124. group_sched_in(struct perf_event *group_event,
  1125. struct perf_cpu_context *cpuctx,
  1126. struct perf_event_context *ctx)
  1127. {
  1128. struct perf_event *event, *partial_group = NULL;
  1129. struct pmu *pmu = group_event->pmu;
  1130. u64 now = ctx->time;
  1131. bool simulate = false;
  1132. if (group_event->state == PERF_EVENT_STATE_OFF)
  1133. return 0;
  1134. pmu->start_txn(pmu);
  1135. if (event_sched_in(group_event, cpuctx, ctx)) {
  1136. pmu->cancel_txn(pmu);
  1137. return -EAGAIN;
  1138. }
  1139. /*
  1140. * Schedule in siblings as one group (if any):
  1141. */
  1142. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1143. if (event_sched_in(event, cpuctx, ctx)) {
  1144. partial_group = event;
  1145. goto group_error;
  1146. }
  1147. }
  1148. if (!pmu->commit_txn(pmu))
  1149. return 0;
  1150. group_error:
  1151. /*
  1152. * Groups can be scheduled in as one unit only, so undo any
  1153. * partial group before returning:
  1154. * The events up to the failed event are scheduled out normally,
  1155. * tstamp_stopped will be updated.
  1156. *
  1157. * The failed events and the remaining siblings need to have
  1158. * their timings updated as if they had gone thru event_sched_in()
  1159. * and event_sched_out(). This is required to get consistent timings
  1160. * across the group. This also takes care of the case where the group
  1161. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1162. * the time the event was actually stopped, such that time delta
  1163. * calculation in update_event_times() is correct.
  1164. */
  1165. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1166. if (event == partial_group)
  1167. simulate = true;
  1168. if (simulate) {
  1169. event->tstamp_running += now - event->tstamp_stopped;
  1170. event->tstamp_stopped = now;
  1171. } else {
  1172. event_sched_out(event, cpuctx, ctx);
  1173. }
  1174. }
  1175. event_sched_out(group_event, cpuctx, ctx);
  1176. pmu->cancel_txn(pmu);
  1177. return -EAGAIN;
  1178. }
  1179. /*
  1180. * Work out whether we can put this event group on the CPU now.
  1181. */
  1182. static int group_can_go_on(struct perf_event *event,
  1183. struct perf_cpu_context *cpuctx,
  1184. int can_add_hw)
  1185. {
  1186. /*
  1187. * Groups consisting entirely of software events can always go on.
  1188. */
  1189. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1190. return 1;
  1191. /*
  1192. * If an exclusive group is already on, no other hardware
  1193. * events can go on.
  1194. */
  1195. if (cpuctx->exclusive)
  1196. return 0;
  1197. /*
  1198. * If this group is exclusive and there are already
  1199. * events on the CPU, it can't go on.
  1200. */
  1201. if (event->attr.exclusive && cpuctx->active_oncpu)
  1202. return 0;
  1203. /*
  1204. * Otherwise, try to add it if all previous groups were able
  1205. * to go on.
  1206. */
  1207. return can_add_hw;
  1208. }
  1209. static void add_event_to_ctx(struct perf_event *event,
  1210. struct perf_event_context *ctx)
  1211. {
  1212. u64 tstamp = perf_event_time(event);
  1213. list_add_event(event, ctx);
  1214. perf_group_attach(event);
  1215. event->tstamp_enabled = tstamp;
  1216. event->tstamp_running = tstamp;
  1217. event->tstamp_stopped = tstamp;
  1218. }
  1219. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1220. struct task_struct *tsk);
  1221. /*
  1222. * Cross CPU call to install and enable a performance event
  1223. *
  1224. * Must be called with ctx->mutex held
  1225. */
  1226. static int __perf_install_in_context(void *info)
  1227. {
  1228. struct perf_event *event = info;
  1229. struct perf_event_context *ctx = event->ctx;
  1230. struct perf_event *leader = event->group_leader;
  1231. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1232. int err;
  1233. /*
  1234. * In case we're installing a new context to an already running task,
  1235. * could also happen before perf_event_task_sched_in() on architectures
  1236. * which do context switches with IRQs enabled.
  1237. */
  1238. if (ctx->task && !cpuctx->task_ctx)
  1239. perf_event_context_sched_in(ctx, ctx->task);
  1240. raw_spin_lock(&ctx->lock);
  1241. ctx->is_active = 1;
  1242. update_context_time(ctx);
  1243. /*
  1244. * update cgrp time only if current cgrp
  1245. * matches event->cgrp. Must be done before
  1246. * calling add_event_to_ctx()
  1247. */
  1248. update_cgrp_time_from_event(event);
  1249. add_event_to_ctx(event, ctx);
  1250. if (!event_filter_match(event))
  1251. goto unlock;
  1252. /*
  1253. * Don't put the event on if it is disabled or if
  1254. * it is in a group and the group isn't on.
  1255. */
  1256. if (event->state != PERF_EVENT_STATE_INACTIVE ||
  1257. (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
  1258. goto unlock;
  1259. /*
  1260. * An exclusive event can't go on if there are already active
  1261. * hardware events, and no hardware event can go on if there
  1262. * is already an exclusive event on.
  1263. */
  1264. if (!group_can_go_on(event, cpuctx, 1))
  1265. err = -EEXIST;
  1266. else
  1267. err = event_sched_in(event, cpuctx, ctx);
  1268. if (err) {
  1269. /*
  1270. * This event couldn't go on. If it is in a group
  1271. * then we have to pull the whole group off.
  1272. * If the event group is pinned then put it in error state.
  1273. */
  1274. if (leader != event)
  1275. group_sched_out(leader, cpuctx, ctx);
  1276. if (leader->attr.pinned) {
  1277. update_group_times(leader);
  1278. leader->state = PERF_EVENT_STATE_ERROR;
  1279. }
  1280. }
  1281. unlock:
  1282. raw_spin_unlock(&ctx->lock);
  1283. return 0;
  1284. }
  1285. /*
  1286. * Attach a performance event to a context
  1287. *
  1288. * First we add the event to the list with the hardware enable bit
  1289. * in event->hw_config cleared.
  1290. *
  1291. * If the event is attached to a task which is on a CPU we use a smp
  1292. * call to enable it in the task context. The task might have been
  1293. * scheduled away, but we check this in the smp call again.
  1294. */
  1295. static void
  1296. perf_install_in_context(struct perf_event_context *ctx,
  1297. struct perf_event *event,
  1298. int cpu)
  1299. {
  1300. struct task_struct *task = ctx->task;
  1301. lockdep_assert_held(&ctx->mutex);
  1302. event->ctx = ctx;
  1303. if (!task) {
  1304. /*
  1305. * Per cpu events are installed via an smp call and
  1306. * the install is always successful.
  1307. */
  1308. cpu_function_call(cpu, __perf_install_in_context, event);
  1309. return;
  1310. }
  1311. retry:
  1312. if (!task_function_call(task, __perf_install_in_context, event))
  1313. return;
  1314. raw_spin_lock_irq(&ctx->lock);
  1315. /*
  1316. * If we failed to find a running task, but find the context active now
  1317. * that we've acquired the ctx->lock, retry.
  1318. */
  1319. if (ctx->is_active) {
  1320. raw_spin_unlock_irq(&ctx->lock);
  1321. goto retry;
  1322. }
  1323. /*
  1324. * Since the task isn't running, its safe to add the event, us holding
  1325. * the ctx->lock ensures the task won't get scheduled in.
  1326. */
  1327. add_event_to_ctx(event, ctx);
  1328. raw_spin_unlock_irq(&ctx->lock);
  1329. }
  1330. /*
  1331. * Put a event into inactive state and update time fields.
  1332. * Enabling the leader of a group effectively enables all
  1333. * the group members that aren't explicitly disabled, so we
  1334. * have to update their ->tstamp_enabled also.
  1335. * Note: this works for group members as well as group leaders
  1336. * since the non-leader members' sibling_lists will be empty.
  1337. */
  1338. static void __perf_event_mark_enabled(struct perf_event *event,
  1339. struct perf_event_context *ctx)
  1340. {
  1341. struct perf_event *sub;
  1342. u64 tstamp = perf_event_time(event);
  1343. event->state = PERF_EVENT_STATE_INACTIVE;
  1344. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1345. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1346. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1347. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1348. }
  1349. }
  1350. /*
  1351. * Cross CPU call to enable a performance event
  1352. */
  1353. static int __perf_event_enable(void *info)
  1354. {
  1355. struct perf_event *event = info;
  1356. struct perf_event_context *ctx = event->ctx;
  1357. struct perf_event *leader = event->group_leader;
  1358. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1359. int err;
  1360. if (WARN_ON_ONCE(!ctx->is_active))
  1361. return -EINVAL;
  1362. raw_spin_lock(&ctx->lock);
  1363. update_context_time(ctx);
  1364. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1365. goto unlock;
  1366. /*
  1367. * set current task's cgroup time reference point
  1368. */
  1369. perf_cgroup_set_timestamp(current, ctx);
  1370. __perf_event_mark_enabled(event, ctx);
  1371. if (!event_filter_match(event)) {
  1372. if (is_cgroup_event(event))
  1373. perf_cgroup_defer_enabled(event);
  1374. goto unlock;
  1375. }
  1376. /*
  1377. * If the event is in a group and isn't the group leader,
  1378. * then don't put it on unless the group is on.
  1379. */
  1380. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1381. goto unlock;
  1382. if (!group_can_go_on(event, cpuctx, 1)) {
  1383. err = -EEXIST;
  1384. } else {
  1385. if (event == leader)
  1386. err = group_sched_in(event, cpuctx, ctx);
  1387. else
  1388. err = event_sched_in(event, cpuctx, ctx);
  1389. }
  1390. if (err) {
  1391. /*
  1392. * If this event can't go on and it's part of a
  1393. * group, then the whole group has to come off.
  1394. */
  1395. if (leader != event)
  1396. group_sched_out(leader, cpuctx, ctx);
  1397. if (leader->attr.pinned) {
  1398. update_group_times(leader);
  1399. leader->state = PERF_EVENT_STATE_ERROR;
  1400. }
  1401. }
  1402. unlock:
  1403. raw_spin_unlock(&ctx->lock);
  1404. return 0;
  1405. }
  1406. /*
  1407. * Enable a event.
  1408. *
  1409. * If event->ctx is a cloned context, callers must make sure that
  1410. * every task struct that event->ctx->task could possibly point to
  1411. * remains valid. This condition is satisfied when called through
  1412. * perf_event_for_each_child or perf_event_for_each as described
  1413. * for perf_event_disable.
  1414. */
  1415. void perf_event_enable(struct perf_event *event)
  1416. {
  1417. struct perf_event_context *ctx = event->ctx;
  1418. struct task_struct *task = ctx->task;
  1419. if (!task) {
  1420. /*
  1421. * Enable the event on the cpu that it's on
  1422. */
  1423. cpu_function_call(event->cpu, __perf_event_enable, event);
  1424. return;
  1425. }
  1426. raw_spin_lock_irq(&ctx->lock);
  1427. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1428. goto out;
  1429. /*
  1430. * If the event is in error state, clear that first.
  1431. * That way, if we see the event in error state below, we
  1432. * know that it has gone back into error state, as distinct
  1433. * from the task having been scheduled away before the
  1434. * cross-call arrived.
  1435. */
  1436. if (event->state == PERF_EVENT_STATE_ERROR)
  1437. event->state = PERF_EVENT_STATE_OFF;
  1438. retry:
  1439. if (!ctx->is_active) {
  1440. __perf_event_mark_enabled(event, ctx);
  1441. goto out;
  1442. }
  1443. raw_spin_unlock_irq(&ctx->lock);
  1444. if (!task_function_call(task, __perf_event_enable, event))
  1445. return;
  1446. raw_spin_lock_irq(&ctx->lock);
  1447. /*
  1448. * If the context is active and the event is still off,
  1449. * we need to retry the cross-call.
  1450. */
  1451. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1452. /*
  1453. * task could have been flipped by a concurrent
  1454. * perf_event_context_sched_out()
  1455. */
  1456. task = ctx->task;
  1457. goto retry;
  1458. }
  1459. out:
  1460. raw_spin_unlock_irq(&ctx->lock);
  1461. }
  1462. static int perf_event_refresh(struct perf_event *event, int refresh)
  1463. {
  1464. /*
  1465. * not supported on inherited events
  1466. */
  1467. if (event->attr.inherit || !is_sampling_event(event))
  1468. return -EINVAL;
  1469. atomic_add(refresh, &event->event_limit);
  1470. perf_event_enable(event);
  1471. return 0;
  1472. }
  1473. static void ctx_sched_out(struct perf_event_context *ctx,
  1474. struct perf_cpu_context *cpuctx,
  1475. enum event_type_t event_type)
  1476. {
  1477. struct perf_event *event;
  1478. raw_spin_lock(&ctx->lock);
  1479. perf_pmu_disable(ctx->pmu);
  1480. ctx->is_active = 0;
  1481. if (likely(!ctx->nr_events))
  1482. goto out;
  1483. update_context_time(ctx);
  1484. update_cgrp_time_from_cpuctx(cpuctx);
  1485. if (!ctx->nr_active)
  1486. goto out;
  1487. if (event_type & EVENT_PINNED) {
  1488. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1489. group_sched_out(event, cpuctx, ctx);
  1490. }
  1491. if (event_type & EVENT_FLEXIBLE) {
  1492. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1493. group_sched_out(event, cpuctx, ctx);
  1494. }
  1495. out:
  1496. perf_pmu_enable(ctx->pmu);
  1497. raw_spin_unlock(&ctx->lock);
  1498. }
  1499. /*
  1500. * Test whether two contexts are equivalent, i.e. whether they
  1501. * have both been cloned from the same version of the same context
  1502. * and they both have the same number of enabled events.
  1503. * If the number of enabled events is the same, then the set
  1504. * of enabled events should be the same, because these are both
  1505. * inherited contexts, therefore we can't access individual events
  1506. * in them directly with an fd; we can only enable/disable all
  1507. * events via prctl, or enable/disable all events in a family
  1508. * via ioctl, which will have the same effect on both contexts.
  1509. */
  1510. static int context_equiv(struct perf_event_context *ctx1,
  1511. struct perf_event_context *ctx2)
  1512. {
  1513. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  1514. && ctx1->parent_gen == ctx2->parent_gen
  1515. && !ctx1->pin_count && !ctx2->pin_count;
  1516. }
  1517. static void __perf_event_sync_stat(struct perf_event *event,
  1518. struct perf_event *next_event)
  1519. {
  1520. u64 value;
  1521. if (!event->attr.inherit_stat)
  1522. return;
  1523. /*
  1524. * Update the event value, we cannot use perf_event_read()
  1525. * because we're in the middle of a context switch and have IRQs
  1526. * disabled, which upsets smp_call_function_single(), however
  1527. * we know the event must be on the current CPU, therefore we
  1528. * don't need to use it.
  1529. */
  1530. switch (event->state) {
  1531. case PERF_EVENT_STATE_ACTIVE:
  1532. event->pmu->read(event);
  1533. /* fall-through */
  1534. case PERF_EVENT_STATE_INACTIVE:
  1535. update_event_times(event);
  1536. break;
  1537. default:
  1538. break;
  1539. }
  1540. /*
  1541. * In order to keep per-task stats reliable we need to flip the event
  1542. * values when we flip the contexts.
  1543. */
  1544. value = local64_read(&next_event->count);
  1545. value = local64_xchg(&event->count, value);
  1546. local64_set(&next_event->count, value);
  1547. swap(event->total_time_enabled, next_event->total_time_enabled);
  1548. swap(event->total_time_running, next_event->total_time_running);
  1549. /*
  1550. * Since we swizzled the values, update the user visible data too.
  1551. */
  1552. perf_event_update_userpage(event);
  1553. perf_event_update_userpage(next_event);
  1554. }
  1555. #define list_next_entry(pos, member) \
  1556. list_entry(pos->member.next, typeof(*pos), member)
  1557. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1558. struct perf_event_context *next_ctx)
  1559. {
  1560. struct perf_event *event, *next_event;
  1561. if (!ctx->nr_stat)
  1562. return;
  1563. update_context_time(ctx);
  1564. event = list_first_entry(&ctx->event_list,
  1565. struct perf_event, event_entry);
  1566. next_event = list_first_entry(&next_ctx->event_list,
  1567. struct perf_event, event_entry);
  1568. while (&event->event_entry != &ctx->event_list &&
  1569. &next_event->event_entry != &next_ctx->event_list) {
  1570. __perf_event_sync_stat(event, next_event);
  1571. event = list_next_entry(event, event_entry);
  1572. next_event = list_next_entry(next_event, event_entry);
  1573. }
  1574. }
  1575. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1576. struct task_struct *next)
  1577. {
  1578. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1579. struct perf_event_context *next_ctx;
  1580. struct perf_event_context *parent;
  1581. struct perf_cpu_context *cpuctx;
  1582. int do_switch = 1;
  1583. if (likely(!ctx))
  1584. return;
  1585. cpuctx = __get_cpu_context(ctx);
  1586. if (!cpuctx->task_ctx)
  1587. return;
  1588. rcu_read_lock();
  1589. parent = rcu_dereference(ctx->parent_ctx);
  1590. next_ctx = next->perf_event_ctxp[ctxn];
  1591. if (parent && next_ctx &&
  1592. rcu_dereference(next_ctx->parent_ctx) == parent) {
  1593. /*
  1594. * Looks like the two contexts are clones, so we might be
  1595. * able to optimize the context switch. We lock both
  1596. * contexts and check that they are clones under the
  1597. * lock (including re-checking that neither has been
  1598. * uncloned in the meantime). It doesn't matter which
  1599. * order we take the locks because no other cpu could
  1600. * be trying to lock both of these tasks.
  1601. */
  1602. raw_spin_lock(&ctx->lock);
  1603. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1604. if (context_equiv(ctx, next_ctx)) {
  1605. /*
  1606. * XXX do we need a memory barrier of sorts
  1607. * wrt to rcu_dereference() of perf_event_ctxp
  1608. */
  1609. task->perf_event_ctxp[ctxn] = next_ctx;
  1610. next->perf_event_ctxp[ctxn] = ctx;
  1611. ctx->task = next;
  1612. next_ctx->task = task;
  1613. do_switch = 0;
  1614. perf_event_sync_stat(ctx, next_ctx);
  1615. }
  1616. raw_spin_unlock(&next_ctx->lock);
  1617. raw_spin_unlock(&ctx->lock);
  1618. }
  1619. rcu_read_unlock();
  1620. if (do_switch) {
  1621. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1622. cpuctx->task_ctx = NULL;
  1623. }
  1624. }
  1625. #define for_each_task_context_nr(ctxn) \
  1626. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  1627. /*
  1628. * Called from scheduler to remove the events of the current task,
  1629. * with interrupts disabled.
  1630. *
  1631. * We stop each event and update the event value in event->count.
  1632. *
  1633. * This does not protect us against NMI, but disable()
  1634. * sets the disabled bit in the control field of event _before_
  1635. * accessing the event control register. If a NMI hits, then it will
  1636. * not restart the event.
  1637. */
  1638. void __perf_event_task_sched_out(struct task_struct *task,
  1639. struct task_struct *next)
  1640. {
  1641. int ctxn;
  1642. for_each_task_context_nr(ctxn)
  1643. perf_event_context_sched_out(task, ctxn, next);
  1644. /*
  1645. * if cgroup events exist on this CPU, then we need
  1646. * to check if we have to switch out PMU state.
  1647. * cgroup event are system-wide mode only
  1648. */
  1649. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1650. perf_cgroup_sched_out(task);
  1651. }
  1652. static void task_ctx_sched_out(struct perf_event_context *ctx,
  1653. enum event_type_t event_type)
  1654. {
  1655. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1656. if (!cpuctx->task_ctx)
  1657. return;
  1658. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1659. return;
  1660. ctx_sched_out(ctx, cpuctx, event_type);
  1661. cpuctx->task_ctx = NULL;
  1662. }
  1663. /*
  1664. * Called with IRQs disabled
  1665. */
  1666. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  1667. enum event_type_t event_type)
  1668. {
  1669. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  1670. }
  1671. static void
  1672. ctx_pinned_sched_in(struct perf_event_context *ctx,
  1673. struct perf_cpu_context *cpuctx)
  1674. {
  1675. struct perf_event *event;
  1676. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1677. if (event->state <= PERF_EVENT_STATE_OFF)
  1678. continue;
  1679. if (!event_filter_match(event))
  1680. continue;
  1681. /* may need to reset tstamp_enabled */
  1682. if (is_cgroup_event(event))
  1683. perf_cgroup_mark_enabled(event, ctx);
  1684. if (group_can_go_on(event, cpuctx, 1))
  1685. group_sched_in(event, cpuctx, ctx);
  1686. /*
  1687. * If this pinned group hasn't been scheduled,
  1688. * put it in error state.
  1689. */
  1690. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1691. update_group_times(event);
  1692. event->state = PERF_EVENT_STATE_ERROR;
  1693. }
  1694. }
  1695. }
  1696. static void
  1697. ctx_flexible_sched_in(struct perf_event_context *ctx,
  1698. struct perf_cpu_context *cpuctx)
  1699. {
  1700. struct perf_event *event;
  1701. int can_add_hw = 1;
  1702. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1703. /* Ignore events in OFF or ERROR state */
  1704. if (event->state <= PERF_EVENT_STATE_OFF)
  1705. continue;
  1706. /*
  1707. * Listen to the 'cpu' scheduling filter constraint
  1708. * of events:
  1709. */
  1710. if (!event_filter_match(event))
  1711. continue;
  1712. /* may need to reset tstamp_enabled */
  1713. if (is_cgroup_event(event))
  1714. perf_cgroup_mark_enabled(event, ctx);
  1715. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  1716. if (group_sched_in(event, cpuctx, ctx))
  1717. can_add_hw = 0;
  1718. }
  1719. }
  1720. }
  1721. static void
  1722. ctx_sched_in(struct perf_event_context *ctx,
  1723. struct perf_cpu_context *cpuctx,
  1724. enum event_type_t event_type,
  1725. struct task_struct *task)
  1726. {
  1727. u64 now;
  1728. raw_spin_lock(&ctx->lock);
  1729. ctx->is_active = 1;
  1730. if (likely(!ctx->nr_events))
  1731. goto out;
  1732. now = perf_clock();
  1733. ctx->timestamp = now;
  1734. perf_cgroup_set_timestamp(task, ctx);
  1735. /*
  1736. * First go through the list and put on any pinned groups
  1737. * in order to give them the best chance of going on.
  1738. */
  1739. if (event_type & EVENT_PINNED)
  1740. ctx_pinned_sched_in(ctx, cpuctx);
  1741. /* Then walk through the lower prio flexible groups */
  1742. if (event_type & EVENT_FLEXIBLE)
  1743. ctx_flexible_sched_in(ctx, cpuctx);
  1744. out:
  1745. raw_spin_unlock(&ctx->lock);
  1746. }
  1747. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  1748. enum event_type_t event_type,
  1749. struct task_struct *task)
  1750. {
  1751. struct perf_event_context *ctx = &cpuctx->ctx;
  1752. ctx_sched_in(ctx, cpuctx, event_type, task);
  1753. }
  1754. static void task_ctx_sched_in(struct perf_event_context *ctx,
  1755. enum event_type_t event_type)
  1756. {
  1757. struct perf_cpu_context *cpuctx;
  1758. cpuctx = __get_cpu_context(ctx);
  1759. if (cpuctx->task_ctx == ctx)
  1760. return;
  1761. ctx_sched_in(ctx, cpuctx, event_type, NULL);
  1762. cpuctx->task_ctx = ctx;
  1763. }
  1764. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1765. struct task_struct *task)
  1766. {
  1767. struct perf_cpu_context *cpuctx;
  1768. cpuctx = __get_cpu_context(ctx);
  1769. if (cpuctx->task_ctx == ctx)
  1770. return;
  1771. perf_pmu_disable(ctx->pmu);
  1772. /*
  1773. * We want to keep the following priority order:
  1774. * cpu pinned (that don't need to move), task pinned,
  1775. * cpu flexible, task flexible.
  1776. */
  1777. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1778. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1779. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1780. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1781. cpuctx->task_ctx = ctx;
  1782. /*
  1783. * Since these rotations are per-cpu, we need to ensure the
  1784. * cpu-context we got scheduled on is actually rotating.
  1785. */
  1786. perf_pmu_rotate_start(ctx->pmu);
  1787. perf_pmu_enable(ctx->pmu);
  1788. }
  1789. /*
  1790. * Called from scheduler to add the events of the current task
  1791. * with interrupts disabled.
  1792. *
  1793. * We restore the event value and then enable it.
  1794. *
  1795. * This does not protect us against NMI, but enable()
  1796. * sets the enabled bit in the control field of event _before_
  1797. * accessing the event control register. If a NMI hits, then it will
  1798. * keep the event running.
  1799. */
  1800. void __perf_event_task_sched_in(struct task_struct *task)
  1801. {
  1802. struct perf_event_context *ctx;
  1803. int ctxn;
  1804. for_each_task_context_nr(ctxn) {
  1805. ctx = task->perf_event_ctxp[ctxn];
  1806. if (likely(!ctx))
  1807. continue;
  1808. perf_event_context_sched_in(ctx, task);
  1809. }
  1810. /*
  1811. * if cgroup events exist on this CPU, then we need
  1812. * to check if we have to switch in PMU state.
  1813. * cgroup event are system-wide mode only
  1814. */
  1815. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1816. perf_cgroup_sched_in(task);
  1817. }
  1818. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  1819. {
  1820. u64 frequency = event->attr.sample_freq;
  1821. u64 sec = NSEC_PER_SEC;
  1822. u64 divisor, dividend;
  1823. int count_fls, nsec_fls, frequency_fls, sec_fls;
  1824. count_fls = fls64(count);
  1825. nsec_fls = fls64(nsec);
  1826. frequency_fls = fls64(frequency);
  1827. sec_fls = 30;
  1828. /*
  1829. * We got @count in @nsec, with a target of sample_freq HZ
  1830. * the target period becomes:
  1831. *
  1832. * @count * 10^9
  1833. * period = -------------------
  1834. * @nsec * sample_freq
  1835. *
  1836. */
  1837. /*
  1838. * Reduce accuracy by one bit such that @a and @b converge
  1839. * to a similar magnitude.
  1840. */
  1841. #define REDUCE_FLS(a, b) \
  1842. do { \
  1843. if (a##_fls > b##_fls) { \
  1844. a >>= 1; \
  1845. a##_fls--; \
  1846. } else { \
  1847. b >>= 1; \
  1848. b##_fls--; \
  1849. } \
  1850. } while (0)
  1851. /*
  1852. * Reduce accuracy until either term fits in a u64, then proceed with
  1853. * the other, so that finally we can do a u64/u64 division.
  1854. */
  1855. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  1856. REDUCE_FLS(nsec, frequency);
  1857. REDUCE_FLS(sec, count);
  1858. }
  1859. if (count_fls + sec_fls > 64) {
  1860. divisor = nsec * frequency;
  1861. while (count_fls + sec_fls > 64) {
  1862. REDUCE_FLS(count, sec);
  1863. divisor >>= 1;
  1864. }
  1865. dividend = count * sec;
  1866. } else {
  1867. dividend = count * sec;
  1868. while (nsec_fls + frequency_fls > 64) {
  1869. REDUCE_FLS(nsec, frequency);
  1870. dividend >>= 1;
  1871. }
  1872. divisor = nsec * frequency;
  1873. }
  1874. if (!divisor)
  1875. return dividend;
  1876. return div64_u64(dividend, divisor);
  1877. }
  1878. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
  1879. {
  1880. struct hw_perf_event *hwc = &event->hw;
  1881. s64 period, sample_period;
  1882. s64 delta;
  1883. period = perf_calculate_period(event, nsec, count);
  1884. delta = (s64)(period - hwc->sample_period);
  1885. delta = (delta + 7) / 8; /* low pass filter */
  1886. sample_period = hwc->sample_period + delta;
  1887. if (!sample_period)
  1888. sample_period = 1;
  1889. hwc->sample_period = sample_period;
  1890. if (local64_read(&hwc->period_left) > 8*sample_period) {
  1891. event->pmu->stop(event, PERF_EF_UPDATE);
  1892. local64_set(&hwc->period_left, 0);
  1893. event->pmu->start(event, PERF_EF_RELOAD);
  1894. }
  1895. }
  1896. static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
  1897. {
  1898. struct perf_event *event;
  1899. struct hw_perf_event *hwc;
  1900. u64 interrupts, now;
  1901. s64 delta;
  1902. raw_spin_lock(&ctx->lock);
  1903. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  1904. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1905. continue;
  1906. if (!event_filter_match(event))
  1907. continue;
  1908. hwc = &event->hw;
  1909. interrupts = hwc->interrupts;
  1910. hwc->interrupts = 0;
  1911. /*
  1912. * unthrottle events on the tick
  1913. */
  1914. if (interrupts == MAX_INTERRUPTS) {
  1915. perf_log_throttle(event, 1);
  1916. event->pmu->start(event, 0);
  1917. }
  1918. if (!event->attr.freq || !event->attr.sample_freq)
  1919. continue;
  1920. event->pmu->read(event);
  1921. now = local64_read(&event->count);
  1922. delta = now - hwc->freq_count_stamp;
  1923. hwc->freq_count_stamp = now;
  1924. if (delta > 0)
  1925. perf_adjust_period(event, period, delta);
  1926. }
  1927. raw_spin_unlock(&ctx->lock);
  1928. }
  1929. /*
  1930. * Round-robin a context's events:
  1931. */
  1932. static void rotate_ctx(struct perf_event_context *ctx)
  1933. {
  1934. raw_spin_lock(&ctx->lock);
  1935. /*
  1936. * Rotate the first entry last of non-pinned groups. Rotation might be
  1937. * disabled by the inheritance code.
  1938. */
  1939. if (!ctx->rotate_disable)
  1940. list_rotate_left(&ctx->flexible_groups);
  1941. raw_spin_unlock(&ctx->lock);
  1942. }
  1943. /*
  1944. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  1945. * because they're strictly cpu affine and rotate_start is called with IRQs
  1946. * disabled, while rotate_context is called from IRQ context.
  1947. */
  1948. static void perf_rotate_context(struct perf_cpu_context *cpuctx)
  1949. {
  1950. u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
  1951. struct perf_event_context *ctx = NULL;
  1952. int rotate = 0, remove = 1;
  1953. if (cpuctx->ctx.nr_events) {
  1954. remove = 0;
  1955. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  1956. rotate = 1;
  1957. }
  1958. ctx = cpuctx->task_ctx;
  1959. if (ctx && ctx->nr_events) {
  1960. remove = 0;
  1961. if (ctx->nr_events != ctx->nr_active)
  1962. rotate = 1;
  1963. }
  1964. perf_pmu_disable(cpuctx->ctx.pmu);
  1965. perf_ctx_adjust_freq(&cpuctx->ctx, interval);
  1966. if (ctx)
  1967. perf_ctx_adjust_freq(ctx, interval);
  1968. if (!rotate)
  1969. goto done;
  1970. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1971. if (ctx)
  1972. task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
  1973. rotate_ctx(&cpuctx->ctx);
  1974. if (ctx)
  1975. rotate_ctx(ctx);
  1976. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
  1977. if (ctx)
  1978. task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
  1979. done:
  1980. if (remove)
  1981. list_del_init(&cpuctx->rotation_list);
  1982. perf_pmu_enable(cpuctx->ctx.pmu);
  1983. }
  1984. void perf_event_task_tick(void)
  1985. {
  1986. struct list_head *head = &__get_cpu_var(rotation_list);
  1987. struct perf_cpu_context *cpuctx, *tmp;
  1988. WARN_ON(!irqs_disabled());
  1989. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  1990. if (cpuctx->jiffies_interval == 1 ||
  1991. !(jiffies % cpuctx->jiffies_interval))
  1992. perf_rotate_context(cpuctx);
  1993. }
  1994. }
  1995. static int event_enable_on_exec(struct perf_event *event,
  1996. struct perf_event_context *ctx)
  1997. {
  1998. if (!event->attr.enable_on_exec)
  1999. return 0;
  2000. event->attr.enable_on_exec = 0;
  2001. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  2002. return 0;
  2003. __perf_event_mark_enabled(event, ctx);
  2004. return 1;
  2005. }
  2006. /*
  2007. * Enable all of a task's events that have been marked enable-on-exec.
  2008. * This expects task == current.
  2009. */
  2010. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2011. {
  2012. struct perf_event *event;
  2013. unsigned long flags;
  2014. int enabled = 0;
  2015. int ret;
  2016. local_irq_save(flags);
  2017. if (!ctx || !ctx->nr_events)
  2018. goto out;
  2019. task_ctx_sched_out(ctx, EVENT_ALL);
  2020. raw_spin_lock(&ctx->lock);
  2021. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  2022. ret = event_enable_on_exec(event, ctx);
  2023. if (ret)
  2024. enabled = 1;
  2025. }
  2026. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  2027. ret = event_enable_on_exec(event, ctx);
  2028. if (ret)
  2029. enabled = 1;
  2030. }
  2031. /*
  2032. * Unclone this context if we enabled any event.
  2033. */
  2034. if (enabled)
  2035. unclone_ctx(ctx);
  2036. raw_spin_unlock(&ctx->lock);
  2037. perf_event_context_sched_in(ctx, ctx->task);
  2038. out:
  2039. local_irq_restore(flags);
  2040. }
  2041. /*
  2042. * Cross CPU call to read the hardware event
  2043. */
  2044. static void __perf_event_read(void *info)
  2045. {
  2046. struct perf_event *event = info;
  2047. struct perf_event_context *ctx = event->ctx;
  2048. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2049. /*
  2050. * If this is a task context, we need to check whether it is
  2051. * the current task context of this cpu. If not it has been
  2052. * scheduled out before the smp call arrived. In that case
  2053. * event->count would have been updated to a recent sample
  2054. * when the event was scheduled out.
  2055. */
  2056. if (ctx->task && cpuctx->task_ctx != ctx)
  2057. return;
  2058. raw_spin_lock(&ctx->lock);
  2059. if (ctx->is_active) {
  2060. update_context_time(ctx);
  2061. update_cgrp_time_from_event(event);
  2062. }
  2063. update_event_times(event);
  2064. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2065. event->pmu->read(event);
  2066. raw_spin_unlock(&ctx->lock);
  2067. }
  2068. static inline u64 perf_event_count(struct perf_event *event)
  2069. {
  2070. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2071. }
  2072. static u64 perf_event_read(struct perf_event *event)
  2073. {
  2074. /*
  2075. * If event is enabled and currently active on a CPU, update the
  2076. * value in the event structure:
  2077. */
  2078. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2079. smp_call_function_single(event->oncpu,
  2080. __perf_event_read, event, 1);
  2081. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2082. struct perf_event_context *ctx = event->ctx;
  2083. unsigned long flags;
  2084. raw_spin_lock_irqsave(&ctx->lock, flags);
  2085. /*
  2086. * may read while context is not active
  2087. * (e.g., thread is blocked), in that case
  2088. * we cannot update context time
  2089. */
  2090. if (ctx->is_active) {
  2091. update_context_time(ctx);
  2092. update_cgrp_time_from_event(event);
  2093. }
  2094. update_event_times(event);
  2095. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2096. }
  2097. return perf_event_count(event);
  2098. }
  2099. /*
  2100. * Callchain support
  2101. */
  2102. struct callchain_cpus_entries {
  2103. struct rcu_head rcu_head;
  2104. struct perf_callchain_entry *cpu_entries[0];
  2105. };
  2106. static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
  2107. static atomic_t nr_callchain_events;
  2108. static DEFINE_MUTEX(callchain_mutex);
  2109. struct callchain_cpus_entries *callchain_cpus_entries;
  2110. __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
  2111. struct pt_regs *regs)
  2112. {
  2113. }
  2114. __weak void perf_callchain_user(struct perf_callchain_entry *entry,
  2115. struct pt_regs *regs)
  2116. {
  2117. }
  2118. static void release_callchain_buffers_rcu(struct rcu_head *head)
  2119. {
  2120. struct callchain_cpus_entries *entries;
  2121. int cpu;
  2122. entries = container_of(head, struct callchain_cpus_entries, rcu_head);
  2123. for_each_possible_cpu(cpu)
  2124. kfree(entries->cpu_entries[cpu]);
  2125. kfree(entries);
  2126. }
  2127. static void release_callchain_buffers(void)
  2128. {
  2129. struct callchain_cpus_entries *entries;
  2130. entries = callchain_cpus_entries;
  2131. rcu_assign_pointer(callchain_cpus_entries, NULL);
  2132. call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
  2133. }
  2134. static int alloc_callchain_buffers(void)
  2135. {
  2136. int cpu;
  2137. int size;
  2138. struct callchain_cpus_entries *entries;
  2139. /*
  2140. * We can't use the percpu allocation API for data that can be
  2141. * accessed from NMI. Use a temporary manual per cpu allocation
  2142. * until that gets sorted out.
  2143. */
  2144. size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
  2145. entries = kzalloc(size, GFP_KERNEL);
  2146. if (!entries)
  2147. return -ENOMEM;
  2148. size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
  2149. for_each_possible_cpu(cpu) {
  2150. entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
  2151. cpu_to_node(cpu));
  2152. if (!entries->cpu_entries[cpu])
  2153. goto fail;
  2154. }
  2155. rcu_assign_pointer(callchain_cpus_entries, entries);
  2156. return 0;
  2157. fail:
  2158. for_each_possible_cpu(cpu)
  2159. kfree(entries->cpu_entries[cpu]);
  2160. kfree(entries);
  2161. return -ENOMEM;
  2162. }
  2163. static int get_callchain_buffers(void)
  2164. {
  2165. int err = 0;
  2166. int count;
  2167. mutex_lock(&callchain_mutex);
  2168. count = atomic_inc_return(&nr_callchain_events);
  2169. if (WARN_ON_ONCE(count < 1)) {
  2170. err = -EINVAL;
  2171. goto exit;
  2172. }
  2173. if (count > 1) {
  2174. /* If the allocation failed, give up */
  2175. if (!callchain_cpus_entries)
  2176. err = -ENOMEM;
  2177. goto exit;
  2178. }
  2179. err = alloc_callchain_buffers();
  2180. if (err)
  2181. release_callchain_buffers();
  2182. exit:
  2183. mutex_unlock(&callchain_mutex);
  2184. return err;
  2185. }
  2186. static void put_callchain_buffers(void)
  2187. {
  2188. if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
  2189. release_callchain_buffers();
  2190. mutex_unlock(&callchain_mutex);
  2191. }
  2192. }
  2193. static int get_recursion_context(int *recursion)
  2194. {
  2195. int rctx;
  2196. if (in_nmi())
  2197. rctx = 3;
  2198. else if (in_irq())
  2199. rctx = 2;
  2200. else if (in_softirq())
  2201. rctx = 1;
  2202. else
  2203. rctx = 0;
  2204. if (recursion[rctx])
  2205. return -1;
  2206. recursion[rctx]++;
  2207. barrier();
  2208. return rctx;
  2209. }
  2210. static inline void put_recursion_context(int *recursion, int rctx)
  2211. {
  2212. barrier();
  2213. recursion[rctx]--;
  2214. }
  2215. static struct perf_callchain_entry *get_callchain_entry(int *rctx)
  2216. {
  2217. int cpu;
  2218. struct callchain_cpus_entries *entries;
  2219. *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
  2220. if (*rctx == -1)
  2221. return NULL;
  2222. entries = rcu_dereference(callchain_cpus_entries);
  2223. if (!entries)
  2224. return NULL;
  2225. cpu = smp_processor_id();
  2226. return &entries->cpu_entries[cpu][*rctx];
  2227. }
  2228. static void
  2229. put_callchain_entry(int rctx)
  2230. {
  2231. put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
  2232. }
  2233. static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  2234. {
  2235. int rctx;
  2236. struct perf_callchain_entry *entry;
  2237. entry = get_callchain_entry(&rctx);
  2238. if (rctx == -1)
  2239. return NULL;
  2240. if (!entry)
  2241. goto exit_put;
  2242. entry->nr = 0;
  2243. if (!user_mode(regs)) {
  2244. perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
  2245. perf_callchain_kernel(entry, regs);
  2246. if (current->mm)
  2247. regs = task_pt_regs(current);
  2248. else
  2249. regs = NULL;
  2250. }
  2251. if (regs) {
  2252. perf_callchain_store(entry, PERF_CONTEXT_USER);
  2253. perf_callchain_user(entry, regs);
  2254. }
  2255. exit_put:
  2256. put_callchain_entry(rctx);
  2257. return entry;
  2258. }
  2259. /*
  2260. * Initialize the perf_event context in a task_struct:
  2261. */
  2262. static void __perf_event_init_context(struct perf_event_context *ctx)
  2263. {
  2264. raw_spin_lock_init(&ctx->lock);
  2265. mutex_init(&ctx->mutex);
  2266. INIT_LIST_HEAD(&ctx->pinned_groups);
  2267. INIT_LIST_HEAD(&ctx->flexible_groups);
  2268. INIT_LIST_HEAD(&ctx->event_list);
  2269. atomic_set(&ctx->refcount, 1);
  2270. }
  2271. static struct perf_event_context *
  2272. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2273. {
  2274. struct perf_event_context *ctx;
  2275. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2276. if (!ctx)
  2277. return NULL;
  2278. __perf_event_init_context(ctx);
  2279. if (task) {
  2280. ctx->task = task;
  2281. get_task_struct(task);
  2282. }
  2283. ctx->pmu = pmu;
  2284. return ctx;
  2285. }
  2286. static struct task_struct *
  2287. find_lively_task_by_vpid(pid_t vpid)
  2288. {
  2289. struct task_struct *task;
  2290. int err;
  2291. rcu_read_lock();
  2292. if (!vpid)
  2293. task = current;
  2294. else
  2295. task = find_task_by_vpid(vpid);
  2296. if (task)
  2297. get_task_struct(task);
  2298. rcu_read_unlock();
  2299. if (!task)
  2300. return ERR_PTR(-ESRCH);
  2301. /* Reuse ptrace permission checks for now. */
  2302. err = -EACCES;
  2303. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2304. goto errout;
  2305. return task;
  2306. errout:
  2307. put_task_struct(task);
  2308. return ERR_PTR(err);
  2309. }
  2310. /*
  2311. * Returns a matching context with refcount and pincount.
  2312. */
  2313. static struct perf_event_context *
  2314. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2315. {
  2316. struct perf_event_context *ctx;
  2317. struct perf_cpu_context *cpuctx;
  2318. unsigned long flags;
  2319. int ctxn, err;
  2320. if (!task) {
  2321. /* Must be root to operate on a CPU event: */
  2322. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2323. return ERR_PTR(-EACCES);
  2324. /*
  2325. * We could be clever and allow to attach a event to an
  2326. * offline CPU and activate it when the CPU comes up, but
  2327. * that's for later.
  2328. */
  2329. if (!cpu_online(cpu))
  2330. return ERR_PTR(-ENODEV);
  2331. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2332. ctx = &cpuctx->ctx;
  2333. get_ctx(ctx);
  2334. ++ctx->pin_count;
  2335. return ctx;
  2336. }
  2337. err = -EINVAL;
  2338. ctxn = pmu->task_ctx_nr;
  2339. if (ctxn < 0)
  2340. goto errout;
  2341. retry:
  2342. ctx = perf_lock_task_context(task, ctxn, &flags);
  2343. if (ctx) {
  2344. unclone_ctx(ctx);
  2345. ++ctx->pin_count;
  2346. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2347. }
  2348. if (!ctx) {
  2349. ctx = alloc_perf_context(pmu, task);
  2350. err = -ENOMEM;
  2351. if (!ctx)
  2352. goto errout;
  2353. get_ctx(ctx);
  2354. err = 0;
  2355. mutex_lock(&task->perf_event_mutex);
  2356. /*
  2357. * If it has already passed perf_event_exit_task().
  2358. * we must see PF_EXITING, it takes this mutex too.
  2359. */
  2360. if (task->flags & PF_EXITING)
  2361. err = -ESRCH;
  2362. else if (task->perf_event_ctxp[ctxn])
  2363. err = -EAGAIN;
  2364. else {
  2365. ++ctx->pin_count;
  2366. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2367. }
  2368. mutex_unlock(&task->perf_event_mutex);
  2369. if (unlikely(err)) {
  2370. put_task_struct(task);
  2371. kfree(ctx);
  2372. if (err == -EAGAIN)
  2373. goto retry;
  2374. goto errout;
  2375. }
  2376. }
  2377. return ctx;
  2378. errout:
  2379. return ERR_PTR(err);
  2380. }
  2381. static void perf_event_free_filter(struct perf_event *event);
  2382. static void free_event_rcu(struct rcu_head *head)
  2383. {
  2384. struct perf_event *event;
  2385. event = container_of(head, struct perf_event, rcu_head);
  2386. if (event->ns)
  2387. put_pid_ns(event->ns);
  2388. perf_event_free_filter(event);
  2389. kfree(event);
  2390. }
  2391. static void perf_buffer_put(struct perf_buffer *buffer);
  2392. static void free_event(struct perf_event *event)
  2393. {
  2394. irq_work_sync(&event->pending);
  2395. if (!event->parent) {
  2396. if (event->attach_state & PERF_ATTACH_TASK)
  2397. jump_label_dec(&perf_sched_events);
  2398. if (event->attr.mmap || event->attr.mmap_data)
  2399. atomic_dec(&nr_mmap_events);
  2400. if (event->attr.comm)
  2401. atomic_dec(&nr_comm_events);
  2402. if (event->attr.task)
  2403. atomic_dec(&nr_task_events);
  2404. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2405. put_callchain_buffers();
  2406. }
  2407. if (event->buffer) {
  2408. perf_buffer_put(event->buffer);
  2409. event->buffer = NULL;
  2410. }
  2411. if (is_cgroup_event(event))
  2412. perf_detach_cgroup(event);
  2413. if (event->destroy)
  2414. event->destroy(event);
  2415. if (event->ctx)
  2416. put_ctx(event->ctx);
  2417. call_rcu(&event->rcu_head, free_event_rcu);
  2418. }
  2419. int perf_event_release_kernel(struct perf_event *event)
  2420. {
  2421. struct perf_event_context *ctx = event->ctx;
  2422. /*
  2423. * Remove from the PMU, can't get re-enabled since we got
  2424. * here because the last ref went.
  2425. */
  2426. perf_event_disable(event);
  2427. WARN_ON_ONCE(ctx->parent_ctx);
  2428. /*
  2429. * There are two ways this annotation is useful:
  2430. *
  2431. * 1) there is a lock recursion from perf_event_exit_task
  2432. * see the comment there.
  2433. *
  2434. * 2) there is a lock-inversion with mmap_sem through
  2435. * perf_event_read_group(), which takes faults while
  2436. * holding ctx->mutex, however this is called after
  2437. * the last filedesc died, so there is no possibility
  2438. * to trigger the AB-BA case.
  2439. */
  2440. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  2441. raw_spin_lock_irq(&ctx->lock);
  2442. perf_group_detach(event);
  2443. list_del_event(event, ctx);
  2444. raw_spin_unlock_irq(&ctx->lock);
  2445. mutex_unlock(&ctx->mutex);
  2446. free_event(event);
  2447. return 0;
  2448. }
  2449. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2450. /*
  2451. * Called when the last reference to the file is gone.
  2452. */
  2453. static int perf_release(struct inode *inode, struct file *file)
  2454. {
  2455. struct perf_event *event = file->private_data;
  2456. struct task_struct *owner;
  2457. file->private_data = NULL;
  2458. rcu_read_lock();
  2459. owner = ACCESS_ONCE(event->owner);
  2460. /*
  2461. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2462. * !owner it means the list deletion is complete and we can indeed
  2463. * free this event, otherwise we need to serialize on
  2464. * owner->perf_event_mutex.
  2465. */
  2466. smp_read_barrier_depends();
  2467. if (owner) {
  2468. /*
  2469. * Since delayed_put_task_struct() also drops the last
  2470. * task reference we can safely take a new reference
  2471. * while holding the rcu_read_lock().
  2472. */
  2473. get_task_struct(owner);
  2474. }
  2475. rcu_read_unlock();
  2476. if (owner) {
  2477. mutex_lock(&owner->perf_event_mutex);
  2478. /*
  2479. * We have to re-check the event->owner field, if it is cleared
  2480. * we raced with perf_event_exit_task(), acquiring the mutex
  2481. * ensured they're done, and we can proceed with freeing the
  2482. * event.
  2483. */
  2484. if (event->owner)
  2485. list_del_init(&event->owner_entry);
  2486. mutex_unlock(&owner->perf_event_mutex);
  2487. put_task_struct(owner);
  2488. }
  2489. return perf_event_release_kernel(event);
  2490. }
  2491. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  2492. {
  2493. struct perf_event *child;
  2494. u64 total = 0;
  2495. *enabled = 0;
  2496. *running = 0;
  2497. mutex_lock(&event->child_mutex);
  2498. total += perf_event_read(event);
  2499. *enabled += event->total_time_enabled +
  2500. atomic64_read(&event->child_total_time_enabled);
  2501. *running += event->total_time_running +
  2502. atomic64_read(&event->child_total_time_running);
  2503. list_for_each_entry(child, &event->child_list, child_list) {
  2504. total += perf_event_read(child);
  2505. *enabled += child->total_time_enabled;
  2506. *running += child->total_time_running;
  2507. }
  2508. mutex_unlock(&event->child_mutex);
  2509. return total;
  2510. }
  2511. EXPORT_SYMBOL_GPL(perf_event_read_value);
  2512. static int perf_event_read_group(struct perf_event *event,
  2513. u64 read_format, char __user *buf)
  2514. {
  2515. struct perf_event *leader = event->group_leader, *sub;
  2516. int n = 0, size = 0, ret = -EFAULT;
  2517. struct perf_event_context *ctx = leader->ctx;
  2518. u64 values[5];
  2519. u64 count, enabled, running;
  2520. mutex_lock(&ctx->mutex);
  2521. count = perf_event_read_value(leader, &enabled, &running);
  2522. values[n++] = 1 + leader->nr_siblings;
  2523. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2524. values[n++] = enabled;
  2525. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2526. values[n++] = running;
  2527. values[n++] = count;
  2528. if (read_format & PERF_FORMAT_ID)
  2529. values[n++] = primary_event_id(leader);
  2530. size = n * sizeof(u64);
  2531. if (copy_to_user(buf, values, size))
  2532. goto unlock;
  2533. ret = size;
  2534. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2535. n = 0;
  2536. values[n++] = perf_event_read_value(sub, &enabled, &running);
  2537. if (read_format & PERF_FORMAT_ID)
  2538. values[n++] = primary_event_id(sub);
  2539. size = n * sizeof(u64);
  2540. if (copy_to_user(buf + ret, values, size)) {
  2541. ret = -EFAULT;
  2542. goto unlock;
  2543. }
  2544. ret += size;
  2545. }
  2546. unlock:
  2547. mutex_unlock(&ctx->mutex);
  2548. return ret;
  2549. }
  2550. static int perf_event_read_one(struct perf_event *event,
  2551. u64 read_format, char __user *buf)
  2552. {
  2553. u64 enabled, running;
  2554. u64 values[4];
  2555. int n = 0;
  2556. values[n++] = perf_event_read_value(event, &enabled, &running);
  2557. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2558. values[n++] = enabled;
  2559. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2560. values[n++] = running;
  2561. if (read_format & PERF_FORMAT_ID)
  2562. values[n++] = primary_event_id(event);
  2563. if (copy_to_user(buf, values, n * sizeof(u64)))
  2564. return -EFAULT;
  2565. return n * sizeof(u64);
  2566. }
  2567. /*
  2568. * Read the performance event - simple non blocking version for now
  2569. */
  2570. static ssize_t
  2571. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  2572. {
  2573. u64 read_format = event->attr.read_format;
  2574. int ret;
  2575. /*
  2576. * Return end-of-file for a read on a event that is in
  2577. * error state (i.e. because it was pinned but it couldn't be
  2578. * scheduled on to the CPU at some point).
  2579. */
  2580. if (event->state == PERF_EVENT_STATE_ERROR)
  2581. return 0;
  2582. if (count < event->read_size)
  2583. return -ENOSPC;
  2584. WARN_ON_ONCE(event->ctx->parent_ctx);
  2585. if (read_format & PERF_FORMAT_GROUP)
  2586. ret = perf_event_read_group(event, read_format, buf);
  2587. else
  2588. ret = perf_event_read_one(event, read_format, buf);
  2589. return ret;
  2590. }
  2591. static ssize_t
  2592. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  2593. {
  2594. struct perf_event *event = file->private_data;
  2595. return perf_read_hw(event, buf, count);
  2596. }
  2597. static unsigned int perf_poll(struct file *file, poll_table *wait)
  2598. {
  2599. struct perf_event *event = file->private_data;
  2600. struct perf_buffer *buffer;
  2601. unsigned int events = POLL_HUP;
  2602. rcu_read_lock();
  2603. buffer = rcu_dereference(event->buffer);
  2604. if (buffer)
  2605. events = atomic_xchg(&buffer->poll, 0);
  2606. rcu_read_unlock();
  2607. poll_wait(file, &event->waitq, wait);
  2608. return events;
  2609. }
  2610. static void perf_event_reset(struct perf_event *event)
  2611. {
  2612. (void)perf_event_read(event);
  2613. local64_set(&event->count, 0);
  2614. perf_event_update_userpage(event);
  2615. }
  2616. /*
  2617. * Holding the top-level event's child_mutex means that any
  2618. * descendant process that has inherited this event will block
  2619. * in sync_child_event if it goes to exit, thus satisfying the
  2620. * task existence requirements of perf_event_enable/disable.
  2621. */
  2622. static void perf_event_for_each_child(struct perf_event *event,
  2623. void (*func)(struct perf_event *))
  2624. {
  2625. struct perf_event *child;
  2626. WARN_ON_ONCE(event->ctx->parent_ctx);
  2627. mutex_lock(&event->child_mutex);
  2628. func(event);
  2629. list_for_each_entry(child, &event->child_list, child_list)
  2630. func(child);
  2631. mutex_unlock(&event->child_mutex);
  2632. }
  2633. static void perf_event_for_each(struct perf_event *event,
  2634. void (*func)(struct perf_event *))
  2635. {
  2636. struct perf_event_context *ctx = event->ctx;
  2637. struct perf_event *sibling;
  2638. WARN_ON_ONCE(ctx->parent_ctx);
  2639. mutex_lock(&ctx->mutex);
  2640. event = event->group_leader;
  2641. perf_event_for_each_child(event, func);
  2642. func(event);
  2643. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  2644. perf_event_for_each_child(event, func);
  2645. mutex_unlock(&ctx->mutex);
  2646. }
  2647. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  2648. {
  2649. struct perf_event_context *ctx = event->ctx;
  2650. int ret = 0;
  2651. u64 value;
  2652. if (!is_sampling_event(event))
  2653. return -EINVAL;
  2654. if (copy_from_user(&value, arg, sizeof(value)))
  2655. return -EFAULT;
  2656. if (!value)
  2657. return -EINVAL;
  2658. raw_spin_lock_irq(&ctx->lock);
  2659. if (event->attr.freq) {
  2660. if (value > sysctl_perf_event_sample_rate) {
  2661. ret = -EINVAL;
  2662. goto unlock;
  2663. }
  2664. event->attr.sample_freq = value;
  2665. } else {
  2666. event->attr.sample_period = value;
  2667. event->hw.sample_period = value;
  2668. }
  2669. unlock:
  2670. raw_spin_unlock_irq(&ctx->lock);
  2671. return ret;
  2672. }
  2673. static const struct file_operations perf_fops;
  2674. static struct perf_event *perf_fget_light(int fd, int *fput_needed)
  2675. {
  2676. struct file *file;
  2677. file = fget_light(fd, fput_needed);
  2678. if (!file)
  2679. return ERR_PTR(-EBADF);
  2680. if (file->f_op != &perf_fops) {
  2681. fput_light(file, *fput_needed);
  2682. *fput_needed = 0;
  2683. return ERR_PTR(-EBADF);
  2684. }
  2685. return file->private_data;
  2686. }
  2687. static int perf_event_set_output(struct perf_event *event,
  2688. struct perf_event *output_event);
  2689. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  2690. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2691. {
  2692. struct perf_event *event = file->private_data;
  2693. void (*func)(struct perf_event *);
  2694. u32 flags = arg;
  2695. switch (cmd) {
  2696. case PERF_EVENT_IOC_ENABLE:
  2697. func = perf_event_enable;
  2698. break;
  2699. case PERF_EVENT_IOC_DISABLE:
  2700. func = perf_event_disable;
  2701. break;
  2702. case PERF_EVENT_IOC_RESET:
  2703. func = perf_event_reset;
  2704. break;
  2705. case PERF_EVENT_IOC_REFRESH:
  2706. return perf_event_refresh(event, arg);
  2707. case PERF_EVENT_IOC_PERIOD:
  2708. return perf_event_period(event, (u64 __user *)arg);
  2709. case PERF_EVENT_IOC_SET_OUTPUT:
  2710. {
  2711. struct perf_event *output_event = NULL;
  2712. int fput_needed = 0;
  2713. int ret;
  2714. if (arg != -1) {
  2715. output_event = perf_fget_light(arg, &fput_needed);
  2716. if (IS_ERR(output_event))
  2717. return PTR_ERR(output_event);
  2718. }
  2719. ret = perf_event_set_output(event, output_event);
  2720. if (output_event)
  2721. fput_light(output_event->filp, fput_needed);
  2722. return ret;
  2723. }
  2724. case PERF_EVENT_IOC_SET_FILTER:
  2725. return perf_event_set_filter(event, (void __user *)arg);
  2726. default:
  2727. return -ENOTTY;
  2728. }
  2729. if (flags & PERF_IOC_FLAG_GROUP)
  2730. perf_event_for_each(event, func);
  2731. else
  2732. perf_event_for_each_child(event, func);
  2733. return 0;
  2734. }
  2735. int perf_event_task_enable(void)
  2736. {
  2737. struct perf_event *event;
  2738. mutex_lock(&current->perf_event_mutex);
  2739. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2740. perf_event_for_each_child(event, perf_event_enable);
  2741. mutex_unlock(&current->perf_event_mutex);
  2742. return 0;
  2743. }
  2744. int perf_event_task_disable(void)
  2745. {
  2746. struct perf_event *event;
  2747. mutex_lock(&current->perf_event_mutex);
  2748. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2749. perf_event_for_each_child(event, perf_event_disable);
  2750. mutex_unlock(&current->perf_event_mutex);
  2751. return 0;
  2752. }
  2753. #ifndef PERF_EVENT_INDEX_OFFSET
  2754. # define PERF_EVENT_INDEX_OFFSET 0
  2755. #endif
  2756. static int perf_event_index(struct perf_event *event)
  2757. {
  2758. if (event->hw.state & PERF_HES_STOPPED)
  2759. return 0;
  2760. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2761. return 0;
  2762. return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
  2763. }
  2764. /*
  2765. * Callers need to ensure there can be no nesting of this function, otherwise
  2766. * the seqlock logic goes bad. We can not serialize this because the arch
  2767. * code calls this from NMI context.
  2768. */
  2769. void perf_event_update_userpage(struct perf_event *event)
  2770. {
  2771. struct perf_event_mmap_page *userpg;
  2772. struct perf_buffer *buffer;
  2773. rcu_read_lock();
  2774. buffer = rcu_dereference(event->buffer);
  2775. if (!buffer)
  2776. goto unlock;
  2777. userpg = buffer->user_page;
  2778. /*
  2779. * Disable preemption so as to not let the corresponding user-space
  2780. * spin too long if we get preempted.
  2781. */
  2782. preempt_disable();
  2783. ++userpg->lock;
  2784. barrier();
  2785. userpg->index = perf_event_index(event);
  2786. userpg->offset = perf_event_count(event);
  2787. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2788. userpg->offset -= local64_read(&event->hw.prev_count);
  2789. userpg->time_enabled = event->total_time_enabled +
  2790. atomic64_read(&event->child_total_time_enabled);
  2791. userpg->time_running = event->total_time_running +
  2792. atomic64_read(&event->child_total_time_running);
  2793. barrier();
  2794. ++userpg->lock;
  2795. preempt_enable();
  2796. unlock:
  2797. rcu_read_unlock();
  2798. }
  2799. static unsigned long perf_data_size(struct perf_buffer *buffer);
  2800. static void
  2801. perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
  2802. {
  2803. long max_size = perf_data_size(buffer);
  2804. if (watermark)
  2805. buffer->watermark = min(max_size, watermark);
  2806. if (!buffer->watermark)
  2807. buffer->watermark = max_size / 2;
  2808. if (flags & PERF_BUFFER_WRITABLE)
  2809. buffer->writable = 1;
  2810. atomic_set(&buffer->refcount, 1);
  2811. }
  2812. #ifndef CONFIG_PERF_USE_VMALLOC
  2813. /*
  2814. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  2815. */
  2816. static struct page *
  2817. perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
  2818. {
  2819. if (pgoff > buffer->nr_pages)
  2820. return NULL;
  2821. if (pgoff == 0)
  2822. return virt_to_page(buffer->user_page);
  2823. return virt_to_page(buffer->data_pages[pgoff - 1]);
  2824. }
  2825. static void *perf_mmap_alloc_page(int cpu)
  2826. {
  2827. struct page *page;
  2828. int node;
  2829. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  2830. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  2831. if (!page)
  2832. return NULL;
  2833. return page_address(page);
  2834. }
  2835. static struct perf_buffer *
  2836. perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
  2837. {
  2838. struct perf_buffer *buffer;
  2839. unsigned long size;
  2840. int i;
  2841. size = sizeof(struct perf_buffer);
  2842. size += nr_pages * sizeof(void *);
  2843. buffer = kzalloc(size, GFP_KERNEL);
  2844. if (!buffer)
  2845. goto fail;
  2846. buffer->user_page = perf_mmap_alloc_page(cpu);
  2847. if (!buffer->user_page)
  2848. goto fail_user_page;
  2849. for (i = 0; i < nr_pages; i++) {
  2850. buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
  2851. if (!buffer->data_pages[i])
  2852. goto fail_data_pages;
  2853. }
  2854. buffer->nr_pages = nr_pages;
  2855. perf_buffer_init(buffer, watermark, flags);
  2856. return buffer;
  2857. fail_data_pages:
  2858. for (i--; i >= 0; i--)
  2859. free_page((unsigned long)buffer->data_pages[i]);
  2860. free_page((unsigned long)buffer->user_page);
  2861. fail_user_page:
  2862. kfree(buffer);
  2863. fail:
  2864. return NULL;
  2865. }
  2866. static void perf_mmap_free_page(unsigned long addr)
  2867. {
  2868. struct page *page = virt_to_page((void *)addr);
  2869. page->mapping = NULL;
  2870. __free_page(page);
  2871. }
  2872. static void perf_buffer_free(struct perf_buffer *buffer)
  2873. {
  2874. int i;
  2875. perf_mmap_free_page((unsigned long)buffer->user_page);
  2876. for (i = 0; i < buffer->nr_pages; i++)
  2877. perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
  2878. kfree(buffer);
  2879. }
  2880. static inline int page_order(struct perf_buffer *buffer)
  2881. {
  2882. return 0;
  2883. }
  2884. #else
  2885. /*
  2886. * Back perf_mmap() with vmalloc memory.
  2887. *
  2888. * Required for architectures that have d-cache aliasing issues.
  2889. */
  2890. static inline int page_order(struct perf_buffer *buffer)
  2891. {
  2892. return buffer->page_order;
  2893. }
  2894. static struct page *
  2895. perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
  2896. {
  2897. if (pgoff > (1UL << page_order(buffer)))
  2898. return NULL;
  2899. return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
  2900. }
  2901. static void perf_mmap_unmark_page(void *addr)
  2902. {
  2903. struct page *page = vmalloc_to_page(addr);
  2904. page->mapping = NULL;
  2905. }
  2906. static void perf_buffer_free_work(struct work_struct *work)
  2907. {
  2908. struct perf_buffer *buffer;
  2909. void *base;
  2910. int i, nr;
  2911. buffer = container_of(work, struct perf_buffer, work);
  2912. nr = 1 << page_order(buffer);
  2913. base = buffer->user_page;
  2914. for (i = 0; i < nr + 1; i++)
  2915. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  2916. vfree(base);
  2917. kfree(buffer);
  2918. }
  2919. static void perf_buffer_free(struct perf_buffer *buffer)
  2920. {
  2921. schedule_work(&buffer->work);
  2922. }
  2923. static struct perf_buffer *
  2924. perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
  2925. {
  2926. struct perf_buffer *buffer;
  2927. unsigned long size;
  2928. void *all_buf;
  2929. size = sizeof(struct perf_buffer);
  2930. size += sizeof(void *);
  2931. buffer = kzalloc(size, GFP_KERNEL);
  2932. if (!buffer)
  2933. goto fail;
  2934. INIT_WORK(&buffer->work, perf_buffer_free_work);
  2935. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  2936. if (!all_buf)
  2937. goto fail_all_buf;
  2938. buffer->user_page = all_buf;
  2939. buffer->data_pages[0] = all_buf + PAGE_SIZE;
  2940. buffer->page_order = ilog2(nr_pages);
  2941. buffer->nr_pages = 1;
  2942. perf_buffer_init(buffer, watermark, flags);
  2943. return buffer;
  2944. fail_all_buf:
  2945. kfree(buffer);
  2946. fail:
  2947. return NULL;
  2948. }
  2949. #endif
  2950. static unsigned long perf_data_size(struct perf_buffer *buffer)
  2951. {
  2952. return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
  2953. }
  2954. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2955. {
  2956. struct perf_event *event = vma->vm_file->private_data;
  2957. struct perf_buffer *buffer;
  2958. int ret = VM_FAULT_SIGBUS;
  2959. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  2960. if (vmf->pgoff == 0)
  2961. ret = 0;
  2962. return ret;
  2963. }
  2964. rcu_read_lock();
  2965. buffer = rcu_dereference(event->buffer);
  2966. if (!buffer)
  2967. goto unlock;
  2968. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  2969. goto unlock;
  2970. vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
  2971. if (!vmf->page)
  2972. goto unlock;
  2973. get_page(vmf->page);
  2974. vmf->page->mapping = vma->vm_file->f_mapping;
  2975. vmf->page->index = vmf->pgoff;
  2976. ret = 0;
  2977. unlock:
  2978. rcu_read_unlock();
  2979. return ret;
  2980. }
  2981. static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
  2982. {
  2983. struct perf_buffer *buffer;
  2984. buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
  2985. perf_buffer_free(buffer);
  2986. }
  2987. static struct perf_buffer *perf_buffer_get(struct perf_event *event)
  2988. {
  2989. struct perf_buffer *buffer;
  2990. rcu_read_lock();
  2991. buffer = rcu_dereference(event->buffer);
  2992. if (buffer) {
  2993. if (!atomic_inc_not_zero(&buffer->refcount))
  2994. buffer = NULL;
  2995. }
  2996. rcu_read_unlock();
  2997. return buffer;
  2998. }
  2999. static void perf_buffer_put(struct perf_buffer *buffer)
  3000. {
  3001. if (!atomic_dec_and_test(&buffer->refcount))
  3002. return;
  3003. call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
  3004. }
  3005. static void perf_mmap_open(struct vm_area_struct *vma)
  3006. {
  3007. struct perf_event *event = vma->vm_file->private_data;
  3008. atomic_inc(&event->mmap_count);
  3009. }
  3010. static void perf_mmap_close(struct vm_area_struct *vma)
  3011. {
  3012. struct perf_event *event = vma->vm_file->private_data;
  3013. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  3014. unsigned long size = perf_data_size(event->buffer);
  3015. struct user_struct *user = event->mmap_user;
  3016. struct perf_buffer *buffer = event->buffer;
  3017. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  3018. vma->vm_mm->locked_vm -= event->mmap_locked;
  3019. rcu_assign_pointer(event->buffer, NULL);
  3020. mutex_unlock(&event->mmap_mutex);
  3021. perf_buffer_put(buffer);
  3022. free_uid(user);
  3023. }
  3024. }
  3025. static const struct vm_operations_struct perf_mmap_vmops = {
  3026. .open = perf_mmap_open,
  3027. .close = perf_mmap_close,
  3028. .fault = perf_mmap_fault,
  3029. .page_mkwrite = perf_mmap_fault,
  3030. };
  3031. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  3032. {
  3033. struct perf_event *event = file->private_data;
  3034. unsigned long user_locked, user_lock_limit;
  3035. struct user_struct *user = current_user();
  3036. unsigned long locked, lock_limit;
  3037. struct perf_buffer *buffer;
  3038. unsigned long vma_size;
  3039. unsigned long nr_pages;
  3040. long user_extra, extra;
  3041. int ret = 0, flags = 0;
  3042. /*
  3043. * Don't allow mmap() of inherited per-task counters. This would
  3044. * create a performance issue due to all children writing to the
  3045. * same buffer.
  3046. */
  3047. if (event->cpu == -1 && event->attr.inherit)
  3048. return -EINVAL;
  3049. if (!(vma->vm_flags & VM_SHARED))
  3050. return -EINVAL;
  3051. vma_size = vma->vm_end - vma->vm_start;
  3052. nr_pages = (vma_size / PAGE_SIZE) - 1;
  3053. /*
  3054. * If we have buffer pages ensure they're a power-of-two number, so we
  3055. * can do bitmasks instead of modulo.
  3056. */
  3057. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  3058. return -EINVAL;
  3059. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  3060. return -EINVAL;
  3061. if (vma->vm_pgoff != 0)
  3062. return -EINVAL;
  3063. WARN_ON_ONCE(event->ctx->parent_ctx);
  3064. mutex_lock(&event->mmap_mutex);
  3065. if (event->buffer) {
  3066. if (event->buffer->nr_pages == nr_pages)
  3067. atomic_inc(&event->buffer->refcount);
  3068. else
  3069. ret = -EINVAL;
  3070. goto unlock;
  3071. }
  3072. user_extra = nr_pages + 1;
  3073. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  3074. /*
  3075. * Increase the limit linearly with more CPUs:
  3076. */
  3077. user_lock_limit *= num_online_cpus();
  3078. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  3079. extra = 0;
  3080. if (user_locked > user_lock_limit)
  3081. extra = user_locked - user_lock_limit;
  3082. lock_limit = rlimit(RLIMIT_MEMLOCK);
  3083. lock_limit >>= PAGE_SHIFT;
  3084. locked = vma->vm_mm->locked_vm + extra;
  3085. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  3086. !capable(CAP_IPC_LOCK)) {
  3087. ret = -EPERM;
  3088. goto unlock;
  3089. }
  3090. WARN_ON(event->buffer);
  3091. if (vma->vm_flags & VM_WRITE)
  3092. flags |= PERF_BUFFER_WRITABLE;
  3093. buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
  3094. event->cpu, flags);
  3095. if (!buffer) {
  3096. ret = -ENOMEM;
  3097. goto unlock;
  3098. }
  3099. rcu_assign_pointer(event->buffer, buffer);
  3100. atomic_long_add(user_extra, &user->locked_vm);
  3101. event->mmap_locked = extra;
  3102. event->mmap_user = get_current_user();
  3103. vma->vm_mm->locked_vm += event->mmap_locked;
  3104. unlock:
  3105. if (!ret)
  3106. atomic_inc(&event->mmap_count);
  3107. mutex_unlock(&event->mmap_mutex);
  3108. vma->vm_flags |= VM_RESERVED;
  3109. vma->vm_ops = &perf_mmap_vmops;
  3110. return ret;
  3111. }
  3112. static int perf_fasync(int fd, struct file *filp, int on)
  3113. {
  3114. struct inode *inode = filp->f_path.dentry->d_inode;
  3115. struct perf_event *event = filp->private_data;
  3116. int retval;
  3117. mutex_lock(&inode->i_mutex);
  3118. retval = fasync_helper(fd, filp, on, &event->fasync);
  3119. mutex_unlock(&inode->i_mutex);
  3120. if (retval < 0)
  3121. return retval;
  3122. return 0;
  3123. }
  3124. static const struct file_operations perf_fops = {
  3125. .llseek = no_llseek,
  3126. .release = perf_release,
  3127. .read = perf_read,
  3128. .poll = perf_poll,
  3129. .unlocked_ioctl = perf_ioctl,
  3130. .compat_ioctl = perf_ioctl,
  3131. .mmap = perf_mmap,
  3132. .fasync = perf_fasync,
  3133. };
  3134. /*
  3135. * Perf event wakeup
  3136. *
  3137. * If there's data, ensure we set the poll() state and publish everything
  3138. * to user-space before waking everybody up.
  3139. */
  3140. void perf_event_wakeup(struct perf_event *event)
  3141. {
  3142. wake_up_all(&event->waitq);
  3143. if (event->pending_kill) {
  3144. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  3145. event->pending_kill = 0;
  3146. }
  3147. }
  3148. static void perf_pending_event(struct irq_work *entry)
  3149. {
  3150. struct perf_event *event = container_of(entry,
  3151. struct perf_event, pending);
  3152. if (event->pending_disable) {
  3153. event->pending_disable = 0;
  3154. __perf_event_disable(event);
  3155. }
  3156. if (event->pending_wakeup) {
  3157. event->pending_wakeup = 0;
  3158. perf_event_wakeup(event);
  3159. }
  3160. }
  3161. /*
  3162. * We assume there is only KVM supporting the callbacks.
  3163. * Later on, we might change it to a list if there is
  3164. * another virtualization implementation supporting the callbacks.
  3165. */
  3166. struct perf_guest_info_callbacks *perf_guest_cbs;
  3167. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3168. {
  3169. perf_guest_cbs = cbs;
  3170. return 0;
  3171. }
  3172. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3173. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3174. {
  3175. perf_guest_cbs = NULL;
  3176. return 0;
  3177. }
  3178. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3179. /*
  3180. * Output
  3181. */
  3182. static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
  3183. unsigned long offset, unsigned long head)
  3184. {
  3185. unsigned long mask;
  3186. if (!buffer->writable)
  3187. return true;
  3188. mask = perf_data_size(buffer) - 1;
  3189. offset = (offset - tail) & mask;
  3190. head = (head - tail) & mask;
  3191. if ((int)(head - offset) < 0)
  3192. return false;
  3193. return true;
  3194. }
  3195. static void perf_output_wakeup(struct perf_output_handle *handle)
  3196. {
  3197. atomic_set(&handle->buffer->poll, POLL_IN);
  3198. if (handle->nmi) {
  3199. handle->event->pending_wakeup = 1;
  3200. irq_work_queue(&handle->event->pending);
  3201. } else
  3202. perf_event_wakeup(handle->event);
  3203. }
  3204. /*
  3205. * We need to ensure a later event_id doesn't publish a head when a former
  3206. * event isn't done writing. However since we need to deal with NMIs we
  3207. * cannot fully serialize things.
  3208. *
  3209. * We only publish the head (and generate a wakeup) when the outer-most
  3210. * event completes.
  3211. */
  3212. static void perf_output_get_handle(struct perf_output_handle *handle)
  3213. {
  3214. struct perf_buffer *buffer = handle->buffer;
  3215. preempt_disable();
  3216. local_inc(&buffer->nest);
  3217. handle->wakeup = local_read(&buffer->wakeup);
  3218. }
  3219. static void perf_output_put_handle(struct perf_output_handle *handle)
  3220. {
  3221. struct perf_buffer *buffer = handle->buffer;
  3222. unsigned long head;
  3223. again:
  3224. head = local_read(&buffer->head);
  3225. /*
  3226. * IRQ/NMI can happen here, which means we can miss a head update.
  3227. */
  3228. if (!local_dec_and_test(&buffer->nest))
  3229. goto out;
  3230. /*
  3231. * Publish the known good head. Rely on the full barrier implied
  3232. * by atomic_dec_and_test() order the buffer->head read and this
  3233. * write.
  3234. */
  3235. buffer->user_page->data_head = head;
  3236. /*
  3237. * Now check if we missed an update, rely on the (compiler)
  3238. * barrier in atomic_dec_and_test() to re-read buffer->head.
  3239. */
  3240. if (unlikely(head != local_read(&buffer->head))) {
  3241. local_inc(&buffer->nest);
  3242. goto again;
  3243. }
  3244. if (handle->wakeup != local_read(&buffer->wakeup))
  3245. perf_output_wakeup(handle);
  3246. out:
  3247. preempt_enable();
  3248. }
  3249. __always_inline void perf_output_copy(struct perf_output_handle *handle,
  3250. const void *buf, unsigned int len)
  3251. {
  3252. do {
  3253. unsigned long size = min_t(unsigned long, handle->size, len);
  3254. memcpy(handle->addr, buf, size);
  3255. len -= size;
  3256. handle->addr += size;
  3257. buf += size;
  3258. handle->size -= size;
  3259. if (!handle->size) {
  3260. struct perf_buffer *buffer = handle->buffer;
  3261. handle->page++;
  3262. handle->page &= buffer->nr_pages - 1;
  3263. handle->addr = buffer->data_pages[handle->page];
  3264. handle->size = PAGE_SIZE << page_order(buffer);
  3265. }
  3266. } while (len);
  3267. }
  3268. static void __perf_event_header__init_id(struct perf_event_header *header,
  3269. struct perf_sample_data *data,
  3270. struct perf_event *event)
  3271. {
  3272. u64 sample_type = event->attr.sample_type;
  3273. data->type = sample_type;
  3274. header->size += event->id_header_size;
  3275. if (sample_type & PERF_SAMPLE_TID) {
  3276. /* namespace issues */
  3277. data->tid_entry.pid = perf_event_pid(event, current);
  3278. data->tid_entry.tid = perf_event_tid(event, current);
  3279. }
  3280. if (sample_type & PERF_SAMPLE_TIME)
  3281. data->time = perf_clock();
  3282. if (sample_type & PERF_SAMPLE_ID)
  3283. data->id = primary_event_id(event);
  3284. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3285. data->stream_id = event->id;
  3286. if (sample_type & PERF_SAMPLE_CPU) {
  3287. data->cpu_entry.cpu = raw_smp_processor_id();
  3288. data->cpu_entry.reserved = 0;
  3289. }
  3290. }
  3291. static void perf_event_header__init_id(struct perf_event_header *header,
  3292. struct perf_sample_data *data,
  3293. struct perf_event *event)
  3294. {
  3295. if (event->attr.sample_id_all)
  3296. __perf_event_header__init_id(header, data, event);
  3297. }
  3298. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3299. struct perf_sample_data *data)
  3300. {
  3301. u64 sample_type = data->type;
  3302. if (sample_type & PERF_SAMPLE_TID)
  3303. perf_output_put(handle, data->tid_entry);
  3304. if (sample_type & PERF_SAMPLE_TIME)
  3305. perf_output_put(handle, data->time);
  3306. if (sample_type & PERF_SAMPLE_ID)
  3307. perf_output_put(handle, data->id);
  3308. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3309. perf_output_put(handle, data->stream_id);
  3310. if (sample_type & PERF_SAMPLE_CPU)
  3311. perf_output_put(handle, data->cpu_entry);
  3312. }
  3313. static void perf_event__output_id_sample(struct perf_event *event,
  3314. struct perf_output_handle *handle,
  3315. struct perf_sample_data *sample)
  3316. {
  3317. if (event->attr.sample_id_all)
  3318. __perf_event__output_id_sample(handle, sample);
  3319. }
  3320. int perf_output_begin(struct perf_output_handle *handle,
  3321. struct perf_event *event, unsigned int size,
  3322. int nmi, int sample)
  3323. {
  3324. struct perf_buffer *buffer;
  3325. unsigned long tail, offset, head;
  3326. int have_lost;
  3327. struct perf_sample_data sample_data;
  3328. struct {
  3329. struct perf_event_header header;
  3330. u64 id;
  3331. u64 lost;
  3332. } lost_event;
  3333. rcu_read_lock();
  3334. /*
  3335. * For inherited events we send all the output towards the parent.
  3336. */
  3337. if (event->parent)
  3338. event = event->parent;
  3339. buffer = rcu_dereference(event->buffer);
  3340. if (!buffer)
  3341. goto out;
  3342. handle->buffer = buffer;
  3343. handle->event = event;
  3344. handle->nmi = nmi;
  3345. handle->sample = sample;
  3346. if (!buffer->nr_pages)
  3347. goto out;
  3348. have_lost = local_read(&buffer->lost);
  3349. if (have_lost) {
  3350. lost_event.header.size = sizeof(lost_event);
  3351. perf_event_header__init_id(&lost_event.header, &sample_data,
  3352. event);
  3353. size += lost_event.header.size;
  3354. }
  3355. perf_output_get_handle(handle);
  3356. do {
  3357. /*
  3358. * Userspace could choose to issue a mb() before updating the
  3359. * tail pointer. So that all reads will be completed before the
  3360. * write is issued.
  3361. */
  3362. tail = ACCESS_ONCE(buffer->user_page->data_tail);
  3363. smp_rmb();
  3364. offset = head = local_read(&buffer->head);
  3365. head += size;
  3366. if (unlikely(!perf_output_space(buffer, tail, offset, head)))
  3367. goto fail;
  3368. } while (local_cmpxchg(&buffer->head, offset, head) != offset);
  3369. if (head - local_read(&buffer->wakeup) > buffer->watermark)
  3370. local_add(buffer->watermark, &buffer->wakeup);
  3371. handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
  3372. handle->page &= buffer->nr_pages - 1;
  3373. handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
  3374. handle->addr = buffer->data_pages[handle->page];
  3375. handle->addr += handle->size;
  3376. handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
  3377. if (have_lost) {
  3378. lost_event.header.type = PERF_RECORD_LOST;
  3379. lost_event.header.misc = 0;
  3380. lost_event.id = event->id;
  3381. lost_event.lost = local_xchg(&buffer->lost, 0);
  3382. perf_output_put(handle, lost_event);
  3383. perf_event__output_id_sample(event, handle, &sample_data);
  3384. }
  3385. return 0;
  3386. fail:
  3387. local_inc(&buffer->lost);
  3388. perf_output_put_handle(handle);
  3389. out:
  3390. rcu_read_unlock();
  3391. return -ENOSPC;
  3392. }
  3393. void perf_output_end(struct perf_output_handle *handle)
  3394. {
  3395. struct perf_event *event = handle->event;
  3396. struct perf_buffer *buffer = handle->buffer;
  3397. int wakeup_events = event->attr.wakeup_events;
  3398. if (handle->sample && wakeup_events) {
  3399. int events = local_inc_return(&buffer->events);
  3400. if (events >= wakeup_events) {
  3401. local_sub(wakeup_events, &buffer->events);
  3402. local_inc(&buffer->wakeup);
  3403. }
  3404. }
  3405. perf_output_put_handle(handle);
  3406. rcu_read_unlock();
  3407. }
  3408. static void perf_output_read_one(struct perf_output_handle *handle,
  3409. struct perf_event *event,
  3410. u64 enabled, u64 running)
  3411. {
  3412. u64 read_format = event->attr.read_format;
  3413. u64 values[4];
  3414. int n = 0;
  3415. values[n++] = perf_event_count(event);
  3416. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3417. values[n++] = enabled +
  3418. atomic64_read(&event->child_total_time_enabled);
  3419. }
  3420. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3421. values[n++] = running +
  3422. atomic64_read(&event->child_total_time_running);
  3423. }
  3424. if (read_format & PERF_FORMAT_ID)
  3425. values[n++] = primary_event_id(event);
  3426. perf_output_copy(handle, values, n * sizeof(u64));
  3427. }
  3428. /*
  3429. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3430. */
  3431. static void perf_output_read_group(struct perf_output_handle *handle,
  3432. struct perf_event *event,
  3433. u64 enabled, u64 running)
  3434. {
  3435. struct perf_event *leader = event->group_leader, *sub;
  3436. u64 read_format = event->attr.read_format;
  3437. u64 values[5];
  3438. int n = 0;
  3439. values[n++] = 1 + leader->nr_siblings;
  3440. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3441. values[n++] = enabled;
  3442. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3443. values[n++] = running;
  3444. if (leader != event)
  3445. leader->pmu->read(leader);
  3446. values[n++] = perf_event_count(leader);
  3447. if (read_format & PERF_FORMAT_ID)
  3448. values[n++] = primary_event_id(leader);
  3449. perf_output_copy(handle, values, n * sizeof(u64));
  3450. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3451. n = 0;
  3452. if (sub != event)
  3453. sub->pmu->read(sub);
  3454. values[n++] = perf_event_count(sub);
  3455. if (read_format & PERF_FORMAT_ID)
  3456. values[n++] = primary_event_id(sub);
  3457. perf_output_copy(handle, values, n * sizeof(u64));
  3458. }
  3459. }
  3460. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  3461. PERF_FORMAT_TOTAL_TIME_RUNNING)
  3462. static void perf_output_read(struct perf_output_handle *handle,
  3463. struct perf_event *event)
  3464. {
  3465. u64 enabled = 0, running = 0, now, ctx_time;
  3466. u64 read_format = event->attr.read_format;
  3467. /*
  3468. * compute total_time_enabled, total_time_running
  3469. * based on snapshot values taken when the event
  3470. * was last scheduled in.
  3471. *
  3472. * we cannot simply called update_context_time()
  3473. * because of locking issue as we are called in
  3474. * NMI context
  3475. */
  3476. if (read_format & PERF_FORMAT_TOTAL_TIMES) {
  3477. now = perf_clock();
  3478. ctx_time = event->shadow_ctx_time + now;
  3479. enabled = ctx_time - event->tstamp_enabled;
  3480. running = ctx_time - event->tstamp_running;
  3481. }
  3482. if (event->attr.read_format & PERF_FORMAT_GROUP)
  3483. perf_output_read_group(handle, event, enabled, running);
  3484. else
  3485. perf_output_read_one(handle, event, enabled, running);
  3486. }
  3487. void perf_output_sample(struct perf_output_handle *handle,
  3488. struct perf_event_header *header,
  3489. struct perf_sample_data *data,
  3490. struct perf_event *event)
  3491. {
  3492. u64 sample_type = data->type;
  3493. perf_output_put(handle, *header);
  3494. if (sample_type & PERF_SAMPLE_IP)
  3495. perf_output_put(handle, data->ip);
  3496. if (sample_type & PERF_SAMPLE_TID)
  3497. perf_output_put(handle, data->tid_entry);
  3498. if (sample_type & PERF_SAMPLE_TIME)
  3499. perf_output_put(handle, data->time);
  3500. if (sample_type & PERF_SAMPLE_ADDR)
  3501. perf_output_put(handle, data->addr);
  3502. if (sample_type & PERF_SAMPLE_ID)
  3503. perf_output_put(handle, data->id);
  3504. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3505. perf_output_put(handle, data->stream_id);
  3506. if (sample_type & PERF_SAMPLE_CPU)
  3507. perf_output_put(handle, data->cpu_entry);
  3508. if (sample_type & PERF_SAMPLE_PERIOD)
  3509. perf_output_put(handle, data->period);
  3510. if (sample_type & PERF_SAMPLE_READ)
  3511. perf_output_read(handle, event);
  3512. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3513. if (data->callchain) {
  3514. int size = 1;
  3515. if (data->callchain)
  3516. size += data->callchain->nr;
  3517. size *= sizeof(u64);
  3518. perf_output_copy(handle, data->callchain, size);
  3519. } else {
  3520. u64 nr = 0;
  3521. perf_output_put(handle, nr);
  3522. }
  3523. }
  3524. if (sample_type & PERF_SAMPLE_RAW) {
  3525. if (data->raw) {
  3526. perf_output_put(handle, data->raw->size);
  3527. perf_output_copy(handle, data->raw->data,
  3528. data->raw->size);
  3529. } else {
  3530. struct {
  3531. u32 size;
  3532. u32 data;
  3533. } raw = {
  3534. .size = sizeof(u32),
  3535. .data = 0,
  3536. };
  3537. perf_output_put(handle, raw);
  3538. }
  3539. }
  3540. }
  3541. void perf_prepare_sample(struct perf_event_header *header,
  3542. struct perf_sample_data *data,
  3543. struct perf_event *event,
  3544. struct pt_regs *regs)
  3545. {
  3546. u64 sample_type = event->attr.sample_type;
  3547. header->type = PERF_RECORD_SAMPLE;
  3548. header->size = sizeof(*header) + event->header_size;
  3549. header->misc = 0;
  3550. header->misc |= perf_misc_flags(regs);
  3551. __perf_event_header__init_id(header, data, event);
  3552. if (sample_type & PERF_SAMPLE_IP)
  3553. data->ip = perf_instruction_pointer(regs);
  3554. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3555. int size = 1;
  3556. data->callchain = perf_callchain(regs);
  3557. if (data->callchain)
  3558. size += data->callchain->nr;
  3559. header->size += size * sizeof(u64);
  3560. }
  3561. if (sample_type & PERF_SAMPLE_RAW) {
  3562. int size = sizeof(u32);
  3563. if (data->raw)
  3564. size += data->raw->size;
  3565. else
  3566. size += sizeof(u32);
  3567. WARN_ON_ONCE(size & (sizeof(u64)-1));
  3568. header->size += size;
  3569. }
  3570. }
  3571. static void perf_event_output(struct perf_event *event, int nmi,
  3572. struct perf_sample_data *data,
  3573. struct pt_regs *regs)
  3574. {
  3575. struct perf_output_handle handle;
  3576. struct perf_event_header header;
  3577. /* protect the callchain buffers */
  3578. rcu_read_lock();
  3579. perf_prepare_sample(&header, data, event, regs);
  3580. if (perf_output_begin(&handle, event, header.size, nmi, 1))
  3581. goto exit;
  3582. perf_output_sample(&handle, &header, data, event);
  3583. perf_output_end(&handle);
  3584. exit:
  3585. rcu_read_unlock();
  3586. }
  3587. /*
  3588. * read event_id
  3589. */
  3590. struct perf_read_event {
  3591. struct perf_event_header header;
  3592. u32 pid;
  3593. u32 tid;
  3594. };
  3595. static void
  3596. perf_event_read_event(struct perf_event *event,
  3597. struct task_struct *task)
  3598. {
  3599. struct perf_output_handle handle;
  3600. struct perf_sample_data sample;
  3601. struct perf_read_event read_event = {
  3602. .header = {
  3603. .type = PERF_RECORD_READ,
  3604. .misc = 0,
  3605. .size = sizeof(read_event) + event->read_size,
  3606. },
  3607. .pid = perf_event_pid(event, task),
  3608. .tid = perf_event_tid(event, task),
  3609. };
  3610. int ret;
  3611. perf_event_header__init_id(&read_event.header, &sample, event);
  3612. ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
  3613. if (ret)
  3614. return;
  3615. perf_output_put(&handle, read_event);
  3616. perf_output_read(&handle, event);
  3617. perf_event__output_id_sample(event, &handle, &sample);
  3618. perf_output_end(&handle);
  3619. }
  3620. /*
  3621. * task tracking -- fork/exit
  3622. *
  3623. * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
  3624. */
  3625. struct perf_task_event {
  3626. struct task_struct *task;
  3627. struct perf_event_context *task_ctx;
  3628. struct {
  3629. struct perf_event_header header;
  3630. u32 pid;
  3631. u32 ppid;
  3632. u32 tid;
  3633. u32 ptid;
  3634. u64 time;
  3635. } event_id;
  3636. };
  3637. static void perf_event_task_output(struct perf_event *event,
  3638. struct perf_task_event *task_event)
  3639. {
  3640. struct perf_output_handle handle;
  3641. struct perf_sample_data sample;
  3642. struct task_struct *task = task_event->task;
  3643. int ret, size = task_event->event_id.header.size;
  3644. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  3645. ret = perf_output_begin(&handle, event,
  3646. task_event->event_id.header.size, 0, 0);
  3647. if (ret)
  3648. goto out;
  3649. task_event->event_id.pid = perf_event_pid(event, task);
  3650. task_event->event_id.ppid = perf_event_pid(event, current);
  3651. task_event->event_id.tid = perf_event_tid(event, task);
  3652. task_event->event_id.ptid = perf_event_tid(event, current);
  3653. perf_output_put(&handle, task_event->event_id);
  3654. perf_event__output_id_sample(event, &handle, &sample);
  3655. perf_output_end(&handle);
  3656. out:
  3657. task_event->event_id.header.size = size;
  3658. }
  3659. static int perf_event_task_match(struct perf_event *event)
  3660. {
  3661. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3662. return 0;
  3663. if (!event_filter_match(event))
  3664. return 0;
  3665. if (event->attr.comm || event->attr.mmap ||
  3666. event->attr.mmap_data || event->attr.task)
  3667. return 1;
  3668. return 0;
  3669. }
  3670. static void perf_event_task_ctx(struct perf_event_context *ctx,
  3671. struct perf_task_event *task_event)
  3672. {
  3673. struct perf_event *event;
  3674. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3675. if (perf_event_task_match(event))
  3676. perf_event_task_output(event, task_event);
  3677. }
  3678. }
  3679. static void perf_event_task_event(struct perf_task_event *task_event)
  3680. {
  3681. struct perf_cpu_context *cpuctx;
  3682. struct perf_event_context *ctx;
  3683. struct pmu *pmu;
  3684. int ctxn;
  3685. rcu_read_lock();
  3686. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3687. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3688. if (cpuctx->active_pmu != pmu)
  3689. goto next;
  3690. perf_event_task_ctx(&cpuctx->ctx, task_event);
  3691. ctx = task_event->task_ctx;
  3692. if (!ctx) {
  3693. ctxn = pmu->task_ctx_nr;
  3694. if (ctxn < 0)
  3695. goto next;
  3696. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3697. }
  3698. if (ctx)
  3699. perf_event_task_ctx(ctx, task_event);
  3700. next:
  3701. put_cpu_ptr(pmu->pmu_cpu_context);
  3702. }
  3703. rcu_read_unlock();
  3704. }
  3705. static void perf_event_task(struct task_struct *task,
  3706. struct perf_event_context *task_ctx,
  3707. int new)
  3708. {
  3709. struct perf_task_event task_event;
  3710. if (!atomic_read(&nr_comm_events) &&
  3711. !atomic_read(&nr_mmap_events) &&
  3712. !atomic_read(&nr_task_events))
  3713. return;
  3714. task_event = (struct perf_task_event){
  3715. .task = task,
  3716. .task_ctx = task_ctx,
  3717. .event_id = {
  3718. .header = {
  3719. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  3720. .misc = 0,
  3721. .size = sizeof(task_event.event_id),
  3722. },
  3723. /* .pid */
  3724. /* .ppid */
  3725. /* .tid */
  3726. /* .ptid */
  3727. .time = perf_clock(),
  3728. },
  3729. };
  3730. perf_event_task_event(&task_event);
  3731. }
  3732. void perf_event_fork(struct task_struct *task)
  3733. {
  3734. perf_event_task(task, NULL, 1);
  3735. }
  3736. /*
  3737. * comm tracking
  3738. */
  3739. struct perf_comm_event {
  3740. struct task_struct *task;
  3741. char *comm;
  3742. int comm_size;
  3743. struct {
  3744. struct perf_event_header header;
  3745. u32 pid;
  3746. u32 tid;
  3747. } event_id;
  3748. };
  3749. static void perf_event_comm_output(struct perf_event *event,
  3750. struct perf_comm_event *comm_event)
  3751. {
  3752. struct perf_output_handle handle;
  3753. struct perf_sample_data sample;
  3754. int size = comm_event->event_id.header.size;
  3755. int ret;
  3756. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  3757. ret = perf_output_begin(&handle, event,
  3758. comm_event->event_id.header.size, 0, 0);
  3759. if (ret)
  3760. goto out;
  3761. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  3762. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  3763. perf_output_put(&handle, comm_event->event_id);
  3764. perf_output_copy(&handle, comm_event->comm,
  3765. comm_event->comm_size);
  3766. perf_event__output_id_sample(event, &handle, &sample);
  3767. perf_output_end(&handle);
  3768. out:
  3769. comm_event->event_id.header.size = size;
  3770. }
  3771. static int perf_event_comm_match(struct perf_event *event)
  3772. {
  3773. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3774. return 0;
  3775. if (!event_filter_match(event))
  3776. return 0;
  3777. if (event->attr.comm)
  3778. return 1;
  3779. return 0;
  3780. }
  3781. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  3782. struct perf_comm_event *comm_event)
  3783. {
  3784. struct perf_event *event;
  3785. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3786. if (perf_event_comm_match(event))
  3787. perf_event_comm_output(event, comm_event);
  3788. }
  3789. }
  3790. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  3791. {
  3792. struct perf_cpu_context *cpuctx;
  3793. struct perf_event_context *ctx;
  3794. char comm[TASK_COMM_LEN];
  3795. unsigned int size;
  3796. struct pmu *pmu;
  3797. int ctxn;
  3798. memset(comm, 0, sizeof(comm));
  3799. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  3800. size = ALIGN(strlen(comm)+1, sizeof(u64));
  3801. comm_event->comm = comm;
  3802. comm_event->comm_size = size;
  3803. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  3804. rcu_read_lock();
  3805. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3806. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3807. if (cpuctx->active_pmu != pmu)
  3808. goto next;
  3809. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  3810. ctxn = pmu->task_ctx_nr;
  3811. if (ctxn < 0)
  3812. goto next;
  3813. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3814. if (ctx)
  3815. perf_event_comm_ctx(ctx, comm_event);
  3816. next:
  3817. put_cpu_ptr(pmu->pmu_cpu_context);
  3818. }
  3819. rcu_read_unlock();
  3820. }
  3821. void perf_event_comm(struct task_struct *task)
  3822. {
  3823. struct perf_comm_event comm_event;
  3824. struct perf_event_context *ctx;
  3825. int ctxn;
  3826. for_each_task_context_nr(ctxn) {
  3827. ctx = task->perf_event_ctxp[ctxn];
  3828. if (!ctx)
  3829. continue;
  3830. perf_event_enable_on_exec(ctx);
  3831. }
  3832. if (!atomic_read(&nr_comm_events))
  3833. return;
  3834. comm_event = (struct perf_comm_event){
  3835. .task = task,
  3836. /* .comm */
  3837. /* .comm_size */
  3838. .event_id = {
  3839. .header = {
  3840. .type = PERF_RECORD_COMM,
  3841. .misc = 0,
  3842. /* .size */
  3843. },
  3844. /* .pid */
  3845. /* .tid */
  3846. },
  3847. };
  3848. perf_event_comm_event(&comm_event);
  3849. }
  3850. /*
  3851. * mmap tracking
  3852. */
  3853. struct perf_mmap_event {
  3854. struct vm_area_struct *vma;
  3855. const char *file_name;
  3856. int file_size;
  3857. struct {
  3858. struct perf_event_header header;
  3859. u32 pid;
  3860. u32 tid;
  3861. u64 start;
  3862. u64 len;
  3863. u64 pgoff;
  3864. } event_id;
  3865. };
  3866. static void perf_event_mmap_output(struct perf_event *event,
  3867. struct perf_mmap_event *mmap_event)
  3868. {
  3869. struct perf_output_handle handle;
  3870. struct perf_sample_data sample;
  3871. int size = mmap_event->event_id.header.size;
  3872. int ret;
  3873. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  3874. ret = perf_output_begin(&handle, event,
  3875. mmap_event->event_id.header.size, 0, 0);
  3876. if (ret)
  3877. goto out;
  3878. mmap_event->event_id.pid = perf_event_pid(event, current);
  3879. mmap_event->event_id.tid = perf_event_tid(event, current);
  3880. perf_output_put(&handle, mmap_event->event_id);
  3881. perf_output_copy(&handle, mmap_event->file_name,
  3882. mmap_event->file_size);
  3883. perf_event__output_id_sample(event, &handle, &sample);
  3884. perf_output_end(&handle);
  3885. out:
  3886. mmap_event->event_id.header.size = size;
  3887. }
  3888. static int perf_event_mmap_match(struct perf_event *event,
  3889. struct perf_mmap_event *mmap_event,
  3890. int executable)
  3891. {
  3892. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3893. return 0;
  3894. if (!event_filter_match(event))
  3895. return 0;
  3896. if ((!executable && event->attr.mmap_data) ||
  3897. (executable && event->attr.mmap))
  3898. return 1;
  3899. return 0;
  3900. }
  3901. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  3902. struct perf_mmap_event *mmap_event,
  3903. int executable)
  3904. {
  3905. struct perf_event *event;
  3906. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3907. if (perf_event_mmap_match(event, mmap_event, executable))
  3908. perf_event_mmap_output(event, mmap_event);
  3909. }
  3910. }
  3911. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  3912. {
  3913. struct perf_cpu_context *cpuctx;
  3914. struct perf_event_context *ctx;
  3915. struct vm_area_struct *vma = mmap_event->vma;
  3916. struct file *file = vma->vm_file;
  3917. unsigned int size;
  3918. char tmp[16];
  3919. char *buf = NULL;
  3920. const char *name;
  3921. struct pmu *pmu;
  3922. int ctxn;
  3923. memset(tmp, 0, sizeof(tmp));
  3924. if (file) {
  3925. /*
  3926. * d_path works from the end of the buffer backwards, so we
  3927. * need to add enough zero bytes after the string to handle
  3928. * the 64bit alignment we do later.
  3929. */
  3930. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  3931. if (!buf) {
  3932. name = strncpy(tmp, "//enomem", sizeof(tmp));
  3933. goto got_name;
  3934. }
  3935. name = d_path(&file->f_path, buf, PATH_MAX);
  3936. if (IS_ERR(name)) {
  3937. name = strncpy(tmp, "//toolong", sizeof(tmp));
  3938. goto got_name;
  3939. }
  3940. } else {
  3941. if (arch_vma_name(mmap_event->vma)) {
  3942. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  3943. sizeof(tmp));
  3944. goto got_name;
  3945. }
  3946. if (!vma->vm_mm) {
  3947. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  3948. goto got_name;
  3949. } else if (vma->vm_start <= vma->vm_mm->start_brk &&
  3950. vma->vm_end >= vma->vm_mm->brk) {
  3951. name = strncpy(tmp, "[heap]", sizeof(tmp));
  3952. goto got_name;
  3953. } else if (vma->vm_start <= vma->vm_mm->start_stack &&
  3954. vma->vm_end >= vma->vm_mm->start_stack) {
  3955. name = strncpy(tmp, "[stack]", sizeof(tmp));
  3956. goto got_name;
  3957. }
  3958. name = strncpy(tmp, "//anon", sizeof(tmp));
  3959. goto got_name;
  3960. }
  3961. got_name:
  3962. size = ALIGN(strlen(name)+1, sizeof(u64));
  3963. mmap_event->file_name = name;
  3964. mmap_event->file_size = size;
  3965. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  3966. rcu_read_lock();
  3967. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3968. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3969. if (cpuctx->active_pmu != pmu)
  3970. goto next;
  3971. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
  3972. vma->vm_flags & VM_EXEC);
  3973. ctxn = pmu->task_ctx_nr;
  3974. if (ctxn < 0)
  3975. goto next;
  3976. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3977. if (ctx) {
  3978. perf_event_mmap_ctx(ctx, mmap_event,
  3979. vma->vm_flags & VM_EXEC);
  3980. }
  3981. next:
  3982. put_cpu_ptr(pmu->pmu_cpu_context);
  3983. }
  3984. rcu_read_unlock();
  3985. kfree(buf);
  3986. }
  3987. void perf_event_mmap(struct vm_area_struct *vma)
  3988. {
  3989. struct perf_mmap_event mmap_event;
  3990. if (!atomic_read(&nr_mmap_events))
  3991. return;
  3992. mmap_event = (struct perf_mmap_event){
  3993. .vma = vma,
  3994. /* .file_name */
  3995. /* .file_size */
  3996. .event_id = {
  3997. .header = {
  3998. .type = PERF_RECORD_MMAP,
  3999. .misc = PERF_RECORD_MISC_USER,
  4000. /* .size */
  4001. },
  4002. /* .pid */
  4003. /* .tid */
  4004. .start = vma->vm_start,
  4005. .len = vma->vm_end - vma->vm_start,
  4006. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  4007. },
  4008. };
  4009. perf_event_mmap_event(&mmap_event);
  4010. }
  4011. /*
  4012. * IRQ throttle logging
  4013. */
  4014. static void perf_log_throttle(struct perf_event *event, int enable)
  4015. {
  4016. struct perf_output_handle handle;
  4017. struct perf_sample_data sample;
  4018. int ret;
  4019. struct {
  4020. struct perf_event_header header;
  4021. u64 time;
  4022. u64 id;
  4023. u64 stream_id;
  4024. } throttle_event = {
  4025. .header = {
  4026. .type = PERF_RECORD_THROTTLE,
  4027. .misc = 0,
  4028. .size = sizeof(throttle_event),
  4029. },
  4030. .time = perf_clock(),
  4031. .id = primary_event_id(event),
  4032. .stream_id = event->id,
  4033. };
  4034. if (enable)
  4035. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  4036. perf_event_header__init_id(&throttle_event.header, &sample, event);
  4037. ret = perf_output_begin(&handle, event,
  4038. throttle_event.header.size, 1, 0);
  4039. if (ret)
  4040. return;
  4041. perf_output_put(&handle, throttle_event);
  4042. perf_event__output_id_sample(event, &handle, &sample);
  4043. perf_output_end(&handle);
  4044. }
  4045. /*
  4046. * Generic event overflow handling, sampling.
  4047. */
  4048. static int __perf_event_overflow(struct perf_event *event, int nmi,
  4049. int throttle, struct perf_sample_data *data,
  4050. struct pt_regs *regs)
  4051. {
  4052. int events = atomic_read(&event->event_limit);
  4053. struct hw_perf_event *hwc = &event->hw;
  4054. int ret = 0;
  4055. /*
  4056. * Non-sampling counters might still use the PMI to fold short
  4057. * hardware counters, ignore those.
  4058. */
  4059. if (unlikely(!is_sampling_event(event)))
  4060. return 0;
  4061. if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
  4062. if (throttle) {
  4063. hwc->interrupts = MAX_INTERRUPTS;
  4064. perf_log_throttle(event, 0);
  4065. ret = 1;
  4066. }
  4067. } else
  4068. hwc->interrupts++;
  4069. if (event->attr.freq) {
  4070. u64 now = perf_clock();
  4071. s64 delta = now - hwc->freq_time_stamp;
  4072. hwc->freq_time_stamp = now;
  4073. if (delta > 0 && delta < 2*TICK_NSEC)
  4074. perf_adjust_period(event, delta, hwc->last_period);
  4075. }
  4076. /*
  4077. * XXX event_limit might not quite work as expected on inherited
  4078. * events
  4079. */
  4080. event->pending_kill = POLL_IN;
  4081. if (events && atomic_dec_and_test(&event->event_limit)) {
  4082. ret = 1;
  4083. event->pending_kill = POLL_HUP;
  4084. if (nmi) {
  4085. event->pending_disable = 1;
  4086. irq_work_queue(&event->pending);
  4087. } else
  4088. perf_event_disable(event);
  4089. }
  4090. if (event->overflow_handler)
  4091. event->overflow_handler(event, nmi, data, regs);
  4092. else
  4093. perf_event_output(event, nmi, data, regs);
  4094. return ret;
  4095. }
  4096. int perf_event_overflow(struct perf_event *event, int nmi,
  4097. struct perf_sample_data *data,
  4098. struct pt_regs *regs)
  4099. {
  4100. return __perf_event_overflow(event, nmi, 1, data, regs);
  4101. }
  4102. /*
  4103. * Generic software event infrastructure
  4104. */
  4105. struct swevent_htable {
  4106. struct swevent_hlist *swevent_hlist;
  4107. struct mutex hlist_mutex;
  4108. int hlist_refcount;
  4109. /* Recursion avoidance in each contexts */
  4110. int recursion[PERF_NR_CONTEXTS];
  4111. };
  4112. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  4113. /*
  4114. * We directly increment event->count and keep a second value in
  4115. * event->hw.period_left to count intervals. This period event
  4116. * is kept in the range [-sample_period, 0] so that we can use the
  4117. * sign as trigger.
  4118. */
  4119. static u64 perf_swevent_set_period(struct perf_event *event)
  4120. {
  4121. struct hw_perf_event *hwc = &event->hw;
  4122. u64 period = hwc->last_period;
  4123. u64 nr, offset;
  4124. s64 old, val;
  4125. hwc->last_period = hwc->sample_period;
  4126. again:
  4127. old = val = local64_read(&hwc->period_left);
  4128. if (val < 0)
  4129. return 0;
  4130. nr = div64_u64(period + val, period);
  4131. offset = nr * period;
  4132. val -= offset;
  4133. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  4134. goto again;
  4135. return nr;
  4136. }
  4137. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  4138. int nmi, struct perf_sample_data *data,
  4139. struct pt_regs *regs)
  4140. {
  4141. struct hw_perf_event *hwc = &event->hw;
  4142. int throttle = 0;
  4143. data->period = event->hw.last_period;
  4144. if (!overflow)
  4145. overflow = perf_swevent_set_period(event);
  4146. if (hwc->interrupts == MAX_INTERRUPTS)
  4147. return;
  4148. for (; overflow; overflow--) {
  4149. if (__perf_event_overflow(event, nmi, throttle,
  4150. data, regs)) {
  4151. /*
  4152. * We inhibit the overflow from happening when
  4153. * hwc->interrupts == MAX_INTERRUPTS.
  4154. */
  4155. break;
  4156. }
  4157. throttle = 1;
  4158. }
  4159. }
  4160. static void perf_swevent_event(struct perf_event *event, u64 nr,
  4161. int nmi, struct perf_sample_data *data,
  4162. struct pt_regs *regs)
  4163. {
  4164. struct hw_perf_event *hwc = &event->hw;
  4165. local64_add(nr, &event->count);
  4166. if (!regs)
  4167. return;
  4168. if (!is_sampling_event(event))
  4169. return;
  4170. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  4171. return perf_swevent_overflow(event, 1, nmi, data, regs);
  4172. if (local64_add_negative(nr, &hwc->period_left))
  4173. return;
  4174. perf_swevent_overflow(event, 0, nmi, data, regs);
  4175. }
  4176. static int perf_exclude_event(struct perf_event *event,
  4177. struct pt_regs *regs)
  4178. {
  4179. if (event->hw.state & PERF_HES_STOPPED)
  4180. return 0;
  4181. if (regs) {
  4182. if (event->attr.exclude_user && user_mode(regs))
  4183. return 1;
  4184. if (event->attr.exclude_kernel && !user_mode(regs))
  4185. return 1;
  4186. }
  4187. return 0;
  4188. }
  4189. static int perf_swevent_match(struct perf_event *event,
  4190. enum perf_type_id type,
  4191. u32 event_id,
  4192. struct perf_sample_data *data,
  4193. struct pt_regs *regs)
  4194. {
  4195. if (event->attr.type != type)
  4196. return 0;
  4197. if (event->attr.config != event_id)
  4198. return 0;
  4199. if (perf_exclude_event(event, regs))
  4200. return 0;
  4201. return 1;
  4202. }
  4203. static inline u64 swevent_hash(u64 type, u32 event_id)
  4204. {
  4205. u64 val = event_id | (type << 32);
  4206. return hash_64(val, SWEVENT_HLIST_BITS);
  4207. }
  4208. static inline struct hlist_head *
  4209. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  4210. {
  4211. u64 hash = swevent_hash(type, event_id);
  4212. return &hlist->heads[hash];
  4213. }
  4214. /* For the read side: events when they trigger */
  4215. static inline struct hlist_head *
  4216. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  4217. {
  4218. struct swevent_hlist *hlist;
  4219. hlist = rcu_dereference(swhash->swevent_hlist);
  4220. if (!hlist)
  4221. return NULL;
  4222. return __find_swevent_head(hlist, type, event_id);
  4223. }
  4224. /* For the event head insertion and removal in the hlist */
  4225. static inline struct hlist_head *
  4226. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  4227. {
  4228. struct swevent_hlist *hlist;
  4229. u32 event_id = event->attr.config;
  4230. u64 type = event->attr.type;
  4231. /*
  4232. * Event scheduling is always serialized against hlist allocation
  4233. * and release. Which makes the protected version suitable here.
  4234. * The context lock guarantees that.
  4235. */
  4236. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  4237. lockdep_is_held(&event->ctx->lock));
  4238. if (!hlist)
  4239. return NULL;
  4240. return __find_swevent_head(hlist, type, event_id);
  4241. }
  4242. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  4243. u64 nr, int nmi,
  4244. struct perf_sample_data *data,
  4245. struct pt_regs *regs)
  4246. {
  4247. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4248. struct perf_event *event;
  4249. struct hlist_node *node;
  4250. struct hlist_head *head;
  4251. rcu_read_lock();
  4252. head = find_swevent_head_rcu(swhash, type, event_id);
  4253. if (!head)
  4254. goto end;
  4255. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4256. if (perf_swevent_match(event, type, event_id, data, regs))
  4257. perf_swevent_event(event, nr, nmi, data, regs);
  4258. }
  4259. end:
  4260. rcu_read_unlock();
  4261. }
  4262. int perf_swevent_get_recursion_context(void)
  4263. {
  4264. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4265. return get_recursion_context(swhash->recursion);
  4266. }
  4267. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  4268. inline void perf_swevent_put_recursion_context(int rctx)
  4269. {
  4270. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4271. put_recursion_context(swhash->recursion, rctx);
  4272. }
  4273. void __perf_sw_event(u32 event_id, u64 nr, int nmi,
  4274. struct pt_regs *regs, u64 addr)
  4275. {
  4276. struct perf_sample_data data;
  4277. int rctx;
  4278. preempt_disable_notrace();
  4279. rctx = perf_swevent_get_recursion_context();
  4280. if (rctx < 0)
  4281. return;
  4282. perf_sample_data_init(&data, addr);
  4283. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
  4284. perf_swevent_put_recursion_context(rctx);
  4285. preempt_enable_notrace();
  4286. }
  4287. static void perf_swevent_read(struct perf_event *event)
  4288. {
  4289. }
  4290. static int perf_swevent_add(struct perf_event *event, int flags)
  4291. {
  4292. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4293. struct hw_perf_event *hwc = &event->hw;
  4294. struct hlist_head *head;
  4295. if (is_sampling_event(event)) {
  4296. hwc->last_period = hwc->sample_period;
  4297. perf_swevent_set_period(event);
  4298. }
  4299. hwc->state = !(flags & PERF_EF_START);
  4300. head = find_swevent_head(swhash, event);
  4301. if (WARN_ON_ONCE(!head))
  4302. return -EINVAL;
  4303. hlist_add_head_rcu(&event->hlist_entry, head);
  4304. return 0;
  4305. }
  4306. static void perf_swevent_del(struct perf_event *event, int flags)
  4307. {
  4308. hlist_del_rcu(&event->hlist_entry);
  4309. }
  4310. static void perf_swevent_start(struct perf_event *event, int flags)
  4311. {
  4312. event->hw.state = 0;
  4313. }
  4314. static void perf_swevent_stop(struct perf_event *event, int flags)
  4315. {
  4316. event->hw.state = PERF_HES_STOPPED;
  4317. }
  4318. /* Deref the hlist from the update side */
  4319. static inline struct swevent_hlist *
  4320. swevent_hlist_deref(struct swevent_htable *swhash)
  4321. {
  4322. return rcu_dereference_protected(swhash->swevent_hlist,
  4323. lockdep_is_held(&swhash->hlist_mutex));
  4324. }
  4325. static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
  4326. {
  4327. struct swevent_hlist *hlist;
  4328. hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
  4329. kfree(hlist);
  4330. }
  4331. static void swevent_hlist_release(struct swevent_htable *swhash)
  4332. {
  4333. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  4334. if (!hlist)
  4335. return;
  4336. rcu_assign_pointer(swhash->swevent_hlist, NULL);
  4337. call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
  4338. }
  4339. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  4340. {
  4341. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4342. mutex_lock(&swhash->hlist_mutex);
  4343. if (!--swhash->hlist_refcount)
  4344. swevent_hlist_release(swhash);
  4345. mutex_unlock(&swhash->hlist_mutex);
  4346. }
  4347. static void swevent_hlist_put(struct perf_event *event)
  4348. {
  4349. int cpu;
  4350. if (event->cpu != -1) {
  4351. swevent_hlist_put_cpu(event, event->cpu);
  4352. return;
  4353. }
  4354. for_each_possible_cpu(cpu)
  4355. swevent_hlist_put_cpu(event, cpu);
  4356. }
  4357. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  4358. {
  4359. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4360. int err = 0;
  4361. mutex_lock(&swhash->hlist_mutex);
  4362. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  4363. struct swevent_hlist *hlist;
  4364. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  4365. if (!hlist) {
  4366. err = -ENOMEM;
  4367. goto exit;
  4368. }
  4369. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  4370. }
  4371. swhash->hlist_refcount++;
  4372. exit:
  4373. mutex_unlock(&swhash->hlist_mutex);
  4374. return err;
  4375. }
  4376. static int swevent_hlist_get(struct perf_event *event)
  4377. {
  4378. int err;
  4379. int cpu, failed_cpu;
  4380. if (event->cpu != -1)
  4381. return swevent_hlist_get_cpu(event, event->cpu);
  4382. get_online_cpus();
  4383. for_each_possible_cpu(cpu) {
  4384. err = swevent_hlist_get_cpu(event, cpu);
  4385. if (err) {
  4386. failed_cpu = cpu;
  4387. goto fail;
  4388. }
  4389. }
  4390. put_online_cpus();
  4391. return 0;
  4392. fail:
  4393. for_each_possible_cpu(cpu) {
  4394. if (cpu == failed_cpu)
  4395. break;
  4396. swevent_hlist_put_cpu(event, cpu);
  4397. }
  4398. put_online_cpus();
  4399. return err;
  4400. }
  4401. atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
  4402. static void sw_perf_event_destroy(struct perf_event *event)
  4403. {
  4404. u64 event_id = event->attr.config;
  4405. WARN_ON(event->parent);
  4406. jump_label_dec(&perf_swevent_enabled[event_id]);
  4407. swevent_hlist_put(event);
  4408. }
  4409. static int perf_swevent_init(struct perf_event *event)
  4410. {
  4411. int event_id = event->attr.config;
  4412. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4413. return -ENOENT;
  4414. switch (event_id) {
  4415. case PERF_COUNT_SW_CPU_CLOCK:
  4416. case PERF_COUNT_SW_TASK_CLOCK:
  4417. return -ENOENT;
  4418. default:
  4419. break;
  4420. }
  4421. if (event_id >= PERF_COUNT_SW_MAX)
  4422. return -ENOENT;
  4423. if (!event->parent) {
  4424. int err;
  4425. err = swevent_hlist_get(event);
  4426. if (err)
  4427. return err;
  4428. jump_label_inc(&perf_swevent_enabled[event_id]);
  4429. event->destroy = sw_perf_event_destroy;
  4430. }
  4431. return 0;
  4432. }
  4433. static struct pmu perf_swevent = {
  4434. .task_ctx_nr = perf_sw_context,
  4435. .event_init = perf_swevent_init,
  4436. .add = perf_swevent_add,
  4437. .del = perf_swevent_del,
  4438. .start = perf_swevent_start,
  4439. .stop = perf_swevent_stop,
  4440. .read = perf_swevent_read,
  4441. };
  4442. #ifdef CONFIG_EVENT_TRACING
  4443. static int perf_tp_filter_match(struct perf_event *event,
  4444. struct perf_sample_data *data)
  4445. {
  4446. void *record = data->raw->data;
  4447. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  4448. return 1;
  4449. return 0;
  4450. }
  4451. static int perf_tp_event_match(struct perf_event *event,
  4452. struct perf_sample_data *data,
  4453. struct pt_regs *regs)
  4454. {
  4455. /*
  4456. * All tracepoints are from kernel-space.
  4457. */
  4458. if (event->attr.exclude_kernel)
  4459. return 0;
  4460. if (!perf_tp_filter_match(event, data))
  4461. return 0;
  4462. return 1;
  4463. }
  4464. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  4465. struct pt_regs *regs, struct hlist_head *head, int rctx)
  4466. {
  4467. struct perf_sample_data data;
  4468. struct perf_event *event;
  4469. struct hlist_node *node;
  4470. struct perf_raw_record raw = {
  4471. .size = entry_size,
  4472. .data = record,
  4473. };
  4474. perf_sample_data_init(&data, addr);
  4475. data.raw = &raw;
  4476. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4477. if (perf_tp_event_match(event, &data, regs))
  4478. perf_swevent_event(event, count, 1, &data, regs);
  4479. }
  4480. perf_swevent_put_recursion_context(rctx);
  4481. }
  4482. EXPORT_SYMBOL_GPL(perf_tp_event);
  4483. static void tp_perf_event_destroy(struct perf_event *event)
  4484. {
  4485. perf_trace_destroy(event);
  4486. }
  4487. static int perf_tp_event_init(struct perf_event *event)
  4488. {
  4489. int err;
  4490. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4491. return -ENOENT;
  4492. err = perf_trace_init(event);
  4493. if (err)
  4494. return err;
  4495. event->destroy = tp_perf_event_destroy;
  4496. return 0;
  4497. }
  4498. static struct pmu perf_tracepoint = {
  4499. .task_ctx_nr = perf_sw_context,
  4500. .event_init = perf_tp_event_init,
  4501. .add = perf_trace_add,
  4502. .del = perf_trace_del,
  4503. .start = perf_swevent_start,
  4504. .stop = perf_swevent_stop,
  4505. .read = perf_swevent_read,
  4506. };
  4507. static inline void perf_tp_register(void)
  4508. {
  4509. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  4510. }
  4511. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4512. {
  4513. char *filter_str;
  4514. int ret;
  4515. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4516. return -EINVAL;
  4517. filter_str = strndup_user(arg, PAGE_SIZE);
  4518. if (IS_ERR(filter_str))
  4519. return PTR_ERR(filter_str);
  4520. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  4521. kfree(filter_str);
  4522. return ret;
  4523. }
  4524. static void perf_event_free_filter(struct perf_event *event)
  4525. {
  4526. ftrace_profile_free_filter(event);
  4527. }
  4528. #else
  4529. static inline void perf_tp_register(void)
  4530. {
  4531. }
  4532. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4533. {
  4534. return -ENOENT;
  4535. }
  4536. static void perf_event_free_filter(struct perf_event *event)
  4537. {
  4538. }
  4539. #endif /* CONFIG_EVENT_TRACING */
  4540. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4541. void perf_bp_event(struct perf_event *bp, void *data)
  4542. {
  4543. struct perf_sample_data sample;
  4544. struct pt_regs *regs = data;
  4545. perf_sample_data_init(&sample, bp->attr.bp_addr);
  4546. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  4547. perf_swevent_event(bp, 1, 1, &sample, regs);
  4548. }
  4549. #endif
  4550. /*
  4551. * hrtimer based swevent callback
  4552. */
  4553. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  4554. {
  4555. enum hrtimer_restart ret = HRTIMER_RESTART;
  4556. struct perf_sample_data data;
  4557. struct pt_regs *regs;
  4558. struct perf_event *event;
  4559. u64 period;
  4560. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  4561. if (event->state != PERF_EVENT_STATE_ACTIVE)
  4562. return HRTIMER_NORESTART;
  4563. event->pmu->read(event);
  4564. perf_sample_data_init(&data, 0);
  4565. data.period = event->hw.last_period;
  4566. regs = get_irq_regs();
  4567. if (regs && !perf_exclude_event(event, regs)) {
  4568. if (!(event->attr.exclude_idle && current->pid == 0))
  4569. if (perf_event_overflow(event, 0, &data, regs))
  4570. ret = HRTIMER_NORESTART;
  4571. }
  4572. period = max_t(u64, 10000, event->hw.sample_period);
  4573. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  4574. return ret;
  4575. }
  4576. static void perf_swevent_start_hrtimer(struct perf_event *event)
  4577. {
  4578. struct hw_perf_event *hwc = &event->hw;
  4579. s64 period;
  4580. if (!is_sampling_event(event))
  4581. return;
  4582. period = local64_read(&hwc->period_left);
  4583. if (period) {
  4584. if (period < 0)
  4585. period = 10000;
  4586. local64_set(&hwc->period_left, 0);
  4587. } else {
  4588. period = max_t(u64, 10000, hwc->sample_period);
  4589. }
  4590. __hrtimer_start_range_ns(&hwc->hrtimer,
  4591. ns_to_ktime(period), 0,
  4592. HRTIMER_MODE_REL_PINNED, 0);
  4593. }
  4594. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  4595. {
  4596. struct hw_perf_event *hwc = &event->hw;
  4597. if (is_sampling_event(event)) {
  4598. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  4599. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  4600. hrtimer_cancel(&hwc->hrtimer);
  4601. }
  4602. }
  4603. static void perf_swevent_init_hrtimer(struct perf_event *event)
  4604. {
  4605. struct hw_perf_event *hwc = &event->hw;
  4606. if (!is_sampling_event(event))
  4607. return;
  4608. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4609. hwc->hrtimer.function = perf_swevent_hrtimer;
  4610. /*
  4611. * Since hrtimers have a fixed rate, we can do a static freq->period
  4612. * mapping and avoid the whole period adjust feedback stuff.
  4613. */
  4614. if (event->attr.freq) {
  4615. long freq = event->attr.sample_freq;
  4616. event->attr.sample_period = NSEC_PER_SEC / freq;
  4617. hwc->sample_period = event->attr.sample_period;
  4618. local64_set(&hwc->period_left, hwc->sample_period);
  4619. event->attr.freq = 0;
  4620. }
  4621. }
  4622. /*
  4623. * Software event: cpu wall time clock
  4624. */
  4625. static void cpu_clock_event_update(struct perf_event *event)
  4626. {
  4627. s64 prev;
  4628. u64 now;
  4629. now = local_clock();
  4630. prev = local64_xchg(&event->hw.prev_count, now);
  4631. local64_add(now - prev, &event->count);
  4632. }
  4633. static void cpu_clock_event_start(struct perf_event *event, int flags)
  4634. {
  4635. local64_set(&event->hw.prev_count, local_clock());
  4636. perf_swevent_start_hrtimer(event);
  4637. }
  4638. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  4639. {
  4640. perf_swevent_cancel_hrtimer(event);
  4641. cpu_clock_event_update(event);
  4642. }
  4643. static int cpu_clock_event_add(struct perf_event *event, int flags)
  4644. {
  4645. if (flags & PERF_EF_START)
  4646. cpu_clock_event_start(event, flags);
  4647. return 0;
  4648. }
  4649. static void cpu_clock_event_del(struct perf_event *event, int flags)
  4650. {
  4651. cpu_clock_event_stop(event, flags);
  4652. }
  4653. static void cpu_clock_event_read(struct perf_event *event)
  4654. {
  4655. cpu_clock_event_update(event);
  4656. }
  4657. static int cpu_clock_event_init(struct perf_event *event)
  4658. {
  4659. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4660. return -ENOENT;
  4661. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  4662. return -ENOENT;
  4663. perf_swevent_init_hrtimer(event);
  4664. return 0;
  4665. }
  4666. static struct pmu perf_cpu_clock = {
  4667. .task_ctx_nr = perf_sw_context,
  4668. .event_init = cpu_clock_event_init,
  4669. .add = cpu_clock_event_add,
  4670. .del = cpu_clock_event_del,
  4671. .start = cpu_clock_event_start,
  4672. .stop = cpu_clock_event_stop,
  4673. .read = cpu_clock_event_read,
  4674. };
  4675. /*
  4676. * Software event: task time clock
  4677. */
  4678. static void task_clock_event_update(struct perf_event *event, u64 now)
  4679. {
  4680. u64 prev;
  4681. s64 delta;
  4682. prev = local64_xchg(&event->hw.prev_count, now);
  4683. delta = now - prev;
  4684. local64_add(delta, &event->count);
  4685. }
  4686. static void task_clock_event_start(struct perf_event *event, int flags)
  4687. {
  4688. local64_set(&event->hw.prev_count, event->ctx->time);
  4689. perf_swevent_start_hrtimer(event);
  4690. }
  4691. static void task_clock_event_stop(struct perf_event *event, int flags)
  4692. {
  4693. perf_swevent_cancel_hrtimer(event);
  4694. task_clock_event_update(event, event->ctx->time);
  4695. }
  4696. static int task_clock_event_add(struct perf_event *event, int flags)
  4697. {
  4698. if (flags & PERF_EF_START)
  4699. task_clock_event_start(event, flags);
  4700. return 0;
  4701. }
  4702. static void task_clock_event_del(struct perf_event *event, int flags)
  4703. {
  4704. task_clock_event_stop(event, PERF_EF_UPDATE);
  4705. }
  4706. static void task_clock_event_read(struct perf_event *event)
  4707. {
  4708. u64 now = perf_clock();
  4709. u64 delta = now - event->ctx->timestamp;
  4710. u64 time = event->ctx->time + delta;
  4711. task_clock_event_update(event, time);
  4712. }
  4713. static int task_clock_event_init(struct perf_event *event)
  4714. {
  4715. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4716. return -ENOENT;
  4717. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  4718. return -ENOENT;
  4719. perf_swevent_init_hrtimer(event);
  4720. return 0;
  4721. }
  4722. static struct pmu perf_task_clock = {
  4723. .task_ctx_nr = perf_sw_context,
  4724. .event_init = task_clock_event_init,
  4725. .add = task_clock_event_add,
  4726. .del = task_clock_event_del,
  4727. .start = task_clock_event_start,
  4728. .stop = task_clock_event_stop,
  4729. .read = task_clock_event_read,
  4730. };
  4731. static void perf_pmu_nop_void(struct pmu *pmu)
  4732. {
  4733. }
  4734. static int perf_pmu_nop_int(struct pmu *pmu)
  4735. {
  4736. return 0;
  4737. }
  4738. static void perf_pmu_start_txn(struct pmu *pmu)
  4739. {
  4740. perf_pmu_disable(pmu);
  4741. }
  4742. static int perf_pmu_commit_txn(struct pmu *pmu)
  4743. {
  4744. perf_pmu_enable(pmu);
  4745. return 0;
  4746. }
  4747. static void perf_pmu_cancel_txn(struct pmu *pmu)
  4748. {
  4749. perf_pmu_enable(pmu);
  4750. }
  4751. /*
  4752. * Ensures all contexts with the same task_ctx_nr have the same
  4753. * pmu_cpu_context too.
  4754. */
  4755. static void *find_pmu_context(int ctxn)
  4756. {
  4757. struct pmu *pmu;
  4758. if (ctxn < 0)
  4759. return NULL;
  4760. list_for_each_entry(pmu, &pmus, entry) {
  4761. if (pmu->task_ctx_nr == ctxn)
  4762. return pmu->pmu_cpu_context;
  4763. }
  4764. return NULL;
  4765. }
  4766. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  4767. {
  4768. int cpu;
  4769. for_each_possible_cpu(cpu) {
  4770. struct perf_cpu_context *cpuctx;
  4771. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4772. if (cpuctx->active_pmu == old_pmu)
  4773. cpuctx->active_pmu = pmu;
  4774. }
  4775. }
  4776. static void free_pmu_context(struct pmu *pmu)
  4777. {
  4778. struct pmu *i;
  4779. mutex_lock(&pmus_lock);
  4780. /*
  4781. * Like a real lame refcount.
  4782. */
  4783. list_for_each_entry(i, &pmus, entry) {
  4784. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  4785. update_pmu_context(i, pmu);
  4786. goto out;
  4787. }
  4788. }
  4789. free_percpu(pmu->pmu_cpu_context);
  4790. out:
  4791. mutex_unlock(&pmus_lock);
  4792. }
  4793. static struct idr pmu_idr;
  4794. static ssize_t
  4795. type_show(struct device *dev, struct device_attribute *attr, char *page)
  4796. {
  4797. struct pmu *pmu = dev_get_drvdata(dev);
  4798. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  4799. }
  4800. static struct device_attribute pmu_dev_attrs[] = {
  4801. __ATTR_RO(type),
  4802. __ATTR_NULL,
  4803. };
  4804. static int pmu_bus_running;
  4805. static struct bus_type pmu_bus = {
  4806. .name = "event_source",
  4807. .dev_attrs = pmu_dev_attrs,
  4808. };
  4809. static void pmu_dev_release(struct device *dev)
  4810. {
  4811. kfree(dev);
  4812. }
  4813. static int pmu_dev_alloc(struct pmu *pmu)
  4814. {
  4815. int ret = -ENOMEM;
  4816. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  4817. if (!pmu->dev)
  4818. goto out;
  4819. device_initialize(pmu->dev);
  4820. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  4821. if (ret)
  4822. goto free_dev;
  4823. dev_set_drvdata(pmu->dev, pmu);
  4824. pmu->dev->bus = &pmu_bus;
  4825. pmu->dev->release = pmu_dev_release;
  4826. ret = device_add(pmu->dev);
  4827. if (ret)
  4828. goto free_dev;
  4829. out:
  4830. return ret;
  4831. free_dev:
  4832. put_device(pmu->dev);
  4833. goto out;
  4834. }
  4835. static struct lock_class_key cpuctx_mutex;
  4836. int perf_pmu_register(struct pmu *pmu, char *name, int type)
  4837. {
  4838. int cpu, ret;
  4839. mutex_lock(&pmus_lock);
  4840. ret = -ENOMEM;
  4841. pmu->pmu_disable_count = alloc_percpu(int);
  4842. if (!pmu->pmu_disable_count)
  4843. goto unlock;
  4844. pmu->type = -1;
  4845. if (!name)
  4846. goto skip_type;
  4847. pmu->name = name;
  4848. if (type < 0) {
  4849. int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
  4850. if (!err)
  4851. goto free_pdc;
  4852. err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
  4853. if (err) {
  4854. ret = err;
  4855. goto free_pdc;
  4856. }
  4857. }
  4858. pmu->type = type;
  4859. if (pmu_bus_running) {
  4860. ret = pmu_dev_alloc(pmu);
  4861. if (ret)
  4862. goto free_idr;
  4863. }
  4864. skip_type:
  4865. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  4866. if (pmu->pmu_cpu_context)
  4867. goto got_cpu_context;
  4868. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  4869. if (!pmu->pmu_cpu_context)
  4870. goto free_dev;
  4871. for_each_possible_cpu(cpu) {
  4872. struct perf_cpu_context *cpuctx;
  4873. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4874. __perf_event_init_context(&cpuctx->ctx);
  4875. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  4876. cpuctx->ctx.type = cpu_context;
  4877. cpuctx->ctx.pmu = pmu;
  4878. cpuctx->jiffies_interval = 1;
  4879. INIT_LIST_HEAD(&cpuctx->rotation_list);
  4880. cpuctx->active_pmu = pmu;
  4881. }
  4882. got_cpu_context:
  4883. if (!pmu->start_txn) {
  4884. if (pmu->pmu_enable) {
  4885. /*
  4886. * If we have pmu_enable/pmu_disable calls, install
  4887. * transaction stubs that use that to try and batch
  4888. * hardware accesses.
  4889. */
  4890. pmu->start_txn = perf_pmu_start_txn;
  4891. pmu->commit_txn = perf_pmu_commit_txn;
  4892. pmu->cancel_txn = perf_pmu_cancel_txn;
  4893. } else {
  4894. pmu->start_txn = perf_pmu_nop_void;
  4895. pmu->commit_txn = perf_pmu_nop_int;
  4896. pmu->cancel_txn = perf_pmu_nop_void;
  4897. }
  4898. }
  4899. if (!pmu->pmu_enable) {
  4900. pmu->pmu_enable = perf_pmu_nop_void;
  4901. pmu->pmu_disable = perf_pmu_nop_void;
  4902. }
  4903. list_add_rcu(&pmu->entry, &pmus);
  4904. ret = 0;
  4905. unlock:
  4906. mutex_unlock(&pmus_lock);
  4907. return ret;
  4908. free_dev:
  4909. device_del(pmu->dev);
  4910. put_device(pmu->dev);
  4911. free_idr:
  4912. if (pmu->type >= PERF_TYPE_MAX)
  4913. idr_remove(&pmu_idr, pmu->type);
  4914. free_pdc:
  4915. free_percpu(pmu->pmu_disable_count);
  4916. goto unlock;
  4917. }
  4918. void perf_pmu_unregister(struct pmu *pmu)
  4919. {
  4920. mutex_lock(&pmus_lock);
  4921. list_del_rcu(&pmu->entry);
  4922. mutex_unlock(&pmus_lock);
  4923. /*
  4924. * We dereference the pmu list under both SRCU and regular RCU, so
  4925. * synchronize against both of those.
  4926. */
  4927. synchronize_srcu(&pmus_srcu);
  4928. synchronize_rcu();
  4929. free_percpu(pmu->pmu_disable_count);
  4930. if (pmu->type >= PERF_TYPE_MAX)
  4931. idr_remove(&pmu_idr, pmu->type);
  4932. device_del(pmu->dev);
  4933. put_device(pmu->dev);
  4934. free_pmu_context(pmu);
  4935. }
  4936. struct pmu *perf_init_event(struct perf_event *event)
  4937. {
  4938. struct pmu *pmu = NULL;
  4939. int idx;
  4940. idx = srcu_read_lock(&pmus_srcu);
  4941. rcu_read_lock();
  4942. pmu = idr_find(&pmu_idr, event->attr.type);
  4943. rcu_read_unlock();
  4944. if (pmu)
  4945. goto unlock;
  4946. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4947. int ret = pmu->event_init(event);
  4948. if (!ret)
  4949. goto unlock;
  4950. if (ret != -ENOENT) {
  4951. pmu = ERR_PTR(ret);
  4952. goto unlock;
  4953. }
  4954. }
  4955. pmu = ERR_PTR(-ENOENT);
  4956. unlock:
  4957. srcu_read_unlock(&pmus_srcu, idx);
  4958. return pmu;
  4959. }
  4960. /*
  4961. * Allocate and initialize a event structure
  4962. */
  4963. static struct perf_event *
  4964. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  4965. struct task_struct *task,
  4966. struct perf_event *group_leader,
  4967. struct perf_event *parent_event,
  4968. perf_overflow_handler_t overflow_handler)
  4969. {
  4970. struct pmu *pmu;
  4971. struct perf_event *event;
  4972. struct hw_perf_event *hwc;
  4973. long err;
  4974. if ((unsigned)cpu >= nr_cpu_ids) {
  4975. if (!task || cpu != -1)
  4976. return ERR_PTR(-EINVAL);
  4977. }
  4978. event = kzalloc(sizeof(*event), GFP_KERNEL);
  4979. if (!event)
  4980. return ERR_PTR(-ENOMEM);
  4981. /*
  4982. * Single events are their own group leaders, with an
  4983. * empty sibling list:
  4984. */
  4985. if (!group_leader)
  4986. group_leader = event;
  4987. mutex_init(&event->child_mutex);
  4988. INIT_LIST_HEAD(&event->child_list);
  4989. INIT_LIST_HEAD(&event->group_entry);
  4990. INIT_LIST_HEAD(&event->event_entry);
  4991. INIT_LIST_HEAD(&event->sibling_list);
  4992. init_waitqueue_head(&event->waitq);
  4993. init_irq_work(&event->pending, perf_pending_event);
  4994. mutex_init(&event->mmap_mutex);
  4995. event->cpu = cpu;
  4996. event->attr = *attr;
  4997. event->group_leader = group_leader;
  4998. event->pmu = NULL;
  4999. event->oncpu = -1;
  5000. event->parent = parent_event;
  5001. event->ns = get_pid_ns(current->nsproxy->pid_ns);
  5002. event->id = atomic64_inc_return(&perf_event_id);
  5003. event->state = PERF_EVENT_STATE_INACTIVE;
  5004. if (task) {
  5005. event->attach_state = PERF_ATTACH_TASK;
  5006. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5007. /*
  5008. * hw_breakpoint is a bit difficult here..
  5009. */
  5010. if (attr->type == PERF_TYPE_BREAKPOINT)
  5011. event->hw.bp_target = task;
  5012. #endif
  5013. }
  5014. if (!overflow_handler && parent_event)
  5015. overflow_handler = parent_event->overflow_handler;
  5016. event->overflow_handler = overflow_handler;
  5017. if (attr->disabled)
  5018. event->state = PERF_EVENT_STATE_OFF;
  5019. pmu = NULL;
  5020. hwc = &event->hw;
  5021. hwc->sample_period = attr->sample_period;
  5022. if (attr->freq && attr->sample_freq)
  5023. hwc->sample_period = 1;
  5024. hwc->last_period = hwc->sample_period;
  5025. local64_set(&hwc->period_left, hwc->sample_period);
  5026. /*
  5027. * we currently do not support PERF_FORMAT_GROUP on inherited events
  5028. */
  5029. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  5030. goto done;
  5031. pmu = perf_init_event(event);
  5032. done:
  5033. err = 0;
  5034. if (!pmu)
  5035. err = -EINVAL;
  5036. else if (IS_ERR(pmu))
  5037. err = PTR_ERR(pmu);
  5038. if (err) {
  5039. if (event->ns)
  5040. put_pid_ns(event->ns);
  5041. kfree(event);
  5042. return ERR_PTR(err);
  5043. }
  5044. event->pmu = pmu;
  5045. if (!event->parent) {
  5046. if (event->attach_state & PERF_ATTACH_TASK)
  5047. jump_label_inc(&perf_sched_events);
  5048. if (event->attr.mmap || event->attr.mmap_data)
  5049. atomic_inc(&nr_mmap_events);
  5050. if (event->attr.comm)
  5051. atomic_inc(&nr_comm_events);
  5052. if (event->attr.task)
  5053. atomic_inc(&nr_task_events);
  5054. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  5055. err = get_callchain_buffers();
  5056. if (err) {
  5057. free_event(event);
  5058. return ERR_PTR(err);
  5059. }
  5060. }
  5061. }
  5062. return event;
  5063. }
  5064. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  5065. struct perf_event_attr *attr)
  5066. {
  5067. u32 size;
  5068. int ret;
  5069. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  5070. return -EFAULT;
  5071. /*
  5072. * zero the full structure, so that a short copy will be nice.
  5073. */
  5074. memset(attr, 0, sizeof(*attr));
  5075. ret = get_user(size, &uattr->size);
  5076. if (ret)
  5077. return ret;
  5078. if (size > PAGE_SIZE) /* silly large */
  5079. goto err_size;
  5080. if (!size) /* abi compat */
  5081. size = PERF_ATTR_SIZE_VER0;
  5082. if (size < PERF_ATTR_SIZE_VER0)
  5083. goto err_size;
  5084. /*
  5085. * If we're handed a bigger struct than we know of,
  5086. * ensure all the unknown bits are 0 - i.e. new
  5087. * user-space does not rely on any kernel feature
  5088. * extensions we dont know about yet.
  5089. */
  5090. if (size > sizeof(*attr)) {
  5091. unsigned char __user *addr;
  5092. unsigned char __user *end;
  5093. unsigned char val;
  5094. addr = (void __user *)uattr + sizeof(*attr);
  5095. end = (void __user *)uattr + size;
  5096. for (; addr < end; addr++) {
  5097. ret = get_user(val, addr);
  5098. if (ret)
  5099. return ret;
  5100. if (val)
  5101. goto err_size;
  5102. }
  5103. size = sizeof(*attr);
  5104. }
  5105. ret = copy_from_user(attr, uattr, size);
  5106. if (ret)
  5107. return -EFAULT;
  5108. /*
  5109. * If the type exists, the corresponding creation will verify
  5110. * the attr->config.
  5111. */
  5112. if (attr->type >= PERF_TYPE_MAX)
  5113. return -EINVAL;
  5114. if (attr->__reserved_1)
  5115. return -EINVAL;
  5116. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  5117. return -EINVAL;
  5118. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  5119. return -EINVAL;
  5120. out:
  5121. return ret;
  5122. err_size:
  5123. put_user(sizeof(*attr), &uattr->size);
  5124. ret = -E2BIG;
  5125. goto out;
  5126. }
  5127. static int
  5128. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  5129. {
  5130. struct perf_buffer *buffer = NULL, *old_buffer = NULL;
  5131. int ret = -EINVAL;
  5132. if (!output_event)
  5133. goto set;
  5134. /* don't allow circular references */
  5135. if (event == output_event)
  5136. goto out;
  5137. /*
  5138. * Don't allow cross-cpu buffers
  5139. */
  5140. if (output_event->cpu != event->cpu)
  5141. goto out;
  5142. /*
  5143. * If its not a per-cpu buffer, it must be the same task.
  5144. */
  5145. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  5146. goto out;
  5147. set:
  5148. mutex_lock(&event->mmap_mutex);
  5149. /* Can't redirect output if we've got an active mmap() */
  5150. if (atomic_read(&event->mmap_count))
  5151. goto unlock;
  5152. if (output_event) {
  5153. /* get the buffer we want to redirect to */
  5154. buffer = perf_buffer_get(output_event);
  5155. if (!buffer)
  5156. goto unlock;
  5157. }
  5158. old_buffer = event->buffer;
  5159. rcu_assign_pointer(event->buffer, buffer);
  5160. ret = 0;
  5161. unlock:
  5162. mutex_unlock(&event->mmap_mutex);
  5163. if (old_buffer)
  5164. perf_buffer_put(old_buffer);
  5165. out:
  5166. return ret;
  5167. }
  5168. /**
  5169. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  5170. *
  5171. * @attr_uptr: event_id type attributes for monitoring/sampling
  5172. * @pid: target pid
  5173. * @cpu: target cpu
  5174. * @group_fd: group leader event fd
  5175. */
  5176. SYSCALL_DEFINE5(perf_event_open,
  5177. struct perf_event_attr __user *, attr_uptr,
  5178. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  5179. {
  5180. struct perf_event *group_leader = NULL, *output_event = NULL;
  5181. struct perf_event *event, *sibling;
  5182. struct perf_event_attr attr;
  5183. struct perf_event_context *ctx;
  5184. struct file *event_file = NULL;
  5185. struct file *group_file = NULL;
  5186. struct task_struct *task = NULL;
  5187. struct pmu *pmu;
  5188. int event_fd;
  5189. int move_group = 0;
  5190. int fput_needed = 0;
  5191. int err;
  5192. /* for future expandability... */
  5193. if (flags & ~PERF_FLAG_ALL)
  5194. return -EINVAL;
  5195. err = perf_copy_attr(attr_uptr, &attr);
  5196. if (err)
  5197. return err;
  5198. if (!attr.exclude_kernel) {
  5199. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5200. return -EACCES;
  5201. }
  5202. if (attr.freq) {
  5203. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  5204. return -EINVAL;
  5205. }
  5206. /*
  5207. * In cgroup mode, the pid argument is used to pass the fd
  5208. * opened to the cgroup directory in cgroupfs. The cpu argument
  5209. * designates the cpu on which to monitor threads from that
  5210. * cgroup.
  5211. */
  5212. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  5213. return -EINVAL;
  5214. event_fd = get_unused_fd_flags(O_RDWR);
  5215. if (event_fd < 0)
  5216. return event_fd;
  5217. if (group_fd != -1) {
  5218. group_leader = perf_fget_light(group_fd, &fput_needed);
  5219. if (IS_ERR(group_leader)) {
  5220. err = PTR_ERR(group_leader);
  5221. goto err_fd;
  5222. }
  5223. group_file = group_leader->filp;
  5224. if (flags & PERF_FLAG_FD_OUTPUT)
  5225. output_event = group_leader;
  5226. if (flags & PERF_FLAG_FD_NO_GROUP)
  5227. group_leader = NULL;
  5228. }
  5229. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  5230. task = find_lively_task_by_vpid(pid);
  5231. if (IS_ERR(task)) {
  5232. err = PTR_ERR(task);
  5233. goto err_group_fd;
  5234. }
  5235. }
  5236. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
  5237. if (IS_ERR(event)) {
  5238. err = PTR_ERR(event);
  5239. goto err_task;
  5240. }
  5241. if (flags & PERF_FLAG_PID_CGROUP) {
  5242. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  5243. if (err)
  5244. goto err_alloc;
  5245. }
  5246. /*
  5247. * Special case software events and allow them to be part of
  5248. * any hardware group.
  5249. */
  5250. pmu = event->pmu;
  5251. if (group_leader &&
  5252. (is_software_event(event) != is_software_event(group_leader))) {
  5253. if (is_software_event(event)) {
  5254. /*
  5255. * If event and group_leader are not both a software
  5256. * event, and event is, then group leader is not.
  5257. *
  5258. * Allow the addition of software events to !software
  5259. * groups, this is safe because software events never
  5260. * fail to schedule.
  5261. */
  5262. pmu = group_leader->pmu;
  5263. } else if (is_software_event(group_leader) &&
  5264. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  5265. /*
  5266. * In case the group is a pure software group, and we
  5267. * try to add a hardware event, move the whole group to
  5268. * the hardware context.
  5269. */
  5270. move_group = 1;
  5271. }
  5272. }
  5273. /*
  5274. * Get the target context (task or percpu):
  5275. */
  5276. ctx = find_get_context(pmu, task, cpu);
  5277. if (IS_ERR(ctx)) {
  5278. err = PTR_ERR(ctx);
  5279. goto err_alloc;
  5280. }
  5281. /*
  5282. * Look up the group leader (we will attach this event to it):
  5283. */
  5284. if (group_leader) {
  5285. err = -EINVAL;
  5286. /*
  5287. * Do not allow a recursive hierarchy (this new sibling
  5288. * becoming part of another group-sibling):
  5289. */
  5290. if (group_leader->group_leader != group_leader)
  5291. goto err_context;
  5292. /*
  5293. * Do not allow to attach to a group in a different
  5294. * task or CPU context:
  5295. */
  5296. if (move_group) {
  5297. if (group_leader->ctx->type != ctx->type)
  5298. goto err_context;
  5299. } else {
  5300. if (group_leader->ctx != ctx)
  5301. goto err_context;
  5302. }
  5303. /*
  5304. * Only a group leader can be exclusive or pinned
  5305. */
  5306. if (attr.exclusive || attr.pinned)
  5307. goto err_context;
  5308. }
  5309. if (output_event) {
  5310. err = perf_event_set_output(event, output_event);
  5311. if (err)
  5312. goto err_context;
  5313. }
  5314. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
  5315. if (IS_ERR(event_file)) {
  5316. err = PTR_ERR(event_file);
  5317. goto err_context;
  5318. }
  5319. if (move_group) {
  5320. struct perf_event_context *gctx = group_leader->ctx;
  5321. mutex_lock(&gctx->mutex);
  5322. perf_remove_from_context(group_leader);
  5323. list_for_each_entry(sibling, &group_leader->sibling_list,
  5324. group_entry) {
  5325. perf_remove_from_context(sibling);
  5326. put_ctx(gctx);
  5327. }
  5328. mutex_unlock(&gctx->mutex);
  5329. put_ctx(gctx);
  5330. }
  5331. event->filp = event_file;
  5332. WARN_ON_ONCE(ctx->parent_ctx);
  5333. mutex_lock(&ctx->mutex);
  5334. if (move_group) {
  5335. perf_install_in_context(ctx, group_leader, cpu);
  5336. get_ctx(ctx);
  5337. list_for_each_entry(sibling, &group_leader->sibling_list,
  5338. group_entry) {
  5339. perf_install_in_context(ctx, sibling, cpu);
  5340. get_ctx(ctx);
  5341. }
  5342. }
  5343. perf_install_in_context(ctx, event, cpu);
  5344. ++ctx->generation;
  5345. perf_unpin_context(ctx);
  5346. mutex_unlock(&ctx->mutex);
  5347. event->owner = current;
  5348. mutex_lock(&current->perf_event_mutex);
  5349. list_add_tail(&event->owner_entry, &current->perf_event_list);
  5350. mutex_unlock(&current->perf_event_mutex);
  5351. /*
  5352. * Precalculate sample_data sizes
  5353. */
  5354. perf_event__header_size(event);
  5355. perf_event__id_header_size(event);
  5356. /*
  5357. * Drop the reference on the group_event after placing the
  5358. * new event on the sibling_list. This ensures destruction
  5359. * of the group leader will find the pointer to itself in
  5360. * perf_group_detach().
  5361. */
  5362. fput_light(group_file, fput_needed);
  5363. fd_install(event_fd, event_file);
  5364. return event_fd;
  5365. err_context:
  5366. perf_unpin_context(ctx);
  5367. put_ctx(ctx);
  5368. err_alloc:
  5369. free_event(event);
  5370. err_task:
  5371. if (task)
  5372. put_task_struct(task);
  5373. err_group_fd:
  5374. fput_light(group_file, fput_needed);
  5375. err_fd:
  5376. put_unused_fd(event_fd);
  5377. return err;
  5378. }
  5379. /**
  5380. * perf_event_create_kernel_counter
  5381. *
  5382. * @attr: attributes of the counter to create
  5383. * @cpu: cpu in which the counter is bound
  5384. * @task: task to profile (NULL for percpu)
  5385. */
  5386. struct perf_event *
  5387. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  5388. struct task_struct *task,
  5389. perf_overflow_handler_t overflow_handler)
  5390. {
  5391. struct perf_event_context *ctx;
  5392. struct perf_event *event;
  5393. int err;
  5394. /*
  5395. * Get the target context (task or percpu):
  5396. */
  5397. event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
  5398. if (IS_ERR(event)) {
  5399. err = PTR_ERR(event);
  5400. goto err;
  5401. }
  5402. ctx = find_get_context(event->pmu, task, cpu);
  5403. if (IS_ERR(ctx)) {
  5404. err = PTR_ERR(ctx);
  5405. goto err_free;
  5406. }
  5407. event->filp = NULL;
  5408. WARN_ON_ONCE(ctx->parent_ctx);
  5409. mutex_lock(&ctx->mutex);
  5410. perf_install_in_context(ctx, event, cpu);
  5411. ++ctx->generation;
  5412. perf_unpin_context(ctx);
  5413. mutex_unlock(&ctx->mutex);
  5414. return event;
  5415. err_free:
  5416. free_event(event);
  5417. err:
  5418. return ERR_PTR(err);
  5419. }
  5420. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  5421. static void sync_child_event(struct perf_event *child_event,
  5422. struct task_struct *child)
  5423. {
  5424. struct perf_event *parent_event = child_event->parent;
  5425. u64 child_val;
  5426. if (child_event->attr.inherit_stat)
  5427. perf_event_read_event(child_event, child);
  5428. child_val = perf_event_count(child_event);
  5429. /*
  5430. * Add back the child's count to the parent's count:
  5431. */
  5432. atomic64_add(child_val, &parent_event->child_count);
  5433. atomic64_add(child_event->total_time_enabled,
  5434. &parent_event->child_total_time_enabled);
  5435. atomic64_add(child_event->total_time_running,
  5436. &parent_event->child_total_time_running);
  5437. /*
  5438. * Remove this event from the parent's list
  5439. */
  5440. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5441. mutex_lock(&parent_event->child_mutex);
  5442. list_del_init(&child_event->child_list);
  5443. mutex_unlock(&parent_event->child_mutex);
  5444. /*
  5445. * Release the parent event, if this was the last
  5446. * reference to it.
  5447. */
  5448. fput(parent_event->filp);
  5449. }
  5450. static void
  5451. __perf_event_exit_task(struct perf_event *child_event,
  5452. struct perf_event_context *child_ctx,
  5453. struct task_struct *child)
  5454. {
  5455. struct perf_event *parent_event;
  5456. perf_remove_from_context(child_event);
  5457. parent_event = child_event->parent;
  5458. /*
  5459. * It can happen that parent exits first, and has events
  5460. * that are still around due to the child reference. These
  5461. * events need to be zapped - but otherwise linger.
  5462. */
  5463. if (parent_event) {
  5464. sync_child_event(child_event, child);
  5465. free_event(child_event);
  5466. }
  5467. }
  5468. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  5469. {
  5470. struct perf_event *child_event, *tmp;
  5471. struct perf_event_context *child_ctx;
  5472. unsigned long flags;
  5473. if (likely(!child->perf_event_ctxp[ctxn])) {
  5474. perf_event_task(child, NULL, 0);
  5475. return;
  5476. }
  5477. local_irq_save(flags);
  5478. /*
  5479. * We can't reschedule here because interrupts are disabled,
  5480. * and either child is current or it is a task that can't be
  5481. * scheduled, so we are now safe from rescheduling changing
  5482. * our context.
  5483. */
  5484. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  5485. task_ctx_sched_out(child_ctx, EVENT_ALL);
  5486. /*
  5487. * Take the context lock here so that if find_get_context is
  5488. * reading child->perf_event_ctxp, we wait until it has
  5489. * incremented the context's refcount before we do put_ctx below.
  5490. */
  5491. raw_spin_lock(&child_ctx->lock);
  5492. child->perf_event_ctxp[ctxn] = NULL;
  5493. /*
  5494. * If this context is a clone; unclone it so it can't get
  5495. * swapped to another process while we're removing all
  5496. * the events from it.
  5497. */
  5498. unclone_ctx(child_ctx);
  5499. update_context_time(child_ctx);
  5500. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5501. /*
  5502. * Report the task dead after unscheduling the events so that we
  5503. * won't get any samples after PERF_RECORD_EXIT. We can however still
  5504. * get a few PERF_RECORD_READ events.
  5505. */
  5506. perf_event_task(child, child_ctx, 0);
  5507. /*
  5508. * We can recurse on the same lock type through:
  5509. *
  5510. * __perf_event_exit_task()
  5511. * sync_child_event()
  5512. * fput(parent_event->filp)
  5513. * perf_release()
  5514. * mutex_lock(&ctx->mutex)
  5515. *
  5516. * But since its the parent context it won't be the same instance.
  5517. */
  5518. mutex_lock(&child_ctx->mutex);
  5519. again:
  5520. list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
  5521. group_entry)
  5522. __perf_event_exit_task(child_event, child_ctx, child);
  5523. list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
  5524. group_entry)
  5525. __perf_event_exit_task(child_event, child_ctx, child);
  5526. /*
  5527. * If the last event was a group event, it will have appended all
  5528. * its siblings to the list, but we obtained 'tmp' before that which
  5529. * will still point to the list head terminating the iteration.
  5530. */
  5531. if (!list_empty(&child_ctx->pinned_groups) ||
  5532. !list_empty(&child_ctx->flexible_groups))
  5533. goto again;
  5534. mutex_unlock(&child_ctx->mutex);
  5535. put_ctx(child_ctx);
  5536. }
  5537. /*
  5538. * When a child task exits, feed back event values to parent events.
  5539. */
  5540. void perf_event_exit_task(struct task_struct *child)
  5541. {
  5542. struct perf_event *event, *tmp;
  5543. int ctxn;
  5544. mutex_lock(&child->perf_event_mutex);
  5545. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  5546. owner_entry) {
  5547. list_del_init(&event->owner_entry);
  5548. /*
  5549. * Ensure the list deletion is visible before we clear
  5550. * the owner, closes a race against perf_release() where
  5551. * we need to serialize on the owner->perf_event_mutex.
  5552. */
  5553. smp_wmb();
  5554. event->owner = NULL;
  5555. }
  5556. mutex_unlock(&child->perf_event_mutex);
  5557. for_each_task_context_nr(ctxn)
  5558. perf_event_exit_task_context(child, ctxn);
  5559. }
  5560. static void perf_free_event(struct perf_event *event,
  5561. struct perf_event_context *ctx)
  5562. {
  5563. struct perf_event *parent = event->parent;
  5564. if (WARN_ON_ONCE(!parent))
  5565. return;
  5566. mutex_lock(&parent->child_mutex);
  5567. list_del_init(&event->child_list);
  5568. mutex_unlock(&parent->child_mutex);
  5569. fput(parent->filp);
  5570. perf_group_detach(event);
  5571. list_del_event(event, ctx);
  5572. free_event(event);
  5573. }
  5574. /*
  5575. * free an unexposed, unused context as created by inheritance by
  5576. * perf_event_init_task below, used by fork() in case of fail.
  5577. */
  5578. void perf_event_free_task(struct task_struct *task)
  5579. {
  5580. struct perf_event_context *ctx;
  5581. struct perf_event *event, *tmp;
  5582. int ctxn;
  5583. for_each_task_context_nr(ctxn) {
  5584. ctx = task->perf_event_ctxp[ctxn];
  5585. if (!ctx)
  5586. continue;
  5587. mutex_lock(&ctx->mutex);
  5588. again:
  5589. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  5590. group_entry)
  5591. perf_free_event(event, ctx);
  5592. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  5593. group_entry)
  5594. perf_free_event(event, ctx);
  5595. if (!list_empty(&ctx->pinned_groups) ||
  5596. !list_empty(&ctx->flexible_groups))
  5597. goto again;
  5598. mutex_unlock(&ctx->mutex);
  5599. put_ctx(ctx);
  5600. }
  5601. }
  5602. void perf_event_delayed_put(struct task_struct *task)
  5603. {
  5604. int ctxn;
  5605. for_each_task_context_nr(ctxn)
  5606. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  5607. }
  5608. /*
  5609. * inherit a event from parent task to child task:
  5610. */
  5611. static struct perf_event *
  5612. inherit_event(struct perf_event *parent_event,
  5613. struct task_struct *parent,
  5614. struct perf_event_context *parent_ctx,
  5615. struct task_struct *child,
  5616. struct perf_event *group_leader,
  5617. struct perf_event_context *child_ctx)
  5618. {
  5619. struct perf_event *child_event;
  5620. unsigned long flags;
  5621. /*
  5622. * Instead of creating recursive hierarchies of events,
  5623. * we link inherited events back to the original parent,
  5624. * which has a filp for sure, which we use as the reference
  5625. * count:
  5626. */
  5627. if (parent_event->parent)
  5628. parent_event = parent_event->parent;
  5629. child_event = perf_event_alloc(&parent_event->attr,
  5630. parent_event->cpu,
  5631. child,
  5632. group_leader, parent_event,
  5633. NULL);
  5634. if (IS_ERR(child_event))
  5635. return child_event;
  5636. get_ctx(child_ctx);
  5637. /*
  5638. * Make the child state follow the state of the parent event,
  5639. * not its attr.disabled bit. We hold the parent's mutex,
  5640. * so we won't race with perf_event_{en, dis}able_family.
  5641. */
  5642. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  5643. child_event->state = PERF_EVENT_STATE_INACTIVE;
  5644. else
  5645. child_event->state = PERF_EVENT_STATE_OFF;
  5646. if (parent_event->attr.freq) {
  5647. u64 sample_period = parent_event->hw.sample_period;
  5648. struct hw_perf_event *hwc = &child_event->hw;
  5649. hwc->sample_period = sample_period;
  5650. hwc->last_period = sample_period;
  5651. local64_set(&hwc->period_left, sample_period);
  5652. }
  5653. child_event->ctx = child_ctx;
  5654. child_event->overflow_handler = parent_event->overflow_handler;
  5655. /*
  5656. * Precalculate sample_data sizes
  5657. */
  5658. perf_event__header_size(child_event);
  5659. perf_event__id_header_size(child_event);
  5660. /*
  5661. * Link it up in the child's context:
  5662. */
  5663. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  5664. add_event_to_ctx(child_event, child_ctx);
  5665. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5666. /*
  5667. * Get a reference to the parent filp - we will fput it
  5668. * when the child event exits. This is safe to do because
  5669. * we are in the parent and we know that the filp still
  5670. * exists and has a nonzero count:
  5671. */
  5672. atomic_long_inc(&parent_event->filp->f_count);
  5673. /*
  5674. * Link this into the parent event's child list
  5675. */
  5676. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5677. mutex_lock(&parent_event->child_mutex);
  5678. list_add_tail(&child_event->child_list, &parent_event->child_list);
  5679. mutex_unlock(&parent_event->child_mutex);
  5680. return child_event;
  5681. }
  5682. static int inherit_group(struct perf_event *parent_event,
  5683. struct task_struct *parent,
  5684. struct perf_event_context *parent_ctx,
  5685. struct task_struct *child,
  5686. struct perf_event_context *child_ctx)
  5687. {
  5688. struct perf_event *leader;
  5689. struct perf_event *sub;
  5690. struct perf_event *child_ctr;
  5691. leader = inherit_event(parent_event, parent, parent_ctx,
  5692. child, NULL, child_ctx);
  5693. if (IS_ERR(leader))
  5694. return PTR_ERR(leader);
  5695. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  5696. child_ctr = inherit_event(sub, parent, parent_ctx,
  5697. child, leader, child_ctx);
  5698. if (IS_ERR(child_ctr))
  5699. return PTR_ERR(child_ctr);
  5700. }
  5701. return 0;
  5702. }
  5703. static int
  5704. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  5705. struct perf_event_context *parent_ctx,
  5706. struct task_struct *child, int ctxn,
  5707. int *inherited_all)
  5708. {
  5709. int ret;
  5710. struct perf_event_context *child_ctx;
  5711. if (!event->attr.inherit) {
  5712. *inherited_all = 0;
  5713. return 0;
  5714. }
  5715. child_ctx = child->perf_event_ctxp[ctxn];
  5716. if (!child_ctx) {
  5717. /*
  5718. * This is executed from the parent task context, so
  5719. * inherit events that have been marked for cloning.
  5720. * First allocate and initialize a context for the
  5721. * child.
  5722. */
  5723. child_ctx = alloc_perf_context(event->pmu, child);
  5724. if (!child_ctx)
  5725. return -ENOMEM;
  5726. child->perf_event_ctxp[ctxn] = child_ctx;
  5727. }
  5728. ret = inherit_group(event, parent, parent_ctx,
  5729. child, child_ctx);
  5730. if (ret)
  5731. *inherited_all = 0;
  5732. return ret;
  5733. }
  5734. /*
  5735. * Initialize the perf_event context in task_struct
  5736. */
  5737. int perf_event_init_context(struct task_struct *child, int ctxn)
  5738. {
  5739. struct perf_event_context *child_ctx, *parent_ctx;
  5740. struct perf_event_context *cloned_ctx;
  5741. struct perf_event *event;
  5742. struct task_struct *parent = current;
  5743. int inherited_all = 1;
  5744. unsigned long flags;
  5745. int ret = 0;
  5746. if (likely(!parent->perf_event_ctxp[ctxn]))
  5747. return 0;
  5748. /*
  5749. * If the parent's context is a clone, pin it so it won't get
  5750. * swapped under us.
  5751. */
  5752. parent_ctx = perf_pin_task_context(parent, ctxn);
  5753. /*
  5754. * No need to check if parent_ctx != NULL here; since we saw
  5755. * it non-NULL earlier, the only reason for it to become NULL
  5756. * is if we exit, and since we're currently in the middle of
  5757. * a fork we can't be exiting at the same time.
  5758. */
  5759. /*
  5760. * Lock the parent list. No need to lock the child - not PID
  5761. * hashed yet and not running, so nobody can access it.
  5762. */
  5763. mutex_lock(&parent_ctx->mutex);
  5764. /*
  5765. * We dont have to disable NMIs - we are only looking at
  5766. * the list, not manipulating it:
  5767. */
  5768. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  5769. ret = inherit_task_group(event, parent, parent_ctx,
  5770. child, ctxn, &inherited_all);
  5771. if (ret)
  5772. break;
  5773. }
  5774. /*
  5775. * We can't hold ctx->lock when iterating the ->flexible_group list due
  5776. * to allocations, but we need to prevent rotation because
  5777. * rotate_ctx() will change the list from interrupt context.
  5778. */
  5779. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5780. parent_ctx->rotate_disable = 1;
  5781. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5782. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  5783. ret = inherit_task_group(event, parent, parent_ctx,
  5784. child, ctxn, &inherited_all);
  5785. if (ret)
  5786. break;
  5787. }
  5788. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5789. parent_ctx->rotate_disable = 0;
  5790. child_ctx = child->perf_event_ctxp[ctxn];
  5791. if (child_ctx && inherited_all) {
  5792. /*
  5793. * Mark the child context as a clone of the parent
  5794. * context, or of whatever the parent is a clone of.
  5795. *
  5796. * Note that if the parent is a clone, the holding of
  5797. * parent_ctx->lock avoids it from being uncloned.
  5798. */
  5799. cloned_ctx = parent_ctx->parent_ctx;
  5800. if (cloned_ctx) {
  5801. child_ctx->parent_ctx = cloned_ctx;
  5802. child_ctx->parent_gen = parent_ctx->parent_gen;
  5803. } else {
  5804. child_ctx->parent_ctx = parent_ctx;
  5805. child_ctx->parent_gen = parent_ctx->generation;
  5806. }
  5807. get_ctx(child_ctx->parent_ctx);
  5808. }
  5809. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5810. mutex_unlock(&parent_ctx->mutex);
  5811. perf_unpin_context(parent_ctx);
  5812. put_ctx(parent_ctx);
  5813. return ret;
  5814. }
  5815. /*
  5816. * Initialize the perf_event context in task_struct
  5817. */
  5818. int perf_event_init_task(struct task_struct *child)
  5819. {
  5820. int ctxn, ret;
  5821. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  5822. mutex_init(&child->perf_event_mutex);
  5823. INIT_LIST_HEAD(&child->perf_event_list);
  5824. for_each_task_context_nr(ctxn) {
  5825. ret = perf_event_init_context(child, ctxn);
  5826. if (ret)
  5827. return ret;
  5828. }
  5829. return 0;
  5830. }
  5831. static void __init perf_event_init_all_cpus(void)
  5832. {
  5833. struct swevent_htable *swhash;
  5834. int cpu;
  5835. for_each_possible_cpu(cpu) {
  5836. swhash = &per_cpu(swevent_htable, cpu);
  5837. mutex_init(&swhash->hlist_mutex);
  5838. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  5839. }
  5840. }
  5841. static void __cpuinit perf_event_init_cpu(int cpu)
  5842. {
  5843. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5844. mutex_lock(&swhash->hlist_mutex);
  5845. if (swhash->hlist_refcount > 0) {
  5846. struct swevent_hlist *hlist;
  5847. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  5848. WARN_ON(!hlist);
  5849. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  5850. }
  5851. mutex_unlock(&swhash->hlist_mutex);
  5852. }
  5853. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  5854. static void perf_pmu_rotate_stop(struct pmu *pmu)
  5855. {
  5856. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  5857. WARN_ON(!irqs_disabled());
  5858. list_del_init(&cpuctx->rotation_list);
  5859. }
  5860. static void __perf_event_exit_context(void *__info)
  5861. {
  5862. struct perf_event_context *ctx = __info;
  5863. struct perf_event *event, *tmp;
  5864. perf_pmu_rotate_stop(ctx->pmu);
  5865. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
  5866. __perf_remove_from_context(event);
  5867. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
  5868. __perf_remove_from_context(event);
  5869. }
  5870. static void perf_event_exit_cpu_context(int cpu)
  5871. {
  5872. struct perf_event_context *ctx;
  5873. struct pmu *pmu;
  5874. int idx;
  5875. idx = srcu_read_lock(&pmus_srcu);
  5876. list_for_each_entry_rcu(pmu, &pmus, entry) {
  5877. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  5878. mutex_lock(&ctx->mutex);
  5879. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  5880. mutex_unlock(&ctx->mutex);
  5881. }
  5882. srcu_read_unlock(&pmus_srcu, idx);
  5883. }
  5884. static void perf_event_exit_cpu(int cpu)
  5885. {
  5886. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5887. mutex_lock(&swhash->hlist_mutex);
  5888. swevent_hlist_release(swhash);
  5889. mutex_unlock(&swhash->hlist_mutex);
  5890. perf_event_exit_cpu_context(cpu);
  5891. }
  5892. #else
  5893. static inline void perf_event_exit_cpu(int cpu) { }
  5894. #endif
  5895. static int
  5896. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  5897. {
  5898. int cpu;
  5899. for_each_online_cpu(cpu)
  5900. perf_event_exit_cpu(cpu);
  5901. return NOTIFY_OK;
  5902. }
  5903. /*
  5904. * Run the perf reboot notifier at the very last possible moment so that
  5905. * the generic watchdog code runs as long as possible.
  5906. */
  5907. static struct notifier_block perf_reboot_notifier = {
  5908. .notifier_call = perf_reboot,
  5909. .priority = INT_MIN,
  5910. };
  5911. static int __cpuinit
  5912. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  5913. {
  5914. unsigned int cpu = (long)hcpu;
  5915. switch (action & ~CPU_TASKS_FROZEN) {
  5916. case CPU_UP_PREPARE:
  5917. case CPU_DOWN_FAILED:
  5918. perf_event_init_cpu(cpu);
  5919. break;
  5920. case CPU_UP_CANCELED:
  5921. case CPU_DOWN_PREPARE:
  5922. perf_event_exit_cpu(cpu);
  5923. break;
  5924. default:
  5925. break;
  5926. }
  5927. return NOTIFY_OK;
  5928. }
  5929. void __init perf_event_init(void)
  5930. {
  5931. int ret;
  5932. idr_init(&pmu_idr);
  5933. perf_event_init_all_cpus();
  5934. init_srcu_struct(&pmus_srcu);
  5935. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  5936. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  5937. perf_pmu_register(&perf_task_clock, NULL, -1);
  5938. perf_tp_register();
  5939. perf_cpu_notifier(perf_cpu_notify);
  5940. register_reboot_notifier(&perf_reboot_notifier);
  5941. ret = init_hw_breakpoint();
  5942. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  5943. }
  5944. static int __init perf_event_sysfs_init(void)
  5945. {
  5946. struct pmu *pmu;
  5947. int ret;
  5948. mutex_lock(&pmus_lock);
  5949. ret = bus_register(&pmu_bus);
  5950. if (ret)
  5951. goto unlock;
  5952. list_for_each_entry(pmu, &pmus, entry) {
  5953. if (!pmu->name || pmu->type < 0)
  5954. continue;
  5955. ret = pmu_dev_alloc(pmu);
  5956. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  5957. }
  5958. pmu_bus_running = 1;
  5959. ret = 0;
  5960. unlock:
  5961. mutex_unlock(&pmus_lock);
  5962. return ret;
  5963. }
  5964. device_initcall(perf_event_sysfs_init);
  5965. #ifdef CONFIG_CGROUP_PERF
  5966. static struct cgroup_subsys_state *perf_cgroup_create(
  5967. struct cgroup_subsys *ss, struct cgroup *cont)
  5968. {
  5969. struct perf_cgroup *jc;
  5970. struct perf_cgroup_info *t;
  5971. int c;
  5972. jc = kmalloc(sizeof(*jc), GFP_KERNEL);
  5973. if (!jc)
  5974. return ERR_PTR(-ENOMEM);
  5975. memset(jc, 0, sizeof(*jc));
  5976. jc->info = alloc_percpu(struct perf_cgroup_info);
  5977. if (!jc->info) {
  5978. kfree(jc);
  5979. return ERR_PTR(-ENOMEM);
  5980. }
  5981. for_each_possible_cpu(c) {
  5982. t = per_cpu_ptr(jc->info, c);
  5983. t->time = 0;
  5984. t->timestamp = 0;
  5985. }
  5986. return &jc->css;
  5987. }
  5988. static void perf_cgroup_destroy(struct cgroup_subsys *ss,
  5989. struct cgroup *cont)
  5990. {
  5991. struct perf_cgroup *jc;
  5992. jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
  5993. struct perf_cgroup, css);
  5994. free_percpu(jc->info);
  5995. kfree(jc);
  5996. }
  5997. static int __perf_cgroup_move(void *info)
  5998. {
  5999. struct task_struct *task = info;
  6000. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  6001. return 0;
  6002. }
  6003. static void perf_cgroup_move(struct task_struct *task)
  6004. {
  6005. task_function_call(task, __perf_cgroup_move, task);
  6006. }
  6007. static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6008. struct cgroup *old_cgrp, struct task_struct *task,
  6009. bool threadgroup)
  6010. {
  6011. perf_cgroup_move(task);
  6012. if (threadgroup) {
  6013. struct task_struct *c;
  6014. rcu_read_lock();
  6015. list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
  6016. perf_cgroup_move(c);
  6017. }
  6018. rcu_read_unlock();
  6019. }
  6020. }
  6021. static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6022. struct cgroup *old_cgrp, struct task_struct *task)
  6023. {
  6024. /*
  6025. * cgroup_exit() is called in the copy_process() failure path.
  6026. * Ignore this case since the task hasn't ran yet, this avoids
  6027. * trying to poke a half freed task state from generic code.
  6028. */
  6029. if (!(task->flags & PF_EXITING))
  6030. return;
  6031. perf_cgroup_move(task);
  6032. }
  6033. struct cgroup_subsys perf_subsys = {
  6034. .name = "perf_event",
  6035. .subsys_id = perf_subsys_id,
  6036. .create = perf_cgroup_create,
  6037. .destroy = perf_cgroup_destroy,
  6038. .exit = perf_cgroup_exit,
  6039. .attach = perf_cgroup_attach,
  6040. };
  6041. #endif /* CONFIG_CGROUP_PERF */