intelfbhw.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <linux/interrupt.h>
  36. #include <asm/io.h>
  37. #include "intelfb.h"
  38. #include "intelfbhw.h"
  39. struct pll_min_max {
  40. int min_m, max_m, min_m1, max_m1;
  41. int min_m2, max_m2, min_n, max_n;
  42. int min_p, max_p, min_p1, max_p1;
  43. int min_vco, max_vco, p_transition_clk, ref_clk;
  44. int p_inc_lo, p_inc_hi;
  45. };
  46. #define PLLS_I8xx 0
  47. #define PLLS_I9xx 1
  48. #define PLLS_MAX 2
  49. static struct pll_min_max plls[PLLS_MAX] = {
  50. { 108, 140, 18, 26,
  51. 6, 16, 3, 16,
  52. 4, 128, 0, 31,
  53. 930000, 1400000, 165000, 48000,
  54. 4, 2 }, //I8xx
  55. { 75, 120, 10, 20,
  56. 5, 9, 4, 7,
  57. 5, 80, 1, 8,
  58. 1400000, 2800000, 200000, 96000,
  59. 10, 5 } //I9xx
  60. };
  61. int
  62. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  63. {
  64. u32 tmp;
  65. if (!pdev || !dinfo)
  66. return 1;
  67. switch (pdev->device) {
  68. case PCI_DEVICE_ID_INTEL_830M:
  69. dinfo->name = "Intel(R) 830M";
  70. dinfo->chipset = INTEL_830M;
  71. dinfo->mobile = 1;
  72. dinfo->pll_index = PLLS_I8xx;
  73. return 0;
  74. case PCI_DEVICE_ID_INTEL_845G:
  75. dinfo->name = "Intel(R) 845G";
  76. dinfo->chipset = INTEL_845G;
  77. dinfo->mobile = 0;
  78. dinfo->pll_index = PLLS_I8xx;
  79. return 0;
  80. case PCI_DEVICE_ID_INTEL_85XGM:
  81. tmp = 0;
  82. dinfo->mobile = 1;
  83. dinfo->pll_index = PLLS_I8xx;
  84. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  85. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  86. INTEL_85X_VARIANT_MASK) {
  87. case INTEL_VAR_855GME:
  88. dinfo->name = "Intel(R) 855GME";
  89. dinfo->chipset = INTEL_855GME;
  90. return 0;
  91. case INTEL_VAR_855GM:
  92. dinfo->name = "Intel(R) 855GM";
  93. dinfo->chipset = INTEL_855GM;
  94. return 0;
  95. case INTEL_VAR_852GME:
  96. dinfo->name = "Intel(R) 852GME";
  97. dinfo->chipset = INTEL_852GME;
  98. return 0;
  99. case INTEL_VAR_852GM:
  100. dinfo->name = "Intel(R) 852GM";
  101. dinfo->chipset = INTEL_852GM;
  102. return 0;
  103. default:
  104. dinfo->name = "Intel(R) 852GM/855GM";
  105. dinfo->chipset = INTEL_85XGM;
  106. return 0;
  107. }
  108. break;
  109. case PCI_DEVICE_ID_INTEL_865G:
  110. dinfo->name = "Intel(R) 865G";
  111. dinfo->chipset = INTEL_865G;
  112. dinfo->mobile = 0;
  113. dinfo->pll_index = PLLS_I8xx;
  114. return 0;
  115. case PCI_DEVICE_ID_INTEL_915G:
  116. dinfo->name = "Intel(R) 915G";
  117. dinfo->chipset = INTEL_915G;
  118. dinfo->mobile = 0;
  119. dinfo->pll_index = PLLS_I9xx;
  120. return 0;
  121. case PCI_DEVICE_ID_INTEL_915GM:
  122. dinfo->name = "Intel(R) 915GM";
  123. dinfo->chipset = INTEL_915GM;
  124. dinfo->mobile = 1;
  125. dinfo->pll_index = PLLS_I9xx;
  126. return 0;
  127. case PCI_DEVICE_ID_INTEL_945G:
  128. dinfo->name = "Intel(R) 945G";
  129. dinfo->chipset = INTEL_945G;
  130. dinfo->mobile = 0;
  131. dinfo->pll_index = PLLS_I9xx;
  132. return 0;
  133. case PCI_DEVICE_ID_INTEL_945GM:
  134. dinfo->name = "Intel(R) 945GM";
  135. dinfo->chipset = INTEL_945GM;
  136. dinfo->mobile = 1;
  137. dinfo->pll_index = PLLS_I9xx;
  138. return 0;
  139. default:
  140. return 1;
  141. }
  142. }
  143. int
  144. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  145. int *stolen_size)
  146. {
  147. struct pci_dev *bridge_dev;
  148. u16 tmp;
  149. int stolen_overhead;
  150. if (!pdev || !aperture_size || !stolen_size)
  151. return 1;
  152. /* Find the bridge device. It is always 0:0.0 */
  153. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  154. ERR_MSG("cannot find bridge device\n");
  155. return 1;
  156. }
  157. /* Get the fb aperture size and "stolen" memory amount. */
  158. tmp = 0;
  159. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  160. switch (pdev->device) {
  161. case PCI_DEVICE_ID_INTEL_915G:
  162. case PCI_DEVICE_ID_INTEL_915GM:
  163. case PCI_DEVICE_ID_INTEL_945G:
  164. case PCI_DEVICE_ID_INTEL_945GM:
  165. /* 915 and 945 chipsets support a 256MB aperture.
  166. Aperture size is determined by inspected the
  167. base address of the aperture. */
  168. if (pci_resource_start(pdev, 2) & 0x08000000)
  169. *aperture_size = MB(128);
  170. else
  171. *aperture_size = MB(256);
  172. break;
  173. default:
  174. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  175. *aperture_size = MB(64);
  176. else
  177. *aperture_size = MB(128);
  178. break;
  179. }
  180. /* Stolen memory size is reduced by the GTT and the popup.
  181. GTT is 1K per MB of aperture size, and popup is 4K. */
  182. stolen_overhead = (*aperture_size / MB(1)) + 4;
  183. switch(pdev->device) {
  184. case PCI_DEVICE_ID_INTEL_830M:
  185. case PCI_DEVICE_ID_INTEL_845G:
  186. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  187. case INTEL_830_GMCH_GMS_STOLEN_512:
  188. *stolen_size = KB(512) - KB(stolen_overhead);
  189. return 0;
  190. case INTEL_830_GMCH_GMS_STOLEN_1024:
  191. *stolen_size = MB(1) - KB(stolen_overhead);
  192. return 0;
  193. case INTEL_830_GMCH_GMS_STOLEN_8192:
  194. *stolen_size = MB(8) - KB(stolen_overhead);
  195. return 0;
  196. case INTEL_830_GMCH_GMS_LOCAL:
  197. ERR_MSG("only local memory found\n");
  198. return 1;
  199. case INTEL_830_GMCH_GMS_DISABLED:
  200. ERR_MSG("video memory is disabled\n");
  201. return 1;
  202. default:
  203. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  204. tmp & INTEL_830_GMCH_GMS_MASK);
  205. return 1;
  206. }
  207. break;
  208. default:
  209. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  210. case INTEL_855_GMCH_GMS_STOLEN_1M:
  211. *stolen_size = MB(1) - KB(stolen_overhead);
  212. return 0;
  213. case INTEL_855_GMCH_GMS_STOLEN_4M:
  214. *stolen_size = MB(4) - KB(stolen_overhead);
  215. return 0;
  216. case INTEL_855_GMCH_GMS_STOLEN_8M:
  217. *stolen_size = MB(8) - KB(stolen_overhead);
  218. return 0;
  219. case INTEL_855_GMCH_GMS_STOLEN_16M:
  220. *stolen_size = MB(16) - KB(stolen_overhead);
  221. return 0;
  222. case INTEL_855_GMCH_GMS_STOLEN_32M:
  223. *stolen_size = MB(32) - KB(stolen_overhead);
  224. return 0;
  225. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  226. *stolen_size = MB(48) - KB(stolen_overhead);
  227. return 0;
  228. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  229. *stolen_size = MB(64) - KB(stolen_overhead);
  230. return 0;
  231. case INTEL_855_GMCH_GMS_DISABLED:
  232. ERR_MSG("video memory is disabled\n");
  233. return 0;
  234. default:
  235. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  236. tmp & INTEL_855_GMCH_GMS_MASK);
  237. return 1;
  238. }
  239. }
  240. }
  241. int
  242. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  243. {
  244. int dvo = 0;
  245. if (INREG(LVDS) & PORT_ENABLE)
  246. dvo |= LVDS_PORT;
  247. if (INREG(DVOA) & PORT_ENABLE)
  248. dvo |= DVOA_PORT;
  249. if (INREG(DVOB) & PORT_ENABLE)
  250. dvo |= DVOB_PORT;
  251. if (INREG(DVOC) & PORT_ENABLE)
  252. dvo |= DVOC_PORT;
  253. return dvo;
  254. }
  255. const char *
  256. intelfbhw_dvo_to_string(int dvo)
  257. {
  258. if (dvo & DVOA_PORT)
  259. return "DVO port A";
  260. else if (dvo & DVOB_PORT)
  261. return "DVO port B";
  262. else if (dvo & DVOC_PORT)
  263. return "DVO port C";
  264. else if (dvo & LVDS_PORT)
  265. return "LVDS port";
  266. else
  267. return NULL;
  268. }
  269. int
  270. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  271. struct fb_var_screeninfo *var)
  272. {
  273. int bytes_per_pixel;
  274. int tmp;
  275. #if VERBOSE > 0
  276. DBG_MSG("intelfbhw_validate_mode\n");
  277. #endif
  278. bytes_per_pixel = var->bits_per_pixel / 8;
  279. if (bytes_per_pixel == 3)
  280. bytes_per_pixel = 4;
  281. /* Check if enough video memory. */
  282. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  283. if (tmp > dinfo->fb.size) {
  284. WRN_MSG("Not enough video ram for mode "
  285. "(%d KByte vs %d KByte).\n",
  286. BtoKB(tmp), BtoKB(dinfo->fb.size));
  287. return 1;
  288. }
  289. /* Check if x/y limits are OK. */
  290. if (var->xres - 1 > HACTIVE_MASK) {
  291. WRN_MSG("X resolution too large (%d vs %d).\n",
  292. var->xres, HACTIVE_MASK + 1);
  293. return 1;
  294. }
  295. if (var->yres - 1 > VACTIVE_MASK) {
  296. WRN_MSG("Y resolution too large (%d vs %d).\n",
  297. var->yres, VACTIVE_MASK + 1);
  298. return 1;
  299. }
  300. /* Check for interlaced/doublescan modes. */
  301. if (var->vmode & FB_VMODE_INTERLACED) {
  302. WRN_MSG("Mode is interlaced.\n");
  303. return 1;
  304. }
  305. if (var->vmode & FB_VMODE_DOUBLE) {
  306. WRN_MSG("Mode is double-scan.\n");
  307. return 1;
  308. }
  309. /* Check if clock is OK. */
  310. tmp = 1000000000 / var->pixclock;
  311. if (tmp < MIN_CLOCK) {
  312. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  313. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  314. return 1;
  315. }
  316. if (tmp > MAX_CLOCK) {
  317. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  318. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  319. return 1;
  320. }
  321. return 0;
  322. }
  323. int
  324. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  325. {
  326. struct intelfb_info *dinfo = GET_DINFO(info);
  327. u32 offset, xoffset, yoffset;
  328. #if VERBOSE > 0
  329. DBG_MSG("intelfbhw_pan_display\n");
  330. #endif
  331. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  332. yoffset = var->yoffset;
  333. if ((xoffset + var->xres > var->xres_virtual) ||
  334. (yoffset + var->yres > var->yres_virtual))
  335. return -EINVAL;
  336. offset = (yoffset * dinfo->pitch) +
  337. (xoffset * var->bits_per_pixel) / 8;
  338. offset += dinfo->fb.offset << 12;
  339. OUTREG(DSPABASE, offset);
  340. return 0;
  341. }
  342. /* Blank the screen. */
  343. void
  344. intelfbhw_do_blank(int blank, struct fb_info *info)
  345. {
  346. struct intelfb_info *dinfo = GET_DINFO(info);
  347. u32 tmp;
  348. #if VERBOSE > 0
  349. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  350. #endif
  351. /* Turn plane A on or off */
  352. tmp = INREG(DSPACNTR);
  353. if (blank)
  354. tmp &= ~DISPPLANE_PLANE_ENABLE;
  355. else
  356. tmp |= DISPPLANE_PLANE_ENABLE;
  357. OUTREG(DSPACNTR, tmp);
  358. /* Flush */
  359. tmp = INREG(DSPABASE);
  360. OUTREG(DSPABASE, tmp);
  361. /* Turn off/on the HW cursor */
  362. #if VERBOSE > 0
  363. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  364. #endif
  365. if (dinfo->cursor_on) {
  366. if (blank) {
  367. intelfbhw_cursor_hide(dinfo);
  368. } else {
  369. intelfbhw_cursor_show(dinfo);
  370. }
  371. dinfo->cursor_on = 1;
  372. }
  373. dinfo->cursor_blanked = blank;
  374. /* Set DPMS level */
  375. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  376. switch (blank) {
  377. case FB_BLANK_UNBLANK:
  378. case FB_BLANK_NORMAL:
  379. tmp |= ADPA_DPMS_D0;
  380. break;
  381. case FB_BLANK_VSYNC_SUSPEND:
  382. tmp |= ADPA_DPMS_D1;
  383. break;
  384. case FB_BLANK_HSYNC_SUSPEND:
  385. tmp |= ADPA_DPMS_D2;
  386. break;
  387. case FB_BLANK_POWERDOWN:
  388. tmp |= ADPA_DPMS_D3;
  389. break;
  390. }
  391. OUTREG(ADPA, tmp);
  392. return;
  393. }
  394. void
  395. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  396. unsigned red, unsigned green, unsigned blue,
  397. unsigned transp)
  398. {
  399. #if VERBOSE > 0
  400. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  401. regno, red, green, blue);
  402. #endif
  403. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  404. PALETTE_A : PALETTE_B;
  405. OUTREG(palette_reg + (regno << 2),
  406. (red << PALETTE_8_RED_SHIFT) |
  407. (green << PALETTE_8_GREEN_SHIFT) |
  408. (blue << PALETTE_8_BLUE_SHIFT));
  409. }
  410. int
  411. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  412. int flag)
  413. {
  414. int i;
  415. #if VERBOSE > 0
  416. DBG_MSG("intelfbhw_read_hw_state\n");
  417. #endif
  418. if (!hw || !dinfo)
  419. return -1;
  420. /* Read in as much of the HW state as possible. */
  421. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  422. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  423. hw->vga_pd = INREG(VGAPD);
  424. hw->dpll_a = INREG(DPLL_A);
  425. hw->dpll_b = INREG(DPLL_B);
  426. hw->fpa0 = INREG(FPA0);
  427. hw->fpa1 = INREG(FPA1);
  428. hw->fpb0 = INREG(FPB0);
  429. hw->fpb1 = INREG(FPB1);
  430. if (flag == 1)
  431. return flag;
  432. #if 0
  433. /* This seems to be a problem with the 852GM/855GM */
  434. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  435. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  436. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  437. }
  438. #endif
  439. if (flag == 2)
  440. return flag;
  441. hw->htotal_a = INREG(HTOTAL_A);
  442. hw->hblank_a = INREG(HBLANK_A);
  443. hw->hsync_a = INREG(HSYNC_A);
  444. hw->vtotal_a = INREG(VTOTAL_A);
  445. hw->vblank_a = INREG(VBLANK_A);
  446. hw->vsync_a = INREG(VSYNC_A);
  447. hw->src_size_a = INREG(SRC_SIZE_A);
  448. hw->bclrpat_a = INREG(BCLRPAT_A);
  449. hw->htotal_b = INREG(HTOTAL_B);
  450. hw->hblank_b = INREG(HBLANK_B);
  451. hw->hsync_b = INREG(HSYNC_B);
  452. hw->vtotal_b = INREG(VTOTAL_B);
  453. hw->vblank_b = INREG(VBLANK_B);
  454. hw->vsync_b = INREG(VSYNC_B);
  455. hw->src_size_b = INREG(SRC_SIZE_B);
  456. hw->bclrpat_b = INREG(BCLRPAT_B);
  457. if (flag == 3)
  458. return flag;
  459. hw->adpa = INREG(ADPA);
  460. hw->dvoa = INREG(DVOA);
  461. hw->dvob = INREG(DVOB);
  462. hw->dvoc = INREG(DVOC);
  463. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  464. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  465. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  466. hw->lvds = INREG(LVDS);
  467. if (flag == 4)
  468. return flag;
  469. hw->pipe_a_conf = INREG(PIPEACONF);
  470. hw->pipe_b_conf = INREG(PIPEBCONF);
  471. hw->disp_arb = INREG(DISPARB);
  472. if (flag == 5)
  473. return flag;
  474. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  475. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  476. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  477. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  478. if (flag == 6)
  479. return flag;
  480. for (i = 0; i < 4; i++) {
  481. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  482. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  483. }
  484. if (flag == 7)
  485. return flag;
  486. hw->cursor_size = INREG(CURSOR_SIZE);
  487. if (flag == 8)
  488. return flag;
  489. hw->disp_a_ctrl = INREG(DSPACNTR);
  490. hw->disp_b_ctrl = INREG(DSPBCNTR);
  491. hw->disp_a_base = INREG(DSPABASE);
  492. hw->disp_b_base = INREG(DSPBBASE);
  493. hw->disp_a_stride = INREG(DSPASTRIDE);
  494. hw->disp_b_stride = INREG(DSPBSTRIDE);
  495. if (flag == 9)
  496. return flag;
  497. hw->vgacntrl = INREG(VGACNTRL);
  498. if (flag == 10)
  499. return flag;
  500. hw->add_id = INREG(ADD_ID);
  501. if (flag == 11)
  502. return flag;
  503. for (i = 0; i < 7; i++) {
  504. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  505. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  506. if (i < 3)
  507. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  508. }
  509. for (i = 0; i < 8; i++)
  510. hw->fence[i] = INREG(FENCE + (i << 2));
  511. hw->instpm = INREG(INSTPM);
  512. hw->mem_mode = INREG(MEM_MODE);
  513. hw->fw_blc_0 = INREG(FW_BLC_0);
  514. hw->fw_blc_1 = INREG(FW_BLC_1);
  515. hw->hwstam = INREG16(HWSTAM);
  516. hw->ier = INREG16(IER);
  517. hw->iir = INREG16(IIR);
  518. hw->imr = INREG16(IMR);
  519. return 0;
  520. }
  521. static int calc_vclock3(int index, int m, int n, int p)
  522. {
  523. if (p == 0 || n == 0)
  524. return 0;
  525. return plls[index].ref_clk * m / n / p;
  526. }
  527. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
  528. {
  529. struct pll_min_max *pll = &plls[index];
  530. u32 m, vco, p;
  531. m = (5 * (m1 + 2)) + (m2 + 2);
  532. n += 2;
  533. vco = pll->ref_clk * m / n;
  534. if (index == PLLS_I8xx) {
  535. p = ((p1 + 2) * (1 << (p2 + 1)));
  536. } else {
  537. p = ((p1) * (p2 ? 5 : 10));
  538. }
  539. return vco / p;
  540. }
  541. static void
  542. intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
  543. {
  544. int p1, p2;
  545. if (IS_I9XX(dinfo)) {
  546. if (dpll & DPLL_P1_FORCE_DIV2)
  547. p1 = 1;
  548. else
  549. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  550. p1 = ffs(p1);
  551. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  552. } else {
  553. if (dpll & DPLL_P1_FORCE_DIV2)
  554. p1 = 0;
  555. else
  556. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  557. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  558. }
  559. *o_p1 = p1;
  560. *o_p2 = p2;
  561. }
  562. void
  563. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  564. {
  565. #if REGDUMP
  566. int i, m1, m2, n, p1, p2;
  567. int index = dinfo->pll_index;
  568. DBG_MSG("intelfbhw_print_hw_state\n");
  569. if (!hw || !dinfo)
  570. return;
  571. /* Read in as much of the HW state as possible. */
  572. printk("hw state dump start\n");
  573. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  574. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  575. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  576. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  577. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  578. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  579. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  580. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  581. m1, m2, n, p1, p2);
  582. printk(" VGA0: clock is %d\n",
  583. calc_vclock(index, m1, m2, n, p1, p2, 0));
  584. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  585. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  586. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  587. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  588. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  589. m1, m2, n, p1, p2);
  590. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  591. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  592. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  593. printk(" FPA0: 0x%08x\n", hw->fpa0);
  594. printk(" FPA1: 0x%08x\n", hw->fpa1);
  595. printk(" FPB0: 0x%08x\n", hw->fpb0);
  596. printk(" FPB1: 0x%08x\n", hw->fpb1);
  597. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  598. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  599. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  600. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  601. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  602. m1, m2, n, p1, p2);
  603. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  604. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  605. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  606. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  607. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  608. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  609. m1, m2, n, p1, p2);
  610. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  611. #if 0
  612. printk(" PALETTE_A:\n");
  613. for (i = 0; i < PALETTE_8_ENTRIES)
  614. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  615. printk(" PALETTE_B:\n");
  616. for (i = 0; i < PALETTE_8_ENTRIES)
  617. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  618. #endif
  619. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  620. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  621. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  622. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  623. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  624. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  625. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  626. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  627. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  628. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  629. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  630. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  631. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  632. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  633. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  634. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  635. printk(" ADPA: 0x%08x\n", hw->adpa);
  636. printk(" DVOA: 0x%08x\n", hw->dvoa);
  637. printk(" DVOB: 0x%08x\n", hw->dvob);
  638. printk(" DVOC: 0x%08x\n", hw->dvoc);
  639. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  640. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  641. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  642. printk(" LVDS: 0x%08x\n", hw->lvds);
  643. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  644. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  645. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  646. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  647. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  648. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  649. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  650. printk(" CURSOR_A_PALETTE: ");
  651. for (i = 0; i < 4; i++) {
  652. printk("0x%08x", hw->cursor_a_palette[i]);
  653. if (i < 3)
  654. printk(", ");
  655. }
  656. printk("\n");
  657. printk(" CURSOR_B_PALETTE: ");
  658. for (i = 0; i < 4; i++) {
  659. printk("0x%08x", hw->cursor_b_palette[i]);
  660. if (i < 3)
  661. printk(", ");
  662. }
  663. printk("\n");
  664. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  665. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  666. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  667. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  668. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  669. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  670. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  671. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  672. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  673. for (i = 0; i < 7; i++) {
  674. printk(" SWF0%d 0x%08x\n", i,
  675. hw->swf0x[i]);
  676. }
  677. for (i = 0; i < 7; i++) {
  678. printk(" SWF1%d 0x%08x\n", i,
  679. hw->swf1x[i]);
  680. }
  681. for (i = 0; i < 3; i++) {
  682. printk(" SWF3%d 0x%08x\n", i,
  683. hw->swf3x[i]);
  684. }
  685. for (i = 0; i < 8; i++)
  686. printk(" FENCE%d 0x%08x\n", i,
  687. hw->fence[i]);
  688. printk(" INSTPM 0x%08x\n", hw->instpm);
  689. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  690. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  691. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  692. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  693. printk(" IER 0x%04x\n", hw->ier);
  694. printk(" IIR 0x%04x\n", hw->iir);
  695. printk(" IMR 0x%04x\n", hw->imr);
  696. printk("hw state dump end\n");
  697. #endif
  698. }
  699. /* Split the M parameter into M1 and M2. */
  700. static int
  701. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  702. {
  703. int m1, m2;
  704. int testm;
  705. struct pll_min_max *pll = &plls[index];
  706. /* no point optimising too much - brute force m */
  707. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  708. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  709. testm = (5 * (m1 + 2)) + (m2 + 2);
  710. if (testm == m) {
  711. *retm1 = (unsigned int)m1;
  712. *retm2 = (unsigned int)m2;
  713. return 0;
  714. }
  715. }
  716. }
  717. return 1;
  718. }
  719. /* Split the P parameter into P1 and P2. */
  720. static int
  721. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  722. {
  723. int p1, p2;
  724. struct pll_min_max *pll = &plls[index];
  725. if (index == PLLS_I9xx) {
  726. p2 = (p % 10) ? 1 : 0;
  727. p1 = p / (p2 ? 5 : 10);
  728. *retp1 = (unsigned int)p1;
  729. *retp2 = (unsigned int)p2;
  730. return 0;
  731. }
  732. if (p % 4 == 0)
  733. p2 = 1;
  734. else
  735. p2 = 0;
  736. p1 = (p / (1 << (p2 + 1))) - 2;
  737. if (p % 4 == 0 && p1 < pll->min_p1) {
  738. p2 = 0;
  739. p1 = (p / (1 << (p2 + 1))) - 2;
  740. }
  741. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  742. (p1 + 2) * (1 << (p2 + 1)) != p) {
  743. return 1;
  744. } else {
  745. *retp1 = (unsigned int)p1;
  746. *retp2 = (unsigned int)p2;
  747. return 0;
  748. }
  749. }
  750. static int
  751. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  752. u32 *retp2, u32 *retclock)
  753. {
  754. u32 m1, m2, n, p1, p2, n1, testm;
  755. u32 f_vco, p, p_best = 0, m, f_out = 0;
  756. u32 err_max, err_target, err_best = 10000000;
  757. u32 n_best = 0, m_best = 0, f_best, f_err;
  758. u32 p_min, p_max, p_inc, div_max;
  759. struct pll_min_max *pll = &plls[index];
  760. /* Accept 0.5% difference, but aim for 0.1% */
  761. err_max = 5 * clock / 1000;
  762. err_target = clock / 1000;
  763. DBG_MSG("Clock is %d\n", clock);
  764. div_max = pll->max_vco / clock;
  765. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  766. p_min = p_inc;
  767. p_max = ROUND_DOWN_TO(div_max, p_inc);
  768. if (p_min < pll->min_p)
  769. p_min = pll->min_p;
  770. if (p_max > pll->max_p)
  771. p_max = pll->max_p;
  772. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  773. p = p_min;
  774. do {
  775. if (splitp(index, p, &p1, &p2)) {
  776. WRN_MSG("cannot split p = %d\n", p);
  777. p += p_inc;
  778. continue;
  779. }
  780. n = pll->min_n;
  781. f_vco = clock * p;
  782. do {
  783. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  784. if (m < pll->min_m)
  785. m = pll->min_m + 1;
  786. if (m > pll->max_m)
  787. m = pll->max_m - 1;
  788. for (testm = m - 1; testm <= m; testm++) {
  789. f_out = calc_vclock3(index, m, n, p);
  790. if (splitm(index, testm, &m1, &m2)) {
  791. WRN_MSG("cannot split m = %d\n", m);
  792. n++;
  793. continue;
  794. }
  795. if (clock > f_out)
  796. f_err = clock - f_out;
  797. else/* slightly bias the error for bigger clocks */
  798. f_err = f_out - clock + 1;
  799. if (f_err < err_best) {
  800. m_best = testm;
  801. n_best = n;
  802. p_best = p;
  803. f_best = f_out;
  804. err_best = f_err;
  805. }
  806. }
  807. n++;
  808. } while ((n <= pll->max_n) && (f_out >= clock));
  809. p += p_inc;
  810. } while ((p <= p_max));
  811. if (!m_best) {
  812. WRN_MSG("cannot find parameters for clock %d\n", clock);
  813. return 1;
  814. }
  815. m = m_best;
  816. n = n_best;
  817. p = p_best;
  818. splitm(index, m, &m1, &m2);
  819. splitp(index, p, &p1, &p2);
  820. n1 = n - 2;
  821. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  822. "f: %d (%d), VCO: %d\n",
  823. m, m1, m2, n, n1, p, p1, p2,
  824. calc_vclock3(index, m, n, p),
  825. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  826. calc_vclock3(index, m, n, p) * p);
  827. *retm1 = m1;
  828. *retm2 = m2;
  829. *retn = n1;
  830. *retp1 = p1;
  831. *retp2 = p2;
  832. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  833. return 0;
  834. }
  835. static __inline__ int
  836. check_overflow(u32 value, u32 limit, const char *description)
  837. {
  838. if (value > limit) {
  839. WRN_MSG("%s value %d exceeds limit %d\n",
  840. description, value, limit);
  841. return 1;
  842. }
  843. return 0;
  844. }
  845. /* It is assumed that hw is filled in with the initial state information. */
  846. int
  847. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  848. struct fb_var_screeninfo *var)
  849. {
  850. int pipe = PIPE_A;
  851. u32 *dpll, *fp0, *fp1;
  852. u32 m1, m2, n, p1, p2, clock_target, clock;
  853. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  854. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  855. u32 vsync_pol, hsync_pol;
  856. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  857. u32 stride_alignment;
  858. DBG_MSG("intelfbhw_mode_to_hw\n");
  859. /* Disable VGA */
  860. hw->vgacntrl |= VGA_DISABLE;
  861. /* Check whether pipe A or pipe B is enabled. */
  862. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  863. pipe = PIPE_A;
  864. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  865. pipe = PIPE_B;
  866. /* Set which pipe's registers will be set. */
  867. if (pipe == PIPE_B) {
  868. dpll = &hw->dpll_b;
  869. fp0 = &hw->fpb0;
  870. fp1 = &hw->fpb1;
  871. hs = &hw->hsync_b;
  872. hb = &hw->hblank_b;
  873. ht = &hw->htotal_b;
  874. vs = &hw->vsync_b;
  875. vb = &hw->vblank_b;
  876. vt = &hw->vtotal_b;
  877. ss = &hw->src_size_b;
  878. pipe_conf = &hw->pipe_b_conf;
  879. } else {
  880. dpll = &hw->dpll_a;
  881. fp0 = &hw->fpa0;
  882. fp1 = &hw->fpa1;
  883. hs = &hw->hsync_a;
  884. hb = &hw->hblank_a;
  885. ht = &hw->htotal_a;
  886. vs = &hw->vsync_a;
  887. vb = &hw->vblank_a;
  888. vt = &hw->vtotal_a;
  889. ss = &hw->src_size_a;
  890. pipe_conf = &hw->pipe_a_conf;
  891. }
  892. /* Use ADPA register for sync control. */
  893. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  894. /* sync polarity */
  895. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  896. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  897. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  898. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  899. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  900. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  901. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  902. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  903. /* Connect correct pipe to the analog port DAC */
  904. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  905. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  906. /* Set DPMS state to D0 (on) */
  907. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  908. hw->adpa |= ADPA_DPMS_D0;
  909. hw->adpa |= ADPA_DAC_ENABLE;
  910. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  911. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  912. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  913. /* Desired clock in kHz */
  914. clock_target = 1000000000 / var->pixclock;
  915. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  916. &n, &p1, &p2, &clock)) {
  917. WRN_MSG("calc_pll_params failed\n");
  918. return 1;
  919. }
  920. /* Check for overflow. */
  921. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  922. return 1;
  923. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  924. return 1;
  925. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  926. return 1;
  927. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  928. return 1;
  929. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  930. return 1;
  931. *dpll &= ~DPLL_P1_FORCE_DIV2;
  932. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  933. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  934. if (IS_I9XX(dinfo)) {
  935. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  936. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  937. } else {
  938. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  939. }
  940. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  941. (m1 << FP_M1_DIVISOR_SHIFT) |
  942. (m2 << FP_M2_DIVISOR_SHIFT);
  943. *fp1 = *fp0;
  944. hw->dvob &= ~PORT_ENABLE;
  945. hw->dvoc &= ~PORT_ENABLE;
  946. /* Use display plane A. */
  947. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  948. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  949. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  950. switch (intelfb_var_to_depth(var)) {
  951. case 8:
  952. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  953. break;
  954. case 15:
  955. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  956. break;
  957. case 16:
  958. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  959. break;
  960. case 24:
  961. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  962. break;
  963. }
  964. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  965. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  966. /* Set CRTC registers. */
  967. hactive = var->xres;
  968. hsync_start = hactive + var->right_margin;
  969. hsync_end = hsync_start + var->hsync_len;
  970. htotal = hsync_end + var->left_margin;
  971. hblank_start = hactive;
  972. hblank_end = htotal;
  973. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  974. hactive, hsync_start, hsync_end, htotal, hblank_start,
  975. hblank_end);
  976. vactive = var->yres;
  977. vsync_start = vactive + var->lower_margin;
  978. vsync_end = vsync_start + var->vsync_len;
  979. vtotal = vsync_end + var->upper_margin;
  980. vblank_start = vactive;
  981. vblank_end = vtotal;
  982. vblank_end = vsync_end + 1;
  983. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  984. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  985. vblank_end);
  986. /* Adjust for register values, and check for overflow. */
  987. hactive--;
  988. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  989. return 1;
  990. hsync_start--;
  991. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  992. return 1;
  993. hsync_end--;
  994. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  995. return 1;
  996. htotal--;
  997. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  998. return 1;
  999. hblank_start--;
  1000. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1001. return 1;
  1002. hblank_end--;
  1003. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1004. return 1;
  1005. vactive--;
  1006. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1007. return 1;
  1008. vsync_start--;
  1009. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1010. return 1;
  1011. vsync_end--;
  1012. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1013. return 1;
  1014. vtotal--;
  1015. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1016. return 1;
  1017. vblank_start--;
  1018. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1019. return 1;
  1020. vblank_end--;
  1021. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1022. return 1;
  1023. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1024. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1025. (hblank_end << HSYNCEND_SHIFT);
  1026. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1027. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1028. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1029. (vblank_end << VSYNCEND_SHIFT);
  1030. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1031. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1032. (vactive << SRC_SIZE_VERT_SHIFT);
  1033. hw->disp_a_stride = dinfo->pitch;
  1034. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1035. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1036. var->xoffset * var->bits_per_pixel / 8;
  1037. hw->disp_a_base += dinfo->fb.offset << 12;
  1038. /* Check stride alignment. */
  1039. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1040. STRIDE_ALIGNMENT;
  1041. if (hw->disp_a_stride % stride_alignment != 0) {
  1042. WRN_MSG("display stride %d has bad alignment %d\n",
  1043. hw->disp_a_stride, stride_alignment);
  1044. return 1;
  1045. }
  1046. /* Set the palette to 8-bit mode. */
  1047. *pipe_conf &= ~PIPECONF_GAMMA;
  1048. return 0;
  1049. }
  1050. /* Program a (non-VGA) video mode. */
  1051. int
  1052. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1053. const struct intelfb_hwstate *hw, int blank)
  1054. {
  1055. int pipe = PIPE_A;
  1056. u32 tmp;
  1057. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1058. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1059. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1060. u32 hsync_reg, htotal_reg, hblank_reg;
  1061. u32 vsync_reg, vtotal_reg, vblank_reg;
  1062. u32 src_size_reg;
  1063. u32 count, tmp_val[3];
  1064. /* Assume single pipe, display plane A, analog CRT. */
  1065. #if VERBOSE > 0
  1066. DBG_MSG("intelfbhw_program_mode\n");
  1067. #endif
  1068. /* Disable VGA */
  1069. tmp = INREG(VGACNTRL);
  1070. tmp |= VGA_DISABLE;
  1071. OUTREG(VGACNTRL, tmp);
  1072. /* Check whether pipe A or pipe B is enabled. */
  1073. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1074. pipe = PIPE_A;
  1075. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1076. pipe = PIPE_B;
  1077. dinfo->pipe = pipe;
  1078. if (pipe == PIPE_B) {
  1079. dpll = &hw->dpll_b;
  1080. fp0 = &hw->fpb0;
  1081. fp1 = &hw->fpb1;
  1082. pipe_conf = &hw->pipe_b_conf;
  1083. hs = &hw->hsync_b;
  1084. hb = &hw->hblank_b;
  1085. ht = &hw->htotal_b;
  1086. vs = &hw->vsync_b;
  1087. vb = &hw->vblank_b;
  1088. vt = &hw->vtotal_b;
  1089. ss = &hw->src_size_b;
  1090. dpll_reg = DPLL_B;
  1091. fp0_reg = FPB0;
  1092. fp1_reg = FPB1;
  1093. pipe_conf_reg = PIPEBCONF;
  1094. hsync_reg = HSYNC_B;
  1095. htotal_reg = HTOTAL_B;
  1096. hblank_reg = HBLANK_B;
  1097. vsync_reg = VSYNC_B;
  1098. vtotal_reg = VTOTAL_B;
  1099. vblank_reg = VBLANK_B;
  1100. src_size_reg = SRC_SIZE_B;
  1101. } else {
  1102. dpll = &hw->dpll_a;
  1103. fp0 = &hw->fpa0;
  1104. fp1 = &hw->fpa1;
  1105. pipe_conf = &hw->pipe_a_conf;
  1106. hs = &hw->hsync_a;
  1107. hb = &hw->hblank_a;
  1108. ht = &hw->htotal_a;
  1109. vs = &hw->vsync_a;
  1110. vb = &hw->vblank_a;
  1111. vt = &hw->vtotal_a;
  1112. ss = &hw->src_size_a;
  1113. dpll_reg = DPLL_A;
  1114. fp0_reg = FPA0;
  1115. fp1_reg = FPA1;
  1116. pipe_conf_reg = PIPEACONF;
  1117. hsync_reg = HSYNC_A;
  1118. htotal_reg = HTOTAL_A;
  1119. hblank_reg = HBLANK_A;
  1120. vsync_reg = VSYNC_A;
  1121. vtotal_reg = VTOTAL_A;
  1122. vblank_reg = VBLANK_A;
  1123. src_size_reg = SRC_SIZE_A;
  1124. }
  1125. /* turn off pipe */
  1126. tmp = INREG(pipe_conf_reg);
  1127. tmp &= ~PIPECONF_ENABLE;
  1128. OUTREG(pipe_conf_reg, tmp);
  1129. count = 0;
  1130. do {
  1131. tmp_val[count%3] = INREG(0x70000);
  1132. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1133. break;
  1134. count++;
  1135. udelay(1);
  1136. if (count % 200 == 0) {
  1137. tmp = INREG(pipe_conf_reg);
  1138. tmp &= ~PIPECONF_ENABLE;
  1139. OUTREG(pipe_conf_reg, tmp);
  1140. }
  1141. } while(count < 2000);
  1142. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1143. /* Disable planes A and B. */
  1144. tmp = INREG(DSPACNTR);
  1145. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1146. OUTREG(DSPACNTR, tmp);
  1147. tmp = INREG(DSPBCNTR);
  1148. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1149. OUTREG(DSPBCNTR, tmp);
  1150. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1151. mdelay(20);
  1152. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1153. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1154. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1155. /* Disable Sync */
  1156. tmp = INREG(ADPA);
  1157. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1158. tmp |= ADPA_DPMS_D3;
  1159. OUTREG(ADPA, tmp);
  1160. /* do some funky magic - xyzzy */
  1161. OUTREG(0x61204, 0xabcd0000);
  1162. /* turn off PLL */
  1163. tmp = INREG(dpll_reg);
  1164. dpll_reg &= ~DPLL_VCO_ENABLE;
  1165. OUTREG(dpll_reg, tmp);
  1166. /* Set PLL parameters */
  1167. OUTREG(fp0_reg, *fp0);
  1168. OUTREG(fp1_reg, *fp1);
  1169. /* Enable PLL */
  1170. OUTREG(dpll_reg, *dpll);
  1171. /* Set DVOs B/C */
  1172. OUTREG(DVOB, hw->dvob);
  1173. OUTREG(DVOC, hw->dvoc);
  1174. /* undo funky magic */
  1175. OUTREG(0x61204, 0x00000000);
  1176. /* Set ADPA */
  1177. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1178. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1179. /* Set pipe parameters */
  1180. OUTREG(hsync_reg, *hs);
  1181. OUTREG(hblank_reg, *hb);
  1182. OUTREG(htotal_reg, *ht);
  1183. OUTREG(vsync_reg, *vs);
  1184. OUTREG(vblank_reg, *vb);
  1185. OUTREG(vtotal_reg, *vt);
  1186. OUTREG(src_size_reg, *ss);
  1187. /* Enable pipe */
  1188. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1189. /* Enable sync */
  1190. tmp = INREG(ADPA);
  1191. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1192. tmp |= ADPA_DPMS_D0;
  1193. OUTREG(ADPA, tmp);
  1194. /* setup display plane */
  1195. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1196. /*
  1197. * i830M errata: the display plane must be enabled
  1198. * to allow writes to the other bits in the plane
  1199. * control register.
  1200. */
  1201. tmp = INREG(DSPACNTR);
  1202. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1203. tmp |= DISPPLANE_PLANE_ENABLE;
  1204. OUTREG(DSPACNTR, tmp);
  1205. OUTREG(DSPACNTR,
  1206. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1207. mdelay(1);
  1208. }
  1209. }
  1210. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1211. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1212. OUTREG(DSPABASE, hw->disp_a_base);
  1213. /* Enable plane */
  1214. if (!blank) {
  1215. tmp = INREG(DSPACNTR);
  1216. tmp |= DISPPLANE_PLANE_ENABLE;
  1217. OUTREG(DSPACNTR, tmp);
  1218. OUTREG(DSPABASE, hw->disp_a_base);
  1219. }
  1220. return 0;
  1221. }
  1222. /* forward declarations */
  1223. static void refresh_ring(struct intelfb_info *dinfo);
  1224. static void reset_state(struct intelfb_info *dinfo);
  1225. static void do_flush(struct intelfb_info *dinfo);
  1226. static int
  1227. wait_ring(struct intelfb_info *dinfo, int n)
  1228. {
  1229. int i = 0;
  1230. unsigned long end;
  1231. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1232. #if VERBOSE > 0
  1233. DBG_MSG("wait_ring: %d\n", n);
  1234. #endif
  1235. end = jiffies + (HZ * 3);
  1236. while (dinfo->ring_space < n) {
  1237. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1238. if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
  1239. dinfo->ring_space = dinfo->ring_head
  1240. - (dinfo->ring_tail + RING_MIN_FREE);
  1241. else
  1242. dinfo->ring_space = (dinfo->ring.size +
  1243. dinfo->ring_head)
  1244. - (dinfo->ring_tail + RING_MIN_FREE);
  1245. if (dinfo->ring_head != last_head) {
  1246. end = jiffies + (HZ * 3);
  1247. last_head = dinfo->ring_head;
  1248. }
  1249. i++;
  1250. if (time_before(end, jiffies)) {
  1251. if (!i) {
  1252. /* Try again */
  1253. reset_state(dinfo);
  1254. refresh_ring(dinfo);
  1255. do_flush(dinfo);
  1256. end = jiffies + (HZ * 3);
  1257. i = 1;
  1258. } else {
  1259. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1260. dinfo->ring_space, n);
  1261. WRN_MSG("lockup - turning off hardware "
  1262. "acceleration\n");
  1263. dinfo->ring_lockup = 1;
  1264. break;
  1265. }
  1266. }
  1267. udelay(1);
  1268. }
  1269. return i;
  1270. }
  1271. static void
  1272. do_flush(struct intelfb_info *dinfo) {
  1273. START_RING(2);
  1274. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1275. OUT_RING(MI_NOOP);
  1276. ADVANCE_RING();
  1277. }
  1278. void
  1279. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1280. {
  1281. #if VERBOSE > 0
  1282. DBG_MSG("intelfbhw_do_sync\n");
  1283. #endif
  1284. if (!dinfo->accel)
  1285. return;
  1286. /*
  1287. * Send a flush, then wait until the ring is empty. This is what
  1288. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1289. * than the recommended method (both have problems).
  1290. */
  1291. do_flush(dinfo);
  1292. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1293. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1294. }
  1295. static void
  1296. refresh_ring(struct intelfb_info *dinfo)
  1297. {
  1298. #if VERBOSE > 0
  1299. DBG_MSG("refresh_ring\n");
  1300. #endif
  1301. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1302. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1303. if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
  1304. dinfo->ring_space = dinfo->ring_head
  1305. - (dinfo->ring_tail + RING_MIN_FREE);
  1306. else
  1307. dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
  1308. - (dinfo->ring_tail + RING_MIN_FREE);
  1309. }
  1310. static void
  1311. reset_state(struct intelfb_info *dinfo)
  1312. {
  1313. int i;
  1314. u32 tmp;
  1315. #if VERBOSE > 0
  1316. DBG_MSG("reset_state\n");
  1317. #endif
  1318. for (i = 0; i < FENCE_NUM; i++)
  1319. OUTREG(FENCE + (i << 2), 0);
  1320. /* Flush the ring buffer if it's enabled. */
  1321. tmp = INREG(PRI_RING_LENGTH);
  1322. if (tmp & RING_ENABLE) {
  1323. #if VERBOSE > 0
  1324. DBG_MSG("reset_state: ring was enabled\n");
  1325. #endif
  1326. refresh_ring(dinfo);
  1327. intelfbhw_do_sync(dinfo);
  1328. DO_RING_IDLE();
  1329. }
  1330. OUTREG(PRI_RING_LENGTH, 0);
  1331. OUTREG(PRI_RING_HEAD, 0);
  1332. OUTREG(PRI_RING_TAIL, 0);
  1333. OUTREG(PRI_RING_START, 0);
  1334. }
  1335. /* Stop the 2D engine, and turn off the ring buffer. */
  1336. void
  1337. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1338. {
  1339. #if VERBOSE > 0
  1340. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1341. dinfo->ring_active);
  1342. #endif
  1343. if (!dinfo->accel)
  1344. return;
  1345. dinfo->ring_active = 0;
  1346. reset_state(dinfo);
  1347. }
  1348. /*
  1349. * Enable the ring buffer, and initialise the 2D engine.
  1350. * It is assumed that the graphics engine has been stopped by previously
  1351. * calling intelfb_2d_stop().
  1352. */
  1353. void
  1354. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1355. {
  1356. #if VERBOSE > 0
  1357. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1358. dinfo->accel, dinfo->ring_active);
  1359. #endif
  1360. if (!dinfo->accel)
  1361. return;
  1362. /* Initialise the primary ring buffer. */
  1363. OUTREG(PRI_RING_LENGTH, 0);
  1364. OUTREG(PRI_RING_TAIL, 0);
  1365. OUTREG(PRI_RING_HEAD, 0);
  1366. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1367. OUTREG(PRI_RING_LENGTH,
  1368. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1369. RING_NO_REPORT | RING_ENABLE);
  1370. refresh_ring(dinfo);
  1371. dinfo->ring_active = 1;
  1372. }
  1373. /* 2D fillrect (solid fill or invert) */
  1374. void
  1375. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1376. u32 color, u32 pitch, u32 bpp, u32 rop)
  1377. {
  1378. u32 br00, br09, br13, br14, br16;
  1379. #if VERBOSE > 0
  1380. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1381. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1382. #endif
  1383. br00 = COLOR_BLT_CMD;
  1384. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1385. br13 = (rop << ROP_SHIFT) | pitch;
  1386. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1387. br16 = color;
  1388. switch (bpp) {
  1389. case 8:
  1390. br13 |= COLOR_DEPTH_8;
  1391. break;
  1392. case 16:
  1393. br13 |= COLOR_DEPTH_16;
  1394. break;
  1395. case 32:
  1396. br13 |= COLOR_DEPTH_32;
  1397. br00 |= WRITE_ALPHA | WRITE_RGB;
  1398. break;
  1399. }
  1400. START_RING(6);
  1401. OUT_RING(br00);
  1402. OUT_RING(br13);
  1403. OUT_RING(br14);
  1404. OUT_RING(br09);
  1405. OUT_RING(br16);
  1406. OUT_RING(MI_NOOP);
  1407. ADVANCE_RING();
  1408. #if VERBOSE > 0
  1409. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1410. dinfo->ring_tail, dinfo->ring_space);
  1411. #endif
  1412. }
  1413. void
  1414. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1415. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1416. {
  1417. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1418. #if VERBOSE > 0
  1419. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1420. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1421. #endif
  1422. br00 = XY_SRC_COPY_BLT_CMD;
  1423. br09 = dinfo->fb_start;
  1424. br11 = (pitch << PITCH_SHIFT);
  1425. br12 = dinfo->fb_start;
  1426. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1427. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1428. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1429. ((dsty + h) << HEIGHT_SHIFT);
  1430. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1431. switch (bpp) {
  1432. case 8:
  1433. br13 |= COLOR_DEPTH_8;
  1434. break;
  1435. case 16:
  1436. br13 |= COLOR_DEPTH_16;
  1437. break;
  1438. case 32:
  1439. br13 |= COLOR_DEPTH_32;
  1440. br00 |= WRITE_ALPHA | WRITE_RGB;
  1441. break;
  1442. }
  1443. START_RING(8);
  1444. OUT_RING(br00);
  1445. OUT_RING(br13);
  1446. OUT_RING(br22);
  1447. OUT_RING(br23);
  1448. OUT_RING(br09);
  1449. OUT_RING(br26);
  1450. OUT_RING(br11);
  1451. OUT_RING(br12);
  1452. ADVANCE_RING();
  1453. }
  1454. int
  1455. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1456. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1457. {
  1458. int nbytes, ndwords, pad, tmp;
  1459. u32 br00, br09, br13, br18, br19, br22, br23;
  1460. int dat, ix, iy, iw;
  1461. int i, j;
  1462. #if VERBOSE > 0
  1463. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1464. #endif
  1465. /* size in bytes of a padded scanline */
  1466. nbytes = ROUND_UP_TO(w, 16) / 8;
  1467. /* Total bytes of padded scanline data to write out. */
  1468. nbytes = nbytes * h;
  1469. /*
  1470. * Check if the glyph data exceeds the immediate mode limit.
  1471. * It would take a large font (1K pixels) to hit this limit.
  1472. */
  1473. if (nbytes > MAX_MONO_IMM_SIZE)
  1474. return 0;
  1475. /* Src data is packaged a dword (32-bit) at a time. */
  1476. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1477. /*
  1478. * Ring has to be padded to a quad word. But because the command starts
  1479. with 7 bytes, pad only if there is an even number of ndwords
  1480. */
  1481. pad = !(ndwords % 2);
  1482. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1483. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1484. br09 = dinfo->fb_start;
  1485. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1486. br18 = bg;
  1487. br19 = fg;
  1488. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1489. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1490. switch (bpp) {
  1491. case 8:
  1492. br13 |= COLOR_DEPTH_8;
  1493. break;
  1494. case 16:
  1495. br13 |= COLOR_DEPTH_16;
  1496. break;
  1497. case 32:
  1498. br13 |= COLOR_DEPTH_32;
  1499. br00 |= WRITE_ALPHA | WRITE_RGB;
  1500. break;
  1501. }
  1502. START_RING(8 + ndwords);
  1503. OUT_RING(br00);
  1504. OUT_RING(br13);
  1505. OUT_RING(br22);
  1506. OUT_RING(br23);
  1507. OUT_RING(br09);
  1508. OUT_RING(br18);
  1509. OUT_RING(br19);
  1510. ix = iy = 0;
  1511. iw = ROUND_UP_TO(w, 8) / 8;
  1512. while (ndwords--) {
  1513. dat = 0;
  1514. for (j = 0; j < 2; ++j) {
  1515. for (i = 0; i < 2; ++i) {
  1516. if (ix != iw || i == 0)
  1517. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1518. }
  1519. if (ix == iw && iy != (h-1)) {
  1520. ix = 0;
  1521. ++iy;
  1522. }
  1523. }
  1524. OUT_RING(dat);
  1525. }
  1526. if (pad)
  1527. OUT_RING(MI_NOOP);
  1528. ADVANCE_RING();
  1529. return 1;
  1530. }
  1531. /* HW cursor functions. */
  1532. void
  1533. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1534. {
  1535. u32 tmp;
  1536. #if VERBOSE > 0
  1537. DBG_MSG("intelfbhw_cursor_init\n");
  1538. #endif
  1539. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1540. if (!dinfo->cursor.physical)
  1541. return;
  1542. tmp = INREG(CURSOR_A_CONTROL);
  1543. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1544. CURSOR_MEM_TYPE_LOCAL |
  1545. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1546. tmp |= CURSOR_MODE_DISABLE;
  1547. OUTREG(CURSOR_A_CONTROL, tmp);
  1548. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1549. } else {
  1550. tmp = INREG(CURSOR_CONTROL);
  1551. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1552. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1553. tmp = CURSOR_FORMAT_3C;
  1554. OUTREG(CURSOR_CONTROL, tmp);
  1555. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1556. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1557. (64 << CURSOR_SIZE_V_SHIFT);
  1558. OUTREG(CURSOR_SIZE, tmp);
  1559. }
  1560. }
  1561. void
  1562. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1563. {
  1564. u32 tmp;
  1565. #if VERBOSE > 0
  1566. DBG_MSG("intelfbhw_cursor_hide\n");
  1567. #endif
  1568. dinfo->cursor_on = 0;
  1569. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1570. if (!dinfo->cursor.physical)
  1571. return;
  1572. tmp = INREG(CURSOR_A_CONTROL);
  1573. tmp &= ~CURSOR_MODE_MASK;
  1574. tmp |= CURSOR_MODE_DISABLE;
  1575. OUTREG(CURSOR_A_CONTROL, tmp);
  1576. /* Flush changes */
  1577. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1578. } else {
  1579. tmp = INREG(CURSOR_CONTROL);
  1580. tmp &= ~CURSOR_ENABLE;
  1581. OUTREG(CURSOR_CONTROL, tmp);
  1582. }
  1583. }
  1584. void
  1585. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1586. {
  1587. u32 tmp;
  1588. #if VERBOSE > 0
  1589. DBG_MSG("intelfbhw_cursor_show\n");
  1590. #endif
  1591. dinfo->cursor_on = 1;
  1592. if (dinfo->cursor_blanked)
  1593. return;
  1594. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1595. if (!dinfo->cursor.physical)
  1596. return;
  1597. tmp = INREG(CURSOR_A_CONTROL);
  1598. tmp &= ~CURSOR_MODE_MASK;
  1599. tmp |= CURSOR_MODE_64_4C_AX;
  1600. OUTREG(CURSOR_A_CONTROL, tmp);
  1601. /* Flush changes */
  1602. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1603. } else {
  1604. tmp = INREG(CURSOR_CONTROL);
  1605. tmp |= CURSOR_ENABLE;
  1606. OUTREG(CURSOR_CONTROL, tmp);
  1607. }
  1608. }
  1609. void
  1610. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1611. {
  1612. u32 tmp;
  1613. #if VERBOSE > 0
  1614. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1615. #endif
  1616. /*
  1617. * Sets the position. The coordinates are assumed to already
  1618. * have any offset adjusted. Assume that the cursor is never
  1619. * completely off-screen, and that x, y are always >= 0.
  1620. */
  1621. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1622. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1623. OUTREG(CURSOR_A_POSITION, tmp);
  1624. if (IS_I9XX(dinfo)) {
  1625. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1626. }
  1627. }
  1628. void
  1629. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1630. {
  1631. #if VERBOSE > 0
  1632. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1633. #endif
  1634. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1635. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1636. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1637. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1638. }
  1639. void
  1640. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1641. u8 *data)
  1642. {
  1643. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1644. int i, j, w = width / 8;
  1645. int mod = width % 8, t_mask, d_mask;
  1646. #if VERBOSE > 0
  1647. DBG_MSG("intelfbhw_cursor_load\n");
  1648. #endif
  1649. if (!dinfo->cursor.virtual)
  1650. return;
  1651. t_mask = 0xff >> mod;
  1652. d_mask = ~(0xff >> mod);
  1653. for (i = height; i--; ) {
  1654. for (j = 0; j < w; j++) {
  1655. writeb(0x00, addr + j);
  1656. writeb(*(data++), addr + j+8);
  1657. }
  1658. if (mod) {
  1659. writeb(t_mask, addr + j);
  1660. writeb(*(data++) & d_mask, addr + j+8);
  1661. }
  1662. addr += 16;
  1663. }
  1664. }
  1665. void
  1666. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1667. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1668. int i, j;
  1669. #if VERBOSE > 0
  1670. DBG_MSG("intelfbhw_cursor_reset\n");
  1671. #endif
  1672. if (!dinfo->cursor.virtual)
  1673. return;
  1674. for (i = 64; i--; ) {
  1675. for (j = 0; j < 8; j++) {
  1676. writeb(0xff, addr + j+0);
  1677. writeb(0x00, addr + j+8);
  1678. }
  1679. addr += 16;
  1680. }
  1681. }
  1682. static irqreturn_t
  1683. intelfbhw_irq(int irq, void *dev_id, struct pt_regs *fp) {
  1684. int handled = 0;
  1685. u16 tmp;
  1686. struct intelfb_info *dinfo = (struct intelfb_info *)dev_id;
  1687. spin_lock(&dinfo->int_lock);
  1688. tmp = INREG16(IIR);
  1689. tmp &= VSYNC_PIPE_A_INTERRUPT;
  1690. if (tmp == 0) {
  1691. spin_unlock(&dinfo->int_lock);
  1692. return IRQ_RETVAL(handled);
  1693. }
  1694. OUTREG16(IIR, tmp);
  1695. if (tmp & VSYNC_PIPE_A_INTERRUPT) {
  1696. dinfo->vsync.count++;
  1697. wake_up_interruptible(&dinfo->vsync.wait);
  1698. handled = 1;
  1699. }
  1700. spin_unlock(&dinfo->int_lock);
  1701. return IRQ_RETVAL(handled);
  1702. }
  1703. int
  1704. intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) {
  1705. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1706. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, SA_SHIRQ, "intelfb", dinfo)) {
  1707. clear_bit(0, &dinfo->irq_flags);
  1708. return -EINVAL;
  1709. }
  1710. spin_lock_irq(&dinfo->int_lock);
  1711. OUTREG16(HWSTAM, 0xfffe);
  1712. OUTREG16(IMR, 0x0);
  1713. OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT);
  1714. spin_unlock_irq(&dinfo->int_lock);
  1715. } else if (reenable) {
  1716. u16 ier;
  1717. spin_lock_irq(&dinfo->int_lock);
  1718. ier = INREG16(IER);
  1719. if ((ier & VSYNC_PIPE_A_INTERRUPT)) {
  1720. DBG_MSG("someone disabled the IRQ [%08X]\n", ier);
  1721. OUTREG(IER, VSYNC_PIPE_A_INTERRUPT);
  1722. }
  1723. spin_unlock_irq(&dinfo->int_lock);
  1724. }
  1725. return 0;
  1726. }
  1727. void
  1728. intelfbhw_disable_irq(struct intelfb_info *dinfo) {
  1729. u16 tmp;
  1730. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1731. spin_lock_irq(&dinfo->int_lock);
  1732. OUTREG16(HWSTAM, 0xffff);
  1733. OUTREG16(IMR, 0xffff);
  1734. OUTREG16(IER, 0x0);
  1735. tmp = INREG16(IIR);
  1736. OUTREG16(IIR, tmp);
  1737. spin_unlock_irq(&dinfo->int_lock);
  1738. free_irq(dinfo->pdev->irq, dinfo);
  1739. }
  1740. }