perf_event.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/highmem.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <asm/apic.h>
  27. #include <asm/stacktrace.h>
  28. #include <asm/nmi.h>
  29. #if 0
  30. #undef wrmsrl
  31. #define wrmsrl(msr, val) \
  32. do { \
  33. trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
  34. (unsigned long)(val)); \
  35. native_write_msr((msr), (u32)((u64)(val)), \
  36. (u32)((u64)(val) >> 32)); \
  37. } while (0)
  38. #endif
  39. /*
  40. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  41. */
  42. static unsigned long
  43. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  44. {
  45. unsigned long offset, addr = (unsigned long)from;
  46. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  47. unsigned long size, len = 0;
  48. struct page *page;
  49. void *map;
  50. int ret;
  51. do {
  52. ret = __get_user_pages_fast(addr, 1, 0, &page);
  53. if (!ret)
  54. break;
  55. offset = addr & (PAGE_SIZE - 1);
  56. size = min(PAGE_SIZE - offset, n - len);
  57. map = kmap_atomic(page, type);
  58. memcpy(to, map+offset, size);
  59. kunmap_atomic(map, type);
  60. put_page(page);
  61. len += size;
  62. to += size;
  63. addr += size;
  64. } while (len < n);
  65. return len;
  66. }
  67. static u64 perf_event_mask __read_mostly;
  68. struct event_constraint {
  69. union {
  70. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  71. u64 idxmsk64;
  72. };
  73. u64 code;
  74. u64 cmask;
  75. int weight;
  76. };
  77. struct amd_nb {
  78. int nb_id; /* NorthBridge id */
  79. int refcnt; /* reference count */
  80. struct perf_event *owners[X86_PMC_IDX_MAX];
  81. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  82. };
  83. #define MAX_LBR_ENTRIES 16
  84. struct cpu_hw_events {
  85. /*
  86. * Generic x86 PMC bits
  87. */
  88. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  89. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  90. unsigned long interrupts;
  91. int enabled;
  92. int n_events;
  93. int n_added;
  94. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  95. u64 tags[X86_PMC_IDX_MAX];
  96. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  97. /*
  98. * Intel DebugStore bits
  99. */
  100. struct debug_store *ds;
  101. u64 pebs_enabled;
  102. /*
  103. * Intel LBR bits
  104. */
  105. int lbr_users;
  106. void *lbr_context;
  107. struct perf_branch_stack lbr_stack;
  108. struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
  109. /*
  110. * AMD specific bits
  111. */
  112. struct amd_nb *amd_nb;
  113. };
  114. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  115. { .idxmsk64 = (n) }, \
  116. .code = (c), \
  117. .cmask = (m), \
  118. .weight = (w), \
  119. }
  120. #define EVENT_CONSTRAINT(c, n, m) \
  121. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  122. /*
  123. * Constraint on the Event code.
  124. */
  125. #define INTEL_EVENT_CONSTRAINT(c, n) \
  126. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  127. /*
  128. * Constraint on the Event code + UMask + fixed-mask
  129. */
  130. #define FIXED_EVENT_CONSTRAINT(c, n) \
  131. EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
  132. /*
  133. * Constraint on the Event code + UMask
  134. */
  135. #define PEBS_EVENT_CONSTRAINT(c, n) \
  136. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
  137. #define EVENT_CONSTRAINT_END \
  138. EVENT_CONSTRAINT(0, 0, 0)
  139. #define for_each_event_constraint(e, c) \
  140. for ((e) = (c); (e)->cmask; (e)++)
  141. union perf_capabilities {
  142. struct {
  143. u64 lbr_format : 6;
  144. u64 pebs_trap : 1;
  145. u64 pebs_arch_reg : 1;
  146. u64 pebs_format : 4;
  147. u64 smm_freeze : 1;
  148. };
  149. u64 capabilities;
  150. };
  151. /*
  152. * struct x86_pmu - generic x86 pmu
  153. */
  154. struct x86_pmu {
  155. /*
  156. * Generic x86 PMC bits
  157. */
  158. const char *name;
  159. int version;
  160. int (*handle_irq)(struct pt_regs *);
  161. void (*disable_all)(void);
  162. void (*enable_all)(void);
  163. void (*enable)(struct perf_event *);
  164. void (*disable)(struct perf_event *);
  165. unsigned eventsel;
  166. unsigned perfctr;
  167. u64 (*event_map)(int);
  168. u64 (*raw_event)(u64);
  169. int max_events;
  170. int num_events;
  171. int num_events_fixed;
  172. int event_bits;
  173. u64 event_mask;
  174. int apic;
  175. u64 max_period;
  176. struct event_constraint *
  177. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  178. struct perf_event *event);
  179. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  180. struct perf_event *event);
  181. struct event_constraint *event_constraints;
  182. void (*quirks)(void);
  183. void (*cpu_prepare)(int cpu);
  184. void (*cpu_starting)(int cpu);
  185. void (*cpu_dying)(int cpu);
  186. void (*cpu_dead)(int cpu);
  187. /*
  188. * Intel Arch Perfmon v2+
  189. */
  190. u64 intel_ctrl;
  191. union perf_capabilities intel_cap;
  192. /*
  193. * Intel DebugStore bits
  194. */
  195. int bts, pebs;
  196. int pebs_record_size;
  197. void (*drain_pebs)(struct pt_regs *regs);
  198. struct event_constraint *pebs_constraints;
  199. /*
  200. * Intel LBR
  201. */
  202. unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
  203. int lbr_nr; /* hardware stack size */
  204. };
  205. static struct x86_pmu x86_pmu __read_mostly;
  206. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  207. .enabled = 1,
  208. };
  209. static int x86_perf_event_set_period(struct perf_event *event);
  210. /*
  211. * Generalized hw caching related hw_event table, filled
  212. * in on a per model basis. A value of 0 means
  213. * 'not supported', -1 means 'hw_event makes no sense on
  214. * this CPU', any other value means the raw hw_event
  215. * ID.
  216. */
  217. #define C(x) PERF_COUNT_HW_CACHE_##x
  218. static u64 __read_mostly hw_cache_event_ids
  219. [PERF_COUNT_HW_CACHE_MAX]
  220. [PERF_COUNT_HW_CACHE_OP_MAX]
  221. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  222. /*
  223. * Propagate event elapsed time into the generic event.
  224. * Can only be executed on the CPU where the event is active.
  225. * Returns the delta events processed.
  226. */
  227. static u64
  228. x86_perf_event_update(struct perf_event *event)
  229. {
  230. struct hw_perf_event *hwc = &event->hw;
  231. int shift = 64 - x86_pmu.event_bits;
  232. u64 prev_raw_count, new_raw_count;
  233. int idx = hwc->idx;
  234. s64 delta;
  235. if (idx == X86_PMC_IDX_FIXED_BTS)
  236. return 0;
  237. /*
  238. * Careful: an NMI might modify the previous event value.
  239. *
  240. * Our tactic to handle this is to first atomically read and
  241. * exchange a new raw count - then add that new-prev delta
  242. * count to the generic event atomically:
  243. */
  244. again:
  245. prev_raw_count = atomic64_read(&hwc->prev_count);
  246. rdmsrl(hwc->event_base + idx, new_raw_count);
  247. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  248. new_raw_count) != prev_raw_count)
  249. goto again;
  250. /*
  251. * Now we have the new raw value and have updated the prev
  252. * timestamp already. We can now calculate the elapsed delta
  253. * (event-)time and add that to the generic event.
  254. *
  255. * Careful, not all hw sign-extends above the physical width
  256. * of the count.
  257. */
  258. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  259. delta >>= shift;
  260. atomic64_add(delta, &event->count);
  261. atomic64_sub(delta, &hwc->period_left);
  262. return new_raw_count;
  263. }
  264. static atomic_t active_events;
  265. static DEFINE_MUTEX(pmc_reserve_mutex);
  266. static bool reserve_pmc_hardware(void)
  267. {
  268. #ifdef CONFIG_X86_LOCAL_APIC
  269. int i;
  270. if (nmi_watchdog == NMI_LOCAL_APIC)
  271. disable_lapic_nmi_watchdog();
  272. for (i = 0; i < x86_pmu.num_events; i++) {
  273. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  274. goto perfctr_fail;
  275. }
  276. for (i = 0; i < x86_pmu.num_events; i++) {
  277. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  278. goto eventsel_fail;
  279. }
  280. #endif
  281. return true;
  282. #ifdef CONFIG_X86_LOCAL_APIC
  283. eventsel_fail:
  284. for (i--; i >= 0; i--)
  285. release_evntsel_nmi(x86_pmu.eventsel + i);
  286. i = x86_pmu.num_events;
  287. perfctr_fail:
  288. for (i--; i >= 0; i--)
  289. release_perfctr_nmi(x86_pmu.perfctr + i);
  290. if (nmi_watchdog == NMI_LOCAL_APIC)
  291. enable_lapic_nmi_watchdog();
  292. return false;
  293. #endif
  294. }
  295. static void release_pmc_hardware(void)
  296. {
  297. #ifdef CONFIG_X86_LOCAL_APIC
  298. int i;
  299. for (i = 0; i < x86_pmu.num_events; i++) {
  300. release_perfctr_nmi(x86_pmu.perfctr + i);
  301. release_evntsel_nmi(x86_pmu.eventsel + i);
  302. }
  303. if (nmi_watchdog == NMI_LOCAL_APIC)
  304. enable_lapic_nmi_watchdog();
  305. #endif
  306. }
  307. static int reserve_ds_buffers(void);
  308. static void release_ds_buffers(void);
  309. static void hw_perf_event_destroy(struct perf_event *event)
  310. {
  311. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  312. release_pmc_hardware();
  313. release_ds_buffers();
  314. mutex_unlock(&pmc_reserve_mutex);
  315. }
  316. }
  317. static inline int x86_pmu_initialized(void)
  318. {
  319. return x86_pmu.handle_irq != NULL;
  320. }
  321. static inline int
  322. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  323. {
  324. unsigned int cache_type, cache_op, cache_result;
  325. u64 config, val;
  326. config = attr->config;
  327. cache_type = (config >> 0) & 0xff;
  328. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  329. return -EINVAL;
  330. cache_op = (config >> 8) & 0xff;
  331. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  332. return -EINVAL;
  333. cache_result = (config >> 16) & 0xff;
  334. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  335. return -EINVAL;
  336. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  337. if (val == 0)
  338. return -ENOENT;
  339. if (val == -1)
  340. return -EINVAL;
  341. hwc->config |= val;
  342. return 0;
  343. }
  344. /*
  345. * Setup the hardware configuration for a given attr_type
  346. */
  347. static int __hw_perf_event_init(struct perf_event *event)
  348. {
  349. struct perf_event_attr *attr = &event->attr;
  350. struct hw_perf_event *hwc = &event->hw;
  351. u64 config;
  352. int err;
  353. if (!x86_pmu_initialized())
  354. return -ENODEV;
  355. err = 0;
  356. if (!atomic_inc_not_zero(&active_events)) {
  357. mutex_lock(&pmc_reserve_mutex);
  358. if (atomic_read(&active_events) == 0) {
  359. if (!reserve_pmc_hardware())
  360. err = -EBUSY;
  361. else
  362. err = reserve_ds_buffers();
  363. }
  364. if (!err)
  365. atomic_inc(&active_events);
  366. mutex_unlock(&pmc_reserve_mutex);
  367. }
  368. if (err)
  369. return err;
  370. event->destroy = hw_perf_event_destroy;
  371. /*
  372. * Generate PMC IRQs:
  373. * (keep 'enabled' bit clear for now)
  374. */
  375. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  376. hwc->idx = -1;
  377. hwc->last_cpu = -1;
  378. hwc->last_tag = ~0ULL;
  379. /*
  380. * Count user and OS events unless requested not to.
  381. */
  382. if (!attr->exclude_user)
  383. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  384. if (!attr->exclude_kernel)
  385. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  386. if (!hwc->sample_period) {
  387. hwc->sample_period = x86_pmu.max_period;
  388. hwc->last_period = hwc->sample_period;
  389. atomic64_set(&hwc->period_left, hwc->sample_period);
  390. } else {
  391. /*
  392. * If we have a PMU initialized but no APIC
  393. * interrupts, we cannot sample hardware
  394. * events (user-space has to fall back and
  395. * sample via a hrtimer based software event):
  396. */
  397. if (!x86_pmu.apic)
  398. return -EOPNOTSUPP;
  399. }
  400. /*
  401. * Raw hw_event type provide the config in the hw_event structure
  402. */
  403. if (attr->type == PERF_TYPE_RAW) {
  404. hwc->config |= x86_pmu.raw_event(attr->config);
  405. if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
  406. perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  407. return -EACCES;
  408. return 0;
  409. }
  410. if (attr->type == PERF_TYPE_HW_CACHE)
  411. return set_ext_hw_attr(hwc, attr);
  412. if (attr->config >= x86_pmu.max_events)
  413. return -EINVAL;
  414. /*
  415. * The generic map:
  416. */
  417. config = x86_pmu.event_map(attr->config);
  418. if (config == 0)
  419. return -ENOENT;
  420. if (config == -1LL)
  421. return -EINVAL;
  422. /*
  423. * Branch tracing:
  424. */
  425. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  426. (hwc->sample_period == 1)) {
  427. /* BTS is not supported by this architecture. */
  428. if (!x86_pmu.bts)
  429. return -EOPNOTSUPP;
  430. /* BTS is currently only allowed for user-mode. */
  431. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  432. return -EOPNOTSUPP;
  433. }
  434. hwc->config |= config;
  435. return 0;
  436. }
  437. static void x86_pmu_disable_all(void)
  438. {
  439. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  440. int idx;
  441. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  442. u64 val;
  443. if (!test_bit(idx, cpuc->active_mask))
  444. continue;
  445. rdmsrl(x86_pmu.eventsel + idx, val);
  446. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  447. continue;
  448. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  449. wrmsrl(x86_pmu.eventsel + idx, val);
  450. }
  451. }
  452. void hw_perf_disable(void)
  453. {
  454. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  455. if (!x86_pmu_initialized())
  456. return;
  457. if (!cpuc->enabled)
  458. return;
  459. cpuc->n_added = 0;
  460. cpuc->enabled = 0;
  461. barrier();
  462. x86_pmu.disable_all();
  463. }
  464. static void x86_pmu_enable_all(void)
  465. {
  466. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  467. int idx;
  468. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  469. struct perf_event *event = cpuc->events[idx];
  470. u64 val;
  471. if (!test_bit(idx, cpuc->active_mask))
  472. continue;
  473. val = event->hw.config;
  474. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  475. wrmsrl(x86_pmu.eventsel + idx, val);
  476. }
  477. }
  478. static const struct pmu pmu;
  479. static inline int is_x86_event(struct perf_event *event)
  480. {
  481. return event->pmu == &pmu;
  482. }
  483. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  484. {
  485. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  486. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  487. int i, j, w, wmax, num = 0;
  488. struct hw_perf_event *hwc;
  489. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  490. for (i = 0; i < n; i++) {
  491. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  492. constraints[i] = c;
  493. }
  494. /*
  495. * fastpath, try to reuse previous register
  496. */
  497. for (i = 0; i < n; i++) {
  498. hwc = &cpuc->event_list[i]->hw;
  499. c = constraints[i];
  500. /* never assigned */
  501. if (hwc->idx == -1)
  502. break;
  503. /* constraint still honored */
  504. if (!test_bit(hwc->idx, c->idxmsk))
  505. break;
  506. /* not already used */
  507. if (test_bit(hwc->idx, used_mask))
  508. break;
  509. __set_bit(hwc->idx, used_mask);
  510. if (assign)
  511. assign[i] = hwc->idx;
  512. }
  513. if (i == n)
  514. goto done;
  515. /*
  516. * begin slow path
  517. */
  518. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  519. /*
  520. * weight = number of possible counters
  521. *
  522. * 1 = most constrained, only works on one counter
  523. * wmax = least constrained, works on any counter
  524. *
  525. * assign events to counters starting with most
  526. * constrained events.
  527. */
  528. wmax = x86_pmu.num_events;
  529. /*
  530. * when fixed event counters are present,
  531. * wmax is incremented by 1 to account
  532. * for one more choice
  533. */
  534. if (x86_pmu.num_events_fixed)
  535. wmax++;
  536. for (w = 1, num = n; num && w <= wmax; w++) {
  537. /* for each event */
  538. for (i = 0; num && i < n; i++) {
  539. c = constraints[i];
  540. hwc = &cpuc->event_list[i]->hw;
  541. if (c->weight != w)
  542. continue;
  543. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  544. if (!test_bit(j, used_mask))
  545. break;
  546. }
  547. if (j == X86_PMC_IDX_MAX)
  548. break;
  549. __set_bit(j, used_mask);
  550. if (assign)
  551. assign[i] = j;
  552. num--;
  553. }
  554. }
  555. done:
  556. /*
  557. * scheduling failed or is just a simulation,
  558. * free resources if necessary
  559. */
  560. if (!assign || num) {
  561. for (i = 0; i < n; i++) {
  562. if (x86_pmu.put_event_constraints)
  563. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  564. }
  565. }
  566. return num ? -ENOSPC : 0;
  567. }
  568. /*
  569. * dogrp: true if must collect siblings events (group)
  570. * returns total number of events and error code
  571. */
  572. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  573. {
  574. struct perf_event *event;
  575. int n, max_count;
  576. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  577. /* current number of events already accepted */
  578. n = cpuc->n_events;
  579. if (is_x86_event(leader)) {
  580. if (n >= max_count)
  581. return -ENOSPC;
  582. cpuc->event_list[n] = leader;
  583. n++;
  584. }
  585. if (!dogrp)
  586. return n;
  587. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  588. if (!is_x86_event(event) ||
  589. event->state <= PERF_EVENT_STATE_OFF)
  590. continue;
  591. if (n >= max_count)
  592. return -ENOSPC;
  593. cpuc->event_list[n] = event;
  594. n++;
  595. }
  596. return n;
  597. }
  598. static inline void x86_assign_hw_event(struct perf_event *event,
  599. struct cpu_hw_events *cpuc, int i)
  600. {
  601. struct hw_perf_event *hwc = &event->hw;
  602. hwc->idx = cpuc->assign[i];
  603. hwc->last_cpu = smp_processor_id();
  604. hwc->last_tag = ++cpuc->tags[i];
  605. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  606. hwc->config_base = 0;
  607. hwc->event_base = 0;
  608. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  609. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  610. /*
  611. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  612. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  613. */
  614. hwc->event_base =
  615. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  616. } else {
  617. hwc->config_base = x86_pmu.eventsel;
  618. hwc->event_base = x86_pmu.perfctr;
  619. }
  620. }
  621. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  622. struct cpu_hw_events *cpuc,
  623. int i)
  624. {
  625. return hwc->idx == cpuc->assign[i] &&
  626. hwc->last_cpu == smp_processor_id() &&
  627. hwc->last_tag == cpuc->tags[i];
  628. }
  629. static int x86_pmu_start(struct perf_event *event);
  630. static void x86_pmu_stop(struct perf_event *event);
  631. void hw_perf_enable(void)
  632. {
  633. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  634. struct perf_event *event;
  635. struct hw_perf_event *hwc;
  636. int i;
  637. if (!x86_pmu_initialized())
  638. return;
  639. if (cpuc->enabled)
  640. return;
  641. if (cpuc->n_added) {
  642. int n_running = cpuc->n_events - cpuc->n_added;
  643. /*
  644. * apply assignment obtained either from
  645. * hw_perf_group_sched_in() or x86_pmu_enable()
  646. *
  647. * step1: save events moving to new counters
  648. * step2: reprogram moved events into new counters
  649. */
  650. for (i = 0; i < n_running; i++) {
  651. event = cpuc->event_list[i];
  652. hwc = &event->hw;
  653. /*
  654. * we can avoid reprogramming counter if:
  655. * - assigned same counter as last time
  656. * - running on same CPU as last time
  657. * - no other event has used the counter since
  658. */
  659. if (hwc->idx == -1 ||
  660. match_prev_assignment(hwc, cpuc, i))
  661. continue;
  662. x86_pmu_stop(event);
  663. hwc->idx = -1;
  664. }
  665. for (i = 0; i < cpuc->n_events; i++) {
  666. event = cpuc->event_list[i];
  667. hwc = &event->hw;
  668. if (i < n_running &&
  669. match_prev_assignment(hwc, cpuc, i))
  670. continue;
  671. if (hwc->idx == -1)
  672. x86_assign_hw_event(event, cpuc, i);
  673. x86_pmu_start(event);
  674. }
  675. cpuc->n_added = 0;
  676. perf_events_lapic_init();
  677. }
  678. cpuc->enabled = 1;
  679. barrier();
  680. x86_pmu.enable_all();
  681. }
  682. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
  683. {
  684. wrmsrl(hwc->config_base + hwc->idx,
  685. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  686. }
  687. static inline void x86_pmu_disable_event(struct perf_event *event)
  688. {
  689. struct hw_perf_event *hwc = &event->hw;
  690. wrmsrl(hwc->config_base + hwc->idx, hwc->config);
  691. }
  692. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  693. /*
  694. * Set the next IRQ period, based on the hwc->period_left value.
  695. * To be called with the event disabled in hw:
  696. */
  697. static int
  698. x86_perf_event_set_period(struct perf_event *event)
  699. {
  700. struct hw_perf_event *hwc = &event->hw;
  701. s64 left = atomic64_read(&hwc->period_left);
  702. s64 period = hwc->sample_period;
  703. int ret = 0, idx = hwc->idx;
  704. if (idx == X86_PMC_IDX_FIXED_BTS)
  705. return 0;
  706. /*
  707. * If we are way outside a reasonable range then just skip forward:
  708. */
  709. if (unlikely(left <= -period)) {
  710. left = period;
  711. atomic64_set(&hwc->period_left, left);
  712. hwc->last_period = period;
  713. ret = 1;
  714. }
  715. if (unlikely(left <= 0)) {
  716. left += period;
  717. atomic64_set(&hwc->period_left, left);
  718. hwc->last_period = period;
  719. ret = 1;
  720. }
  721. /*
  722. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  723. */
  724. if (unlikely(left < 2))
  725. left = 2;
  726. if (left > x86_pmu.max_period)
  727. left = x86_pmu.max_period;
  728. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  729. /*
  730. * The hw event starts counting from this event offset,
  731. * mark it to be able to extra future deltas:
  732. */
  733. atomic64_set(&hwc->prev_count, (u64)-left);
  734. wrmsrl(hwc->event_base + idx,
  735. (u64)(-left) & x86_pmu.event_mask);
  736. perf_event_update_userpage(event);
  737. return ret;
  738. }
  739. static void x86_pmu_enable_event(struct perf_event *event)
  740. {
  741. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  742. if (cpuc->enabled)
  743. __x86_pmu_enable_event(&event->hw);
  744. }
  745. /*
  746. * activate a single event
  747. *
  748. * The event is added to the group of enabled events
  749. * but only if it can be scehduled with existing events.
  750. *
  751. * Called with PMU disabled. If successful and return value 1,
  752. * then guaranteed to call perf_enable() and hw_perf_enable()
  753. */
  754. static int x86_pmu_enable(struct perf_event *event)
  755. {
  756. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  757. struct hw_perf_event *hwc;
  758. int assign[X86_PMC_IDX_MAX];
  759. int n, n0, ret;
  760. hwc = &event->hw;
  761. n0 = cpuc->n_events;
  762. n = collect_events(cpuc, event, false);
  763. if (n < 0)
  764. return n;
  765. ret = x86_schedule_events(cpuc, n, assign);
  766. if (ret)
  767. return ret;
  768. /*
  769. * copy new assignment, now we know it is possible
  770. * will be used by hw_perf_enable()
  771. */
  772. memcpy(cpuc->assign, assign, n*sizeof(int));
  773. cpuc->n_events = n;
  774. cpuc->n_added += n - n0;
  775. return 0;
  776. }
  777. static int x86_pmu_start(struct perf_event *event)
  778. {
  779. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  780. int idx = event->hw.idx;
  781. if (idx == -1)
  782. return -EAGAIN;
  783. x86_perf_event_set_period(event);
  784. cpuc->events[idx] = event;
  785. __set_bit(idx, cpuc->active_mask);
  786. x86_pmu.enable(event);
  787. perf_event_update_userpage(event);
  788. return 0;
  789. }
  790. static void x86_pmu_unthrottle(struct perf_event *event)
  791. {
  792. int ret = x86_pmu_start(event);
  793. WARN_ON_ONCE(ret);
  794. }
  795. void perf_event_print_debug(void)
  796. {
  797. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  798. u64 pebs;
  799. struct cpu_hw_events *cpuc;
  800. unsigned long flags;
  801. int cpu, idx;
  802. if (!x86_pmu.num_events)
  803. return;
  804. local_irq_save(flags);
  805. cpu = smp_processor_id();
  806. cpuc = &per_cpu(cpu_hw_events, cpu);
  807. if (x86_pmu.version >= 2) {
  808. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  809. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  810. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  811. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  812. rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
  813. pr_info("\n");
  814. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  815. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  816. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  817. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  818. pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
  819. }
  820. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  821. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  822. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  823. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  824. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  825. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  826. cpu, idx, pmc_ctrl);
  827. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  828. cpu, idx, pmc_count);
  829. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  830. cpu, idx, prev_left);
  831. }
  832. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  833. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  834. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  835. cpu, idx, pmc_count);
  836. }
  837. local_irq_restore(flags);
  838. }
  839. static void x86_pmu_stop(struct perf_event *event)
  840. {
  841. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  842. struct hw_perf_event *hwc = &event->hw;
  843. int idx = hwc->idx;
  844. if (!__test_and_clear_bit(idx, cpuc->active_mask))
  845. return;
  846. x86_pmu.disable(event);
  847. /*
  848. * Drain the remaining delta count out of a event
  849. * that we are disabling:
  850. */
  851. x86_perf_event_update(event);
  852. cpuc->events[idx] = NULL;
  853. }
  854. static void x86_pmu_disable(struct perf_event *event)
  855. {
  856. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  857. int i;
  858. x86_pmu_stop(event);
  859. for (i = 0; i < cpuc->n_events; i++) {
  860. if (event == cpuc->event_list[i]) {
  861. if (x86_pmu.put_event_constraints)
  862. x86_pmu.put_event_constraints(cpuc, event);
  863. while (++i < cpuc->n_events)
  864. cpuc->event_list[i-1] = cpuc->event_list[i];
  865. --cpuc->n_events;
  866. break;
  867. }
  868. }
  869. perf_event_update_userpage(event);
  870. }
  871. static int x86_pmu_handle_irq(struct pt_regs *regs)
  872. {
  873. struct perf_sample_data data;
  874. struct cpu_hw_events *cpuc;
  875. struct perf_event *event;
  876. struct hw_perf_event *hwc;
  877. int idx, handled = 0;
  878. u64 val;
  879. perf_sample_data_init(&data, 0);
  880. cpuc = &__get_cpu_var(cpu_hw_events);
  881. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  882. if (!test_bit(idx, cpuc->active_mask))
  883. continue;
  884. event = cpuc->events[idx];
  885. hwc = &event->hw;
  886. val = x86_perf_event_update(event);
  887. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  888. continue;
  889. /*
  890. * event overflow
  891. */
  892. handled = 1;
  893. data.period = event->hw.last_period;
  894. if (!x86_perf_event_set_period(event))
  895. continue;
  896. if (perf_event_overflow(event, 1, &data, regs))
  897. x86_pmu_stop(event);
  898. }
  899. if (handled)
  900. inc_irq_stat(apic_perf_irqs);
  901. return handled;
  902. }
  903. void smp_perf_pending_interrupt(struct pt_regs *regs)
  904. {
  905. irq_enter();
  906. ack_APIC_irq();
  907. inc_irq_stat(apic_pending_irqs);
  908. perf_event_do_pending();
  909. irq_exit();
  910. }
  911. void set_perf_event_pending(void)
  912. {
  913. #ifdef CONFIG_X86_LOCAL_APIC
  914. if (!x86_pmu.apic || !x86_pmu_initialized())
  915. return;
  916. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  917. #endif
  918. }
  919. void perf_events_lapic_init(void)
  920. {
  921. #ifdef CONFIG_X86_LOCAL_APIC
  922. if (!x86_pmu.apic || !x86_pmu_initialized())
  923. return;
  924. /*
  925. * Always use NMI for PMU
  926. */
  927. apic_write(APIC_LVTPC, APIC_DM_NMI);
  928. #endif
  929. }
  930. static int __kprobes
  931. perf_event_nmi_handler(struct notifier_block *self,
  932. unsigned long cmd, void *__args)
  933. {
  934. struct die_args *args = __args;
  935. struct pt_regs *regs;
  936. if (!atomic_read(&active_events))
  937. return NOTIFY_DONE;
  938. switch (cmd) {
  939. case DIE_NMI:
  940. case DIE_NMI_IPI:
  941. break;
  942. default:
  943. return NOTIFY_DONE;
  944. }
  945. regs = args->regs;
  946. #ifdef CONFIG_X86_LOCAL_APIC
  947. apic_write(APIC_LVTPC, APIC_DM_NMI);
  948. #endif
  949. /*
  950. * Can't rely on the handled return value to say it was our NMI, two
  951. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  952. *
  953. * If the first NMI handles both, the latter will be empty and daze
  954. * the CPU.
  955. */
  956. x86_pmu.handle_irq(regs);
  957. return NOTIFY_STOP;
  958. }
  959. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  960. .notifier_call = perf_event_nmi_handler,
  961. .next = NULL,
  962. .priority = 1
  963. };
  964. static struct event_constraint unconstrained;
  965. static struct event_constraint emptyconstraint;
  966. static struct event_constraint *
  967. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  968. {
  969. struct event_constraint *c;
  970. if (x86_pmu.event_constraints) {
  971. for_each_event_constraint(c, x86_pmu.event_constraints) {
  972. if ((event->hw.config & c->cmask) == c->code)
  973. return c;
  974. }
  975. }
  976. return &unconstrained;
  977. }
  978. static int x86_event_sched_in(struct perf_event *event,
  979. struct perf_cpu_context *cpuctx)
  980. {
  981. int ret = 0;
  982. event->state = PERF_EVENT_STATE_ACTIVE;
  983. event->oncpu = smp_processor_id();
  984. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  985. if (!is_x86_event(event))
  986. ret = event->pmu->enable(event);
  987. if (!ret && !is_software_event(event))
  988. cpuctx->active_oncpu++;
  989. if (!ret && event->attr.exclusive)
  990. cpuctx->exclusive = 1;
  991. return ret;
  992. }
  993. static void x86_event_sched_out(struct perf_event *event,
  994. struct perf_cpu_context *cpuctx)
  995. {
  996. event->state = PERF_EVENT_STATE_INACTIVE;
  997. event->oncpu = -1;
  998. if (!is_x86_event(event))
  999. event->pmu->disable(event);
  1000. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  1001. if (!is_software_event(event))
  1002. cpuctx->active_oncpu--;
  1003. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1004. cpuctx->exclusive = 0;
  1005. }
  1006. /*
  1007. * Called to enable a whole group of events.
  1008. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  1009. * Assumes the caller has disabled interrupts and has
  1010. * frozen the PMU with hw_perf_save_disable.
  1011. *
  1012. * called with PMU disabled. If successful and return value 1,
  1013. * then guaranteed to call perf_enable() and hw_perf_enable()
  1014. */
  1015. int hw_perf_group_sched_in(struct perf_event *leader,
  1016. struct perf_cpu_context *cpuctx,
  1017. struct perf_event_context *ctx)
  1018. {
  1019. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1020. struct perf_event *sub;
  1021. int assign[X86_PMC_IDX_MAX];
  1022. int n0, n1, ret;
  1023. /* n0 = total number of events */
  1024. n0 = collect_events(cpuc, leader, true);
  1025. if (n0 < 0)
  1026. return n0;
  1027. ret = x86_schedule_events(cpuc, n0, assign);
  1028. if (ret)
  1029. return ret;
  1030. ret = x86_event_sched_in(leader, cpuctx);
  1031. if (ret)
  1032. return ret;
  1033. n1 = 1;
  1034. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1035. if (sub->state > PERF_EVENT_STATE_OFF) {
  1036. ret = x86_event_sched_in(sub, cpuctx);
  1037. if (ret)
  1038. goto undo;
  1039. ++n1;
  1040. }
  1041. }
  1042. /*
  1043. * copy new assignment, now we know it is possible
  1044. * will be used by hw_perf_enable()
  1045. */
  1046. memcpy(cpuc->assign, assign, n0*sizeof(int));
  1047. cpuc->n_events = n0;
  1048. cpuc->n_added += n1;
  1049. ctx->nr_active += n1;
  1050. /*
  1051. * 1 means successful and events are active
  1052. * This is not quite true because we defer
  1053. * actual activation until hw_perf_enable() but
  1054. * this way we* ensure caller won't try to enable
  1055. * individual events
  1056. */
  1057. return 1;
  1058. undo:
  1059. x86_event_sched_out(leader, cpuctx);
  1060. n0 = 1;
  1061. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1062. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1063. x86_event_sched_out(sub, cpuctx);
  1064. if (++n0 == n1)
  1065. break;
  1066. }
  1067. }
  1068. return ret;
  1069. }
  1070. #include "perf_event_amd.c"
  1071. #include "perf_event_p6.c"
  1072. #include "perf_event_intel_lbr.c"
  1073. #include "perf_event_intel_ds.c"
  1074. #include "perf_event_intel.c"
  1075. static int __cpuinit
  1076. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1077. {
  1078. unsigned int cpu = (long)hcpu;
  1079. switch (action & ~CPU_TASKS_FROZEN) {
  1080. case CPU_UP_PREPARE:
  1081. if (x86_pmu.cpu_prepare)
  1082. x86_pmu.cpu_prepare(cpu);
  1083. break;
  1084. case CPU_STARTING:
  1085. if (x86_pmu.cpu_starting)
  1086. x86_pmu.cpu_starting(cpu);
  1087. break;
  1088. case CPU_DYING:
  1089. if (x86_pmu.cpu_dying)
  1090. x86_pmu.cpu_dying(cpu);
  1091. break;
  1092. case CPU_DEAD:
  1093. if (x86_pmu.cpu_dead)
  1094. x86_pmu.cpu_dead(cpu);
  1095. break;
  1096. default:
  1097. break;
  1098. }
  1099. return NOTIFY_OK;
  1100. }
  1101. static void __init pmu_check_apic(void)
  1102. {
  1103. if (cpu_has_apic)
  1104. return;
  1105. x86_pmu.apic = 0;
  1106. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1107. pr_info("no hardware sampling interrupt available.\n");
  1108. }
  1109. void __init init_hw_perf_events(void)
  1110. {
  1111. struct event_constraint *c;
  1112. int err;
  1113. pr_info("Performance Events: ");
  1114. switch (boot_cpu_data.x86_vendor) {
  1115. case X86_VENDOR_INTEL:
  1116. err = intel_pmu_init();
  1117. break;
  1118. case X86_VENDOR_AMD:
  1119. err = amd_pmu_init();
  1120. break;
  1121. default:
  1122. return;
  1123. }
  1124. if (err != 0) {
  1125. pr_cont("no PMU driver, software events only.\n");
  1126. return;
  1127. }
  1128. pmu_check_apic();
  1129. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1130. if (x86_pmu.quirks)
  1131. x86_pmu.quirks();
  1132. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1133. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1134. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1135. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1136. }
  1137. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1138. perf_max_events = x86_pmu.num_events;
  1139. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1140. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1141. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1142. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1143. }
  1144. perf_event_mask |=
  1145. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1146. x86_pmu.intel_ctrl = perf_event_mask;
  1147. perf_events_lapic_init();
  1148. register_die_notifier(&perf_event_nmi_notifier);
  1149. unconstrained = (struct event_constraint)
  1150. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1151. 0, x86_pmu.num_events);
  1152. if (x86_pmu.event_constraints) {
  1153. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1154. if (c->cmask != INTEL_ARCH_FIXED_MASK)
  1155. continue;
  1156. c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
  1157. c->weight += x86_pmu.num_events;
  1158. }
  1159. }
  1160. pr_info("... version: %d\n", x86_pmu.version);
  1161. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1162. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1163. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1164. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1165. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1166. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1167. perf_cpu_notifier(x86_pmu_notifier);
  1168. }
  1169. static inline void x86_pmu_read(struct perf_event *event)
  1170. {
  1171. x86_perf_event_update(event);
  1172. }
  1173. static const struct pmu pmu = {
  1174. .enable = x86_pmu_enable,
  1175. .disable = x86_pmu_disable,
  1176. .start = x86_pmu_start,
  1177. .stop = x86_pmu_stop,
  1178. .read = x86_pmu_read,
  1179. .unthrottle = x86_pmu_unthrottle,
  1180. };
  1181. /*
  1182. * validate that we can schedule this event
  1183. */
  1184. static int validate_event(struct perf_event *event)
  1185. {
  1186. struct cpu_hw_events *fake_cpuc;
  1187. struct event_constraint *c;
  1188. int ret = 0;
  1189. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1190. if (!fake_cpuc)
  1191. return -ENOMEM;
  1192. c = x86_pmu.get_event_constraints(fake_cpuc, event);
  1193. if (!c || !c->weight)
  1194. ret = -ENOSPC;
  1195. if (x86_pmu.put_event_constraints)
  1196. x86_pmu.put_event_constraints(fake_cpuc, event);
  1197. kfree(fake_cpuc);
  1198. return ret;
  1199. }
  1200. /*
  1201. * validate a single event group
  1202. *
  1203. * validation include:
  1204. * - check events are compatible which each other
  1205. * - events do not compete for the same counter
  1206. * - number of events <= number of counters
  1207. *
  1208. * validation ensures the group can be loaded onto the
  1209. * PMU if it was the only group available.
  1210. */
  1211. static int validate_group(struct perf_event *event)
  1212. {
  1213. struct perf_event *leader = event->group_leader;
  1214. struct cpu_hw_events *fake_cpuc;
  1215. int ret, n;
  1216. ret = -ENOMEM;
  1217. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1218. if (!fake_cpuc)
  1219. goto out;
  1220. /*
  1221. * the event is not yet connected with its
  1222. * siblings therefore we must first collect
  1223. * existing siblings, then add the new event
  1224. * before we can simulate the scheduling
  1225. */
  1226. ret = -ENOSPC;
  1227. n = collect_events(fake_cpuc, leader, true);
  1228. if (n < 0)
  1229. goto out_free;
  1230. fake_cpuc->n_events = n;
  1231. n = collect_events(fake_cpuc, event, false);
  1232. if (n < 0)
  1233. goto out_free;
  1234. fake_cpuc->n_events = n;
  1235. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1236. out_free:
  1237. kfree(fake_cpuc);
  1238. out:
  1239. return ret;
  1240. }
  1241. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1242. {
  1243. const struct pmu *tmp;
  1244. int err;
  1245. err = __hw_perf_event_init(event);
  1246. if (!err) {
  1247. /*
  1248. * we temporarily connect event to its pmu
  1249. * such that validate_group() can classify
  1250. * it as an x86 event using is_x86_event()
  1251. */
  1252. tmp = event->pmu;
  1253. event->pmu = &pmu;
  1254. if (event->group_leader != event)
  1255. err = validate_group(event);
  1256. else
  1257. err = validate_event(event);
  1258. event->pmu = tmp;
  1259. }
  1260. if (err) {
  1261. if (event->destroy)
  1262. event->destroy(event);
  1263. return ERR_PTR(err);
  1264. }
  1265. return &pmu;
  1266. }
  1267. /*
  1268. * callchain support
  1269. */
  1270. static inline
  1271. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1272. {
  1273. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1274. entry->ip[entry->nr++] = ip;
  1275. }
  1276. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1277. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1278. static void
  1279. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1280. {
  1281. /* Ignore warnings */
  1282. }
  1283. static void backtrace_warning(void *data, char *msg)
  1284. {
  1285. /* Ignore warnings */
  1286. }
  1287. static int backtrace_stack(void *data, char *name)
  1288. {
  1289. return 0;
  1290. }
  1291. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1292. {
  1293. struct perf_callchain_entry *entry = data;
  1294. if (reliable)
  1295. callchain_store(entry, addr);
  1296. }
  1297. static const struct stacktrace_ops backtrace_ops = {
  1298. .warning = backtrace_warning,
  1299. .warning_symbol = backtrace_warning_symbol,
  1300. .stack = backtrace_stack,
  1301. .address = backtrace_address,
  1302. .walk_stack = print_context_stack_bp,
  1303. };
  1304. #include "../dumpstack.h"
  1305. static void
  1306. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1307. {
  1308. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1309. callchain_store(entry, regs->ip);
  1310. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1311. }
  1312. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1313. {
  1314. unsigned long bytes;
  1315. bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
  1316. return bytes == sizeof(*frame);
  1317. }
  1318. static void
  1319. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1320. {
  1321. struct stack_frame frame;
  1322. const void __user *fp;
  1323. if (!user_mode(regs))
  1324. regs = task_pt_regs(current);
  1325. fp = (void __user *)regs->bp;
  1326. callchain_store(entry, PERF_CONTEXT_USER);
  1327. callchain_store(entry, regs->ip);
  1328. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1329. frame.next_frame = NULL;
  1330. frame.return_address = 0;
  1331. if (!copy_stack_frame(fp, &frame))
  1332. break;
  1333. if ((unsigned long)fp < regs->sp)
  1334. break;
  1335. callchain_store(entry, frame.return_address);
  1336. fp = frame.next_frame;
  1337. }
  1338. }
  1339. static void
  1340. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1341. {
  1342. int is_user;
  1343. if (!regs)
  1344. return;
  1345. is_user = user_mode(regs);
  1346. if (is_user && current->state != TASK_RUNNING)
  1347. return;
  1348. if (!is_user)
  1349. perf_callchain_kernel(regs, entry);
  1350. if (current->mm)
  1351. perf_callchain_user(regs, entry);
  1352. }
  1353. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1354. {
  1355. struct perf_callchain_entry *entry;
  1356. if (in_nmi())
  1357. entry = &__get_cpu_var(pmc_nmi_entry);
  1358. else
  1359. entry = &__get_cpu_var(pmc_irq_entry);
  1360. entry->nr = 0;
  1361. perf_do_callchain(regs, entry);
  1362. return entry;
  1363. }