intel_dp.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(i) ((i)->is_pch_edp)
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. };
  56. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  57. {
  58. return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
  59. }
  60. static void intel_dp_link_train(struct intel_dp *intel_dp);
  61. static void intel_dp_link_down(struct intel_dp *intel_dp);
  62. void
  63. intel_edp_link_config (struct intel_encoder *intel_encoder,
  64. int *lane_num, int *link_bw)
  65. {
  66. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  67. *lane_num = intel_dp->lane_count;
  68. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  69. *link_bw = 162000;
  70. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  71. *link_bw = 270000;
  72. }
  73. static int
  74. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  75. {
  76. int max_lane_count = 4;
  77. if (intel_dp->dpcd[0] >= 0x11) {
  78. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  79. switch (max_lane_count) {
  80. case 1: case 2: case 4:
  81. break;
  82. default:
  83. max_lane_count = 4;
  84. }
  85. }
  86. return max_lane_count;
  87. }
  88. static int
  89. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  90. {
  91. int max_link_bw = intel_dp->dpcd[1];
  92. switch (max_link_bw) {
  93. case DP_LINK_BW_1_62:
  94. case DP_LINK_BW_2_7:
  95. break;
  96. default:
  97. max_link_bw = DP_LINK_BW_1_62;
  98. break;
  99. }
  100. return max_link_bw;
  101. }
  102. static int
  103. intel_dp_link_clock(uint8_t link_bw)
  104. {
  105. if (link_bw == DP_LINK_BW_2_7)
  106. return 270000;
  107. else
  108. return 162000;
  109. }
  110. /* I think this is a fiction */
  111. static int
  112. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  113. {
  114. struct drm_i915_private *dev_priv = dev->dev_private;
  115. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  116. return (pixel_clock * dev_priv->edp_bpp) / 8;
  117. else
  118. return pixel_clock * 3;
  119. }
  120. static int
  121. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  122. {
  123. return (max_link_clock * max_lanes * 8) / 10;
  124. }
  125. static int
  126. intel_dp_mode_valid(struct drm_connector *connector,
  127. struct drm_display_mode *mode)
  128. {
  129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  130. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  131. struct drm_device *dev = connector->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  134. int max_lanes = intel_dp_max_lane_count(intel_dp);
  135. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  136. dev_priv->panel_fixed_mode) {
  137. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. }
  142. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  143. which are outside spec tolerances but somehow work by magic */
  144. if (!IS_eDP(intel_dp) &&
  145. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  146. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  147. return MODE_CLOCK_HIGH;
  148. if (mode->clock < 10000)
  149. return MODE_CLOCK_LOW;
  150. return MODE_OK;
  151. }
  152. static uint32_t
  153. pack_aux(uint8_t *src, int src_bytes)
  154. {
  155. int i;
  156. uint32_t v = 0;
  157. if (src_bytes > 4)
  158. src_bytes = 4;
  159. for (i = 0; i < src_bytes; i++)
  160. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  161. return v;
  162. }
  163. static void
  164. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  165. {
  166. int i;
  167. if (dst_bytes > 4)
  168. dst_bytes = 4;
  169. for (i = 0; i < dst_bytes; i++)
  170. dst[i] = src >> ((3-i) * 8);
  171. }
  172. /* hrawclock is 1/4 the FSB frequency */
  173. static int
  174. intel_hrawclk(struct drm_device *dev)
  175. {
  176. struct drm_i915_private *dev_priv = dev->dev_private;
  177. uint32_t clkcfg;
  178. clkcfg = I915_READ(CLKCFG);
  179. switch (clkcfg & CLKCFG_FSB_MASK) {
  180. case CLKCFG_FSB_400:
  181. return 100;
  182. case CLKCFG_FSB_533:
  183. return 133;
  184. case CLKCFG_FSB_667:
  185. return 166;
  186. case CLKCFG_FSB_800:
  187. return 200;
  188. case CLKCFG_FSB_1067:
  189. return 266;
  190. case CLKCFG_FSB_1333:
  191. return 333;
  192. /* these two are just a guess; one of them might be right */
  193. case CLKCFG_FSB_1600:
  194. case CLKCFG_FSB_1600_ALT:
  195. return 400;
  196. default:
  197. return 133;
  198. }
  199. }
  200. static int
  201. intel_dp_aux_ch(struct intel_dp *intel_dp,
  202. uint8_t *send, int send_bytes,
  203. uint8_t *recv, int recv_size)
  204. {
  205. uint32_t output_reg = intel_dp->output_reg;
  206. struct drm_device *dev = intel_dp->base.enc.dev;
  207. struct drm_i915_private *dev_priv = dev->dev_private;
  208. uint32_t ch_ctl = output_reg + 0x10;
  209. uint32_t ch_data = ch_ctl + 4;
  210. int i;
  211. int recv_bytes;
  212. uint32_t ctl;
  213. uint32_t status;
  214. uint32_t aux_clock_divider;
  215. int try, precharge;
  216. /* The clock divider is based off the hrawclk,
  217. * and would like to run at 2MHz. So, take the
  218. * hrawclk value and divide by 2 and use that
  219. */
  220. if (IS_eDP(intel_dp)) {
  221. if (IS_GEN6(dev))
  222. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  223. else
  224. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  225. } else if (HAS_PCH_SPLIT(dev))
  226. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  227. else
  228. aux_clock_divider = intel_hrawclk(dev) / 2;
  229. if (IS_GEN6(dev))
  230. precharge = 3;
  231. else
  232. precharge = 5;
  233. /* Must try at least 3 times according to DP spec */
  234. for (try = 0; try < 5; try++) {
  235. /* Load the send data into the aux channel data registers */
  236. for (i = 0; i < send_bytes; i += 4) {
  237. uint32_t d = pack_aux(send + i, send_bytes - i);
  238. I915_WRITE(ch_data + i, d);
  239. }
  240. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  241. DP_AUX_CH_CTL_TIME_OUT_400us |
  242. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  243. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  244. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  245. DP_AUX_CH_CTL_DONE |
  246. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  247. DP_AUX_CH_CTL_RECEIVE_ERROR);
  248. /* Send the command and wait for it to complete */
  249. I915_WRITE(ch_ctl, ctl);
  250. (void) I915_READ(ch_ctl);
  251. for (;;) {
  252. udelay(100);
  253. status = I915_READ(ch_ctl);
  254. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  255. break;
  256. }
  257. /* Clear done status and any errors */
  258. I915_WRITE(ch_ctl, (status |
  259. DP_AUX_CH_CTL_DONE |
  260. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  261. DP_AUX_CH_CTL_RECEIVE_ERROR));
  262. (void) I915_READ(ch_ctl);
  263. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  264. break;
  265. }
  266. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  267. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  268. return -EBUSY;
  269. }
  270. /* Check for timeout or receive error.
  271. * Timeouts occur when the sink is not connected
  272. */
  273. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  274. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  275. return -EIO;
  276. }
  277. /* Timeouts occur when the device isn't connected, so they're
  278. * "normal" -- don't fill the kernel log with these */
  279. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  280. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  281. return -ETIMEDOUT;
  282. }
  283. /* Unload any bytes sent back from the other side */
  284. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  285. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  286. if (recv_bytes > recv_size)
  287. recv_bytes = recv_size;
  288. for (i = 0; i < recv_bytes; i += 4) {
  289. uint32_t d = I915_READ(ch_data + i);
  290. unpack_aux(d, recv + i, recv_bytes - i);
  291. }
  292. return recv_bytes;
  293. }
  294. /* Write data to the aux channel in native mode */
  295. static int
  296. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  297. uint16_t address, uint8_t *send, int send_bytes)
  298. {
  299. int ret;
  300. uint8_t msg[20];
  301. int msg_bytes;
  302. uint8_t ack;
  303. if (send_bytes > 16)
  304. return -1;
  305. msg[0] = AUX_NATIVE_WRITE << 4;
  306. msg[1] = address >> 8;
  307. msg[2] = address & 0xff;
  308. msg[3] = send_bytes - 1;
  309. memcpy(&msg[4], send, send_bytes);
  310. msg_bytes = send_bytes + 4;
  311. for (;;) {
  312. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  313. if (ret < 0)
  314. return ret;
  315. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  316. break;
  317. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  318. udelay(100);
  319. else
  320. return -EIO;
  321. }
  322. return send_bytes;
  323. }
  324. /* Write a single byte to the aux channel in native mode */
  325. static int
  326. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  327. uint16_t address, uint8_t byte)
  328. {
  329. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  330. }
  331. /* read bytes from a native aux channel */
  332. static int
  333. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  334. uint16_t address, uint8_t *recv, int recv_bytes)
  335. {
  336. uint8_t msg[4];
  337. int msg_bytes;
  338. uint8_t reply[20];
  339. int reply_bytes;
  340. uint8_t ack;
  341. int ret;
  342. msg[0] = AUX_NATIVE_READ << 4;
  343. msg[1] = address >> 8;
  344. msg[2] = address & 0xff;
  345. msg[3] = recv_bytes - 1;
  346. msg_bytes = 4;
  347. reply_bytes = recv_bytes + 1;
  348. for (;;) {
  349. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  350. reply, reply_bytes);
  351. if (ret == 0)
  352. return -EPROTO;
  353. if (ret < 0)
  354. return ret;
  355. ack = reply[0];
  356. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  357. memcpy(recv, reply + 1, ret - 1);
  358. return ret - 1;
  359. }
  360. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  361. udelay(100);
  362. else
  363. return -EIO;
  364. }
  365. }
  366. static int
  367. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  368. uint8_t write_byte, uint8_t *read_byte)
  369. {
  370. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  371. struct intel_dp *intel_dp = container_of(adapter,
  372. struct intel_dp,
  373. adapter);
  374. uint16_t address = algo_data->address;
  375. uint8_t msg[5];
  376. uint8_t reply[2];
  377. int msg_bytes;
  378. int reply_bytes;
  379. int ret;
  380. /* Set up the command byte */
  381. if (mode & MODE_I2C_READ)
  382. msg[0] = AUX_I2C_READ << 4;
  383. else
  384. msg[0] = AUX_I2C_WRITE << 4;
  385. if (!(mode & MODE_I2C_STOP))
  386. msg[0] |= AUX_I2C_MOT << 4;
  387. msg[1] = address >> 8;
  388. msg[2] = address;
  389. switch (mode) {
  390. case MODE_I2C_WRITE:
  391. msg[3] = 0;
  392. msg[4] = write_byte;
  393. msg_bytes = 5;
  394. reply_bytes = 1;
  395. break;
  396. case MODE_I2C_READ:
  397. msg[3] = 0;
  398. msg_bytes = 4;
  399. reply_bytes = 2;
  400. break;
  401. default:
  402. msg_bytes = 3;
  403. reply_bytes = 1;
  404. break;
  405. }
  406. for (;;) {
  407. ret = intel_dp_aux_ch(intel_dp,
  408. msg, msg_bytes,
  409. reply, reply_bytes);
  410. if (ret < 0) {
  411. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  412. return ret;
  413. }
  414. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  415. case AUX_I2C_REPLY_ACK:
  416. if (mode == MODE_I2C_READ) {
  417. *read_byte = reply[1];
  418. }
  419. return reply_bytes - 1;
  420. case AUX_I2C_REPLY_NACK:
  421. DRM_DEBUG_KMS("aux_ch nack\n");
  422. return -EREMOTEIO;
  423. case AUX_I2C_REPLY_DEFER:
  424. DRM_DEBUG_KMS("aux_ch defer\n");
  425. udelay(100);
  426. break;
  427. default:
  428. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  429. return -EREMOTEIO;
  430. }
  431. }
  432. }
  433. static int
  434. intel_dp_i2c_init(struct intel_dp *intel_dp,
  435. struct intel_connector *intel_connector, const char *name)
  436. {
  437. DRM_DEBUG_KMS("i2c_init %s\n", name);
  438. intel_dp->algo.running = false;
  439. intel_dp->algo.address = 0;
  440. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  441. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  442. intel_dp->adapter.owner = THIS_MODULE;
  443. intel_dp->adapter.class = I2C_CLASS_DDC;
  444. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  445. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  446. intel_dp->adapter.algo_data = &intel_dp->algo;
  447. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  448. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  449. }
  450. static bool
  451. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  452. struct drm_display_mode *adjusted_mode)
  453. {
  454. struct drm_device *dev = encoder->dev;
  455. struct drm_i915_private *dev_priv = dev->dev_private;
  456. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  457. int lane_count, clock;
  458. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  459. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  460. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  461. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  462. dev_priv->panel_fixed_mode) {
  463. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  464. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  465. mode, adjusted_mode);
  466. /*
  467. * the mode->clock is used to calculate the Data&Link M/N
  468. * of the pipe. For the eDP the fixed clock should be used.
  469. */
  470. mode->clock = dev_priv->panel_fixed_mode->clock;
  471. }
  472. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  473. for (clock = 0; clock <= max_clock; clock++) {
  474. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  475. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  476. <= link_avail) {
  477. intel_dp->link_bw = bws[clock];
  478. intel_dp->lane_count = lane_count;
  479. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  480. DRM_DEBUG_KMS("Display port link bw %02x lane "
  481. "count %d clock %d\n",
  482. intel_dp->link_bw, intel_dp->lane_count,
  483. adjusted_mode->clock);
  484. return true;
  485. }
  486. }
  487. }
  488. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  489. /* okay we failed just pick the highest */
  490. intel_dp->lane_count = max_lane_count;
  491. intel_dp->link_bw = bws[max_clock];
  492. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  493. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  494. "count %d clock %d\n",
  495. intel_dp->link_bw, intel_dp->lane_count,
  496. adjusted_mode->clock);
  497. return true;
  498. }
  499. return false;
  500. }
  501. struct intel_dp_m_n {
  502. uint32_t tu;
  503. uint32_t gmch_m;
  504. uint32_t gmch_n;
  505. uint32_t link_m;
  506. uint32_t link_n;
  507. };
  508. static void
  509. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  510. {
  511. while (*num > 0xffffff || *den > 0xffffff) {
  512. *num >>= 1;
  513. *den >>= 1;
  514. }
  515. }
  516. static void
  517. intel_dp_compute_m_n(int bpp,
  518. int nlanes,
  519. int pixel_clock,
  520. int link_clock,
  521. struct intel_dp_m_n *m_n)
  522. {
  523. m_n->tu = 64;
  524. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  525. m_n->gmch_n = link_clock * nlanes;
  526. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  527. m_n->link_m = pixel_clock;
  528. m_n->link_n = link_clock;
  529. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  530. }
  531. bool intel_pch_has_edp(struct drm_crtc *crtc)
  532. {
  533. struct drm_device *dev = crtc->dev;
  534. struct drm_mode_config *mode_config = &dev->mode_config;
  535. struct drm_encoder *encoder;
  536. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  537. struct intel_dp *intel_dp;
  538. if (encoder->crtc != crtc)
  539. continue;
  540. intel_dp = enc_to_intel_dp(encoder);
  541. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  542. return intel_dp->is_pch_edp;
  543. }
  544. return false;
  545. }
  546. void
  547. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  548. struct drm_display_mode *adjusted_mode)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. struct drm_mode_config *mode_config = &dev->mode_config;
  552. struct drm_encoder *encoder;
  553. struct drm_i915_private *dev_priv = dev->dev_private;
  554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  555. int lane_count = 4, bpp = 24;
  556. struct intel_dp_m_n m_n;
  557. /*
  558. * Find the lane count in the intel_encoder private
  559. */
  560. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  561. struct intel_dp *intel_dp;
  562. if (encoder->crtc != crtc)
  563. continue;
  564. intel_dp = enc_to_intel_dp(encoder);
  565. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  566. lane_count = intel_dp->lane_count;
  567. if (IS_PCH_eDP(intel_dp))
  568. bpp = dev_priv->edp_bpp;
  569. break;
  570. }
  571. }
  572. /*
  573. * Compute the GMCH and Link ratios. The '3' here is
  574. * the number of bytes_per_pixel post-LUT, which we always
  575. * set up for 8-bits of R/G/B, or 3 bytes total.
  576. */
  577. intel_dp_compute_m_n(bpp, lane_count,
  578. mode->clock, adjusted_mode->clock, &m_n);
  579. if (HAS_PCH_SPLIT(dev)) {
  580. if (intel_crtc->pipe == 0) {
  581. I915_WRITE(TRANSA_DATA_M1,
  582. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  583. m_n.gmch_m);
  584. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  585. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  586. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  587. } else {
  588. I915_WRITE(TRANSB_DATA_M1,
  589. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  590. m_n.gmch_m);
  591. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  592. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  593. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  594. }
  595. } else {
  596. if (intel_crtc->pipe == 0) {
  597. I915_WRITE(PIPEA_GMCH_DATA_M,
  598. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  599. m_n.gmch_m);
  600. I915_WRITE(PIPEA_GMCH_DATA_N,
  601. m_n.gmch_n);
  602. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  603. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  604. } else {
  605. I915_WRITE(PIPEB_GMCH_DATA_M,
  606. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  607. m_n.gmch_m);
  608. I915_WRITE(PIPEB_GMCH_DATA_N,
  609. m_n.gmch_n);
  610. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  611. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  612. }
  613. }
  614. }
  615. static void
  616. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  617. struct drm_display_mode *adjusted_mode)
  618. {
  619. struct drm_device *dev = encoder->dev;
  620. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  621. struct drm_crtc *crtc = intel_dp->base.enc.crtc;
  622. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  623. intel_dp->DP = (DP_VOLTAGE_0_4 |
  624. DP_PRE_EMPHASIS_0);
  625. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  626. intel_dp->DP |= DP_SYNC_HS_HIGH;
  627. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  628. intel_dp->DP |= DP_SYNC_VS_HIGH;
  629. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  630. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  631. else
  632. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  633. switch (intel_dp->lane_count) {
  634. case 1:
  635. intel_dp->DP |= DP_PORT_WIDTH_1;
  636. break;
  637. case 2:
  638. intel_dp->DP |= DP_PORT_WIDTH_2;
  639. break;
  640. case 4:
  641. intel_dp->DP |= DP_PORT_WIDTH_4;
  642. break;
  643. }
  644. if (intel_dp->has_audio)
  645. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  646. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  647. intel_dp->link_configuration[0] = intel_dp->link_bw;
  648. intel_dp->link_configuration[1] = intel_dp->lane_count;
  649. /*
  650. * Check for DPCD version > 1.1 and enhanced framing support
  651. */
  652. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  653. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  654. intel_dp->DP |= DP_ENHANCED_FRAMING;
  655. }
  656. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  657. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  658. intel_dp->DP |= DP_PIPEB_SELECT;
  659. if (IS_eDP(intel_dp)) {
  660. /* don't miss out required setting for eDP */
  661. intel_dp->DP |= DP_PLL_ENABLE;
  662. if (adjusted_mode->clock < 200000)
  663. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  664. else
  665. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  666. }
  667. }
  668. static void ironlake_edp_panel_on (struct drm_device *dev)
  669. {
  670. struct drm_i915_private *dev_priv = dev->dev_private;
  671. u32 pp;
  672. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  673. return;
  674. pp = I915_READ(PCH_PP_CONTROL);
  675. /* ILK workaround: disable reset around power sequence */
  676. pp &= ~PANEL_POWER_RESET;
  677. I915_WRITE(PCH_PP_CONTROL, pp);
  678. POSTING_READ(PCH_PP_CONTROL);
  679. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  680. I915_WRITE(PCH_PP_CONTROL, pp);
  681. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000, 10))
  682. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  683. I915_READ(PCH_PP_STATUS));
  684. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  685. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  686. I915_WRITE(PCH_PP_CONTROL, pp);
  687. POSTING_READ(PCH_PP_CONTROL);
  688. }
  689. static void ironlake_edp_panel_off (struct drm_device *dev)
  690. {
  691. struct drm_i915_private *dev_priv = dev->dev_private;
  692. u32 pp;
  693. pp = I915_READ(PCH_PP_CONTROL);
  694. /* ILK workaround: disable reset around power sequence */
  695. pp &= ~PANEL_POWER_RESET;
  696. I915_WRITE(PCH_PP_CONTROL, pp);
  697. POSTING_READ(PCH_PP_CONTROL);
  698. pp &= ~POWER_TARGET_ON;
  699. I915_WRITE(PCH_PP_CONTROL, pp);
  700. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000, 10))
  701. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  702. I915_READ(PCH_PP_STATUS));
  703. /* Make sure VDD is enabled so DP AUX will work */
  704. pp |= EDP_FORCE_VDD | PANEL_POWER_RESET; /* restore panel reset bit */
  705. I915_WRITE(PCH_PP_CONTROL, pp);
  706. POSTING_READ(PCH_PP_CONTROL);
  707. }
  708. static void ironlake_edp_backlight_on (struct drm_device *dev)
  709. {
  710. struct drm_i915_private *dev_priv = dev->dev_private;
  711. u32 pp;
  712. DRM_DEBUG_KMS("\n");
  713. pp = I915_READ(PCH_PP_CONTROL);
  714. pp |= EDP_BLC_ENABLE;
  715. I915_WRITE(PCH_PP_CONTROL, pp);
  716. }
  717. static void ironlake_edp_backlight_off (struct drm_device *dev)
  718. {
  719. struct drm_i915_private *dev_priv = dev->dev_private;
  720. u32 pp;
  721. DRM_DEBUG_KMS("\n");
  722. pp = I915_READ(PCH_PP_CONTROL);
  723. pp &= ~EDP_BLC_ENABLE;
  724. I915_WRITE(PCH_PP_CONTROL, pp);
  725. }
  726. static void
  727. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  728. {
  729. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  730. struct drm_device *dev = encoder->dev;
  731. struct drm_i915_private *dev_priv = dev->dev_private;
  732. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  733. if (mode != DRM_MODE_DPMS_ON) {
  734. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  735. ironlake_edp_backlight_off(dev);
  736. ironlake_edp_panel_off(dev);
  737. }
  738. if (dp_reg & DP_PORT_EN)
  739. intel_dp_link_down(intel_dp);
  740. } else {
  741. if (!(dp_reg & DP_PORT_EN)) {
  742. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  743. ironlake_edp_panel_on(dev);
  744. intel_dp_link_train(intel_dp);
  745. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  746. ironlake_edp_backlight_on(dev);
  747. }
  748. }
  749. intel_dp->dpms_mode = mode;
  750. }
  751. /*
  752. * Fetch AUX CH registers 0x202 - 0x207 which contain
  753. * link status information
  754. */
  755. static bool
  756. intel_dp_get_link_status(struct intel_dp *intel_dp,
  757. uint8_t link_status[DP_LINK_STATUS_SIZE])
  758. {
  759. int ret;
  760. ret = intel_dp_aux_native_read(intel_dp,
  761. DP_LANE0_1_STATUS,
  762. link_status, DP_LINK_STATUS_SIZE);
  763. if (ret != DP_LINK_STATUS_SIZE)
  764. return false;
  765. return true;
  766. }
  767. static uint8_t
  768. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  769. int r)
  770. {
  771. return link_status[r - DP_LANE0_1_STATUS];
  772. }
  773. static uint8_t
  774. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  775. int lane)
  776. {
  777. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  778. int s = ((lane & 1) ?
  779. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  780. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  781. uint8_t l = intel_dp_link_status(link_status, i);
  782. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  783. }
  784. static uint8_t
  785. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  786. int lane)
  787. {
  788. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  789. int s = ((lane & 1) ?
  790. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  791. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  792. uint8_t l = intel_dp_link_status(link_status, i);
  793. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  794. }
  795. #if 0
  796. static char *voltage_names[] = {
  797. "0.4V", "0.6V", "0.8V", "1.2V"
  798. };
  799. static char *pre_emph_names[] = {
  800. "0dB", "3.5dB", "6dB", "9.5dB"
  801. };
  802. static char *link_train_names[] = {
  803. "pattern 1", "pattern 2", "idle", "off"
  804. };
  805. #endif
  806. /*
  807. * These are source-specific values; current Intel hardware supports
  808. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  809. */
  810. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  811. static uint8_t
  812. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  813. {
  814. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  815. case DP_TRAIN_VOLTAGE_SWING_400:
  816. return DP_TRAIN_PRE_EMPHASIS_6;
  817. case DP_TRAIN_VOLTAGE_SWING_600:
  818. return DP_TRAIN_PRE_EMPHASIS_6;
  819. case DP_TRAIN_VOLTAGE_SWING_800:
  820. return DP_TRAIN_PRE_EMPHASIS_3_5;
  821. case DP_TRAIN_VOLTAGE_SWING_1200:
  822. default:
  823. return DP_TRAIN_PRE_EMPHASIS_0;
  824. }
  825. }
  826. static void
  827. intel_get_adjust_train(struct intel_dp *intel_dp,
  828. uint8_t link_status[DP_LINK_STATUS_SIZE],
  829. int lane_count,
  830. uint8_t train_set[4])
  831. {
  832. uint8_t v = 0;
  833. uint8_t p = 0;
  834. int lane;
  835. for (lane = 0; lane < lane_count; lane++) {
  836. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  837. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  838. if (this_v > v)
  839. v = this_v;
  840. if (this_p > p)
  841. p = this_p;
  842. }
  843. if (v >= I830_DP_VOLTAGE_MAX)
  844. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  845. if (p >= intel_dp_pre_emphasis_max(v))
  846. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  847. for (lane = 0; lane < 4; lane++)
  848. train_set[lane] = v | p;
  849. }
  850. static uint32_t
  851. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  852. {
  853. uint32_t signal_levels = 0;
  854. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  855. case DP_TRAIN_VOLTAGE_SWING_400:
  856. default:
  857. signal_levels |= DP_VOLTAGE_0_4;
  858. break;
  859. case DP_TRAIN_VOLTAGE_SWING_600:
  860. signal_levels |= DP_VOLTAGE_0_6;
  861. break;
  862. case DP_TRAIN_VOLTAGE_SWING_800:
  863. signal_levels |= DP_VOLTAGE_0_8;
  864. break;
  865. case DP_TRAIN_VOLTAGE_SWING_1200:
  866. signal_levels |= DP_VOLTAGE_1_2;
  867. break;
  868. }
  869. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  870. case DP_TRAIN_PRE_EMPHASIS_0:
  871. default:
  872. signal_levels |= DP_PRE_EMPHASIS_0;
  873. break;
  874. case DP_TRAIN_PRE_EMPHASIS_3_5:
  875. signal_levels |= DP_PRE_EMPHASIS_3_5;
  876. break;
  877. case DP_TRAIN_PRE_EMPHASIS_6:
  878. signal_levels |= DP_PRE_EMPHASIS_6;
  879. break;
  880. case DP_TRAIN_PRE_EMPHASIS_9_5:
  881. signal_levels |= DP_PRE_EMPHASIS_9_5;
  882. break;
  883. }
  884. return signal_levels;
  885. }
  886. /* Gen6's DP voltage swing and pre-emphasis control */
  887. static uint32_t
  888. intel_gen6_edp_signal_levels(uint8_t train_set)
  889. {
  890. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  891. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  892. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  893. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  894. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  895. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  896. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  897. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  898. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  899. default:
  900. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  901. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  902. }
  903. }
  904. static uint8_t
  905. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  906. int lane)
  907. {
  908. int i = DP_LANE0_1_STATUS + (lane >> 1);
  909. int s = (lane & 1) * 4;
  910. uint8_t l = intel_dp_link_status(link_status, i);
  911. return (l >> s) & 0xf;
  912. }
  913. /* Check for clock recovery is done on all channels */
  914. static bool
  915. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  916. {
  917. int lane;
  918. uint8_t lane_status;
  919. for (lane = 0; lane < lane_count; lane++) {
  920. lane_status = intel_get_lane_status(link_status, lane);
  921. if ((lane_status & DP_LANE_CR_DONE) == 0)
  922. return false;
  923. }
  924. return true;
  925. }
  926. /* Check to see if channel eq is done on all channels */
  927. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  928. DP_LANE_CHANNEL_EQ_DONE|\
  929. DP_LANE_SYMBOL_LOCKED)
  930. static bool
  931. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  932. {
  933. uint8_t lane_align;
  934. uint8_t lane_status;
  935. int lane;
  936. lane_align = intel_dp_link_status(link_status,
  937. DP_LANE_ALIGN_STATUS_UPDATED);
  938. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  939. return false;
  940. for (lane = 0; lane < lane_count; lane++) {
  941. lane_status = intel_get_lane_status(link_status, lane);
  942. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  943. return false;
  944. }
  945. return true;
  946. }
  947. static bool
  948. intel_dp_set_link_train(struct intel_dp *intel_dp,
  949. uint32_t dp_reg_value,
  950. uint8_t dp_train_pat,
  951. uint8_t train_set[4],
  952. bool first)
  953. {
  954. struct drm_device *dev = intel_dp->base.enc.dev;
  955. struct drm_i915_private *dev_priv = dev->dev_private;
  956. int ret;
  957. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  958. POSTING_READ(intel_dp->output_reg);
  959. if (first)
  960. intel_wait_for_vblank(dev);
  961. intel_dp_aux_native_write_1(intel_dp,
  962. DP_TRAINING_PATTERN_SET,
  963. dp_train_pat);
  964. ret = intel_dp_aux_native_write(intel_dp,
  965. DP_TRAINING_LANE0_SET, train_set, 4);
  966. if (ret != 4)
  967. return false;
  968. return true;
  969. }
  970. static void
  971. intel_dp_link_train(struct intel_dp *intel_dp)
  972. {
  973. struct drm_device *dev = intel_dp->base.enc.dev;
  974. struct drm_i915_private *dev_priv = dev->dev_private;
  975. uint8_t train_set[4];
  976. uint8_t link_status[DP_LINK_STATUS_SIZE];
  977. int i;
  978. uint8_t voltage;
  979. bool clock_recovery = false;
  980. bool channel_eq = false;
  981. bool first = true;
  982. int tries;
  983. u32 reg;
  984. uint32_t DP = intel_dp->DP;
  985. /* Write the link configuration data */
  986. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  987. intel_dp->link_configuration,
  988. DP_LINK_CONFIGURATION_SIZE);
  989. DP |= DP_PORT_EN;
  990. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  991. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  992. else
  993. DP &= ~DP_LINK_TRAIN_MASK;
  994. memset(train_set, 0, 4);
  995. voltage = 0xff;
  996. tries = 0;
  997. clock_recovery = false;
  998. for (;;) {
  999. /* Use train_set[0] to set the voltage and pre emphasis values */
  1000. uint32_t signal_levels;
  1001. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1002. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1003. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1004. } else {
  1005. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1006. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1007. }
  1008. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1009. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1010. else
  1011. reg = DP | DP_LINK_TRAIN_PAT_1;
  1012. if (!intel_dp_set_link_train(intel_dp, reg,
  1013. DP_TRAINING_PATTERN_1, train_set, first))
  1014. break;
  1015. first = false;
  1016. /* Set training pattern 1 */
  1017. udelay(100);
  1018. if (!intel_dp_get_link_status(intel_dp, link_status))
  1019. break;
  1020. if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1021. clock_recovery = true;
  1022. break;
  1023. }
  1024. /* Check to see if we've tried the max voltage */
  1025. for (i = 0; i < intel_dp->lane_count; i++)
  1026. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1027. break;
  1028. if (i == intel_dp->lane_count)
  1029. break;
  1030. /* Check to see if we've tried the same voltage 5 times */
  1031. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1032. ++tries;
  1033. if (tries == 5)
  1034. break;
  1035. } else
  1036. tries = 0;
  1037. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1038. /* Compute new train_set as requested by target */
  1039. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1040. }
  1041. /* channel equalization */
  1042. tries = 0;
  1043. channel_eq = false;
  1044. for (;;) {
  1045. /* Use train_set[0] to set the voltage and pre emphasis values */
  1046. uint32_t signal_levels;
  1047. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1048. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1049. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1050. } else {
  1051. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1052. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1053. }
  1054. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1055. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1056. else
  1057. reg = DP | DP_LINK_TRAIN_PAT_2;
  1058. /* channel eq pattern */
  1059. if (!intel_dp_set_link_train(intel_dp, reg,
  1060. DP_TRAINING_PATTERN_2, train_set,
  1061. false))
  1062. break;
  1063. udelay(400);
  1064. if (!intel_dp_get_link_status(intel_dp, link_status))
  1065. break;
  1066. if (intel_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1067. channel_eq = true;
  1068. break;
  1069. }
  1070. /* Try 5 times */
  1071. if (tries > 5)
  1072. break;
  1073. /* Compute new train_set as requested by target */
  1074. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1075. ++tries;
  1076. }
  1077. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1078. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1079. else
  1080. reg = DP | DP_LINK_TRAIN_OFF;
  1081. I915_WRITE(intel_dp->output_reg, reg);
  1082. POSTING_READ(intel_dp->output_reg);
  1083. intel_dp_aux_native_write_1(intel_dp,
  1084. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1085. }
  1086. static void
  1087. intel_dp_link_down(struct intel_dp *intel_dp)
  1088. {
  1089. struct drm_device *dev = intel_dp->base.enc.dev;
  1090. struct drm_i915_private *dev_priv = dev->dev_private;
  1091. uint32_t DP = intel_dp->DP;
  1092. DRM_DEBUG_KMS("\n");
  1093. if (IS_eDP(intel_dp)) {
  1094. DP &= ~DP_PLL_ENABLE;
  1095. I915_WRITE(intel_dp->output_reg, DP);
  1096. POSTING_READ(intel_dp->output_reg);
  1097. udelay(100);
  1098. }
  1099. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
  1100. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1101. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1102. POSTING_READ(intel_dp->output_reg);
  1103. } else {
  1104. DP &= ~DP_LINK_TRAIN_MASK;
  1105. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1106. POSTING_READ(intel_dp->output_reg);
  1107. }
  1108. udelay(17000);
  1109. if (IS_eDP(intel_dp))
  1110. DP |= DP_LINK_TRAIN_OFF;
  1111. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1112. POSTING_READ(intel_dp->output_reg);
  1113. }
  1114. /*
  1115. * According to DP spec
  1116. * 5.1.2:
  1117. * 1. Read DPCD
  1118. * 2. Configure link according to Receiver Capabilities
  1119. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1120. * 4. Check link status on receipt of hot-plug interrupt
  1121. */
  1122. static void
  1123. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1124. {
  1125. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1126. if (!intel_dp->base.enc.crtc)
  1127. return;
  1128. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1129. intel_dp_link_down(intel_dp);
  1130. return;
  1131. }
  1132. if (!intel_channel_eq_ok(link_status, intel_dp->lane_count))
  1133. intel_dp_link_train(intel_dp);
  1134. }
  1135. static enum drm_connector_status
  1136. ironlake_dp_detect(struct drm_connector *connector)
  1137. {
  1138. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1139. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1140. enum drm_connector_status status;
  1141. status = connector_status_disconnected;
  1142. if (intel_dp_aux_native_read(intel_dp,
  1143. 0x000, intel_dp->dpcd,
  1144. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1145. {
  1146. if (intel_dp->dpcd[0] != 0)
  1147. status = connector_status_connected;
  1148. }
  1149. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1150. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1151. return status;
  1152. }
  1153. /**
  1154. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1155. *
  1156. * \return true if DP port is connected.
  1157. * \return false if DP port is disconnected.
  1158. */
  1159. static enum drm_connector_status
  1160. intel_dp_detect(struct drm_connector *connector)
  1161. {
  1162. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1163. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1164. struct drm_device *dev = intel_dp->base.enc.dev;
  1165. struct drm_i915_private *dev_priv = dev->dev_private;
  1166. uint32_t temp, bit;
  1167. enum drm_connector_status status;
  1168. intel_dp->has_audio = false;
  1169. if (HAS_PCH_SPLIT(dev))
  1170. return ironlake_dp_detect(connector);
  1171. switch (intel_dp->output_reg) {
  1172. case DP_B:
  1173. bit = DPB_HOTPLUG_INT_STATUS;
  1174. break;
  1175. case DP_C:
  1176. bit = DPC_HOTPLUG_INT_STATUS;
  1177. break;
  1178. case DP_D:
  1179. bit = DPD_HOTPLUG_INT_STATUS;
  1180. break;
  1181. default:
  1182. return connector_status_unknown;
  1183. }
  1184. temp = I915_READ(PORT_HOTPLUG_STAT);
  1185. if ((temp & bit) == 0)
  1186. return connector_status_disconnected;
  1187. status = connector_status_disconnected;
  1188. if (intel_dp_aux_native_read(intel_dp,
  1189. 0x000, intel_dp->dpcd,
  1190. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1191. {
  1192. if (intel_dp->dpcd[0] != 0)
  1193. status = connector_status_connected;
  1194. }
  1195. return status;
  1196. }
  1197. static int intel_dp_get_modes(struct drm_connector *connector)
  1198. {
  1199. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1200. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1201. struct drm_device *dev = intel_dp->base.enc.dev;
  1202. struct drm_i915_private *dev_priv = dev->dev_private;
  1203. int ret;
  1204. /* We should parse the EDID data and find out if it has an audio sink
  1205. */
  1206. ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
  1207. if (ret) {
  1208. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  1209. !dev_priv->panel_fixed_mode) {
  1210. struct drm_display_mode *newmode;
  1211. list_for_each_entry(newmode, &connector->probed_modes,
  1212. head) {
  1213. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1214. dev_priv->panel_fixed_mode =
  1215. drm_mode_duplicate(dev, newmode);
  1216. break;
  1217. }
  1218. }
  1219. }
  1220. return ret;
  1221. }
  1222. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1223. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  1224. if (dev_priv->panel_fixed_mode != NULL) {
  1225. struct drm_display_mode *mode;
  1226. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1227. drm_mode_probed_add(connector, mode);
  1228. return 1;
  1229. }
  1230. }
  1231. return 0;
  1232. }
  1233. static void
  1234. intel_dp_destroy (struct drm_connector *connector)
  1235. {
  1236. drm_sysfs_connector_remove(connector);
  1237. drm_connector_cleanup(connector);
  1238. kfree(connector);
  1239. }
  1240. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1241. .dpms = intel_dp_dpms,
  1242. .mode_fixup = intel_dp_mode_fixup,
  1243. .prepare = intel_encoder_prepare,
  1244. .mode_set = intel_dp_mode_set,
  1245. .commit = intel_encoder_commit,
  1246. };
  1247. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1248. .dpms = drm_helper_connector_dpms,
  1249. .detect = intel_dp_detect,
  1250. .fill_modes = drm_helper_probe_single_connector_modes,
  1251. .destroy = intel_dp_destroy,
  1252. };
  1253. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1254. .get_modes = intel_dp_get_modes,
  1255. .mode_valid = intel_dp_mode_valid,
  1256. .best_encoder = intel_attached_encoder,
  1257. };
  1258. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1259. .destroy = intel_encoder_destroy,
  1260. };
  1261. void
  1262. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1263. {
  1264. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1265. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1266. intel_dp_check_link_status(intel_dp);
  1267. }
  1268. /* Return which DP Port should be selected for Transcoder DP control */
  1269. int
  1270. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1271. {
  1272. struct drm_device *dev = crtc->dev;
  1273. struct drm_mode_config *mode_config = &dev->mode_config;
  1274. struct drm_encoder *encoder;
  1275. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1276. struct intel_dp *intel_dp;
  1277. if (encoder->crtc != crtc)
  1278. continue;
  1279. intel_dp = enc_to_intel_dp(encoder);
  1280. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1281. return intel_dp->output_reg;
  1282. }
  1283. return -1;
  1284. }
  1285. /* check the VBT to see whether the eDP is on DP-D port */
  1286. bool intel_dpd_is_edp(struct drm_device *dev)
  1287. {
  1288. struct drm_i915_private *dev_priv = dev->dev_private;
  1289. struct child_device_config *p_child;
  1290. int i;
  1291. if (!dev_priv->child_dev_num)
  1292. return false;
  1293. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1294. p_child = dev_priv->child_dev + i;
  1295. if (p_child->dvo_port == PORT_IDPD &&
  1296. p_child->device_type == DEVICE_TYPE_eDP)
  1297. return true;
  1298. }
  1299. return false;
  1300. }
  1301. void
  1302. intel_dp_init(struct drm_device *dev, int output_reg)
  1303. {
  1304. struct drm_i915_private *dev_priv = dev->dev_private;
  1305. struct drm_connector *connector;
  1306. struct intel_dp *intel_dp;
  1307. struct intel_encoder *intel_encoder;
  1308. struct intel_connector *intel_connector;
  1309. const char *name = NULL;
  1310. int type;
  1311. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1312. if (!intel_dp)
  1313. return;
  1314. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1315. if (!intel_connector) {
  1316. kfree(intel_dp);
  1317. return;
  1318. }
  1319. intel_encoder = &intel_dp->base;
  1320. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1321. if (intel_dpd_is_edp(dev))
  1322. intel_dp->is_pch_edp = true;
  1323. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1324. type = DRM_MODE_CONNECTOR_eDP;
  1325. intel_encoder->type = INTEL_OUTPUT_EDP;
  1326. } else {
  1327. type = DRM_MODE_CONNECTOR_DisplayPort;
  1328. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1329. }
  1330. connector = &intel_connector->base;
  1331. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1332. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1333. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1334. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1335. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1336. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1337. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1338. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1339. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1340. if (IS_eDP(intel_dp))
  1341. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1342. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1343. connector->interlace_allowed = true;
  1344. connector->doublescan_allowed = 0;
  1345. intel_dp->output_reg = output_reg;
  1346. intel_dp->has_audio = false;
  1347. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1348. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1349. DRM_MODE_ENCODER_TMDS);
  1350. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1351. drm_mode_connector_attach_encoder(&intel_connector->base,
  1352. &intel_encoder->enc);
  1353. drm_sysfs_connector_add(connector);
  1354. /* Set up the DDC bus. */
  1355. switch (output_reg) {
  1356. case DP_A:
  1357. name = "DPDDC-A";
  1358. break;
  1359. case DP_B:
  1360. case PCH_DP_B:
  1361. dev_priv->hotplug_supported_mask |=
  1362. HDMIB_HOTPLUG_INT_STATUS;
  1363. name = "DPDDC-B";
  1364. break;
  1365. case DP_C:
  1366. case PCH_DP_C:
  1367. dev_priv->hotplug_supported_mask |=
  1368. HDMIC_HOTPLUG_INT_STATUS;
  1369. name = "DPDDC-C";
  1370. break;
  1371. case DP_D:
  1372. case PCH_DP_D:
  1373. dev_priv->hotplug_supported_mask |=
  1374. HDMID_HOTPLUG_INT_STATUS;
  1375. name = "DPDDC-D";
  1376. break;
  1377. }
  1378. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1379. intel_encoder->ddc_bus = &intel_dp->adapter;
  1380. intel_encoder->hot_plug = intel_dp_hot_plug;
  1381. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1382. /* initialize panel mode from VBT if available for eDP */
  1383. if (dev_priv->lfp_lvds_vbt_mode) {
  1384. dev_priv->panel_fixed_mode =
  1385. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1386. if (dev_priv->panel_fixed_mode) {
  1387. dev_priv->panel_fixed_mode->type |=
  1388. DRM_MODE_TYPE_PREFERRED;
  1389. }
  1390. }
  1391. }
  1392. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1393. * 0xd. Failure to do so will result in spurious interrupts being
  1394. * generated on the port when a cable is not attached.
  1395. */
  1396. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1397. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1398. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1399. }
  1400. }