cfq-iosched.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. atomic_t ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. struct cfq_group *orig_cfqg;
  131. /* Number of sectors dispatched from queue in single dispatch round */
  132. unsigned long nr_sectors;
  133. };
  134. /*
  135. * First index in the service_trees.
  136. * IDLE is handled separately, so it has negative index
  137. */
  138. enum wl_prio_t {
  139. BE_WORKLOAD = 0,
  140. RT_WORKLOAD = 1,
  141. IDLE_WORKLOAD = 2,
  142. CFQ_PRIO_NR,
  143. };
  144. /*
  145. * Second index in the service_trees.
  146. */
  147. enum wl_type_t {
  148. ASYNC_WORKLOAD = 0,
  149. SYNC_NOIDLE_WORKLOAD = 1,
  150. SYNC_WORKLOAD = 2
  151. };
  152. /* This is per cgroup per device grouping structure */
  153. struct cfq_group {
  154. /* group service_tree member */
  155. struct rb_node rb_node;
  156. /* group service_tree key */
  157. u64 vdisktime;
  158. unsigned int weight;
  159. /* number of cfqq currently on this group */
  160. int nr_cfqq;
  161. /*
  162. * Per group busy queus average. Useful for workload slice calc. We
  163. * create the array for each prio class but at run time it is used
  164. * only for RT and BE class and slot for IDLE class remains unused.
  165. * This is primarily done to avoid confusion and a gcc warning.
  166. */
  167. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  168. /*
  169. * rr lists of queues with requests. We maintain service trees for
  170. * RT and BE classes. These trees are subdivided in subclasses
  171. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  172. * class there is no subclassification and all the cfq queues go on
  173. * a single tree service_tree_idle.
  174. * Counts are embedded in the cfq_rb_root
  175. */
  176. struct cfq_rb_root service_trees[2][3];
  177. struct cfq_rb_root service_tree_idle;
  178. unsigned long saved_workload_slice;
  179. enum wl_type_t saved_workload;
  180. enum wl_prio_t saved_serving_prio;
  181. struct blkio_group blkg;
  182. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  183. struct hlist_node cfqd_node;
  184. atomic_t ref;
  185. #endif
  186. /* number of requests that are on the dispatch list or inside driver */
  187. int dispatched;
  188. };
  189. /*
  190. * Per block device queue structure
  191. */
  192. struct cfq_data {
  193. struct request_queue *queue;
  194. /* Root service tree for cfq_groups */
  195. struct cfq_rb_root grp_service_tree;
  196. struct cfq_group root_group;
  197. /*
  198. * The priority currently being served
  199. */
  200. enum wl_prio_t serving_prio;
  201. enum wl_type_t serving_type;
  202. unsigned long workload_expires;
  203. struct cfq_group *serving_group;
  204. /*
  205. * Each priority tree is sorted by next_request position. These
  206. * trees are used when determining if two or more queues are
  207. * interleaving requests (see cfq_close_cooperator).
  208. */
  209. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  210. unsigned int busy_queues;
  211. int rq_in_driver;
  212. int rq_in_flight[2];
  213. /*
  214. * queue-depth detection
  215. */
  216. int rq_queued;
  217. int hw_tag;
  218. /*
  219. * hw_tag can be
  220. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  221. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  222. * 0 => no NCQ
  223. */
  224. int hw_tag_est_depth;
  225. unsigned int hw_tag_samples;
  226. /*
  227. * idle window management
  228. */
  229. struct timer_list idle_slice_timer;
  230. struct work_struct unplug_work;
  231. struct cfq_queue *active_queue;
  232. struct cfq_io_context *active_cic;
  233. /*
  234. * async queue for each priority case
  235. */
  236. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  237. struct cfq_queue *async_idle_cfqq;
  238. sector_t last_position;
  239. /*
  240. * tunables, see top of file
  241. */
  242. unsigned int cfq_quantum;
  243. unsigned int cfq_fifo_expire[2];
  244. unsigned int cfq_back_penalty;
  245. unsigned int cfq_back_max;
  246. unsigned int cfq_slice[2];
  247. unsigned int cfq_slice_async_rq;
  248. unsigned int cfq_slice_idle;
  249. unsigned int cfq_group_idle;
  250. unsigned int cfq_latency;
  251. unsigned int cfq_group_isolation;
  252. unsigned int cic_index;
  253. struct list_head cic_list;
  254. /*
  255. * Fallback dummy cfqq for extreme OOM conditions
  256. */
  257. struct cfq_queue oom_cfqq;
  258. unsigned long last_delayed_sync;
  259. /* List of cfq groups being managed on this device*/
  260. struct hlist_head cfqg_list;
  261. struct rcu_head rcu;
  262. };
  263. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  264. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  265. enum wl_prio_t prio,
  266. enum wl_type_t type)
  267. {
  268. if (!cfqg)
  269. return NULL;
  270. if (prio == IDLE_WORKLOAD)
  271. return &cfqg->service_tree_idle;
  272. return &cfqg->service_trees[prio][type];
  273. }
  274. enum cfqq_state_flags {
  275. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  276. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  277. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  278. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  279. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  280. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  281. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  282. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  283. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  284. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  285. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  286. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  287. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  288. };
  289. #define CFQ_CFQQ_FNS(name) \
  290. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  291. { \
  292. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  293. } \
  294. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  295. { \
  296. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  297. } \
  298. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  299. { \
  300. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  301. }
  302. CFQ_CFQQ_FNS(on_rr);
  303. CFQ_CFQQ_FNS(wait_request);
  304. CFQ_CFQQ_FNS(must_dispatch);
  305. CFQ_CFQQ_FNS(must_alloc_slice);
  306. CFQ_CFQQ_FNS(fifo_expire);
  307. CFQ_CFQQ_FNS(idle_window);
  308. CFQ_CFQQ_FNS(prio_changed);
  309. CFQ_CFQQ_FNS(slice_new);
  310. CFQ_CFQQ_FNS(sync);
  311. CFQ_CFQQ_FNS(coop);
  312. CFQ_CFQQ_FNS(split_coop);
  313. CFQ_CFQQ_FNS(deep);
  314. CFQ_CFQQ_FNS(wait_busy);
  315. #undef CFQ_CFQQ_FNS
  316. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  317. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  318. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  319. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  320. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  321. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  322. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  323. blkg_path(&(cfqg)->blkg), ##args); \
  324. #else
  325. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  326. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  327. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  328. #endif
  329. #define cfq_log(cfqd, fmt, args...) \
  330. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  331. /* Traverses through cfq group service trees */
  332. #define for_each_cfqg_st(cfqg, i, j, st) \
  333. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  334. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  335. : &cfqg->service_tree_idle; \
  336. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  337. (i == IDLE_WORKLOAD && j == 0); \
  338. j++, st = i < IDLE_WORKLOAD ? \
  339. &cfqg->service_trees[i][j]: NULL) \
  340. static inline bool iops_mode(struct cfq_data *cfqd)
  341. {
  342. /*
  343. * If we are not idling on queues and it is a NCQ drive, parallel
  344. * execution of requests is on and measuring time is not possible
  345. * in most of the cases until and unless we drive shallower queue
  346. * depths and that becomes a performance bottleneck. In such cases
  347. * switch to start providing fairness in terms of number of IOs.
  348. */
  349. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  350. return true;
  351. else
  352. return false;
  353. }
  354. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  355. {
  356. if (cfq_class_idle(cfqq))
  357. return IDLE_WORKLOAD;
  358. if (cfq_class_rt(cfqq))
  359. return RT_WORKLOAD;
  360. return BE_WORKLOAD;
  361. }
  362. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  363. {
  364. if (!cfq_cfqq_sync(cfqq))
  365. return ASYNC_WORKLOAD;
  366. if (!cfq_cfqq_idle_window(cfqq))
  367. return SYNC_NOIDLE_WORKLOAD;
  368. return SYNC_WORKLOAD;
  369. }
  370. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  371. struct cfq_data *cfqd,
  372. struct cfq_group *cfqg)
  373. {
  374. if (wl == IDLE_WORKLOAD)
  375. return cfqg->service_tree_idle.count;
  376. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  377. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  378. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  379. }
  380. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  381. struct cfq_group *cfqg)
  382. {
  383. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  384. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  385. }
  386. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  387. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  388. struct io_context *, gfp_t);
  389. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  390. struct io_context *);
  391. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  392. bool is_sync)
  393. {
  394. return cic->cfqq[is_sync];
  395. }
  396. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  397. struct cfq_queue *cfqq, bool is_sync)
  398. {
  399. cic->cfqq[is_sync] = cfqq;
  400. }
  401. #define CIC_DEAD_KEY 1ul
  402. #define CIC_DEAD_INDEX_SHIFT 1
  403. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  404. {
  405. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  406. }
  407. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  408. {
  409. struct cfq_data *cfqd = cic->key;
  410. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  411. return NULL;
  412. return cfqd;
  413. }
  414. /*
  415. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  416. * set (in which case it could also be direct WRITE).
  417. */
  418. static inline bool cfq_bio_sync(struct bio *bio)
  419. {
  420. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  421. }
  422. /*
  423. * scheduler run of queue, if there are requests pending and no one in the
  424. * driver that will restart queueing
  425. */
  426. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  427. {
  428. if (cfqd->busy_queues) {
  429. cfq_log(cfqd, "schedule dispatch");
  430. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  431. }
  432. }
  433. static int cfq_queue_empty(struct request_queue *q)
  434. {
  435. struct cfq_data *cfqd = q->elevator->elevator_data;
  436. return !cfqd->rq_queued;
  437. }
  438. /*
  439. * Scale schedule slice based on io priority. Use the sync time slice only
  440. * if a queue is marked sync and has sync io queued. A sync queue with async
  441. * io only, should not get full sync slice length.
  442. */
  443. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  444. unsigned short prio)
  445. {
  446. const int base_slice = cfqd->cfq_slice[sync];
  447. WARN_ON(prio >= IOPRIO_BE_NR);
  448. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  449. }
  450. static inline int
  451. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  452. {
  453. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  454. }
  455. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  456. {
  457. u64 d = delta << CFQ_SERVICE_SHIFT;
  458. d = d * BLKIO_WEIGHT_DEFAULT;
  459. do_div(d, cfqg->weight);
  460. return d;
  461. }
  462. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  463. {
  464. s64 delta = (s64)(vdisktime - min_vdisktime);
  465. if (delta > 0)
  466. min_vdisktime = vdisktime;
  467. return min_vdisktime;
  468. }
  469. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  470. {
  471. s64 delta = (s64)(vdisktime - min_vdisktime);
  472. if (delta < 0)
  473. min_vdisktime = vdisktime;
  474. return min_vdisktime;
  475. }
  476. static void update_min_vdisktime(struct cfq_rb_root *st)
  477. {
  478. u64 vdisktime = st->min_vdisktime;
  479. struct cfq_group *cfqg;
  480. if (st->left) {
  481. cfqg = rb_entry_cfqg(st->left);
  482. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  483. }
  484. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  485. }
  486. /*
  487. * get averaged number of queues of RT/BE priority.
  488. * average is updated, with a formula that gives more weight to higher numbers,
  489. * to quickly follows sudden increases and decrease slowly
  490. */
  491. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  492. struct cfq_group *cfqg, bool rt)
  493. {
  494. unsigned min_q, max_q;
  495. unsigned mult = cfq_hist_divisor - 1;
  496. unsigned round = cfq_hist_divisor / 2;
  497. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  498. min_q = min(cfqg->busy_queues_avg[rt], busy);
  499. max_q = max(cfqg->busy_queues_avg[rt], busy);
  500. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  501. cfq_hist_divisor;
  502. return cfqg->busy_queues_avg[rt];
  503. }
  504. static inline unsigned
  505. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  506. {
  507. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  508. return cfq_target_latency * cfqg->weight / st->total_weight;
  509. }
  510. static inline void
  511. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  512. {
  513. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  514. if (cfqd->cfq_latency) {
  515. /*
  516. * interested queues (we consider only the ones with the same
  517. * priority class in the cfq group)
  518. */
  519. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  520. cfq_class_rt(cfqq));
  521. unsigned sync_slice = cfqd->cfq_slice[1];
  522. unsigned expect_latency = sync_slice * iq;
  523. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  524. if (expect_latency > group_slice) {
  525. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  526. /* scale low_slice according to IO priority
  527. * and sync vs async */
  528. unsigned low_slice =
  529. min(slice, base_low_slice * slice / sync_slice);
  530. /* the adapted slice value is scaled to fit all iqs
  531. * into the target latency */
  532. slice = max(slice * group_slice / expect_latency,
  533. low_slice);
  534. }
  535. }
  536. cfqq->slice_start = jiffies;
  537. cfqq->slice_end = jiffies + slice;
  538. cfqq->allocated_slice = slice;
  539. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  540. }
  541. /*
  542. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  543. * isn't valid until the first request from the dispatch is activated
  544. * and the slice time set.
  545. */
  546. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  547. {
  548. if (cfq_cfqq_slice_new(cfqq))
  549. return false;
  550. if (time_before(jiffies, cfqq->slice_end))
  551. return false;
  552. return true;
  553. }
  554. /*
  555. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  556. * We choose the request that is closest to the head right now. Distance
  557. * behind the head is penalized and only allowed to a certain extent.
  558. */
  559. static struct request *
  560. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  561. {
  562. sector_t s1, s2, d1 = 0, d2 = 0;
  563. unsigned long back_max;
  564. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  565. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  566. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  567. if (rq1 == NULL || rq1 == rq2)
  568. return rq2;
  569. if (rq2 == NULL)
  570. return rq1;
  571. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  572. return rq1;
  573. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  574. return rq2;
  575. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  576. return rq1;
  577. else if ((rq2->cmd_flags & REQ_META) &&
  578. !(rq1->cmd_flags & REQ_META))
  579. return rq2;
  580. s1 = blk_rq_pos(rq1);
  581. s2 = blk_rq_pos(rq2);
  582. /*
  583. * by definition, 1KiB is 2 sectors
  584. */
  585. back_max = cfqd->cfq_back_max * 2;
  586. /*
  587. * Strict one way elevator _except_ in the case where we allow
  588. * short backward seeks which are biased as twice the cost of a
  589. * similar forward seek.
  590. */
  591. if (s1 >= last)
  592. d1 = s1 - last;
  593. else if (s1 + back_max >= last)
  594. d1 = (last - s1) * cfqd->cfq_back_penalty;
  595. else
  596. wrap |= CFQ_RQ1_WRAP;
  597. if (s2 >= last)
  598. d2 = s2 - last;
  599. else if (s2 + back_max >= last)
  600. d2 = (last - s2) * cfqd->cfq_back_penalty;
  601. else
  602. wrap |= CFQ_RQ2_WRAP;
  603. /* Found required data */
  604. /*
  605. * By doing switch() on the bit mask "wrap" we avoid having to
  606. * check two variables for all permutations: --> faster!
  607. */
  608. switch (wrap) {
  609. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  610. if (d1 < d2)
  611. return rq1;
  612. else if (d2 < d1)
  613. return rq2;
  614. else {
  615. if (s1 >= s2)
  616. return rq1;
  617. else
  618. return rq2;
  619. }
  620. case CFQ_RQ2_WRAP:
  621. return rq1;
  622. case CFQ_RQ1_WRAP:
  623. return rq2;
  624. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  625. default:
  626. /*
  627. * Since both rqs are wrapped,
  628. * start with the one that's further behind head
  629. * (--> only *one* back seek required),
  630. * since back seek takes more time than forward.
  631. */
  632. if (s1 <= s2)
  633. return rq1;
  634. else
  635. return rq2;
  636. }
  637. }
  638. /*
  639. * The below is leftmost cache rbtree addon
  640. */
  641. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  642. {
  643. /* Service tree is empty */
  644. if (!root->count)
  645. return NULL;
  646. if (!root->left)
  647. root->left = rb_first(&root->rb);
  648. if (root->left)
  649. return rb_entry(root->left, struct cfq_queue, rb_node);
  650. return NULL;
  651. }
  652. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  653. {
  654. if (!root->left)
  655. root->left = rb_first(&root->rb);
  656. if (root->left)
  657. return rb_entry_cfqg(root->left);
  658. return NULL;
  659. }
  660. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  661. {
  662. rb_erase(n, root);
  663. RB_CLEAR_NODE(n);
  664. }
  665. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  666. {
  667. if (root->left == n)
  668. root->left = NULL;
  669. rb_erase_init(n, &root->rb);
  670. --root->count;
  671. }
  672. /*
  673. * would be nice to take fifo expire time into account as well
  674. */
  675. static struct request *
  676. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  677. struct request *last)
  678. {
  679. struct rb_node *rbnext = rb_next(&last->rb_node);
  680. struct rb_node *rbprev = rb_prev(&last->rb_node);
  681. struct request *next = NULL, *prev = NULL;
  682. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  683. if (rbprev)
  684. prev = rb_entry_rq(rbprev);
  685. if (rbnext)
  686. next = rb_entry_rq(rbnext);
  687. else {
  688. rbnext = rb_first(&cfqq->sort_list);
  689. if (rbnext && rbnext != &last->rb_node)
  690. next = rb_entry_rq(rbnext);
  691. }
  692. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  693. }
  694. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  695. struct cfq_queue *cfqq)
  696. {
  697. /*
  698. * just an approximation, should be ok.
  699. */
  700. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  701. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  702. }
  703. static inline s64
  704. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  705. {
  706. return cfqg->vdisktime - st->min_vdisktime;
  707. }
  708. static void
  709. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  710. {
  711. struct rb_node **node = &st->rb.rb_node;
  712. struct rb_node *parent = NULL;
  713. struct cfq_group *__cfqg;
  714. s64 key = cfqg_key(st, cfqg);
  715. int left = 1;
  716. while (*node != NULL) {
  717. parent = *node;
  718. __cfqg = rb_entry_cfqg(parent);
  719. if (key < cfqg_key(st, __cfqg))
  720. node = &parent->rb_left;
  721. else {
  722. node = &parent->rb_right;
  723. left = 0;
  724. }
  725. }
  726. if (left)
  727. st->left = &cfqg->rb_node;
  728. rb_link_node(&cfqg->rb_node, parent, node);
  729. rb_insert_color(&cfqg->rb_node, &st->rb);
  730. }
  731. static void
  732. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  733. {
  734. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  735. struct cfq_group *__cfqg;
  736. struct rb_node *n;
  737. cfqg->nr_cfqq++;
  738. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  739. return;
  740. /*
  741. * Currently put the group at the end. Later implement something
  742. * so that groups get lesser vtime based on their weights, so that
  743. * if group does not loose all if it was not continously backlogged.
  744. */
  745. n = rb_last(&st->rb);
  746. if (n) {
  747. __cfqg = rb_entry_cfqg(n);
  748. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  749. } else
  750. cfqg->vdisktime = st->min_vdisktime;
  751. __cfq_group_service_tree_add(st, cfqg);
  752. st->total_weight += cfqg->weight;
  753. }
  754. static void
  755. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  756. {
  757. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  758. BUG_ON(cfqg->nr_cfqq < 1);
  759. cfqg->nr_cfqq--;
  760. /* If there are other cfq queues under this group, don't delete it */
  761. if (cfqg->nr_cfqq)
  762. return;
  763. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  764. st->total_weight -= cfqg->weight;
  765. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  766. cfq_rb_erase(&cfqg->rb_node, st);
  767. cfqg->saved_workload_slice = 0;
  768. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  769. }
  770. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  771. {
  772. unsigned int slice_used;
  773. /*
  774. * Queue got expired before even a single request completed or
  775. * got expired immediately after first request completion.
  776. */
  777. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  778. /*
  779. * Also charge the seek time incurred to the group, otherwise
  780. * if there are mutiple queues in the group, each can dispatch
  781. * a single request on seeky media and cause lots of seek time
  782. * and group will never know it.
  783. */
  784. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  785. 1);
  786. } else {
  787. slice_used = jiffies - cfqq->slice_start;
  788. if (slice_used > cfqq->allocated_slice)
  789. slice_used = cfqq->allocated_slice;
  790. }
  791. return slice_used;
  792. }
  793. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  794. struct cfq_queue *cfqq)
  795. {
  796. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  797. unsigned int used_sl, charge;
  798. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  799. - cfqg->service_tree_idle.count;
  800. BUG_ON(nr_sync < 0);
  801. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  802. if (iops_mode(cfqd))
  803. charge = cfqq->slice_dispatch;
  804. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  805. charge = cfqq->allocated_slice;
  806. /* Can't update vdisktime while group is on service tree */
  807. cfq_rb_erase(&cfqg->rb_node, st);
  808. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  809. __cfq_group_service_tree_add(st, cfqg);
  810. /* This group is being expired. Save the context */
  811. if (time_after(cfqd->workload_expires, jiffies)) {
  812. cfqg->saved_workload_slice = cfqd->workload_expires
  813. - jiffies;
  814. cfqg->saved_workload = cfqd->serving_type;
  815. cfqg->saved_serving_prio = cfqd->serving_prio;
  816. } else
  817. cfqg->saved_workload_slice = 0;
  818. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  819. st->min_vdisktime);
  820. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  821. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  822. iops_mode(cfqd), cfqq->nr_sectors);
  823. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  824. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  825. }
  826. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  827. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  828. {
  829. if (blkg)
  830. return container_of(blkg, struct cfq_group, blkg);
  831. return NULL;
  832. }
  833. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  834. unsigned int weight)
  835. {
  836. cfqg_of_blkg(blkg)->weight = weight;
  837. }
  838. static struct cfq_group *
  839. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  840. {
  841. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  842. struct cfq_group *cfqg = NULL;
  843. void *key = cfqd;
  844. int i, j;
  845. struct cfq_rb_root *st;
  846. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  847. unsigned int major, minor;
  848. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  849. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  850. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  851. cfqg->blkg.dev = MKDEV(major, minor);
  852. goto done;
  853. }
  854. if (cfqg || !create)
  855. goto done;
  856. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  857. if (!cfqg)
  858. goto done;
  859. for_each_cfqg_st(cfqg, i, j, st)
  860. *st = CFQ_RB_ROOT;
  861. RB_CLEAR_NODE(&cfqg->rb_node);
  862. /*
  863. * Take the initial reference that will be released on destroy
  864. * This can be thought of a joint reference by cgroup and
  865. * elevator which will be dropped by either elevator exit
  866. * or cgroup deletion path depending on who is exiting first.
  867. */
  868. atomic_set(&cfqg->ref, 1);
  869. /*
  870. * Add group onto cgroup list. It might happen that bdi->dev is
  871. * not initiliazed yet. Initialize this new group without major
  872. * and minor info and this info will be filled in once a new thread
  873. * comes for IO. See code above.
  874. */
  875. if (bdi->dev) {
  876. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  877. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  878. MKDEV(major, minor));
  879. } else
  880. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  881. 0);
  882. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  883. /* Add group on cfqd list */
  884. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  885. done:
  886. return cfqg;
  887. }
  888. /*
  889. * Search for the cfq group current task belongs to. If create = 1, then also
  890. * create the cfq group if it does not exist. request_queue lock must be held.
  891. */
  892. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  893. {
  894. struct cgroup *cgroup;
  895. struct cfq_group *cfqg = NULL;
  896. rcu_read_lock();
  897. cgroup = task_cgroup(current, blkio_subsys_id);
  898. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  899. if (!cfqg && create)
  900. cfqg = &cfqd->root_group;
  901. rcu_read_unlock();
  902. return cfqg;
  903. }
  904. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  905. {
  906. atomic_inc(&cfqg->ref);
  907. return cfqg;
  908. }
  909. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  910. {
  911. /* Currently, all async queues are mapped to root group */
  912. if (!cfq_cfqq_sync(cfqq))
  913. cfqg = &cfqq->cfqd->root_group;
  914. cfqq->cfqg = cfqg;
  915. /* cfqq reference on cfqg */
  916. atomic_inc(&cfqq->cfqg->ref);
  917. }
  918. static void cfq_put_cfqg(struct cfq_group *cfqg)
  919. {
  920. struct cfq_rb_root *st;
  921. int i, j;
  922. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  923. if (!atomic_dec_and_test(&cfqg->ref))
  924. return;
  925. for_each_cfqg_st(cfqg, i, j, st)
  926. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  927. kfree(cfqg);
  928. }
  929. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  930. {
  931. /* Something wrong if we are trying to remove same group twice */
  932. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  933. hlist_del_init(&cfqg->cfqd_node);
  934. /*
  935. * Put the reference taken at the time of creation so that when all
  936. * queues are gone, group can be destroyed.
  937. */
  938. cfq_put_cfqg(cfqg);
  939. }
  940. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  941. {
  942. struct hlist_node *pos, *n;
  943. struct cfq_group *cfqg;
  944. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  945. /*
  946. * If cgroup removal path got to blk_group first and removed
  947. * it from cgroup list, then it will take care of destroying
  948. * cfqg also.
  949. */
  950. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  951. cfq_destroy_cfqg(cfqd, cfqg);
  952. }
  953. }
  954. /*
  955. * Blk cgroup controller notification saying that blkio_group object is being
  956. * delinked as associated cgroup object is going away. That also means that
  957. * no new IO will come in this group. So get rid of this group as soon as
  958. * any pending IO in the group is finished.
  959. *
  960. * This function is called under rcu_read_lock(). key is the rcu protected
  961. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  962. * read lock.
  963. *
  964. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  965. * it should not be NULL as even if elevator was exiting, cgroup deltion
  966. * path got to it first.
  967. */
  968. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  969. {
  970. unsigned long flags;
  971. struct cfq_data *cfqd = key;
  972. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  973. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  974. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  975. }
  976. #else /* GROUP_IOSCHED */
  977. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  978. {
  979. return &cfqd->root_group;
  980. }
  981. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  982. {
  983. return cfqg;
  984. }
  985. static inline void
  986. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  987. cfqq->cfqg = cfqg;
  988. }
  989. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  990. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  991. #endif /* GROUP_IOSCHED */
  992. /*
  993. * The cfqd->service_trees holds all pending cfq_queue's that have
  994. * requests waiting to be processed. It is sorted in the order that
  995. * we will service the queues.
  996. */
  997. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  998. bool add_front)
  999. {
  1000. struct rb_node **p, *parent;
  1001. struct cfq_queue *__cfqq;
  1002. unsigned long rb_key;
  1003. struct cfq_rb_root *service_tree;
  1004. int left;
  1005. int new_cfqq = 1;
  1006. int group_changed = 0;
  1007. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1008. if (!cfqd->cfq_group_isolation
  1009. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  1010. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  1011. /* Move this cfq to root group */
  1012. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  1013. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1014. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1015. cfqq->orig_cfqg = cfqq->cfqg;
  1016. cfqq->cfqg = &cfqd->root_group;
  1017. atomic_inc(&cfqd->root_group.ref);
  1018. group_changed = 1;
  1019. } else if (!cfqd->cfq_group_isolation
  1020. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1021. /* cfqq is sequential now needs to go to its original group */
  1022. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1023. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1024. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1025. cfq_put_cfqg(cfqq->cfqg);
  1026. cfqq->cfqg = cfqq->orig_cfqg;
  1027. cfqq->orig_cfqg = NULL;
  1028. group_changed = 1;
  1029. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1030. }
  1031. #endif
  1032. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1033. cfqq_type(cfqq));
  1034. if (cfq_class_idle(cfqq)) {
  1035. rb_key = CFQ_IDLE_DELAY;
  1036. parent = rb_last(&service_tree->rb);
  1037. if (parent && parent != &cfqq->rb_node) {
  1038. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1039. rb_key += __cfqq->rb_key;
  1040. } else
  1041. rb_key += jiffies;
  1042. } else if (!add_front) {
  1043. /*
  1044. * Get our rb key offset. Subtract any residual slice
  1045. * value carried from last service. A negative resid
  1046. * count indicates slice overrun, and this should position
  1047. * the next service time further away in the tree.
  1048. */
  1049. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1050. rb_key -= cfqq->slice_resid;
  1051. cfqq->slice_resid = 0;
  1052. } else {
  1053. rb_key = -HZ;
  1054. __cfqq = cfq_rb_first(service_tree);
  1055. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1056. }
  1057. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1058. new_cfqq = 0;
  1059. /*
  1060. * same position, nothing more to do
  1061. */
  1062. if (rb_key == cfqq->rb_key &&
  1063. cfqq->service_tree == service_tree)
  1064. return;
  1065. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1066. cfqq->service_tree = NULL;
  1067. }
  1068. left = 1;
  1069. parent = NULL;
  1070. cfqq->service_tree = service_tree;
  1071. p = &service_tree->rb.rb_node;
  1072. while (*p) {
  1073. struct rb_node **n;
  1074. parent = *p;
  1075. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1076. /*
  1077. * sort by key, that represents service time.
  1078. */
  1079. if (time_before(rb_key, __cfqq->rb_key))
  1080. n = &(*p)->rb_left;
  1081. else {
  1082. n = &(*p)->rb_right;
  1083. left = 0;
  1084. }
  1085. p = n;
  1086. }
  1087. if (left)
  1088. service_tree->left = &cfqq->rb_node;
  1089. cfqq->rb_key = rb_key;
  1090. rb_link_node(&cfqq->rb_node, parent, p);
  1091. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1092. service_tree->count++;
  1093. if ((add_front || !new_cfqq) && !group_changed)
  1094. return;
  1095. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1096. }
  1097. static struct cfq_queue *
  1098. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1099. sector_t sector, struct rb_node **ret_parent,
  1100. struct rb_node ***rb_link)
  1101. {
  1102. struct rb_node **p, *parent;
  1103. struct cfq_queue *cfqq = NULL;
  1104. parent = NULL;
  1105. p = &root->rb_node;
  1106. while (*p) {
  1107. struct rb_node **n;
  1108. parent = *p;
  1109. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1110. /*
  1111. * Sort strictly based on sector. Smallest to the left,
  1112. * largest to the right.
  1113. */
  1114. if (sector > blk_rq_pos(cfqq->next_rq))
  1115. n = &(*p)->rb_right;
  1116. else if (sector < blk_rq_pos(cfqq->next_rq))
  1117. n = &(*p)->rb_left;
  1118. else
  1119. break;
  1120. p = n;
  1121. cfqq = NULL;
  1122. }
  1123. *ret_parent = parent;
  1124. if (rb_link)
  1125. *rb_link = p;
  1126. return cfqq;
  1127. }
  1128. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1129. {
  1130. struct rb_node **p, *parent;
  1131. struct cfq_queue *__cfqq;
  1132. if (cfqq->p_root) {
  1133. rb_erase(&cfqq->p_node, cfqq->p_root);
  1134. cfqq->p_root = NULL;
  1135. }
  1136. if (cfq_class_idle(cfqq))
  1137. return;
  1138. if (!cfqq->next_rq)
  1139. return;
  1140. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1141. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1142. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1143. if (!__cfqq) {
  1144. rb_link_node(&cfqq->p_node, parent, p);
  1145. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1146. } else
  1147. cfqq->p_root = NULL;
  1148. }
  1149. /*
  1150. * Update cfqq's position in the service tree.
  1151. */
  1152. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1153. {
  1154. /*
  1155. * Resorting requires the cfqq to be on the RR list already.
  1156. */
  1157. if (cfq_cfqq_on_rr(cfqq)) {
  1158. cfq_service_tree_add(cfqd, cfqq, 0);
  1159. cfq_prio_tree_add(cfqd, cfqq);
  1160. }
  1161. }
  1162. /*
  1163. * add to busy list of queues for service, trying to be fair in ordering
  1164. * the pending list according to last request service
  1165. */
  1166. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1167. {
  1168. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1169. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1170. cfq_mark_cfqq_on_rr(cfqq);
  1171. cfqd->busy_queues++;
  1172. cfq_resort_rr_list(cfqd, cfqq);
  1173. }
  1174. /*
  1175. * Called when the cfqq no longer has requests pending, remove it from
  1176. * the service tree.
  1177. */
  1178. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1179. {
  1180. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1181. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1182. cfq_clear_cfqq_on_rr(cfqq);
  1183. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1184. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1185. cfqq->service_tree = NULL;
  1186. }
  1187. if (cfqq->p_root) {
  1188. rb_erase(&cfqq->p_node, cfqq->p_root);
  1189. cfqq->p_root = NULL;
  1190. }
  1191. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1192. BUG_ON(!cfqd->busy_queues);
  1193. cfqd->busy_queues--;
  1194. }
  1195. /*
  1196. * rb tree support functions
  1197. */
  1198. static void cfq_del_rq_rb(struct request *rq)
  1199. {
  1200. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1201. const int sync = rq_is_sync(rq);
  1202. BUG_ON(!cfqq->queued[sync]);
  1203. cfqq->queued[sync]--;
  1204. elv_rb_del(&cfqq->sort_list, rq);
  1205. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1206. /*
  1207. * Queue will be deleted from service tree when we actually
  1208. * expire it later. Right now just remove it from prio tree
  1209. * as it is empty.
  1210. */
  1211. if (cfqq->p_root) {
  1212. rb_erase(&cfqq->p_node, cfqq->p_root);
  1213. cfqq->p_root = NULL;
  1214. }
  1215. }
  1216. }
  1217. static void cfq_add_rq_rb(struct request *rq)
  1218. {
  1219. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1220. struct cfq_data *cfqd = cfqq->cfqd;
  1221. struct request *__alias, *prev;
  1222. cfqq->queued[rq_is_sync(rq)]++;
  1223. /*
  1224. * looks a little odd, but the first insert might return an alias.
  1225. * if that happens, put the alias on the dispatch list
  1226. */
  1227. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1228. cfq_dispatch_insert(cfqd->queue, __alias);
  1229. if (!cfq_cfqq_on_rr(cfqq))
  1230. cfq_add_cfqq_rr(cfqd, cfqq);
  1231. /*
  1232. * check if this request is a better next-serve candidate
  1233. */
  1234. prev = cfqq->next_rq;
  1235. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1236. /*
  1237. * adjust priority tree position, if ->next_rq changes
  1238. */
  1239. if (prev != cfqq->next_rq)
  1240. cfq_prio_tree_add(cfqd, cfqq);
  1241. BUG_ON(!cfqq->next_rq);
  1242. }
  1243. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1244. {
  1245. elv_rb_del(&cfqq->sort_list, rq);
  1246. cfqq->queued[rq_is_sync(rq)]--;
  1247. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1248. rq_data_dir(rq), rq_is_sync(rq));
  1249. cfq_add_rq_rb(rq);
  1250. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1251. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1252. rq_is_sync(rq));
  1253. }
  1254. static struct request *
  1255. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1256. {
  1257. struct task_struct *tsk = current;
  1258. struct cfq_io_context *cic;
  1259. struct cfq_queue *cfqq;
  1260. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1261. if (!cic)
  1262. return NULL;
  1263. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1264. if (cfqq) {
  1265. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1266. return elv_rb_find(&cfqq->sort_list, sector);
  1267. }
  1268. return NULL;
  1269. }
  1270. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1271. {
  1272. struct cfq_data *cfqd = q->elevator->elevator_data;
  1273. cfqd->rq_in_driver++;
  1274. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1275. cfqd->rq_in_driver);
  1276. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1277. }
  1278. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1279. {
  1280. struct cfq_data *cfqd = q->elevator->elevator_data;
  1281. WARN_ON(!cfqd->rq_in_driver);
  1282. cfqd->rq_in_driver--;
  1283. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1284. cfqd->rq_in_driver);
  1285. }
  1286. static void cfq_remove_request(struct request *rq)
  1287. {
  1288. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1289. if (cfqq->next_rq == rq)
  1290. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1291. list_del_init(&rq->queuelist);
  1292. cfq_del_rq_rb(rq);
  1293. cfqq->cfqd->rq_queued--;
  1294. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1295. rq_data_dir(rq), rq_is_sync(rq));
  1296. if (rq->cmd_flags & REQ_META) {
  1297. WARN_ON(!cfqq->meta_pending);
  1298. cfqq->meta_pending--;
  1299. }
  1300. }
  1301. static int cfq_merge(struct request_queue *q, struct request **req,
  1302. struct bio *bio)
  1303. {
  1304. struct cfq_data *cfqd = q->elevator->elevator_data;
  1305. struct request *__rq;
  1306. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1307. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1308. *req = __rq;
  1309. return ELEVATOR_FRONT_MERGE;
  1310. }
  1311. return ELEVATOR_NO_MERGE;
  1312. }
  1313. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1314. int type)
  1315. {
  1316. if (type == ELEVATOR_FRONT_MERGE) {
  1317. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1318. cfq_reposition_rq_rb(cfqq, req);
  1319. }
  1320. }
  1321. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1322. struct bio *bio)
  1323. {
  1324. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1325. bio_data_dir(bio), cfq_bio_sync(bio));
  1326. }
  1327. static void
  1328. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1329. struct request *next)
  1330. {
  1331. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1332. /*
  1333. * reposition in fifo if next is older than rq
  1334. */
  1335. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1336. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1337. list_move(&rq->queuelist, &next->queuelist);
  1338. rq_set_fifo_time(rq, rq_fifo_time(next));
  1339. }
  1340. if (cfqq->next_rq == next)
  1341. cfqq->next_rq = rq;
  1342. cfq_remove_request(next);
  1343. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1344. rq_data_dir(next), rq_is_sync(next));
  1345. }
  1346. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1347. struct bio *bio)
  1348. {
  1349. struct cfq_data *cfqd = q->elevator->elevator_data;
  1350. struct cfq_io_context *cic;
  1351. struct cfq_queue *cfqq;
  1352. /*
  1353. * Disallow merge of a sync bio into an async request.
  1354. */
  1355. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1356. return false;
  1357. /*
  1358. * Lookup the cfqq that this bio will be queued with. Allow
  1359. * merge only if rq is queued there.
  1360. */
  1361. cic = cfq_cic_lookup(cfqd, current->io_context);
  1362. if (!cic)
  1363. return false;
  1364. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1365. return cfqq == RQ_CFQQ(rq);
  1366. }
  1367. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1368. {
  1369. del_timer(&cfqd->idle_slice_timer);
  1370. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1371. }
  1372. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1373. struct cfq_queue *cfqq)
  1374. {
  1375. if (cfqq) {
  1376. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1377. cfqd->serving_prio, cfqd->serving_type);
  1378. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1379. cfqq->slice_start = 0;
  1380. cfqq->dispatch_start = jiffies;
  1381. cfqq->allocated_slice = 0;
  1382. cfqq->slice_end = 0;
  1383. cfqq->slice_dispatch = 0;
  1384. cfqq->nr_sectors = 0;
  1385. cfq_clear_cfqq_wait_request(cfqq);
  1386. cfq_clear_cfqq_must_dispatch(cfqq);
  1387. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1388. cfq_clear_cfqq_fifo_expire(cfqq);
  1389. cfq_mark_cfqq_slice_new(cfqq);
  1390. cfq_del_timer(cfqd, cfqq);
  1391. }
  1392. cfqd->active_queue = cfqq;
  1393. }
  1394. /*
  1395. * current cfqq expired its slice (or was too idle), select new one
  1396. */
  1397. static void
  1398. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1399. bool timed_out)
  1400. {
  1401. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1402. if (cfq_cfqq_wait_request(cfqq))
  1403. cfq_del_timer(cfqd, cfqq);
  1404. cfq_clear_cfqq_wait_request(cfqq);
  1405. cfq_clear_cfqq_wait_busy(cfqq);
  1406. /*
  1407. * If this cfqq is shared between multiple processes, check to
  1408. * make sure that those processes are still issuing I/Os within
  1409. * the mean seek distance. If not, it may be time to break the
  1410. * queues apart again.
  1411. */
  1412. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1413. cfq_mark_cfqq_split_coop(cfqq);
  1414. /*
  1415. * store what was left of this slice, if the queue idled/timed out
  1416. */
  1417. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1418. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1419. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1420. }
  1421. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1422. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1423. cfq_del_cfqq_rr(cfqd, cfqq);
  1424. cfq_resort_rr_list(cfqd, cfqq);
  1425. if (cfqq == cfqd->active_queue)
  1426. cfqd->active_queue = NULL;
  1427. if (cfqd->active_cic) {
  1428. put_io_context(cfqd->active_cic->ioc);
  1429. cfqd->active_cic = NULL;
  1430. }
  1431. }
  1432. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1433. {
  1434. struct cfq_queue *cfqq = cfqd->active_queue;
  1435. if (cfqq)
  1436. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1437. }
  1438. /*
  1439. * Get next queue for service. Unless we have a queue preemption,
  1440. * we'll simply select the first cfqq in the service tree.
  1441. */
  1442. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1443. {
  1444. struct cfq_rb_root *service_tree =
  1445. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1446. cfqd->serving_type);
  1447. if (!cfqd->rq_queued)
  1448. return NULL;
  1449. /* There is nothing to dispatch */
  1450. if (!service_tree)
  1451. return NULL;
  1452. if (RB_EMPTY_ROOT(&service_tree->rb))
  1453. return NULL;
  1454. return cfq_rb_first(service_tree);
  1455. }
  1456. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1457. {
  1458. struct cfq_group *cfqg;
  1459. struct cfq_queue *cfqq;
  1460. int i, j;
  1461. struct cfq_rb_root *st;
  1462. if (!cfqd->rq_queued)
  1463. return NULL;
  1464. cfqg = cfq_get_next_cfqg(cfqd);
  1465. if (!cfqg)
  1466. return NULL;
  1467. for_each_cfqg_st(cfqg, i, j, st)
  1468. if ((cfqq = cfq_rb_first(st)) != NULL)
  1469. return cfqq;
  1470. return NULL;
  1471. }
  1472. /*
  1473. * Get and set a new active queue for service.
  1474. */
  1475. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1476. struct cfq_queue *cfqq)
  1477. {
  1478. if (!cfqq)
  1479. cfqq = cfq_get_next_queue(cfqd);
  1480. __cfq_set_active_queue(cfqd, cfqq);
  1481. return cfqq;
  1482. }
  1483. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1484. struct request *rq)
  1485. {
  1486. if (blk_rq_pos(rq) >= cfqd->last_position)
  1487. return blk_rq_pos(rq) - cfqd->last_position;
  1488. else
  1489. return cfqd->last_position - blk_rq_pos(rq);
  1490. }
  1491. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1492. struct request *rq)
  1493. {
  1494. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1495. }
  1496. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1497. struct cfq_queue *cur_cfqq)
  1498. {
  1499. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1500. struct rb_node *parent, *node;
  1501. struct cfq_queue *__cfqq;
  1502. sector_t sector = cfqd->last_position;
  1503. if (RB_EMPTY_ROOT(root))
  1504. return NULL;
  1505. /*
  1506. * First, if we find a request starting at the end of the last
  1507. * request, choose it.
  1508. */
  1509. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1510. if (__cfqq)
  1511. return __cfqq;
  1512. /*
  1513. * If the exact sector wasn't found, the parent of the NULL leaf
  1514. * will contain the closest sector.
  1515. */
  1516. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1517. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1518. return __cfqq;
  1519. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1520. node = rb_next(&__cfqq->p_node);
  1521. else
  1522. node = rb_prev(&__cfqq->p_node);
  1523. if (!node)
  1524. return NULL;
  1525. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1526. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1527. return __cfqq;
  1528. return NULL;
  1529. }
  1530. /*
  1531. * cfqd - obvious
  1532. * cur_cfqq - passed in so that we don't decide that the current queue is
  1533. * closely cooperating with itself.
  1534. *
  1535. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1536. * one request, and that cfqd->last_position reflects a position on the disk
  1537. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1538. * assumption.
  1539. */
  1540. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1541. struct cfq_queue *cur_cfqq)
  1542. {
  1543. struct cfq_queue *cfqq;
  1544. if (cfq_class_idle(cur_cfqq))
  1545. return NULL;
  1546. if (!cfq_cfqq_sync(cur_cfqq))
  1547. return NULL;
  1548. if (CFQQ_SEEKY(cur_cfqq))
  1549. return NULL;
  1550. /*
  1551. * Don't search priority tree if it's the only queue in the group.
  1552. */
  1553. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1554. return NULL;
  1555. /*
  1556. * We should notice if some of the queues are cooperating, eg
  1557. * working closely on the same area of the disk. In that case,
  1558. * we can group them together and don't waste time idling.
  1559. */
  1560. cfqq = cfqq_close(cfqd, cur_cfqq);
  1561. if (!cfqq)
  1562. return NULL;
  1563. /* If new queue belongs to different cfq_group, don't choose it */
  1564. if (cur_cfqq->cfqg != cfqq->cfqg)
  1565. return NULL;
  1566. /*
  1567. * It only makes sense to merge sync queues.
  1568. */
  1569. if (!cfq_cfqq_sync(cfqq))
  1570. return NULL;
  1571. if (CFQQ_SEEKY(cfqq))
  1572. return NULL;
  1573. /*
  1574. * Do not merge queues of different priority classes
  1575. */
  1576. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1577. return NULL;
  1578. return cfqq;
  1579. }
  1580. /*
  1581. * Determine whether we should enforce idle window for this queue.
  1582. */
  1583. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1584. {
  1585. enum wl_prio_t prio = cfqq_prio(cfqq);
  1586. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1587. BUG_ON(!service_tree);
  1588. BUG_ON(!service_tree->count);
  1589. if (!cfqd->cfq_slice_idle)
  1590. return false;
  1591. /* We never do for idle class queues. */
  1592. if (prio == IDLE_WORKLOAD)
  1593. return false;
  1594. /* We do for queues that were marked with idle window flag. */
  1595. if (cfq_cfqq_idle_window(cfqq) &&
  1596. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1597. return true;
  1598. /*
  1599. * Otherwise, we do only if they are the last ones
  1600. * in their service tree.
  1601. */
  1602. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1603. return true;
  1604. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1605. service_tree->count);
  1606. return false;
  1607. }
  1608. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1609. {
  1610. struct cfq_queue *cfqq = cfqd->active_queue;
  1611. struct cfq_io_context *cic;
  1612. unsigned long sl, group_idle = 0;
  1613. /*
  1614. * SSD device without seek penalty, disable idling. But only do so
  1615. * for devices that support queuing, otherwise we still have a problem
  1616. * with sync vs async workloads.
  1617. */
  1618. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1619. return;
  1620. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1621. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1622. /*
  1623. * idle is disabled, either manually or by past process history
  1624. */
  1625. if (!cfq_should_idle(cfqd, cfqq)) {
  1626. /* no queue idling. Check for group idling */
  1627. if (cfqd->cfq_group_idle)
  1628. group_idle = cfqd->cfq_group_idle;
  1629. else
  1630. return;
  1631. }
  1632. /*
  1633. * still active requests from this queue, don't idle
  1634. */
  1635. if (cfqq->dispatched)
  1636. return;
  1637. /*
  1638. * task has exited, don't wait
  1639. */
  1640. cic = cfqd->active_cic;
  1641. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1642. return;
  1643. /*
  1644. * If our average think time is larger than the remaining time
  1645. * slice, then don't idle. This avoids overrunning the allotted
  1646. * time slice.
  1647. */
  1648. if (sample_valid(cic->ttime_samples) &&
  1649. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1650. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1651. cic->ttime_mean);
  1652. return;
  1653. }
  1654. /* There are other queues in the group, don't do group idle */
  1655. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1656. return;
  1657. cfq_mark_cfqq_wait_request(cfqq);
  1658. if (group_idle)
  1659. sl = cfqd->cfq_group_idle;
  1660. else
  1661. sl = cfqd->cfq_slice_idle;
  1662. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1663. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1664. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1665. group_idle ? 1 : 0);
  1666. }
  1667. /*
  1668. * Move request from internal lists to the request queue dispatch list.
  1669. */
  1670. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1671. {
  1672. struct cfq_data *cfqd = q->elevator->elevator_data;
  1673. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1674. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1675. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1676. cfq_remove_request(rq);
  1677. cfqq->dispatched++;
  1678. (RQ_CFQG(rq))->dispatched++;
  1679. elv_dispatch_sort(q, rq);
  1680. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1681. cfqq->nr_sectors += blk_rq_sectors(rq);
  1682. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1683. rq_data_dir(rq), rq_is_sync(rq));
  1684. }
  1685. /*
  1686. * return expired entry, or NULL to just start from scratch in rbtree
  1687. */
  1688. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1689. {
  1690. struct request *rq = NULL;
  1691. if (cfq_cfqq_fifo_expire(cfqq))
  1692. return NULL;
  1693. cfq_mark_cfqq_fifo_expire(cfqq);
  1694. if (list_empty(&cfqq->fifo))
  1695. return NULL;
  1696. rq = rq_entry_fifo(cfqq->fifo.next);
  1697. if (time_before(jiffies, rq_fifo_time(rq)))
  1698. rq = NULL;
  1699. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1700. return rq;
  1701. }
  1702. static inline int
  1703. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1704. {
  1705. const int base_rq = cfqd->cfq_slice_async_rq;
  1706. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1707. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1708. }
  1709. /*
  1710. * Must be called with the queue_lock held.
  1711. */
  1712. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1713. {
  1714. int process_refs, io_refs;
  1715. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1716. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1717. BUG_ON(process_refs < 0);
  1718. return process_refs;
  1719. }
  1720. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1721. {
  1722. int process_refs, new_process_refs;
  1723. struct cfq_queue *__cfqq;
  1724. /*
  1725. * If there are no process references on the new_cfqq, then it is
  1726. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1727. * chain may have dropped their last reference (not just their
  1728. * last process reference).
  1729. */
  1730. if (!cfqq_process_refs(new_cfqq))
  1731. return;
  1732. /* Avoid a circular list and skip interim queue merges */
  1733. while ((__cfqq = new_cfqq->new_cfqq)) {
  1734. if (__cfqq == cfqq)
  1735. return;
  1736. new_cfqq = __cfqq;
  1737. }
  1738. process_refs = cfqq_process_refs(cfqq);
  1739. new_process_refs = cfqq_process_refs(new_cfqq);
  1740. /*
  1741. * If the process for the cfqq has gone away, there is no
  1742. * sense in merging the queues.
  1743. */
  1744. if (process_refs == 0 || new_process_refs == 0)
  1745. return;
  1746. /*
  1747. * Merge in the direction of the lesser amount of work.
  1748. */
  1749. if (new_process_refs >= process_refs) {
  1750. cfqq->new_cfqq = new_cfqq;
  1751. atomic_add(process_refs, &new_cfqq->ref);
  1752. } else {
  1753. new_cfqq->new_cfqq = cfqq;
  1754. atomic_add(new_process_refs, &cfqq->ref);
  1755. }
  1756. }
  1757. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1758. struct cfq_group *cfqg, enum wl_prio_t prio)
  1759. {
  1760. struct cfq_queue *queue;
  1761. int i;
  1762. bool key_valid = false;
  1763. unsigned long lowest_key = 0;
  1764. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1765. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1766. /* select the one with lowest rb_key */
  1767. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1768. if (queue &&
  1769. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1770. lowest_key = queue->rb_key;
  1771. cur_best = i;
  1772. key_valid = true;
  1773. }
  1774. }
  1775. return cur_best;
  1776. }
  1777. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1778. {
  1779. unsigned slice;
  1780. unsigned count;
  1781. struct cfq_rb_root *st;
  1782. unsigned group_slice;
  1783. if (!cfqg) {
  1784. cfqd->serving_prio = IDLE_WORKLOAD;
  1785. cfqd->workload_expires = jiffies + 1;
  1786. return;
  1787. }
  1788. /* Choose next priority. RT > BE > IDLE */
  1789. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1790. cfqd->serving_prio = RT_WORKLOAD;
  1791. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1792. cfqd->serving_prio = BE_WORKLOAD;
  1793. else {
  1794. cfqd->serving_prio = IDLE_WORKLOAD;
  1795. cfqd->workload_expires = jiffies + 1;
  1796. return;
  1797. }
  1798. /*
  1799. * For RT and BE, we have to choose also the type
  1800. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1801. * expiration time
  1802. */
  1803. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1804. count = st->count;
  1805. /*
  1806. * check workload expiration, and that we still have other queues ready
  1807. */
  1808. if (count && !time_after(jiffies, cfqd->workload_expires))
  1809. return;
  1810. /* otherwise select new workload type */
  1811. cfqd->serving_type =
  1812. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1813. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1814. count = st->count;
  1815. /*
  1816. * the workload slice is computed as a fraction of target latency
  1817. * proportional to the number of queues in that workload, over
  1818. * all the queues in the same priority class
  1819. */
  1820. group_slice = cfq_group_slice(cfqd, cfqg);
  1821. slice = group_slice * count /
  1822. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1823. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1824. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1825. unsigned int tmp;
  1826. /*
  1827. * Async queues are currently system wide. Just taking
  1828. * proportion of queues with-in same group will lead to higher
  1829. * async ratio system wide as generally root group is going
  1830. * to have higher weight. A more accurate thing would be to
  1831. * calculate system wide asnc/sync ratio.
  1832. */
  1833. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1834. tmp = tmp/cfqd->busy_queues;
  1835. slice = min_t(unsigned, slice, tmp);
  1836. /* async workload slice is scaled down according to
  1837. * the sync/async slice ratio. */
  1838. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1839. } else
  1840. /* sync workload slice is at least 2 * cfq_slice_idle */
  1841. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1842. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1843. cfq_log(cfqd, "workload slice:%d", slice);
  1844. cfqd->workload_expires = jiffies + slice;
  1845. }
  1846. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1847. {
  1848. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1849. struct cfq_group *cfqg;
  1850. if (RB_EMPTY_ROOT(&st->rb))
  1851. return NULL;
  1852. cfqg = cfq_rb_first_group(st);
  1853. update_min_vdisktime(st);
  1854. return cfqg;
  1855. }
  1856. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1857. {
  1858. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1859. cfqd->serving_group = cfqg;
  1860. /* Restore the workload type data */
  1861. if (cfqg->saved_workload_slice) {
  1862. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1863. cfqd->serving_type = cfqg->saved_workload;
  1864. cfqd->serving_prio = cfqg->saved_serving_prio;
  1865. } else
  1866. cfqd->workload_expires = jiffies - 1;
  1867. choose_service_tree(cfqd, cfqg);
  1868. }
  1869. /*
  1870. * Select a queue for service. If we have a current active queue,
  1871. * check whether to continue servicing it, or retrieve and set a new one.
  1872. */
  1873. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1874. {
  1875. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1876. cfqq = cfqd->active_queue;
  1877. if (!cfqq)
  1878. goto new_queue;
  1879. if (!cfqd->rq_queued)
  1880. return NULL;
  1881. /*
  1882. * We were waiting for group to get backlogged. Expire the queue
  1883. */
  1884. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1885. goto expire;
  1886. /*
  1887. * The active queue has run out of time, expire it and select new.
  1888. */
  1889. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1890. /*
  1891. * If slice had not expired at the completion of last request
  1892. * we might not have turned on wait_busy flag. Don't expire
  1893. * the queue yet. Allow the group to get backlogged.
  1894. *
  1895. * The very fact that we have used the slice, that means we
  1896. * have been idling all along on this queue and it should be
  1897. * ok to wait for this request to complete.
  1898. */
  1899. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1900. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1901. cfqq = NULL;
  1902. goto keep_queue;
  1903. } else
  1904. goto check_group_idle;
  1905. }
  1906. /*
  1907. * The active queue has requests and isn't expired, allow it to
  1908. * dispatch.
  1909. */
  1910. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1911. goto keep_queue;
  1912. /*
  1913. * If another queue has a request waiting within our mean seek
  1914. * distance, let it run. The expire code will check for close
  1915. * cooperators and put the close queue at the front of the service
  1916. * tree. If possible, merge the expiring queue with the new cfqq.
  1917. */
  1918. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1919. if (new_cfqq) {
  1920. if (!cfqq->new_cfqq)
  1921. cfq_setup_merge(cfqq, new_cfqq);
  1922. goto expire;
  1923. }
  1924. /*
  1925. * No requests pending. If the active queue still has requests in
  1926. * flight or is idling for a new request, allow either of these
  1927. * conditions to happen (or time out) before selecting a new queue.
  1928. */
  1929. if (timer_pending(&cfqd->idle_slice_timer)) {
  1930. cfqq = NULL;
  1931. goto keep_queue;
  1932. }
  1933. /*
  1934. * This is a deep seek queue, but the device is much faster than
  1935. * the queue can deliver, don't idle
  1936. **/
  1937. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1938. (cfq_cfqq_slice_new(cfqq) ||
  1939. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1940. cfq_clear_cfqq_deep(cfqq);
  1941. cfq_clear_cfqq_idle_window(cfqq);
  1942. }
  1943. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1944. cfqq = NULL;
  1945. goto keep_queue;
  1946. }
  1947. /*
  1948. * If group idle is enabled and there are requests dispatched from
  1949. * this group, wait for requests to complete.
  1950. */
  1951. check_group_idle:
  1952. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1953. && cfqq->cfqg->dispatched) {
  1954. cfqq = NULL;
  1955. goto keep_queue;
  1956. }
  1957. expire:
  1958. cfq_slice_expired(cfqd, 0);
  1959. new_queue:
  1960. /*
  1961. * Current queue expired. Check if we have to switch to a new
  1962. * service tree
  1963. */
  1964. if (!new_cfqq)
  1965. cfq_choose_cfqg(cfqd);
  1966. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1967. keep_queue:
  1968. return cfqq;
  1969. }
  1970. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1971. {
  1972. int dispatched = 0;
  1973. while (cfqq->next_rq) {
  1974. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1975. dispatched++;
  1976. }
  1977. BUG_ON(!list_empty(&cfqq->fifo));
  1978. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1979. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1980. return dispatched;
  1981. }
  1982. /*
  1983. * Drain our current requests. Used for barriers and when switching
  1984. * io schedulers on-the-fly.
  1985. */
  1986. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1987. {
  1988. struct cfq_queue *cfqq;
  1989. int dispatched = 0;
  1990. /* Expire the timeslice of the current active queue first */
  1991. cfq_slice_expired(cfqd, 0);
  1992. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1993. __cfq_set_active_queue(cfqd, cfqq);
  1994. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1995. }
  1996. BUG_ON(cfqd->busy_queues);
  1997. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1998. return dispatched;
  1999. }
  2000. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2001. struct cfq_queue *cfqq)
  2002. {
  2003. /* the queue hasn't finished any request, can't estimate */
  2004. if (cfq_cfqq_slice_new(cfqq))
  2005. return true;
  2006. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2007. cfqq->slice_end))
  2008. return true;
  2009. return false;
  2010. }
  2011. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2012. {
  2013. unsigned int max_dispatch;
  2014. /*
  2015. * Drain async requests before we start sync IO
  2016. */
  2017. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2018. return false;
  2019. /*
  2020. * If this is an async queue and we have sync IO in flight, let it wait
  2021. */
  2022. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2023. return false;
  2024. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2025. if (cfq_class_idle(cfqq))
  2026. max_dispatch = 1;
  2027. /*
  2028. * Does this cfqq already have too much IO in flight?
  2029. */
  2030. if (cfqq->dispatched >= max_dispatch) {
  2031. /*
  2032. * idle queue must always only have a single IO in flight
  2033. */
  2034. if (cfq_class_idle(cfqq))
  2035. return false;
  2036. /*
  2037. * We have other queues, don't allow more IO from this one
  2038. */
  2039. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  2040. return false;
  2041. /*
  2042. * Sole queue user, no limit
  2043. */
  2044. if (cfqd->busy_queues == 1)
  2045. max_dispatch = -1;
  2046. else
  2047. /*
  2048. * Normally we start throttling cfqq when cfq_quantum/2
  2049. * requests have been dispatched. But we can drive
  2050. * deeper queue depths at the beginning of slice
  2051. * subjected to upper limit of cfq_quantum.
  2052. * */
  2053. max_dispatch = cfqd->cfq_quantum;
  2054. }
  2055. /*
  2056. * Async queues must wait a bit before being allowed dispatch.
  2057. * We also ramp up the dispatch depth gradually for async IO,
  2058. * based on the last sync IO we serviced
  2059. */
  2060. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2061. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2062. unsigned int depth;
  2063. depth = last_sync / cfqd->cfq_slice[1];
  2064. if (!depth && !cfqq->dispatched)
  2065. depth = 1;
  2066. if (depth < max_dispatch)
  2067. max_dispatch = depth;
  2068. }
  2069. /*
  2070. * If we're below the current max, allow a dispatch
  2071. */
  2072. return cfqq->dispatched < max_dispatch;
  2073. }
  2074. /*
  2075. * Dispatch a request from cfqq, moving them to the request queue
  2076. * dispatch list.
  2077. */
  2078. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2079. {
  2080. struct request *rq;
  2081. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2082. if (!cfq_may_dispatch(cfqd, cfqq))
  2083. return false;
  2084. /*
  2085. * follow expired path, else get first next available
  2086. */
  2087. rq = cfq_check_fifo(cfqq);
  2088. if (!rq)
  2089. rq = cfqq->next_rq;
  2090. /*
  2091. * insert request into driver dispatch list
  2092. */
  2093. cfq_dispatch_insert(cfqd->queue, rq);
  2094. if (!cfqd->active_cic) {
  2095. struct cfq_io_context *cic = RQ_CIC(rq);
  2096. atomic_long_inc(&cic->ioc->refcount);
  2097. cfqd->active_cic = cic;
  2098. }
  2099. return true;
  2100. }
  2101. /*
  2102. * Find the cfqq that we need to service and move a request from that to the
  2103. * dispatch list
  2104. */
  2105. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2106. {
  2107. struct cfq_data *cfqd = q->elevator->elevator_data;
  2108. struct cfq_queue *cfqq;
  2109. if (!cfqd->busy_queues)
  2110. return 0;
  2111. if (unlikely(force))
  2112. return cfq_forced_dispatch(cfqd);
  2113. cfqq = cfq_select_queue(cfqd);
  2114. if (!cfqq)
  2115. return 0;
  2116. /*
  2117. * Dispatch a request from this cfqq, if it is allowed
  2118. */
  2119. if (!cfq_dispatch_request(cfqd, cfqq))
  2120. return 0;
  2121. cfqq->slice_dispatch++;
  2122. cfq_clear_cfqq_must_dispatch(cfqq);
  2123. /*
  2124. * expire an async queue immediately if it has used up its slice. idle
  2125. * queue always expire after 1 dispatch round.
  2126. */
  2127. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2128. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2129. cfq_class_idle(cfqq))) {
  2130. cfqq->slice_end = jiffies + 1;
  2131. cfq_slice_expired(cfqd, 0);
  2132. }
  2133. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2134. return 1;
  2135. }
  2136. /*
  2137. * task holds one reference to the queue, dropped when task exits. each rq
  2138. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2139. *
  2140. * Each cfq queue took a reference on the parent group. Drop it now.
  2141. * queue lock must be held here.
  2142. */
  2143. static void cfq_put_queue(struct cfq_queue *cfqq)
  2144. {
  2145. struct cfq_data *cfqd = cfqq->cfqd;
  2146. struct cfq_group *cfqg, *orig_cfqg;
  2147. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2148. if (!atomic_dec_and_test(&cfqq->ref))
  2149. return;
  2150. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2151. BUG_ON(rb_first(&cfqq->sort_list));
  2152. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2153. cfqg = cfqq->cfqg;
  2154. orig_cfqg = cfqq->orig_cfqg;
  2155. if (unlikely(cfqd->active_queue == cfqq)) {
  2156. __cfq_slice_expired(cfqd, cfqq, 0);
  2157. cfq_schedule_dispatch(cfqd);
  2158. }
  2159. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2160. kmem_cache_free(cfq_pool, cfqq);
  2161. cfq_put_cfqg(cfqg);
  2162. if (orig_cfqg)
  2163. cfq_put_cfqg(orig_cfqg);
  2164. }
  2165. /*
  2166. * Must always be called with the rcu_read_lock() held
  2167. */
  2168. static void
  2169. __call_for_each_cic(struct io_context *ioc,
  2170. void (*func)(struct io_context *, struct cfq_io_context *))
  2171. {
  2172. struct cfq_io_context *cic;
  2173. struct hlist_node *n;
  2174. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2175. func(ioc, cic);
  2176. }
  2177. /*
  2178. * Call func for each cic attached to this ioc.
  2179. */
  2180. static void
  2181. call_for_each_cic(struct io_context *ioc,
  2182. void (*func)(struct io_context *, struct cfq_io_context *))
  2183. {
  2184. rcu_read_lock();
  2185. __call_for_each_cic(ioc, func);
  2186. rcu_read_unlock();
  2187. }
  2188. static void cfq_cic_free_rcu(struct rcu_head *head)
  2189. {
  2190. struct cfq_io_context *cic;
  2191. cic = container_of(head, struct cfq_io_context, rcu_head);
  2192. kmem_cache_free(cfq_ioc_pool, cic);
  2193. elv_ioc_count_dec(cfq_ioc_count);
  2194. if (ioc_gone) {
  2195. /*
  2196. * CFQ scheduler is exiting, grab exit lock and check
  2197. * the pending io context count. If it hits zero,
  2198. * complete ioc_gone and set it back to NULL
  2199. */
  2200. spin_lock(&ioc_gone_lock);
  2201. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2202. complete(ioc_gone);
  2203. ioc_gone = NULL;
  2204. }
  2205. spin_unlock(&ioc_gone_lock);
  2206. }
  2207. }
  2208. static void cfq_cic_free(struct cfq_io_context *cic)
  2209. {
  2210. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2211. }
  2212. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2213. {
  2214. unsigned long flags;
  2215. unsigned long dead_key = (unsigned long) cic->key;
  2216. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2217. spin_lock_irqsave(&ioc->lock, flags);
  2218. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2219. hlist_del_rcu(&cic->cic_list);
  2220. spin_unlock_irqrestore(&ioc->lock, flags);
  2221. cfq_cic_free(cic);
  2222. }
  2223. /*
  2224. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2225. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2226. * and ->trim() which is called with the task lock held
  2227. */
  2228. static void cfq_free_io_context(struct io_context *ioc)
  2229. {
  2230. /*
  2231. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2232. * so no more cic's are allowed to be linked into this ioc. So it
  2233. * should be ok to iterate over the known list, we will see all cic's
  2234. * since no new ones are added.
  2235. */
  2236. __call_for_each_cic(ioc, cic_free_func);
  2237. }
  2238. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2239. {
  2240. struct cfq_queue *__cfqq, *next;
  2241. /*
  2242. * If this queue was scheduled to merge with another queue, be
  2243. * sure to drop the reference taken on that queue (and others in
  2244. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2245. */
  2246. __cfqq = cfqq->new_cfqq;
  2247. while (__cfqq) {
  2248. if (__cfqq == cfqq) {
  2249. WARN(1, "cfqq->new_cfqq loop detected\n");
  2250. break;
  2251. }
  2252. next = __cfqq->new_cfqq;
  2253. cfq_put_queue(__cfqq);
  2254. __cfqq = next;
  2255. }
  2256. }
  2257. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2258. {
  2259. if (unlikely(cfqq == cfqd->active_queue)) {
  2260. __cfq_slice_expired(cfqd, cfqq, 0);
  2261. cfq_schedule_dispatch(cfqd);
  2262. }
  2263. cfq_put_cooperator(cfqq);
  2264. cfq_put_queue(cfqq);
  2265. }
  2266. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2267. struct cfq_io_context *cic)
  2268. {
  2269. struct io_context *ioc = cic->ioc;
  2270. list_del_init(&cic->queue_list);
  2271. /*
  2272. * Make sure dead mark is seen for dead queues
  2273. */
  2274. smp_wmb();
  2275. cic->key = cfqd_dead_key(cfqd);
  2276. if (ioc->ioc_data == cic)
  2277. rcu_assign_pointer(ioc->ioc_data, NULL);
  2278. if (cic->cfqq[BLK_RW_ASYNC]) {
  2279. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2280. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2281. }
  2282. if (cic->cfqq[BLK_RW_SYNC]) {
  2283. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2284. cic->cfqq[BLK_RW_SYNC] = NULL;
  2285. }
  2286. }
  2287. static void cfq_exit_single_io_context(struct io_context *ioc,
  2288. struct cfq_io_context *cic)
  2289. {
  2290. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2291. if (cfqd) {
  2292. struct request_queue *q = cfqd->queue;
  2293. unsigned long flags;
  2294. spin_lock_irqsave(q->queue_lock, flags);
  2295. /*
  2296. * Ensure we get a fresh copy of the ->key to prevent
  2297. * race between exiting task and queue
  2298. */
  2299. smp_read_barrier_depends();
  2300. if (cic->key == cfqd)
  2301. __cfq_exit_single_io_context(cfqd, cic);
  2302. spin_unlock_irqrestore(q->queue_lock, flags);
  2303. }
  2304. }
  2305. /*
  2306. * The process that ioc belongs to has exited, we need to clean up
  2307. * and put the internal structures we have that belongs to that process.
  2308. */
  2309. static void cfq_exit_io_context(struct io_context *ioc)
  2310. {
  2311. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2312. }
  2313. static struct cfq_io_context *
  2314. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2315. {
  2316. struct cfq_io_context *cic;
  2317. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2318. cfqd->queue->node);
  2319. if (cic) {
  2320. cic->last_end_request = jiffies;
  2321. INIT_LIST_HEAD(&cic->queue_list);
  2322. INIT_HLIST_NODE(&cic->cic_list);
  2323. cic->dtor = cfq_free_io_context;
  2324. cic->exit = cfq_exit_io_context;
  2325. elv_ioc_count_inc(cfq_ioc_count);
  2326. }
  2327. return cic;
  2328. }
  2329. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2330. {
  2331. struct task_struct *tsk = current;
  2332. int ioprio_class;
  2333. if (!cfq_cfqq_prio_changed(cfqq))
  2334. return;
  2335. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2336. switch (ioprio_class) {
  2337. default:
  2338. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2339. case IOPRIO_CLASS_NONE:
  2340. /*
  2341. * no prio set, inherit CPU scheduling settings
  2342. */
  2343. cfqq->ioprio = task_nice_ioprio(tsk);
  2344. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2345. break;
  2346. case IOPRIO_CLASS_RT:
  2347. cfqq->ioprio = task_ioprio(ioc);
  2348. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2349. break;
  2350. case IOPRIO_CLASS_BE:
  2351. cfqq->ioprio = task_ioprio(ioc);
  2352. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2353. break;
  2354. case IOPRIO_CLASS_IDLE:
  2355. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2356. cfqq->ioprio = 7;
  2357. cfq_clear_cfqq_idle_window(cfqq);
  2358. break;
  2359. }
  2360. /*
  2361. * keep track of original prio settings in case we have to temporarily
  2362. * elevate the priority of this queue
  2363. */
  2364. cfqq->org_ioprio = cfqq->ioprio;
  2365. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2366. cfq_clear_cfqq_prio_changed(cfqq);
  2367. }
  2368. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2369. {
  2370. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2371. struct cfq_queue *cfqq;
  2372. unsigned long flags;
  2373. if (unlikely(!cfqd))
  2374. return;
  2375. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2376. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2377. if (cfqq) {
  2378. struct cfq_queue *new_cfqq;
  2379. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2380. GFP_ATOMIC);
  2381. if (new_cfqq) {
  2382. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2383. cfq_put_queue(cfqq);
  2384. }
  2385. }
  2386. cfqq = cic->cfqq[BLK_RW_SYNC];
  2387. if (cfqq)
  2388. cfq_mark_cfqq_prio_changed(cfqq);
  2389. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2390. }
  2391. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2392. {
  2393. call_for_each_cic(ioc, changed_ioprio);
  2394. ioc->ioprio_changed = 0;
  2395. }
  2396. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2397. pid_t pid, bool is_sync)
  2398. {
  2399. RB_CLEAR_NODE(&cfqq->rb_node);
  2400. RB_CLEAR_NODE(&cfqq->p_node);
  2401. INIT_LIST_HEAD(&cfqq->fifo);
  2402. atomic_set(&cfqq->ref, 0);
  2403. cfqq->cfqd = cfqd;
  2404. cfq_mark_cfqq_prio_changed(cfqq);
  2405. if (is_sync) {
  2406. if (!cfq_class_idle(cfqq))
  2407. cfq_mark_cfqq_idle_window(cfqq);
  2408. cfq_mark_cfqq_sync(cfqq);
  2409. }
  2410. cfqq->pid = pid;
  2411. }
  2412. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2413. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2414. {
  2415. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2416. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2417. unsigned long flags;
  2418. struct request_queue *q;
  2419. if (unlikely(!cfqd))
  2420. return;
  2421. q = cfqd->queue;
  2422. spin_lock_irqsave(q->queue_lock, flags);
  2423. if (sync_cfqq) {
  2424. /*
  2425. * Drop reference to sync queue. A new sync queue will be
  2426. * assigned in new group upon arrival of a fresh request.
  2427. */
  2428. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2429. cic_set_cfqq(cic, NULL, 1);
  2430. cfq_put_queue(sync_cfqq);
  2431. }
  2432. spin_unlock_irqrestore(q->queue_lock, flags);
  2433. }
  2434. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2435. {
  2436. call_for_each_cic(ioc, changed_cgroup);
  2437. ioc->cgroup_changed = 0;
  2438. }
  2439. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2440. static struct cfq_queue *
  2441. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2442. struct io_context *ioc, gfp_t gfp_mask)
  2443. {
  2444. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2445. struct cfq_io_context *cic;
  2446. struct cfq_group *cfqg;
  2447. retry:
  2448. cfqg = cfq_get_cfqg(cfqd, 1);
  2449. cic = cfq_cic_lookup(cfqd, ioc);
  2450. /* cic always exists here */
  2451. cfqq = cic_to_cfqq(cic, is_sync);
  2452. /*
  2453. * Always try a new alloc if we fell back to the OOM cfqq
  2454. * originally, since it should just be a temporary situation.
  2455. */
  2456. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2457. cfqq = NULL;
  2458. if (new_cfqq) {
  2459. cfqq = new_cfqq;
  2460. new_cfqq = NULL;
  2461. } else if (gfp_mask & __GFP_WAIT) {
  2462. spin_unlock_irq(cfqd->queue->queue_lock);
  2463. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2464. gfp_mask | __GFP_ZERO,
  2465. cfqd->queue->node);
  2466. spin_lock_irq(cfqd->queue->queue_lock);
  2467. if (new_cfqq)
  2468. goto retry;
  2469. } else {
  2470. cfqq = kmem_cache_alloc_node(cfq_pool,
  2471. gfp_mask | __GFP_ZERO,
  2472. cfqd->queue->node);
  2473. }
  2474. if (cfqq) {
  2475. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2476. cfq_init_prio_data(cfqq, ioc);
  2477. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2478. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2479. } else
  2480. cfqq = &cfqd->oom_cfqq;
  2481. }
  2482. if (new_cfqq)
  2483. kmem_cache_free(cfq_pool, new_cfqq);
  2484. return cfqq;
  2485. }
  2486. static struct cfq_queue **
  2487. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2488. {
  2489. switch (ioprio_class) {
  2490. case IOPRIO_CLASS_RT:
  2491. return &cfqd->async_cfqq[0][ioprio];
  2492. case IOPRIO_CLASS_BE:
  2493. return &cfqd->async_cfqq[1][ioprio];
  2494. case IOPRIO_CLASS_IDLE:
  2495. return &cfqd->async_idle_cfqq;
  2496. default:
  2497. BUG();
  2498. }
  2499. }
  2500. static struct cfq_queue *
  2501. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2502. gfp_t gfp_mask)
  2503. {
  2504. const int ioprio = task_ioprio(ioc);
  2505. const int ioprio_class = task_ioprio_class(ioc);
  2506. struct cfq_queue **async_cfqq = NULL;
  2507. struct cfq_queue *cfqq = NULL;
  2508. if (!is_sync) {
  2509. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2510. cfqq = *async_cfqq;
  2511. }
  2512. if (!cfqq)
  2513. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2514. /*
  2515. * pin the queue now that it's allocated, scheduler exit will prune it
  2516. */
  2517. if (!is_sync && !(*async_cfqq)) {
  2518. atomic_inc(&cfqq->ref);
  2519. *async_cfqq = cfqq;
  2520. }
  2521. atomic_inc(&cfqq->ref);
  2522. return cfqq;
  2523. }
  2524. /*
  2525. * We drop cfq io contexts lazily, so we may find a dead one.
  2526. */
  2527. static void
  2528. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2529. struct cfq_io_context *cic)
  2530. {
  2531. unsigned long flags;
  2532. WARN_ON(!list_empty(&cic->queue_list));
  2533. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2534. spin_lock_irqsave(&ioc->lock, flags);
  2535. BUG_ON(ioc->ioc_data == cic);
  2536. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2537. hlist_del_rcu(&cic->cic_list);
  2538. spin_unlock_irqrestore(&ioc->lock, flags);
  2539. cfq_cic_free(cic);
  2540. }
  2541. static struct cfq_io_context *
  2542. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2543. {
  2544. struct cfq_io_context *cic;
  2545. unsigned long flags;
  2546. if (unlikely(!ioc))
  2547. return NULL;
  2548. rcu_read_lock();
  2549. /*
  2550. * we maintain a last-hit cache, to avoid browsing over the tree
  2551. */
  2552. cic = rcu_dereference(ioc->ioc_data);
  2553. if (cic && cic->key == cfqd) {
  2554. rcu_read_unlock();
  2555. return cic;
  2556. }
  2557. do {
  2558. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2559. rcu_read_unlock();
  2560. if (!cic)
  2561. break;
  2562. if (unlikely(cic->key != cfqd)) {
  2563. cfq_drop_dead_cic(cfqd, ioc, cic);
  2564. rcu_read_lock();
  2565. continue;
  2566. }
  2567. spin_lock_irqsave(&ioc->lock, flags);
  2568. rcu_assign_pointer(ioc->ioc_data, cic);
  2569. spin_unlock_irqrestore(&ioc->lock, flags);
  2570. break;
  2571. } while (1);
  2572. return cic;
  2573. }
  2574. /*
  2575. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2576. * the process specific cfq io context when entered from the block layer.
  2577. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2578. */
  2579. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2580. struct cfq_io_context *cic, gfp_t gfp_mask)
  2581. {
  2582. unsigned long flags;
  2583. int ret;
  2584. ret = radix_tree_preload(gfp_mask);
  2585. if (!ret) {
  2586. cic->ioc = ioc;
  2587. cic->key = cfqd;
  2588. spin_lock_irqsave(&ioc->lock, flags);
  2589. ret = radix_tree_insert(&ioc->radix_root,
  2590. cfqd->cic_index, cic);
  2591. if (!ret)
  2592. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2593. spin_unlock_irqrestore(&ioc->lock, flags);
  2594. radix_tree_preload_end();
  2595. if (!ret) {
  2596. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2597. list_add(&cic->queue_list, &cfqd->cic_list);
  2598. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2599. }
  2600. }
  2601. if (ret)
  2602. printk(KERN_ERR "cfq: cic link failed!\n");
  2603. return ret;
  2604. }
  2605. /*
  2606. * Setup general io context and cfq io context. There can be several cfq
  2607. * io contexts per general io context, if this process is doing io to more
  2608. * than one device managed by cfq.
  2609. */
  2610. static struct cfq_io_context *
  2611. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2612. {
  2613. struct io_context *ioc = NULL;
  2614. struct cfq_io_context *cic;
  2615. might_sleep_if(gfp_mask & __GFP_WAIT);
  2616. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2617. if (!ioc)
  2618. return NULL;
  2619. cic = cfq_cic_lookup(cfqd, ioc);
  2620. if (cic)
  2621. goto out;
  2622. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2623. if (cic == NULL)
  2624. goto err;
  2625. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2626. goto err_free;
  2627. out:
  2628. smp_read_barrier_depends();
  2629. if (unlikely(ioc->ioprio_changed))
  2630. cfq_ioc_set_ioprio(ioc);
  2631. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2632. if (unlikely(ioc->cgroup_changed))
  2633. cfq_ioc_set_cgroup(ioc);
  2634. #endif
  2635. return cic;
  2636. err_free:
  2637. cfq_cic_free(cic);
  2638. err:
  2639. put_io_context(ioc);
  2640. return NULL;
  2641. }
  2642. static void
  2643. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2644. {
  2645. unsigned long elapsed = jiffies - cic->last_end_request;
  2646. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2647. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2648. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2649. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2650. }
  2651. static void
  2652. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2653. struct request *rq)
  2654. {
  2655. sector_t sdist = 0;
  2656. sector_t n_sec = blk_rq_sectors(rq);
  2657. if (cfqq->last_request_pos) {
  2658. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2659. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2660. else
  2661. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2662. }
  2663. cfqq->seek_history <<= 1;
  2664. if (blk_queue_nonrot(cfqd->queue))
  2665. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2666. else
  2667. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2668. }
  2669. /*
  2670. * Disable idle window if the process thinks too long or seeks so much that
  2671. * it doesn't matter
  2672. */
  2673. static void
  2674. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2675. struct cfq_io_context *cic)
  2676. {
  2677. int old_idle, enable_idle;
  2678. /*
  2679. * Don't idle for async or idle io prio class
  2680. */
  2681. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2682. return;
  2683. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2684. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2685. cfq_mark_cfqq_deep(cfqq);
  2686. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2687. enable_idle = 0;
  2688. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2689. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2690. enable_idle = 0;
  2691. else if (sample_valid(cic->ttime_samples)) {
  2692. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2693. enable_idle = 0;
  2694. else
  2695. enable_idle = 1;
  2696. }
  2697. if (old_idle != enable_idle) {
  2698. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2699. if (enable_idle)
  2700. cfq_mark_cfqq_idle_window(cfqq);
  2701. else
  2702. cfq_clear_cfqq_idle_window(cfqq);
  2703. }
  2704. }
  2705. /*
  2706. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2707. * no or if we aren't sure, a 1 will cause a preempt.
  2708. */
  2709. static bool
  2710. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2711. struct request *rq)
  2712. {
  2713. struct cfq_queue *cfqq;
  2714. cfqq = cfqd->active_queue;
  2715. if (!cfqq)
  2716. return false;
  2717. if (cfq_class_idle(new_cfqq))
  2718. return false;
  2719. if (cfq_class_idle(cfqq))
  2720. return true;
  2721. /*
  2722. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2723. */
  2724. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2725. return false;
  2726. /*
  2727. * if the new request is sync, but the currently running queue is
  2728. * not, let the sync request have priority.
  2729. */
  2730. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2731. return true;
  2732. if (new_cfqq->cfqg != cfqq->cfqg)
  2733. return false;
  2734. if (cfq_slice_used(cfqq))
  2735. return true;
  2736. /* Allow preemption only if we are idling on sync-noidle tree */
  2737. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2738. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2739. new_cfqq->service_tree->count == 2 &&
  2740. RB_EMPTY_ROOT(&cfqq->sort_list))
  2741. return true;
  2742. /*
  2743. * So both queues are sync. Let the new request get disk time if
  2744. * it's a metadata request and the current queue is doing regular IO.
  2745. */
  2746. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2747. return true;
  2748. /*
  2749. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2750. */
  2751. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2752. return true;
  2753. /* An idle queue should not be idle now for some reason */
  2754. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2755. return true;
  2756. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2757. return false;
  2758. /*
  2759. * if this request is as-good as one we would expect from the
  2760. * current cfqq, let it preempt
  2761. */
  2762. if (cfq_rq_close(cfqd, cfqq, rq))
  2763. return true;
  2764. return false;
  2765. }
  2766. /*
  2767. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2768. * let it have half of its nominal slice.
  2769. */
  2770. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2771. {
  2772. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2773. cfq_slice_expired(cfqd, 1);
  2774. /*
  2775. * Put the new queue at the front of the of the current list,
  2776. * so we know that it will be selected next.
  2777. */
  2778. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2779. cfq_service_tree_add(cfqd, cfqq, 1);
  2780. cfqq->slice_end = 0;
  2781. cfq_mark_cfqq_slice_new(cfqq);
  2782. }
  2783. /*
  2784. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2785. * something we should do about it
  2786. */
  2787. static void
  2788. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2789. struct request *rq)
  2790. {
  2791. struct cfq_io_context *cic = RQ_CIC(rq);
  2792. cfqd->rq_queued++;
  2793. if (rq->cmd_flags & REQ_META)
  2794. cfqq->meta_pending++;
  2795. cfq_update_io_thinktime(cfqd, cic);
  2796. cfq_update_io_seektime(cfqd, cfqq, rq);
  2797. cfq_update_idle_window(cfqd, cfqq, cic);
  2798. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2799. if (cfqq == cfqd->active_queue) {
  2800. /*
  2801. * Remember that we saw a request from this process, but
  2802. * don't start queuing just yet. Otherwise we risk seeing lots
  2803. * of tiny requests, because we disrupt the normal plugging
  2804. * and merging. If the request is already larger than a single
  2805. * page, let it rip immediately. For that case we assume that
  2806. * merging is already done. Ditto for a busy system that
  2807. * has other work pending, don't risk delaying until the
  2808. * idle timer unplug to continue working.
  2809. */
  2810. if (cfq_cfqq_wait_request(cfqq)) {
  2811. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2812. cfqd->busy_queues > 1) {
  2813. cfq_del_timer(cfqd, cfqq);
  2814. cfq_clear_cfqq_wait_request(cfqq);
  2815. __blk_run_queue(cfqd->queue);
  2816. } else {
  2817. cfq_blkiocg_update_idle_time_stats(
  2818. &cfqq->cfqg->blkg);
  2819. cfq_mark_cfqq_must_dispatch(cfqq);
  2820. }
  2821. }
  2822. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2823. /*
  2824. * not the active queue - expire current slice if it is
  2825. * idle and has expired it's mean thinktime or this new queue
  2826. * has some old slice time left and is of higher priority or
  2827. * this new queue is RT and the current one is BE
  2828. */
  2829. cfq_preempt_queue(cfqd, cfqq);
  2830. __blk_run_queue(cfqd->queue);
  2831. }
  2832. }
  2833. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2834. {
  2835. struct cfq_data *cfqd = q->elevator->elevator_data;
  2836. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2837. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2838. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2839. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2840. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2841. cfq_add_rq_rb(rq);
  2842. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2843. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2844. rq_is_sync(rq));
  2845. cfq_rq_enqueued(cfqd, cfqq, rq);
  2846. }
  2847. /*
  2848. * Update hw_tag based on peak queue depth over 50 samples under
  2849. * sufficient load.
  2850. */
  2851. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2852. {
  2853. struct cfq_queue *cfqq = cfqd->active_queue;
  2854. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2855. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2856. if (cfqd->hw_tag == 1)
  2857. return;
  2858. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2859. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2860. return;
  2861. /*
  2862. * If active queue hasn't enough requests and can idle, cfq might not
  2863. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2864. * case
  2865. */
  2866. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2867. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2868. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2869. return;
  2870. if (cfqd->hw_tag_samples++ < 50)
  2871. return;
  2872. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2873. cfqd->hw_tag = 1;
  2874. else
  2875. cfqd->hw_tag = 0;
  2876. }
  2877. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2878. {
  2879. struct cfq_io_context *cic = cfqd->active_cic;
  2880. /* If there are other queues in the group, don't wait */
  2881. if (cfqq->cfqg->nr_cfqq > 1)
  2882. return false;
  2883. if (cfq_slice_used(cfqq))
  2884. return true;
  2885. /* if slice left is less than think time, wait busy */
  2886. if (cic && sample_valid(cic->ttime_samples)
  2887. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2888. return true;
  2889. /*
  2890. * If think times is less than a jiffy than ttime_mean=0 and above
  2891. * will not be true. It might happen that slice has not expired yet
  2892. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2893. * case where think time is less than a jiffy, mark the queue wait
  2894. * busy if only 1 jiffy is left in the slice.
  2895. */
  2896. if (cfqq->slice_end - jiffies == 1)
  2897. return true;
  2898. return false;
  2899. }
  2900. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2901. {
  2902. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2903. struct cfq_data *cfqd = cfqq->cfqd;
  2904. const int sync = rq_is_sync(rq);
  2905. unsigned long now;
  2906. now = jiffies;
  2907. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2908. !!(rq->cmd_flags & REQ_NOIDLE));
  2909. cfq_update_hw_tag(cfqd);
  2910. WARN_ON(!cfqd->rq_in_driver);
  2911. WARN_ON(!cfqq->dispatched);
  2912. cfqd->rq_in_driver--;
  2913. cfqq->dispatched--;
  2914. (RQ_CFQG(rq))->dispatched--;
  2915. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2916. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2917. rq_data_dir(rq), rq_is_sync(rq));
  2918. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2919. if (sync) {
  2920. RQ_CIC(rq)->last_end_request = now;
  2921. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2922. cfqd->last_delayed_sync = now;
  2923. }
  2924. /*
  2925. * If this is the active queue, check if it needs to be expired,
  2926. * or if we want to idle in case it has no pending requests.
  2927. */
  2928. if (cfqd->active_queue == cfqq) {
  2929. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2930. if (cfq_cfqq_slice_new(cfqq)) {
  2931. cfq_set_prio_slice(cfqd, cfqq);
  2932. cfq_clear_cfqq_slice_new(cfqq);
  2933. }
  2934. /*
  2935. * Should we wait for next request to come in before we expire
  2936. * the queue.
  2937. */
  2938. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2939. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2940. if (!cfqd->cfq_slice_idle)
  2941. extend_sl = cfqd->cfq_group_idle;
  2942. cfqq->slice_end = jiffies + extend_sl;
  2943. cfq_mark_cfqq_wait_busy(cfqq);
  2944. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2945. }
  2946. /*
  2947. * Idling is not enabled on:
  2948. * - expired queues
  2949. * - idle-priority queues
  2950. * - async queues
  2951. * - queues with still some requests queued
  2952. * - when there is a close cooperator
  2953. */
  2954. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2955. cfq_slice_expired(cfqd, 1);
  2956. else if (sync && cfqq_empty &&
  2957. !cfq_close_cooperator(cfqd, cfqq)) {
  2958. cfq_arm_slice_timer(cfqd);
  2959. }
  2960. }
  2961. if (!cfqd->rq_in_driver)
  2962. cfq_schedule_dispatch(cfqd);
  2963. }
  2964. /*
  2965. * we temporarily boost lower priority queues if they are holding fs exclusive
  2966. * resources. they are boosted to normal prio (CLASS_BE/4)
  2967. */
  2968. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2969. {
  2970. if (has_fs_excl()) {
  2971. /*
  2972. * boost idle prio on transactions that would lock out other
  2973. * users of the filesystem
  2974. */
  2975. if (cfq_class_idle(cfqq))
  2976. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2977. if (cfqq->ioprio > IOPRIO_NORM)
  2978. cfqq->ioprio = IOPRIO_NORM;
  2979. } else {
  2980. /*
  2981. * unboost the queue (if needed)
  2982. */
  2983. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2984. cfqq->ioprio = cfqq->org_ioprio;
  2985. }
  2986. }
  2987. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2988. {
  2989. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2990. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2991. return ELV_MQUEUE_MUST;
  2992. }
  2993. return ELV_MQUEUE_MAY;
  2994. }
  2995. static int cfq_may_queue(struct request_queue *q, int rw)
  2996. {
  2997. struct cfq_data *cfqd = q->elevator->elevator_data;
  2998. struct task_struct *tsk = current;
  2999. struct cfq_io_context *cic;
  3000. struct cfq_queue *cfqq;
  3001. /*
  3002. * don't force setup of a queue from here, as a call to may_queue
  3003. * does not necessarily imply that a request actually will be queued.
  3004. * so just lookup a possibly existing queue, or return 'may queue'
  3005. * if that fails
  3006. */
  3007. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3008. if (!cic)
  3009. return ELV_MQUEUE_MAY;
  3010. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3011. if (cfqq) {
  3012. cfq_init_prio_data(cfqq, cic->ioc);
  3013. cfq_prio_boost(cfqq);
  3014. return __cfq_may_queue(cfqq);
  3015. }
  3016. return ELV_MQUEUE_MAY;
  3017. }
  3018. /*
  3019. * queue lock held here
  3020. */
  3021. static void cfq_put_request(struct request *rq)
  3022. {
  3023. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3024. if (cfqq) {
  3025. const int rw = rq_data_dir(rq);
  3026. BUG_ON(!cfqq->allocated[rw]);
  3027. cfqq->allocated[rw]--;
  3028. put_io_context(RQ_CIC(rq)->ioc);
  3029. rq->elevator_private = NULL;
  3030. rq->elevator_private2 = NULL;
  3031. /* Put down rq reference on cfqg */
  3032. cfq_put_cfqg(RQ_CFQG(rq));
  3033. rq->elevator_private3 = NULL;
  3034. cfq_put_queue(cfqq);
  3035. }
  3036. }
  3037. static struct cfq_queue *
  3038. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3039. struct cfq_queue *cfqq)
  3040. {
  3041. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3042. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3043. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3044. cfq_put_queue(cfqq);
  3045. return cic_to_cfqq(cic, 1);
  3046. }
  3047. /*
  3048. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3049. * was the last process referring to said cfqq.
  3050. */
  3051. static struct cfq_queue *
  3052. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3053. {
  3054. if (cfqq_process_refs(cfqq) == 1) {
  3055. cfqq->pid = current->pid;
  3056. cfq_clear_cfqq_coop(cfqq);
  3057. cfq_clear_cfqq_split_coop(cfqq);
  3058. return cfqq;
  3059. }
  3060. cic_set_cfqq(cic, NULL, 1);
  3061. cfq_put_cooperator(cfqq);
  3062. cfq_put_queue(cfqq);
  3063. return NULL;
  3064. }
  3065. /*
  3066. * Allocate cfq data structures associated with this request.
  3067. */
  3068. static int
  3069. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3070. {
  3071. struct cfq_data *cfqd = q->elevator->elevator_data;
  3072. struct cfq_io_context *cic;
  3073. const int rw = rq_data_dir(rq);
  3074. const bool is_sync = rq_is_sync(rq);
  3075. struct cfq_queue *cfqq;
  3076. unsigned long flags;
  3077. might_sleep_if(gfp_mask & __GFP_WAIT);
  3078. cic = cfq_get_io_context(cfqd, gfp_mask);
  3079. spin_lock_irqsave(q->queue_lock, flags);
  3080. if (!cic)
  3081. goto queue_fail;
  3082. new_queue:
  3083. cfqq = cic_to_cfqq(cic, is_sync);
  3084. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3085. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3086. cic_set_cfqq(cic, cfqq, is_sync);
  3087. } else {
  3088. /*
  3089. * If the queue was seeky for too long, break it apart.
  3090. */
  3091. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3092. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3093. cfqq = split_cfqq(cic, cfqq);
  3094. if (!cfqq)
  3095. goto new_queue;
  3096. }
  3097. /*
  3098. * Check to see if this queue is scheduled to merge with
  3099. * another, closely cooperating queue. The merging of
  3100. * queues happens here as it must be done in process context.
  3101. * The reference on new_cfqq was taken in merge_cfqqs.
  3102. */
  3103. if (cfqq->new_cfqq)
  3104. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3105. }
  3106. cfqq->allocated[rw]++;
  3107. atomic_inc(&cfqq->ref);
  3108. spin_unlock_irqrestore(q->queue_lock, flags);
  3109. rq->elevator_private = cic;
  3110. rq->elevator_private2 = cfqq;
  3111. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3112. return 0;
  3113. queue_fail:
  3114. if (cic)
  3115. put_io_context(cic->ioc);
  3116. cfq_schedule_dispatch(cfqd);
  3117. spin_unlock_irqrestore(q->queue_lock, flags);
  3118. cfq_log(cfqd, "set_request fail");
  3119. return 1;
  3120. }
  3121. static void cfq_kick_queue(struct work_struct *work)
  3122. {
  3123. struct cfq_data *cfqd =
  3124. container_of(work, struct cfq_data, unplug_work);
  3125. struct request_queue *q = cfqd->queue;
  3126. spin_lock_irq(q->queue_lock);
  3127. __blk_run_queue(cfqd->queue);
  3128. spin_unlock_irq(q->queue_lock);
  3129. }
  3130. /*
  3131. * Timer running if the active_queue is currently idling inside its time slice
  3132. */
  3133. static void cfq_idle_slice_timer(unsigned long data)
  3134. {
  3135. struct cfq_data *cfqd = (struct cfq_data *) data;
  3136. struct cfq_queue *cfqq;
  3137. unsigned long flags;
  3138. int timed_out = 1;
  3139. cfq_log(cfqd, "idle timer fired");
  3140. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3141. cfqq = cfqd->active_queue;
  3142. if (cfqq) {
  3143. timed_out = 0;
  3144. /*
  3145. * We saw a request before the queue expired, let it through
  3146. */
  3147. if (cfq_cfqq_must_dispatch(cfqq))
  3148. goto out_kick;
  3149. /*
  3150. * expired
  3151. */
  3152. if (cfq_slice_used(cfqq))
  3153. goto expire;
  3154. /*
  3155. * only expire and reinvoke request handler, if there are
  3156. * other queues with pending requests
  3157. */
  3158. if (!cfqd->busy_queues)
  3159. goto out_cont;
  3160. /*
  3161. * not expired and it has a request pending, let it dispatch
  3162. */
  3163. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3164. goto out_kick;
  3165. /*
  3166. * Queue depth flag is reset only when the idle didn't succeed
  3167. */
  3168. cfq_clear_cfqq_deep(cfqq);
  3169. }
  3170. expire:
  3171. cfq_slice_expired(cfqd, timed_out);
  3172. out_kick:
  3173. cfq_schedule_dispatch(cfqd);
  3174. out_cont:
  3175. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3176. }
  3177. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3178. {
  3179. del_timer_sync(&cfqd->idle_slice_timer);
  3180. cancel_work_sync(&cfqd->unplug_work);
  3181. }
  3182. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3183. {
  3184. int i;
  3185. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3186. if (cfqd->async_cfqq[0][i])
  3187. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3188. if (cfqd->async_cfqq[1][i])
  3189. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3190. }
  3191. if (cfqd->async_idle_cfqq)
  3192. cfq_put_queue(cfqd->async_idle_cfqq);
  3193. }
  3194. static void cfq_cfqd_free(struct rcu_head *head)
  3195. {
  3196. kfree(container_of(head, struct cfq_data, rcu));
  3197. }
  3198. static void cfq_exit_queue(struct elevator_queue *e)
  3199. {
  3200. struct cfq_data *cfqd = e->elevator_data;
  3201. struct request_queue *q = cfqd->queue;
  3202. cfq_shutdown_timer_wq(cfqd);
  3203. spin_lock_irq(q->queue_lock);
  3204. if (cfqd->active_queue)
  3205. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3206. while (!list_empty(&cfqd->cic_list)) {
  3207. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3208. struct cfq_io_context,
  3209. queue_list);
  3210. __cfq_exit_single_io_context(cfqd, cic);
  3211. }
  3212. cfq_put_async_queues(cfqd);
  3213. cfq_release_cfq_groups(cfqd);
  3214. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3215. spin_unlock_irq(q->queue_lock);
  3216. cfq_shutdown_timer_wq(cfqd);
  3217. spin_lock(&cic_index_lock);
  3218. ida_remove(&cic_index_ida, cfqd->cic_index);
  3219. spin_unlock(&cic_index_lock);
  3220. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3221. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3222. }
  3223. static int cfq_alloc_cic_index(void)
  3224. {
  3225. int index, error;
  3226. do {
  3227. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3228. return -ENOMEM;
  3229. spin_lock(&cic_index_lock);
  3230. error = ida_get_new(&cic_index_ida, &index);
  3231. spin_unlock(&cic_index_lock);
  3232. if (error && error != -EAGAIN)
  3233. return error;
  3234. } while (error);
  3235. return index;
  3236. }
  3237. static void *cfq_init_queue(struct request_queue *q)
  3238. {
  3239. struct cfq_data *cfqd;
  3240. int i, j;
  3241. struct cfq_group *cfqg;
  3242. struct cfq_rb_root *st;
  3243. i = cfq_alloc_cic_index();
  3244. if (i < 0)
  3245. return NULL;
  3246. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3247. if (!cfqd)
  3248. return NULL;
  3249. cfqd->cic_index = i;
  3250. /* Init root service tree */
  3251. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3252. /* Init root group */
  3253. cfqg = &cfqd->root_group;
  3254. for_each_cfqg_st(cfqg, i, j, st)
  3255. *st = CFQ_RB_ROOT;
  3256. RB_CLEAR_NODE(&cfqg->rb_node);
  3257. /* Give preference to root group over other groups */
  3258. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3259. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3260. /*
  3261. * Take a reference to root group which we never drop. This is just
  3262. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3263. */
  3264. atomic_set(&cfqg->ref, 1);
  3265. rcu_read_lock();
  3266. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3267. (void *)cfqd, 0);
  3268. rcu_read_unlock();
  3269. #endif
  3270. /*
  3271. * Not strictly needed (since RB_ROOT just clears the node and we
  3272. * zeroed cfqd on alloc), but better be safe in case someone decides
  3273. * to add magic to the rb code
  3274. */
  3275. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3276. cfqd->prio_trees[i] = RB_ROOT;
  3277. /*
  3278. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3279. * Grab a permanent reference to it, so that the normal code flow
  3280. * will not attempt to free it.
  3281. */
  3282. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3283. atomic_inc(&cfqd->oom_cfqq.ref);
  3284. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3285. INIT_LIST_HEAD(&cfqd->cic_list);
  3286. cfqd->queue = q;
  3287. init_timer(&cfqd->idle_slice_timer);
  3288. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3289. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3290. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3291. cfqd->cfq_quantum = cfq_quantum;
  3292. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3293. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3294. cfqd->cfq_back_max = cfq_back_max;
  3295. cfqd->cfq_back_penalty = cfq_back_penalty;
  3296. cfqd->cfq_slice[0] = cfq_slice_async;
  3297. cfqd->cfq_slice[1] = cfq_slice_sync;
  3298. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3299. cfqd->cfq_slice_idle = cfq_slice_idle;
  3300. cfqd->cfq_group_idle = cfq_group_idle;
  3301. cfqd->cfq_latency = 1;
  3302. cfqd->cfq_group_isolation = 0;
  3303. cfqd->hw_tag = -1;
  3304. /*
  3305. * we optimistically start assuming sync ops weren't delayed in last
  3306. * second, in order to have larger depth for async operations.
  3307. */
  3308. cfqd->last_delayed_sync = jiffies - HZ;
  3309. return cfqd;
  3310. }
  3311. static void cfq_slab_kill(void)
  3312. {
  3313. /*
  3314. * Caller already ensured that pending RCU callbacks are completed,
  3315. * so we should have no busy allocations at this point.
  3316. */
  3317. if (cfq_pool)
  3318. kmem_cache_destroy(cfq_pool);
  3319. if (cfq_ioc_pool)
  3320. kmem_cache_destroy(cfq_ioc_pool);
  3321. }
  3322. static int __init cfq_slab_setup(void)
  3323. {
  3324. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3325. if (!cfq_pool)
  3326. goto fail;
  3327. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3328. if (!cfq_ioc_pool)
  3329. goto fail;
  3330. return 0;
  3331. fail:
  3332. cfq_slab_kill();
  3333. return -ENOMEM;
  3334. }
  3335. /*
  3336. * sysfs parts below -->
  3337. */
  3338. static ssize_t
  3339. cfq_var_show(unsigned int var, char *page)
  3340. {
  3341. return sprintf(page, "%d\n", var);
  3342. }
  3343. static ssize_t
  3344. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3345. {
  3346. char *p = (char *) page;
  3347. *var = simple_strtoul(p, &p, 10);
  3348. return count;
  3349. }
  3350. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3351. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3352. { \
  3353. struct cfq_data *cfqd = e->elevator_data; \
  3354. unsigned int __data = __VAR; \
  3355. if (__CONV) \
  3356. __data = jiffies_to_msecs(__data); \
  3357. return cfq_var_show(__data, (page)); \
  3358. }
  3359. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3360. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3361. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3362. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3363. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3364. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3365. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3366. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3367. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3368. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3369. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3370. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3371. #undef SHOW_FUNCTION
  3372. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3373. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3374. { \
  3375. struct cfq_data *cfqd = e->elevator_data; \
  3376. unsigned int __data; \
  3377. int ret = cfq_var_store(&__data, (page), count); \
  3378. if (__data < (MIN)) \
  3379. __data = (MIN); \
  3380. else if (__data > (MAX)) \
  3381. __data = (MAX); \
  3382. if (__CONV) \
  3383. *(__PTR) = msecs_to_jiffies(__data); \
  3384. else \
  3385. *(__PTR) = __data; \
  3386. return ret; \
  3387. }
  3388. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3389. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3390. UINT_MAX, 1);
  3391. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3392. UINT_MAX, 1);
  3393. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3394. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3395. UINT_MAX, 0);
  3396. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3397. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3398. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3399. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3400. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3401. UINT_MAX, 0);
  3402. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3403. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3404. #undef STORE_FUNCTION
  3405. #define CFQ_ATTR(name) \
  3406. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3407. static struct elv_fs_entry cfq_attrs[] = {
  3408. CFQ_ATTR(quantum),
  3409. CFQ_ATTR(fifo_expire_sync),
  3410. CFQ_ATTR(fifo_expire_async),
  3411. CFQ_ATTR(back_seek_max),
  3412. CFQ_ATTR(back_seek_penalty),
  3413. CFQ_ATTR(slice_sync),
  3414. CFQ_ATTR(slice_async),
  3415. CFQ_ATTR(slice_async_rq),
  3416. CFQ_ATTR(slice_idle),
  3417. CFQ_ATTR(group_idle),
  3418. CFQ_ATTR(low_latency),
  3419. CFQ_ATTR(group_isolation),
  3420. __ATTR_NULL
  3421. };
  3422. static struct elevator_type iosched_cfq = {
  3423. .ops = {
  3424. .elevator_merge_fn = cfq_merge,
  3425. .elevator_merged_fn = cfq_merged_request,
  3426. .elevator_merge_req_fn = cfq_merged_requests,
  3427. .elevator_allow_merge_fn = cfq_allow_merge,
  3428. .elevator_bio_merged_fn = cfq_bio_merged,
  3429. .elevator_dispatch_fn = cfq_dispatch_requests,
  3430. .elevator_add_req_fn = cfq_insert_request,
  3431. .elevator_activate_req_fn = cfq_activate_request,
  3432. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3433. .elevator_queue_empty_fn = cfq_queue_empty,
  3434. .elevator_completed_req_fn = cfq_completed_request,
  3435. .elevator_former_req_fn = elv_rb_former_request,
  3436. .elevator_latter_req_fn = elv_rb_latter_request,
  3437. .elevator_set_req_fn = cfq_set_request,
  3438. .elevator_put_req_fn = cfq_put_request,
  3439. .elevator_may_queue_fn = cfq_may_queue,
  3440. .elevator_init_fn = cfq_init_queue,
  3441. .elevator_exit_fn = cfq_exit_queue,
  3442. .trim = cfq_free_io_context,
  3443. },
  3444. .elevator_attrs = cfq_attrs,
  3445. .elevator_name = "cfq",
  3446. .elevator_owner = THIS_MODULE,
  3447. };
  3448. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3449. static struct blkio_policy_type blkio_policy_cfq = {
  3450. .ops = {
  3451. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3452. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3453. },
  3454. .plid = BLKIO_POLICY_PROP,
  3455. };
  3456. #else
  3457. static struct blkio_policy_type blkio_policy_cfq;
  3458. #endif
  3459. static int __init cfq_init(void)
  3460. {
  3461. /*
  3462. * could be 0 on HZ < 1000 setups
  3463. */
  3464. if (!cfq_slice_async)
  3465. cfq_slice_async = 1;
  3466. if (!cfq_slice_idle)
  3467. cfq_slice_idle = 1;
  3468. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3469. if (!cfq_group_idle)
  3470. cfq_group_idle = 1;
  3471. #else
  3472. cfq_group_idle = 0;
  3473. #endif
  3474. if (cfq_slab_setup())
  3475. return -ENOMEM;
  3476. elv_register(&iosched_cfq);
  3477. blkio_policy_register(&blkio_policy_cfq);
  3478. return 0;
  3479. }
  3480. static void __exit cfq_exit(void)
  3481. {
  3482. DECLARE_COMPLETION_ONSTACK(all_gone);
  3483. blkio_policy_unregister(&blkio_policy_cfq);
  3484. elv_unregister(&iosched_cfq);
  3485. ioc_gone = &all_gone;
  3486. /* ioc_gone's update must be visible before reading ioc_count */
  3487. smp_wmb();
  3488. /*
  3489. * this also protects us from entering cfq_slab_kill() with
  3490. * pending RCU callbacks
  3491. */
  3492. if (elv_ioc_count_read(cfq_ioc_count))
  3493. wait_for_completion(&all_gone);
  3494. ida_destroy(&cic_index_ida);
  3495. cfq_slab_kill();
  3496. }
  3497. module_init(cfq_init);
  3498. module_exit(cfq_exit);
  3499. MODULE_AUTHOR("Jens Axboe");
  3500. MODULE_LICENSE("GPL");
  3501. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");