i915_gem.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/i915_drm.h>
  29. #include "i915_drv.h"
  30. #include "i915_trace.h"
  31. #include "intel_drv.h"
  32. #include <linux/shmem_fs.h>
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-buf.h>
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  40. unsigned alignment,
  41. bool map_and_fenceable,
  42. bool nonblocking);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  55. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  56. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  57. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  58. {
  59. if (obj->tiling_mode)
  60. i915_gem_release_mmap(obj);
  61. /* As we do not have an associated fence register, we will force
  62. * a tiling change if we ever need to acquire one.
  63. */
  64. obj->fence_dirty = false;
  65. obj->fence_reg = I915_FENCE_REG_NONE;
  66. }
  67. /* some bookkeeping */
  68. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  69. size_t size)
  70. {
  71. dev_priv->mm.object_count++;
  72. dev_priv->mm.object_memory += size;
  73. }
  74. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75. size_t size)
  76. {
  77. dev_priv->mm.object_count--;
  78. dev_priv->mm.object_memory -= size;
  79. }
  80. static int
  81. i915_gem_wait_for_error(struct drm_device *dev)
  82. {
  83. struct drm_i915_private *dev_priv = dev->dev_private;
  84. struct completion *x = &dev_priv->error_completion;
  85. unsigned long flags;
  86. int ret;
  87. if (!atomic_read(&dev_priv->mm.wedged))
  88. return 0;
  89. /*
  90. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  91. * userspace. If it takes that long something really bad is going on and
  92. * we should simply try to bail out and fail as gracefully as possible.
  93. */
  94. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  95. if (ret == 0) {
  96. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  97. return -EIO;
  98. } else if (ret < 0) {
  99. return ret;
  100. }
  101. if (atomic_read(&dev_priv->mm.wedged)) {
  102. /* GPU is hung, bump the completion count to account for
  103. * the token we just consumed so that we never hit zero and
  104. * end up waiting upon a subsequent completion event that
  105. * will never happen.
  106. */
  107. spin_lock_irqsave(&x->wait.lock, flags);
  108. x->done++;
  109. spin_unlock_irqrestore(&x->wait.lock, flags);
  110. }
  111. return 0;
  112. }
  113. int i915_mutex_lock_interruptible(struct drm_device *dev)
  114. {
  115. int ret;
  116. ret = i915_gem_wait_for_error(dev);
  117. if (ret)
  118. return ret;
  119. ret = mutex_lock_interruptible(&dev->struct_mutex);
  120. if (ret)
  121. return ret;
  122. WARN_ON(i915_verify_lists(dev));
  123. return 0;
  124. }
  125. static inline bool
  126. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  127. {
  128. return obj->gtt_space && !obj->active;
  129. }
  130. int
  131. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  132. struct drm_file *file)
  133. {
  134. struct drm_i915_gem_init *args = data;
  135. if (drm_core_check_feature(dev, DRIVER_MODESET))
  136. return -ENODEV;
  137. if (args->gtt_start >= args->gtt_end ||
  138. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  139. return -EINVAL;
  140. /* GEM with user mode setting was never supported on ilk and later. */
  141. if (INTEL_INFO(dev)->gen >= 5)
  142. return -ENODEV;
  143. mutex_lock(&dev->struct_mutex);
  144. i915_gem_init_global_gtt(dev, args->gtt_start,
  145. args->gtt_end, args->gtt_end);
  146. mutex_unlock(&dev->struct_mutex);
  147. return 0;
  148. }
  149. int
  150. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  151. struct drm_file *file)
  152. {
  153. struct drm_i915_private *dev_priv = dev->dev_private;
  154. struct drm_i915_gem_get_aperture *args = data;
  155. struct drm_i915_gem_object *obj;
  156. size_t pinned;
  157. pinned = 0;
  158. mutex_lock(&dev->struct_mutex);
  159. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  160. if (obj->pin_count)
  161. pinned += obj->gtt_space->size;
  162. mutex_unlock(&dev->struct_mutex);
  163. args->aper_size = dev_priv->mm.gtt_total;
  164. args->aper_available_size = args->aper_size - pinned;
  165. return 0;
  166. }
  167. static int
  168. i915_gem_create(struct drm_file *file,
  169. struct drm_device *dev,
  170. uint64_t size,
  171. uint32_t *handle_p)
  172. {
  173. struct drm_i915_gem_object *obj;
  174. int ret;
  175. u32 handle;
  176. size = roundup(size, PAGE_SIZE);
  177. if (size == 0)
  178. return -EINVAL;
  179. /* Allocate the new object */
  180. obj = i915_gem_alloc_object(dev, size);
  181. if (obj == NULL)
  182. return -ENOMEM;
  183. ret = drm_gem_handle_create(file, &obj->base, &handle);
  184. if (ret) {
  185. drm_gem_object_release(&obj->base);
  186. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  187. kfree(obj);
  188. return ret;
  189. }
  190. /* drop reference from allocate - handle holds it now */
  191. drm_gem_object_unreference(&obj->base);
  192. trace_i915_gem_object_create(obj);
  193. *handle_p = handle;
  194. return 0;
  195. }
  196. int
  197. i915_gem_dumb_create(struct drm_file *file,
  198. struct drm_device *dev,
  199. struct drm_mode_create_dumb *args)
  200. {
  201. /* have to work out size/pitch and return them */
  202. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  203. args->size = args->pitch * args->height;
  204. return i915_gem_create(file, dev,
  205. args->size, &args->handle);
  206. }
  207. int i915_gem_dumb_destroy(struct drm_file *file,
  208. struct drm_device *dev,
  209. uint32_t handle)
  210. {
  211. return drm_gem_handle_delete(file, handle);
  212. }
  213. /**
  214. * Creates a new mm object and returns a handle to it.
  215. */
  216. int
  217. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  218. struct drm_file *file)
  219. {
  220. struct drm_i915_gem_create *args = data;
  221. return i915_gem_create(file, dev,
  222. args->size, &args->handle);
  223. }
  224. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  225. {
  226. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  227. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  228. obj->tiling_mode != I915_TILING_NONE;
  229. }
  230. static inline int
  231. __copy_to_user_swizzled(char __user *cpu_vaddr,
  232. const char *gpu_vaddr, int gpu_offset,
  233. int length)
  234. {
  235. int ret, cpu_offset = 0;
  236. while (length > 0) {
  237. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  238. int this_length = min(cacheline_end - gpu_offset, length);
  239. int swizzled_gpu_offset = gpu_offset ^ 64;
  240. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  241. gpu_vaddr + swizzled_gpu_offset,
  242. this_length);
  243. if (ret)
  244. return ret + length;
  245. cpu_offset += this_length;
  246. gpu_offset += this_length;
  247. length -= this_length;
  248. }
  249. return 0;
  250. }
  251. static inline int
  252. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  253. const char __user *cpu_vaddr,
  254. int length)
  255. {
  256. int ret, cpu_offset = 0;
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  262. cpu_vaddr + cpu_offset,
  263. this_length);
  264. if (ret)
  265. return ret + length;
  266. cpu_offset += this_length;
  267. gpu_offset += this_length;
  268. length -= this_length;
  269. }
  270. return 0;
  271. }
  272. /* Per-page copy function for the shmem pread fastpath.
  273. * Flushes invalid cachelines before reading the target if
  274. * needs_clflush is set. */
  275. static int
  276. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  277. char __user *user_data,
  278. bool page_do_bit17_swizzling, bool needs_clflush)
  279. {
  280. char *vaddr;
  281. int ret;
  282. if (unlikely(page_do_bit17_swizzling))
  283. return -EINVAL;
  284. vaddr = kmap_atomic(page);
  285. if (needs_clflush)
  286. drm_clflush_virt_range(vaddr + shmem_page_offset,
  287. page_length);
  288. ret = __copy_to_user_inatomic(user_data,
  289. vaddr + shmem_page_offset,
  290. page_length);
  291. kunmap_atomic(vaddr);
  292. return ret ? -EFAULT : 0;
  293. }
  294. static void
  295. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  296. bool swizzled)
  297. {
  298. if (unlikely(swizzled)) {
  299. unsigned long start = (unsigned long) addr;
  300. unsigned long end = (unsigned long) addr + length;
  301. /* For swizzling simply ensure that we always flush both
  302. * channels. Lame, but simple and it works. Swizzled
  303. * pwrite/pread is far from a hotpath - current userspace
  304. * doesn't use it at all. */
  305. start = round_down(start, 128);
  306. end = round_up(end, 128);
  307. drm_clflush_virt_range((void *)start, end - start);
  308. } else {
  309. drm_clflush_virt_range(addr, length);
  310. }
  311. }
  312. /* Only difference to the fast-path function is that this can handle bit17
  313. * and uses non-atomic copy and kmap functions. */
  314. static int
  315. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  316. char __user *user_data,
  317. bool page_do_bit17_swizzling, bool needs_clflush)
  318. {
  319. char *vaddr;
  320. int ret;
  321. vaddr = kmap(page);
  322. if (needs_clflush)
  323. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  324. page_length,
  325. page_do_bit17_swizzling);
  326. if (page_do_bit17_swizzling)
  327. ret = __copy_to_user_swizzled(user_data,
  328. vaddr, shmem_page_offset,
  329. page_length);
  330. else
  331. ret = __copy_to_user(user_data,
  332. vaddr + shmem_page_offset,
  333. page_length);
  334. kunmap(page);
  335. return ret ? - EFAULT : 0;
  336. }
  337. static int
  338. i915_gem_shmem_pread(struct drm_device *dev,
  339. struct drm_i915_gem_object *obj,
  340. struct drm_i915_gem_pread *args,
  341. struct drm_file *file)
  342. {
  343. char __user *user_data;
  344. ssize_t remain;
  345. loff_t offset;
  346. int shmem_page_offset, page_length, ret = 0;
  347. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  348. int hit_slowpath = 0;
  349. int prefaulted = 0;
  350. int needs_clflush = 0;
  351. struct scatterlist *sg;
  352. int i;
  353. user_data = (char __user *) (uintptr_t) args->data_ptr;
  354. remain = args->size;
  355. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  356. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  357. /* If we're not in the cpu read domain, set ourself into the gtt
  358. * read domain and manually flush cachelines (if required). This
  359. * optimizes for the case when the gpu will dirty the data
  360. * anyway again before the next pread happens. */
  361. if (obj->cache_level == I915_CACHE_NONE)
  362. needs_clflush = 1;
  363. if (obj->gtt_space) {
  364. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  365. if (ret)
  366. return ret;
  367. }
  368. }
  369. ret = i915_gem_object_get_pages(obj);
  370. if (ret)
  371. return ret;
  372. i915_gem_object_pin_pages(obj);
  373. offset = args->offset;
  374. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  375. struct page *page;
  376. if (i < offset >> PAGE_SHIFT)
  377. continue;
  378. if (remain <= 0)
  379. break;
  380. /* Operation in this page
  381. *
  382. * shmem_page_offset = offset within page in shmem file
  383. * page_length = bytes to copy for this page
  384. */
  385. shmem_page_offset = offset_in_page(offset);
  386. page_length = remain;
  387. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  388. page_length = PAGE_SIZE - shmem_page_offset;
  389. page = sg_page(sg);
  390. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  391. (page_to_phys(page) & (1 << 17)) != 0;
  392. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  393. user_data, page_do_bit17_swizzling,
  394. needs_clflush);
  395. if (ret == 0)
  396. goto next_page;
  397. hit_slowpath = 1;
  398. mutex_unlock(&dev->struct_mutex);
  399. if (!prefaulted) {
  400. ret = fault_in_multipages_writeable(user_data, remain);
  401. /* Userspace is tricking us, but we've already clobbered
  402. * its pages with the prefault and promised to write the
  403. * data up to the first fault. Hence ignore any errors
  404. * and just continue. */
  405. (void)ret;
  406. prefaulted = 1;
  407. }
  408. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  409. user_data, page_do_bit17_swizzling,
  410. needs_clflush);
  411. mutex_lock(&dev->struct_mutex);
  412. next_page:
  413. mark_page_accessed(page);
  414. if (ret)
  415. goto out;
  416. remain -= page_length;
  417. user_data += page_length;
  418. offset += page_length;
  419. }
  420. out:
  421. i915_gem_object_unpin_pages(obj);
  422. if (hit_slowpath) {
  423. /* Fixup: Kill any reinstated backing storage pages */
  424. if (obj->madv == __I915_MADV_PURGED)
  425. i915_gem_object_truncate(obj);
  426. }
  427. return ret;
  428. }
  429. /**
  430. * Reads data from the object referenced by handle.
  431. *
  432. * On error, the contents of *data are undefined.
  433. */
  434. int
  435. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  436. struct drm_file *file)
  437. {
  438. struct drm_i915_gem_pread *args = data;
  439. struct drm_i915_gem_object *obj;
  440. int ret = 0;
  441. if (args->size == 0)
  442. return 0;
  443. if (!access_ok(VERIFY_WRITE,
  444. (char __user *)(uintptr_t)args->data_ptr,
  445. args->size))
  446. return -EFAULT;
  447. ret = i915_mutex_lock_interruptible(dev);
  448. if (ret)
  449. return ret;
  450. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  451. if (&obj->base == NULL) {
  452. ret = -ENOENT;
  453. goto unlock;
  454. }
  455. /* Bounds check source. */
  456. if (args->offset > obj->base.size ||
  457. args->size > obj->base.size - args->offset) {
  458. ret = -EINVAL;
  459. goto out;
  460. }
  461. /* prime objects have no backing filp to GEM pread/pwrite
  462. * pages from.
  463. */
  464. if (!obj->base.filp) {
  465. ret = -EINVAL;
  466. goto out;
  467. }
  468. trace_i915_gem_object_pread(obj, args->offset, args->size);
  469. ret = i915_gem_shmem_pread(dev, obj, args, file);
  470. out:
  471. drm_gem_object_unreference(&obj->base);
  472. unlock:
  473. mutex_unlock(&dev->struct_mutex);
  474. return ret;
  475. }
  476. /* This is the fast write path which cannot handle
  477. * page faults in the source data
  478. */
  479. static inline int
  480. fast_user_write(struct io_mapping *mapping,
  481. loff_t page_base, int page_offset,
  482. char __user *user_data,
  483. int length)
  484. {
  485. void __iomem *vaddr_atomic;
  486. void *vaddr;
  487. unsigned long unwritten;
  488. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  489. /* We can use the cpu mem copy function because this is X86. */
  490. vaddr = (void __force*)vaddr_atomic + page_offset;
  491. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  492. user_data, length);
  493. io_mapping_unmap_atomic(vaddr_atomic);
  494. return unwritten;
  495. }
  496. /**
  497. * This is the fast pwrite path, where we copy the data directly from the
  498. * user into the GTT, uncached.
  499. */
  500. static int
  501. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  502. struct drm_i915_gem_object *obj,
  503. struct drm_i915_gem_pwrite *args,
  504. struct drm_file *file)
  505. {
  506. drm_i915_private_t *dev_priv = dev->dev_private;
  507. ssize_t remain;
  508. loff_t offset, page_base;
  509. char __user *user_data;
  510. int page_offset, page_length, ret;
  511. ret = i915_gem_object_pin(obj, 0, true, true);
  512. if (ret)
  513. goto out;
  514. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  515. if (ret)
  516. goto out_unpin;
  517. ret = i915_gem_object_put_fence(obj);
  518. if (ret)
  519. goto out_unpin;
  520. user_data = (char __user *) (uintptr_t) args->data_ptr;
  521. remain = args->size;
  522. offset = obj->gtt_offset + args->offset;
  523. while (remain > 0) {
  524. /* Operation in this page
  525. *
  526. * page_base = page offset within aperture
  527. * page_offset = offset within page
  528. * page_length = bytes to copy for this page
  529. */
  530. page_base = offset & PAGE_MASK;
  531. page_offset = offset_in_page(offset);
  532. page_length = remain;
  533. if ((page_offset + remain) > PAGE_SIZE)
  534. page_length = PAGE_SIZE - page_offset;
  535. /* If we get a fault while copying data, then (presumably) our
  536. * source page isn't available. Return the error and we'll
  537. * retry in the slow path.
  538. */
  539. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  540. page_offset, user_data, page_length)) {
  541. ret = -EFAULT;
  542. goto out_unpin;
  543. }
  544. remain -= page_length;
  545. user_data += page_length;
  546. offset += page_length;
  547. }
  548. out_unpin:
  549. i915_gem_object_unpin(obj);
  550. out:
  551. return ret;
  552. }
  553. /* Per-page copy function for the shmem pwrite fastpath.
  554. * Flushes invalid cachelines before writing to the target if
  555. * needs_clflush_before is set and flushes out any written cachelines after
  556. * writing if needs_clflush is set. */
  557. static int
  558. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  559. char __user *user_data,
  560. bool page_do_bit17_swizzling,
  561. bool needs_clflush_before,
  562. bool needs_clflush_after)
  563. {
  564. char *vaddr;
  565. int ret;
  566. if (unlikely(page_do_bit17_swizzling))
  567. return -EINVAL;
  568. vaddr = kmap_atomic(page);
  569. if (needs_clflush_before)
  570. drm_clflush_virt_range(vaddr + shmem_page_offset,
  571. page_length);
  572. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  573. user_data,
  574. page_length);
  575. if (needs_clflush_after)
  576. drm_clflush_virt_range(vaddr + shmem_page_offset,
  577. page_length);
  578. kunmap_atomic(vaddr);
  579. return ret ? -EFAULT : 0;
  580. }
  581. /* Only difference to the fast-path function is that this can handle bit17
  582. * and uses non-atomic copy and kmap functions. */
  583. static int
  584. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  585. char __user *user_data,
  586. bool page_do_bit17_swizzling,
  587. bool needs_clflush_before,
  588. bool needs_clflush_after)
  589. {
  590. char *vaddr;
  591. int ret;
  592. vaddr = kmap(page);
  593. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  594. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  595. page_length,
  596. page_do_bit17_swizzling);
  597. if (page_do_bit17_swizzling)
  598. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  599. user_data,
  600. page_length);
  601. else
  602. ret = __copy_from_user(vaddr + shmem_page_offset,
  603. user_data,
  604. page_length);
  605. if (needs_clflush_after)
  606. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  607. page_length,
  608. page_do_bit17_swizzling);
  609. kunmap(page);
  610. return ret ? -EFAULT : 0;
  611. }
  612. static int
  613. i915_gem_shmem_pwrite(struct drm_device *dev,
  614. struct drm_i915_gem_object *obj,
  615. struct drm_i915_gem_pwrite *args,
  616. struct drm_file *file)
  617. {
  618. ssize_t remain;
  619. loff_t offset;
  620. char __user *user_data;
  621. int shmem_page_offset, page_length, ret = 0;
  622. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  623. int hit_slowpath = 0;
  624. int needs_clflush_after = 0;
  625. int needs_clflush_before = 0;
  626. int i;
  627. struct scatterlist *sg;
  628. user_data = (char __user *) (uintptr_t) args->data_ptr;
  629. remain = args->size;
  630. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  631. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  632. /* If we're not in the cpu write domain, set ourself into the gtt
  633. * write domain and manually flush cachelines (if required). This
  634. * optimizes for the case when the gpu will use the data
  635. * right away and we therefore have to clflush anyway. */
  636. if (obj->cache_level == I915_CACHE_NONE)
  637. needs_clflush_after = 1;
  638. if (obj->gtt_space) {
  639. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  640. if (ret)
  641. return ret;
  642. }
  643. }
  644. /* Same trick applies for invalidate partially written cachelines before
  645. * writing. */
  646. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  647. && obj->cache_level == I915_CACHE_NONE)
  648. needs_clflush_before = 1;
  649. ret = i915_gem_object_get_pages(obj);
  650. if (ret)
  651. return ret;
  652. i915_gem_object_pin_pages(obj);
  653. offset = args->offset;
  654. obj->dirty = 1;
  655. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  656. struct page *page;
  657. int partial_cacheline_write;
  658. if (i < offset >> PAGE_SHIFT)
  659. continue;
  660. if (remain <= 0)
  661. break;
  662. /* Operation in this page
  663. *
  664. * shmem_page_offset = offset within page in shmem file
  665. * page_length = bytes to copy for this page
  666. */
  667. shmem_page_offset = offset_in_page(offset);
  668. page_length = remain;
  669. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  670. page_length = PAGE_SIZE - shmem_page_offset;
  671. /* If we don't overwrite a cacheline completely we need to be
  672. * careful to have up-to-date data by first clflushing. Don't
  673. * overcomplicate things and flush the entire patch. */
  674. partial_cacheline_write = needs_clflush_before &&
  675. ((shmem_page_offset | page_length)
  676. & (boot_cpu_data.x86_clflush_size - 1));
  677. page = sg_page(sg);
  678. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  679. (page_to_phys(page) & (1 << 17)) != 0;
  680. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  681. user_data, page_do_bit17_swizzling,
  682. partial_cacheline_write,
  683. needs_clflush_after);
  684. if (ret == 0)
  685. goto next_page;
  686. hit_slowpath = 1;
  687. mutex_unlock(&dev->struct_mutex);
  688. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  689. user_data, page_do_bit17_swizzling,
  690. partial_cacheline_write,
  691. needs_clflush_after);
  692. mutex_lock(&dev->struct_mutex);
  693. next_page:
  694. set_page_dirty(page);
  695. mark_page_accessed(page);
  696. if (ret)
  697. goto out;
  698. remain -= page_length;
  699. user_data += page_length;
  700. offset += page_length;
  701. }
  702. out:
  703. i915_gem_object_unpin_pages(obj);
  704. if (hit_slowpath) {
  705. /* Fixup: Kill any reinstated backing storage pages */
  706. if (obj->madv == __I915_MADV_PURGED)
  707. i915_gem_object_truncate(obj);
  708. /* and flush dirty cachelines in case the object isn't in the cpu write
  709. * domain anymore. */
  710. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  711. i915_gem_clflush_object(obj);
  712. intel_gtt_chipset_flush();
  713. }
  714. }
  715. if (needs_clflush_after)
  716. intel_gtt_chipset_flush();
  717. return ret;
  718. }
  719. /**
  720. * Writes data to the object referenced by handle.
  721. *
  722. * On error, the contents of the buffer that were to be modified are undefined.
  723. */
  724. int
  725. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  726. struct drm_file *file)
  727. {
  728. struct drm_i915_gem_pwrite *args = data;
  729. struct drm_i915_gem_object *obj;
  730. int ret;
  731. if (args->size == 0)
  732. return 0;
  733. if (!access_ok(VERIFY_READ,
  734. (char __user *)(uintptr_t)args->data_ptr,
  735. args->size))
  736. return -EFAULT;
  737. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  738. args->size);
  739. if (ret)
  740. return -EFAULT;
  741. ret = i915_mutex_lock_interruptible(dev);
  742. if (ret)
  743. return ret;
  744. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  745. if (&obj->base == NULL) {
  746. ret = -ENOENT;
  747. goto unlock;
  748. }
  749. /* Bounds check destination. */
  750. if (args->offset > obj->base.size ||
  751. args->size > obj->base.size - args->offset) {
  752. ret = -EINVAL;
  753. goto out;
  754. }
  755. /* prime objects have no backing filp to GEM pread/pwrite
  756. * pages from.
  757. */
  758. if (!obj->base.filp) {
  759. ret = -EINVAL;
  760. goto out;
  761. }
  762. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  763. ret = -EFAULT;
  764. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  765. * it would end up going through the fenced access, and we'll get
  766. * different detiling behavior between reading and writing.
  767. * pread/pwrite currently are reading and writing from the CPU
  768. * perspective, requiring manual detiling by the client.
  769. */
  770. if (obj->phys_obj) {
  771. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  772. goto out;
  773. }
  774. if (obj->cache_level == I915_CACHE_NONE &&
  775. obj->tiling_mode == I915_TILING_NONE &&
  776. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  777. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  778. /* Note that the gtt paths might fail with non-page-backed user
  779. * pointers (e.g. gtt mappings when moving data between
  780. * textures). Fallback to the shmem path in that case. */
  781. }
  782. if (ret == -EFAULT || ret == -ENOSPC)
  783. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  784. out:
  785. drm_gem_object_unreference(&obj->base);
  786. unlock:
  787. mutex_unlock(&dev->struct_mutex);
  788. return ret;
  789. }
  790. int
  791. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  792. bool interruptible)
  793. {
  794. if (atomic_read(&dev_priv->mm.wedged)) {
  795. struct completion *x = &dev_priv->error_completion;
  796. bool recovery_complete;
  797. unsigned long flags;
  798. /* Give the error handler a chance to run. */
  799. spin_lock_irqsave(&x->wait.lock, flags);
  800. recovery_complete = x->done > 0;
  801. spin_unlock_irqrestore(&x->wait.lock, flags);
  802. /* Non-interruptible callers can't handle -EAGAIN, hence return
  803. * -EIO unconditionally for these. */
  804. if (!interruptible)
  805. return -EIO;
  806. /* Recovery complete, but still wedged means reset failure. */
  807. if (recovery_complete)
  808. return -EIO;
  809. return -EAGAIN;
  810. }
  811. return 0;
  812. }
  813. /*
  814. * Compare seqno against outstanding lazy request. Emit a request if they are
  815. * equal.
  816. */
  817. static int
  818. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  819. {
  820. int ret;
  821. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  822. ret = 0;
  823. if (seqno == ring->outstanding_lazy_request)
  824. ret = i915_add_request(ring, NULL, NULL);
  825. return ret;
  826. }
  827. /**
  828. * __wait_seqno - wait until execution of seqno has finished
  829. * @ring: the ring expected to report seqno
  830. * @seqno: duh!
  831. * @interruptible: do an interruptible wait (normally yes)
  832. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  833. *
  834. * Returns 0 if the seqno was found within the alloted time. Else returns the
  835. * errno with remaining time filled in timeout argument.
  836. */
  837. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  838. bool interruptible, struct timespec *timeout)
  839. {
  840. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  841. struct timespec before, now, wait_time={1,0};
  842. unsigned long timeout_jiffies;
  843. long end;
  844. bool wait_forever = true;
  845. int ret;
  846. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  847. return 0;
  848. trace_i915_gem_request_wait_begin(ring, seqno);
  849. if (timeout != NULL) {
  850. wait_time = *timeout;
  851. wait_forever = false;
  852. }
  853. timeout_jiffies = timespec_to_jiffies(&wait_time);
  854. if (WARN_ON(!ring->irq_get(ring)))
  855. return -ENODEV;
  856. /* Record current time in case interrupted by signal, or wedged * */
  857. getrawmonotonic(&before);
  858. #define EXIT_COND \
  859. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  860. atomic_read(&dev_priv->mm.wedged))
  861. do {
  862. if (interruptible)
  863. end = wait_event_interruptible_timeout(ring->irq_queue,
  864. EXIT_COND,
  865. timeout_jiffies);
  866. else
  867. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  868. timeout_jiffies);
  869. ret = i915_gem_check_wedge(dev_priv, interruptible);
  870. if (ret)
  871. end = ret;
  872. } while (end == 0 && wait_forever);
  873. getrawmonotonic(&now);
  874. ring->irq_put(ring);
  875. trace_i915_gem_request_wait_end(ring, seqno);
  876. #undef EXIT_COND
  877. if (timeout) {
  878. struct timespec sleep_time = timespec_sub(now, before);
  879. *timeout = timespec_sub(*timeout, sleep_time);
  880. }
  881. switch (end) {
  882. case -EIO:
  883. case -EAGAIN: /* Wedged */
  884. case -ERESTARTSYS: /* Signal */
  885. return (int)end;
  886. case 0: /* Timeout */
  887. if (timeout)
  888. set_normalized_timespec(timeout, 0, 0);
  889. return -ETIME;
  890. default: /* Completed */
  891. WARN_ON(end < 0); /* We're not aware of other errors */
  892. return 0;
  893. }
  894. }
  895. /**
  896. * Waits for a sequence number to be signaled, and cleans up the
  897. * request and object lists appropriately for that event.
  898. */
  899. int
  900. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  901. {
  902. struct drm_device *dev = ring->dev;
  903. struct drm_i915_private *dev_priv = dev->dev_private;
  904. bool interruptible = dev_priv->mm.interruptible;
  905. int ret;
  906. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  907. BUG_ON(seqno == 0);
  908. ret = i915_gem_check_wedge(dev_priv, interruptible);
  909. if (ret)
  910. return ret;
  911. ret = i915_gem_check_olr(ring, seqno);
  912. if (ret)
  913. return ret;
  914. return __wait_seqno(ring, seqno, interruptible, NULL);
  915. }
  916. /**
  917. * Ensures that all rendering to the object has completed and the object is
  918. * safe to unbind from the GTT or access from the CPU.
  919. */
  920. static __must_check int
  921. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  922. bool readonly)
  923. {
  924. struct intel_ring_buffer *ring = obj->ring;
  925. u32 seqno;
  926. int ret;
  927. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  928. if (seqno == 0)
  929. return 0;
  930. ret = i915_wait_seqno(ring, seqno);
  931. if (ret)
  932. return ret;
  933. i915_gem_retire_requests_ring(ring);
  934. /* Manually manage the write flush as we may have not yet
  935. * retired the buffer.
  936. */
  937. if (obj->last_write_seqno &&
  938. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  939. obj->last_write_seqno = 0;
  940. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  941. }
  942. return 0;
  943. }
  944. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  945. * as the object state may change during this call.
  946. */
  947. static __must_check int
  948. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  949. bool readonly)
  950. {
  951. struct drm_device *dev = obj->base.dev;
  952. struct drm_i915_private *dev_priv = dev->dev_private;
  953. struct intel_ring_buffer *ring = obj->ring;
  954. u32 seqno;
  955. int ret;
  956. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  957. BUG_ON(!dev_priv->mm.interruptible);
  958. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  959. if (seqno == 0)
  960. return 0;
  961. ret = i915_gem_check_wedge(dev_priv, true);
  962. if (ret)
  963. return ret;
  964. ret = i915_gem_check_olr(ring, seqno);
  965. if (ret)
  966. return ret;
  967. mutex_unlock(&dev->struct_mutex);
  968. ret = __wait_seqno(ring, seqno, true, NULL);
  969. mutex_lock(&dev->struct_mutex);
  970. i915_gem_retire_requests_ring(ring);
  971. /* Manually manage the write flush as we may have not yet
  972. * retired the buffer.
  973. */
  974. if (obj->last_write_seqno &&
  975. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  976. obj->last_write_seqno = 0;
  977. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  978. }
  979. return ret;
  980. }
  981. /**
  982. * Called when user space prepares to use an object with the CPU, either
  983. * through the mmap ioctl's mapping or a GTT mapping.
  984. */
  985. int
  986. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  987. struct drm_file *file)
  988. {
  989. struct drm_i915_gem_set_domain *args = data;
  990. struct drm_i915_gem_object *obj;
  991. uint32_t read_domains = args->read_domains;
  992. uint32_t write_domain = args->write_domain;
  993. int ret;
  994. /* Only handle setting domains to types used by the CPU. */
  995. if (write_domain & I915_GEM_GPU_DOMAINS)
  996. return -EINVAL;
  997. if (read_domains & I915_GEM_GPU_DOMAINS)
  998. return -EINVAL;
  999. /* Having something in the write domain implies it's in the read
  1000. * domain, and only that read domain. Enforce that in the request.
  1001. */
  1002. if (write_domain != 0 && read_domains != write_domain)
  1003. return -EINVAL;
  1004. ret = i915_mutex_lock_interruptible(dev);
  1005. if (ret)
  1006. return ret;
  1007. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1008. if (&obj->base == NULL) {
  1009. ret = -ENOENT;
  1010. goto unlock;
  1011. }
  1012. /* Try to flush the object off the GPU without holding the lock.
  1013. * We will repeat the flush holding the lock in the normal manner
  1014. * to catch cases where we are gazumped.
  1015. */
  1016. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1017. if (ret)
  1018. goto unref;
  1019. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1020. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1021. /* Silently promote "you're not bound, there was nothing to do"
  1022. * to success, since the client was just asking us to
  1023. * make sure everything was done.
  1024. */
  1025. if (ret == -EINVAL)
  1026. ret = 0;
  1027. } else {
  1028. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1029. }
  1030. unref:
  1031. drm_gem_object_unreference(&obj->base);
  1032. unlock:
  1033. mutex_unlock(&dev->struct_mutex);
  1034. return ret;
  1035. }
  1036. /**
  1037. * Called when user space has done writes to this buffer
  1038. */
  1039. int
  1040. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1041. struct drm_file *file)
  1042. {
  1043. struct drm_i915_gem_sw_finish *args = data;
  1044. struct drm_i915_gem_object *obj;
  1045. int ret = 0;
  1046. ret = i915_mutex_lock_interruptible(dev);
  1047. if (ret)
  1048. return ret;
  1049. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1050. if (&obj->base == NULL) {
  1051. ret = -ENOENT;
  1052. goto unlock;
  1053. }
  1054. /* Pinned buffers may be scanout, so flush the cache */
  1055. if (obj->pin_count)
  1056. i915_gem_object_flush_cpu_write_domain(obj);
  1057. drm_gem_object_unreference(&obj->base);
  1058. unlock:
  1059. mutex_unlock(&dev->struct_mutex);
  1060. return ret;
  1061. }
  1062. /**
  1063. * Maps the contents of an object, returning the address it is mapped
  1064. * into.
  1065. *
  1066. * While the mapping holds a reference on the contents of the object, it doesn't
  1067. * imply a ref on the object itself.
  1068. */
  1069. int
  1070. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1071. struct drm_file *file)
  1072. {
  1073. struct drm_i915_gem_mmap *args = data;
  1074. struct drm_gem_object *obj;
  1075. unsigned long addr;
  1076. obj = drm_gem_object_lookup(dev, file, args->handle);
  1077. if (obj == NULL)
  1078. return -ENOENT;
  1079. /* prime objects have no backing filp to GEM mmap
  1080. * pages from.
  1081. */
  1082. if (!obj->filp) {
  1083. drm_gem_object_unreference_unlocked(obj);
  1084. return -EINVAL;
  1085. }
  1086. addr = vm_mmap(obj->filp, 0, args->size,
  1087. PROT_READ | PROT_WRITE, MAP_SHARED,
  1088. args->offset);
  1089. drm_gem_object_unreference_unlocked(obj);
  1090. if (IS_ERR((void *)addr))
  1091. return addr;
  1092. args->addr_ptr = (uint64_t) addr;
  1093. return 0;
  1094. }
  1095. /**
  1096. * i915_gem_fault - fault a page into the GTT
  1097. * vma: VMA in question
  1098. * vmf: fault info
  1099. *
  1100. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1101. * from userspace. The fault handler takes care of binding the object to
  1102. * the GTT (if needed), allocating and programming a fence register (again,
  1103. * only if needed based on whether the old reg is still valid or the object
  1104. * is tiled) and inserting a new PTE into the faulting process.
  1105. *
  1106. * Note that the faulting process may involve evicting existing objects
  1107. * from the GTT and/or fence registers to make room. So performance may
  1108. * suffer if the GTT working set is large or there are few fence registers
  1109. * left.
  1110. */
  1111. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1112. {
  1113. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1114. struct drm_device *dev = obj->base.dev;
  1115. drm_i915_private_t *dev_priv = dev->dev_private;
  1116. pgoff_t page_offset;
  1117. unsigned long pfn;
  1118. int ret = 0;
  1119. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1120. /* We don't use vmf->pgoff since that has the fake offset */
  1121. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1122. PAGE_SHIFT;
  1123. ret = i915_mutex_lock_interruptible(dev);
  1124. if (ret)
  1125. goto out;
  1126. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1127. /* Now bind it into the GTT if needed */
  1128. if (!obj->map_and_fenceable) {
  1129. ret = i915_gem_object_unbind(obj);
  1130. if (ret)
  1131. goto unlock;
  1132. }
  1133. if (!obj->gtt_space) {
  1134. ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
  1135. if (ret)
  1136. goto unlock;
  1137. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1138. if (ret)
  1139. goto unlock;
  1140. }
  1141. if (!obj->has_global_gtt_mapping)
  1142. i915_gem_gtt_bind_object(obj, obj->cache_level);
  1143. ret = i915_gem_object_get_fence(obj);
  1144. if (ret)
  1145. goto unlock;
  1146. if (i915_gem_object_is_inactive(obj))
  1147. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1148. obj->fault_mappable = true;
  1149. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1150. page_offset;
  1151. /* Finally, remap it using the new GTT offset */
  1152. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1153. unlock:
  1154. mutex_unlock(&dev->struct_mutex);
  1155. out:
  1156. switch (ret) {
  1157. case -EIO:
  1158. /* If this -EIO is due to a gpu hang, give the reset code a
  1159. * chance to clean up the mess. Otherwise return the proper
  1160. * SIGBUS. */
  1161. if (!atomic_read(&dev_priv->mm.wedged))
  1162. return VM_FAULT_SIGBUS;
  1163. case -EAGAIN:
  1164. /* Give the error handler a chance to run and move the
  1165. * objects off the GPU active list. Next time we service the
  1166. * fault, we should be able to transition the page into the
  1167. * GTT without touching the GPU (and so avoid further
  1168. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1169. * with coherency, just lost writes.
  1170. */
  1171. set_need_resched();
  1172. case 0:
  1173. case -ERESTARTSYS:
  1174. case -EINTR:
  1175. case -EBUSY:
  1176. /*
  1177. * EBUSY is ok: this just means that another thread
  1178. * already did the job.
  1179. */
  1180. return VM_FAULT_NOPAGE;
  1181. case -ENOMEM:
  1182. return VM_FAULT_OOM;
  1183. default:
  1184. WARN_ON_ONCE(ret);
  1185. return VM_FAULT_SIGBUS;
  1186. }
  1187. }
  1188. /**
  1189. * i915_gem_release_mmap - remove physical page mappings
  1190. * @obj: obj in question
  1191. *
  1192. * Preserve the reservation of the mmapping with the DRM core code, but
  1193. * relinquish ownership of the pages back to the system.
  1194. *
  1195. * It is vital that we remove the page mapping if we have mapped a tiled
  1196. * object through the GTT and then lose the fence register due to
  1197. * resource pressure. Similarly if the object has been moved out of the
  1198. * aperture, than pages mapped into userspace must be revoked. Removing the
  1199. * mapping will then trigger a page fault on the next user access, allowing
  1200. * fixup by i915_gem_fault().
  1201. */
  1202. void
  1203. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1204. {
  1205. if (!obj->fault_mappable)
  1206. return;
  1207. if (obj->base.dev->dev_mapping)
  1208. unmap_mapping_range(obj->base.dev->dev_mapping,
  1209. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1210. obj->base.size, 1);
  1211. obj->fault_mappable = false;
  1212. }
  1213. static uint32_t
  1214. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1215. {
  1216. uint32_t gtt_size;
  1217. if (INTEL_INFO(dev)->gen >= 4 ||
  1218. tiling_mode == I915_TILING_NONE)
  1219. return size;
  1220. /* Previous chips need a power-of-two fence region when tiling */
  1221. if (INTEL_INFO(dev)->gen == 3)
  1222. gtt_size = 1024*1024;
  1223. else
  1224. gtt_size = 512*1024;
  1225. while (gtt_size < size)
  1226. gtt_size <<= 1;
  1227. return gtt_size;
  1228. }
  1229. /**
  1230. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1231. * @obj: object to check
  1232. *
  1233. * Return the required GTT alignment for an object, taking into account
  1234. * potential fence register mapping.
  1235. */
  1236. static uint32_t
  1237. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1238. uint32_t size,
  1239. int tiling_mode)
  1240. {
  1241. /*
  1242. * Minimum alignment is 4k (GTT page size), but might be greater
  1243. * if a fence register is needed for the object.
  1244. */
  1245. if (INTEL_INFO(dev)->gen >= 4 ||
  1246. tiling_mode == I915_TILING_NONE)
  1247. return 4096;
  1248. /*
  1249. * Previous chips need to be aligned to the size of the smallest
  1250. * fence register that can contain the object.
  1251. */
  1252. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1253. }
  1254. /**
  1255. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1256. * unfenced object
  1257. * @dev: the device
  1258. * @size: size of the object
  1259. * @tiling_mode: tiling mode of the object
  1260. *
  1261. * Return the required GTT alignment for an object, only taking into account
  1262. * unfenced tiled surface requirements.
  1263. */
  1264. uint32_t
  1265. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1266. uint32_t size,
  1267. int tiling_mode)
  1268. {
  1269. /*
  1270. * Minimum alignment is 4k (GTT page size) for sane hw.
  1271. */
  1272. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1273. tiling_mode == I915_TILING_NONE)
  1274. return 4096;
  1275. /* Previous hardware however needs to be aligned to a power-of-two
  1276. * tile height. The simplest method for determining this is to reuse
  1277. * the power-of-tile object size.
  1278. */
  1279. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1280. }
  1281. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1282. {
  1283. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1284. int ret;
  1285. if (obj->base.map_list.map)
  1286. return 0;
  1287. ret = drm_gem_create_mmap_offset(&obj->base);
  1288. if (ret != -ENOSPC)
  1289. return ret;
  1290. /* Badly fragmented mmap space? The only way we can recover
  1291. * space is by destroying unwanted objects. We can't randomly release
  1292. * mmap_offsets as userspace expects them to be persistent for the
  1293. * lifetime of the objects. The closest we can is to release the
  1294. * offsets on purgeable objects by truncating it and marking it purged,
  1295. * which prevents userspace from ever using that object again.
  1296. */
  1297. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1298. ret = drm_gem_create_mmap_offset(&obj->base);
  1299. if (ret != -ENOSPC)
  1300. return ret;
  1301. i915_gem_shrink_all(dev_priv);
  1302. return drm_gem_create_mmap_offset(&obj->base);
  1303. }
  1304. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1305. {
  1306. if (!obj->base.map_list.map)
  1307. return;
  1308. drm_gem_free_mmap_offset(&obj->base);
  1309. }
  1310. int
  1311. i915_gem_mmap_gtt(struct drm_file *file,
  1312. struct drm_device *dev,
  1313. uint32_t handle,
  1314. uint64_t *offset)
  1315. {
  1316. struct drm_i915_private *dev_priv = dev->dev_private;
  1317. struct drm_i915_gem_object *obj;
  1318. int ret;
  1319. ret = i915_mutex_lock_interruptible(dev);
  1320. if (ret)
  1321. return ret;
  1322. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1323. if (&obj->base == NULL) {
  1324. ret = -ENOENT;
  1325. goto unlock;
  1326. }
  1327. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1328. ret = -E2BIG;
  1329. goto out;
  1330. }
  1331. if (obj->madv != I915_MADV_WILLNEED) {
  1332. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1333. ret = -EINVAL;
  1334. goto out;
  1335. }
  1336. ret = i915_gem_object_create_mmap_offset(obj);
  1337. if (ret)
  1338. goto out;
  1339. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1340. out:
  1341. drm_gem_object_unreference(&obj->base);
  1342. unlock:
  1343. mutex_unlock(&dev->struct_mutex);
  1344. return ret;
  1345. }
  1346. /**
  1347. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1348. * @dev: DRM device
  1349. * @data: GTT mapping ioctl data
  1350. * @file: GEM object info
  1351. *
  1352. * Simply returns the fake offset to userspace so it can mmap it.
  1353. * The mmap call will end up in drm_gem_mmap(), which will set things
  1354. * up so we can get faults in the handler above.
  1355. *
  1356. * The fault handler will take care of binding the object into the GTT
  1357. * (since it may have been evicted to make room for something), allocating
  1358. * a fence register, and mapping the appropriate aperture address into
  1359. * userspace.
  1360. */
  1361. int
  1362. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1363. struct drm_file *file)
  1364. {
  1365. struct drm_i915_gem_mmap_gtt *args = data;
  1366. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1367. }
  1368. /* Immediately discard the backing storage */
  1369. static void
  1370. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1371. {
  1372. struct inode *inode;
  1373. i915_gem_object_free_mmap_offset(obj);
  1374. if (obj->base.filp == NULL)
  1375. return;
  1376. /* Our goal here is to return as much of the memory as
  1377. * is possible back to the system as we are called from OOM.
  1378. * To do this we must instruct the shmfs to drop all of its
  1379. * backing pages, *now*.
  1380. */
  1381. inode = obj->base.filp->f_path.dentry->d_inode;
  1382. shmem_truncate_range(inode, 0, (loff_t)-1);
  1383. obj->madv = __I915_MADV_PURGED;
  1384. }
  1385. static inline int
  1386. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1387. {
  1388. return obj->madv == I915_MADV_DONTNEED;
  1389. }
  1390. static void
  1391. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1392. {
  1393. int page_count = obj->base.size / PAGE_SIZE;
  1394. struct scatterlist *sg;
  1395. int ret, i;
  1396. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1397. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1398. if (ret) {
  1399. /* In the event of a disaster, abandon all caches and
  1400. * hope for the best.
  1401. */
  1402. WARN_ON(ret != -EIO);
  1403. i915_gem_clflush_object(obj);
  1404. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1405. }
  1406. if (i915_gem_object_needs_bit17_swizzle(obj))
  1407. i915_gem_object_save_bit_17_swizzle(obj);
  1408. if (obj->madv == I915_MADV_DONTNEED)
  1409. obj->dirty = 0;
  1410. for_each_sg(obj->pages->sgl, sg, page_count, i) {
  1411. struct page *page = sg_page(sg);
  1412. if (obj->dirty)
  1413. set_page_dirty(page);
  1414. if (obj->madv == I915_MADV_WILLNEED)
  1415. mark_page_accessed(page);
  1416. page_cache_release(page);
  1417. }
  1418. obj->dirty = 0;
  1419. sg_free_table(obj->pages);
  1420. kfree(obj->pages);
  1421. }
  1422. static int
  1423. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1424. {
  1425. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1426. if (obj->pages == NULL)
  1427. return 0;
  1428. BUG_ON(obj->gtt_space);
  1429. if (obj->pages_pin_count)
  1430. return -EBUSY;
  1431. ops->put_pages(obj);
  1432. obj->pages = NULL;
  1433. list_del(&obj->gtt_list);
  1434. if (i915_gem_object_is_purgeable(obj))
  1435. i915_gem_object_truncate(obj);
  1436. return 0;
  1437. }
  1438. static long
  1439. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1440. {
  1441. struct drm_i915_gem_object *obj, *next;
  1442. long count = 0;
  1443. list_for_each_entry_safe(obj, next,
  1444. &dev_priv->mm.unbound_list,
  1445. gtt_list) {
  1446. if (i915_gem_object_is_purgeable(obj) &&
  1447. i915_gem_object_put_pages(obj) == 0) {
  1448. count += obj->base.size >> PAGE_SHIFT;
  1449. if (count >= target)
  1450. return count;
  1451. }
  1452. }
  1453. list_for_each_entry_safe(obj, next,
  1454. &dev_priv->mm.inactive_list,
  1455. mm_list) {
  1456. if (i915_gem_object_is_purgeable(obj) &&
  1457. i915_gem_object_unbind(obj) == 0 &&
  1458. i915_gem_object_put_pages(obj) == 0) {
  1459. count += obj->base.size >> PAGE_SHIFT;
  1460. if (count >= target)
  1461. return count;
  1462. }
  1463. }
  1464. return count;
  1465. }
  1466. static void
  1467. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1468. {
  1469. struct drm_i915_gem_object *obj, *next;
  1470. i915_gem_evict_everything(dev_priv->dev);
  1471. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1472. i915_gem_object_put_pages(obj);
  1473. }
  1474. static int
  1475. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1476. {
  1477. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1478. int page_count, i;
  1479. struct address_space *mapping;
  1480. struct sg_table *st;
  1481. struct scatterlist *sg;
  1482. struct page *page;
  1483. gfp_t gfp;
  1484. /* Assert that the object is not currently in any GPU domain. As it
  1485. * wasn't in the GTT, there shouldn't be any way it could have been in
  1486. * a GPU cache
  1487. */
  1488. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1489. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1490. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1491. if (st == NULL)
  1492. return -ENOMEM;
  1493. page_count = obj->base.size / PAGE_SIZE;
  1494. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1495. sg_free_table(st);
  1496. kfree(st);
  1497. return -ENOMEM;
  1498. }
  1499. /* Get the list of pages out of our struct file. They'll be pinned
  1500. * at this point until we release them.
  1501. *
  1502. * Fail silently without starting the shrinker
  1503. */
  1504. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1505. gfp = mapping_gfp_mask(mapping);
  1506. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1507. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1508. for_each_sg(st->sgl, sg, page_count, i) {
  1509. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1510. if (IS_ERR(page)) {
  1511. i915_gem_purge(dev_priv, page_count);
  1512. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1513. }
  1514. if (IS_ERR(page)) {
  1515. /* We've tried hard to allocate the memory by reaping
  1516. * our own buffer, now let the real VM do its job and
  1517. * go down in flames if truly OOM.
  1518. */
  1519. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
  1520. gfp |= __GFP_IO | __GFP_WAIT;
  1521. i915_gem_shrink_all(dev_priv);
  1522. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1523. if (IS_ERR(page))
  1524. goto err_pages;
  1525. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1526. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1527. }
  1528. sg_set_page(sg, page, PAGE_SIZE, 0);
  1529. }
  1530. if (i915_gem_object_needs_bit17_swizzle(obj))
  1531. i915_gem_object_do_bit_17_swizzle(obj);
  1532. obj->pages = st;
  1533. return 0;
  1534. err_pages:
  1535. for_each_sg(st->sgl, sg, i, page_count)
  1536. page_cache_release(sg_page(sg));
  1537. sg_free_table(st);
  1538. kfree(st);
  1539. return PTR_ERR(page);
  1540. }
  1541. /* Ensure that the associated pages are gathered from the backing storage
  1542. * and pinned into our object. i915_gem_object_get_pages() may be called
  1543. * multiple times before they are released by a single call to
  1544. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1545. * either as a result of memory pressure (reaping pages under the shrinker)
  1546. * or as the object is itself released.
  1547. */
  1548. int
  1549. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1550. {
  1551. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1552. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1553. int ret;
  1554. if (obj->pages)
  1555. return 0;
  1556. BUG_ON(obj->pages_pin_count);
  1557. ret = ops->get_pages(obj);
  1558. if (ret)
  1559. return ret;
  1560. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1561. return 0;
  1562. }
  1563. void
  1564. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1565. struct intel_ring_buffer *ring,
  1566. u32 seqno)
  1567. {
  1568. struct drm_device *dev = obj->base.dev;
  1569. struct drm_i915_private *dev_priv = dev->dev_private;
  1570. BUG_ON(ring == NULL);
  1571. obj->ring = ring;
  1572. /* Add a reference if we're newly entering the active list. */
  1573. if (!obj->active) {
  1574. drm_gem_object_reference(&obj->base);
  1575. obj->active = 1;
  1576. }
  1577. /* Move from whatever list we were on to the tail of execution. */
  1578. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1579. list_move_tail(&obj->ring_list, &ring->active_list);
  1580. obj->last_read_seqno = seqno;
  1581. if (obj->fenced_gpu_access) {
  1582. obj->last_fenced_seqno = seqno;
  1583. /* Bump MRU to take account of the delayed flush */
  1584. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1585. struct drm_i915_fence_reg *reg;
  1586. reg = &dev_priv->fence_regs[obj->fence_reg];
  1587. list_move_tail(&reg->lru_list,
  1588. &dev_priv->mm.fence_list);
  1589. }
  1590. }
  1591. }
  1592. static void
  1593. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1594. {
  1595. struct drm_device *dev = obj->base.dev;
  1596. struct drm_i915_private *dev_priv = dev->dev_private;
  1597. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1598. BUG_ON(!obj->active);
  1599. if (obj->pin_count) /* are we a framebuffer? */
  1600. intel_mark_fb_idle(obj);
  1601. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1602. list_del_init(&obj->ring_list);
  1603. obj->ring = NULL;
  1604. obj->last_read_seqno = 0;
  1605. obj->last_write_seqno = 0;
  1606. obj->base.write_domain = 0;
  1607. obj->last_fenced_seqno = 0;
  1608. obj->fenced_gpu_access = false;
  1609. obj->active = 0;
  1610. drm_gem_object_unreference(&obj->base);
  1611. WARN_ON(i915_verify_lists(dev));
  1612. }
  1613. static u32
  1614. i915_gem_get_seqno(struct drm_device *dev)
  1615. {
  1616. drm_i915_private_t *dev_priv = dev->dev_private;
  1617. u32 seqno = dev_priv->next_seqno;
  1618. /* reserve 0 for non-seqno */
  1619. if (++dev_priv->next_seqno == 0)
  1620. dev_priv->next_seqno = 1;
  1621. return seqno;
  1622. }
  1623. u32
  1624. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1625. {
  1626. if (ring->outstanding_lazy_request == 0)
  1627. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1628. return ring->outstanding_lazy_request;
  1629. }
  1630. int
  1631. i915_add_request(struct intel_ring_buffer *ring,
  1632. struct drm_file *file,
  1633. u32 *out_seqno)
  1634. {
  1635. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1636. struct drm_i915_gem_request *request;
  1637. u32 request_ring_position;
  1638. u32 seqno;
  1639. int was_empty;
  1640. int ret;
  1641. /*
  1642. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1643. * after having emitted the batchbuffer command. Hence we need to fix
  1644. * things up similar to emitting the lazy request. The difference here
  1645. * is that the flush _must_ happen before the next request, no matter
  1646. * what.
  1647. */
  1648. ret = intel_ring_flush_all_caches(ring);
  1649. if (ret)
  1650. return ret;
  1651. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1652. if (request == NULL)
  1653. return -ENOMEM;
  1654. seqno = i915_gem_next_request_seqno(ring);
  1655. /* Record the position of the start of the request so that
  1656. * should we detect the updated seqno part-way through the
  1657. * GPU processing the request, we never over-estimate the
  1658. * position of the head.
  1659. */
  1660. request_ring_position = intel_ring_get_tail(ring);
  1661. ret = ring->add_request(ring, &seqno);
  1662. if (ret) {
  1663. kfree(request);
  1664. return ret;
  1665. }
  1666. trace_i915_gem_request_add(ring, seqno);
  1667. request->seqno = seqno;
  1668. request->ring = ring;
  1669. request->tail = request_ring_position;
  1670. request->emitted_jiffies = jiffies;
  1671. was_empty = list_empty(&ring->request_list);
  1672. list_add_tail(&request->list, &ring->request_list);
  1673. request->file_priv = NULL;
  1674. if (file) {
  1675. struct drm_i915_file_private *file_priv = file->driver_priv;
  1676. spin_lock(&file_priv->mm.lock);
  1677. request->file_priv = file_priv;
  1678. list_add_tail(&request->client_list,
  1679. &file_priv->mm.request_list);
  1680. spin_unlock(&file_priv->mm.lock);
  1681. }
  1682. ring->outstanding_lazy_request = 0;
  1683. if (!dev_priv->mm.suspended) {
  1684. if (i915_enable_hangcheck) {
  1685. mod_timer(&dev_priv->hangcheck_timer,
  1686. jiffies +
  1687. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1688. }
  1689. if (was_empty) {
  1690. queue_delayed_work(dev_priv->wq,
  1691. &dev_priv->mm.retire_work, HZ);
  1692. intel_mark_busy(dev_priv->dev);
  1693. }
  1694. }
  1695. if (out_seqno)
  1696. *out_seqno = seqno;
  1697. return 0;
  1698. }
  1699. static inline void
  1700. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1701. {
  1702. struct drm_i915_file_private *file_priv = request->file_priv;
  1703. if (!file_priv)
  1704. return;
  1705. spin_lock(&file_priv->mm.lock);
  1706. if (request->file_priv) {
  1707. list_del(&request->client_list);
  1708. request->file_priv = NULL;
  1709. }
  1710. spin_unlock(&file_priv->mm.lock);
  1711. }
  1712. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1713. struct intel_ring_buffer *ring)
  1714. {
  1715. while (!list_empty(&ring->request_list)) {
  1716. struct drm_i915_gem_request *request;
  1717. request = list_first_entry(&ring->request_list,
  1718. struct drm_i915_gem_request,
  1719. list);
  1720. list_del(&request->list);
  1721. i915_gem_request_remove_from_client(request);
  1722. kfree(request);
  1723. }
  1724. while (!list_empty(&ring->active_list)) {
  1725. struct drm_i915_gem_object *obj;
  1726. obj = list_first_entry(&ring->active_list,
  1727. struct drm_i915_gem_object,
  1728. ring_list);
  1729. i915_gem_object_move_to_inactive(obj);
  1730. }
  1731. }
  1732. static void i915_gem_reset_fences(struct drm_device *dev)
  1733. {
  1734. struct drm_i915_private *dev_priv = dev->dev_private;
  1735. int i;
  1736. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1737. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1738. i915_gem_write_fence(dev, i, NULL);
  1739. if (reg->obj)
  1740. i915_gem_object_fence_lost(reg->obj);
  1741. reg->pin_count = 0;
  1742. reg->obj = NULL;
  1743. INIT_LIST_HEAD(&reg->lru_list);
  1744. }
  1745. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1746. }
  1747. void i915_gem_reset(struct drm_device *dev)
  1748. {
  1749. struct drm_i915_private *dev_priv = dev->dev_private;
  1750. struct drm_i915_gem_object *obj;
  1751. struct intel_ring_buffer *ring;
  1752. int i;
  1753. for_each_ring(ring, dev_priv, i)
  1754. i915_gem_reset_ring_lists(dev_priv, ring);
  1755. /* Move everything out of the GPU domains to ensure we do any
  1756. * necessary invalidation upon reuse.
  1757. */
  1758. list_for_each_entry(obj,
  1759. &dev_priv->mm.inactive_list,
  1760. mm_list)
  1761. {
  1762. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1763. }
  1764. /* The fence registers are invalidated so clear them out */
  1765. i915_gem_reset_fences(dev);
  1766. }
  1767. /**
  1768. * This function clears the request list as sequence numbers are passed.
  1769. */
  1770. void
  1771. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1772. {
  1773. uint32_t seqno;
  1774. int i;
  1775. if (list_empty(&ring->request_list))
  1776. return;
  1777. WARN_ON(i915_verify_lists(ring->dev));
  1778. seqno = ring->get_seqno(ring, true);
  1779. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1780. if (seqno >= ring->sync_seqno[i])
  1781. ring->sync_seqno[i] = 0;
  1782. while (!list_empty(&ring->request_list)) {
  1783. struct drm_i915_gem_request *request;
  1784. request = list_first_entry(&ring->request_list,
  1785. struct drm_i915_gem_request,
  1786. list);
  1787. if (!i915_seqno_passed(seqno, request->seqno))
  1788. break;
  1789. trace_i915_gem_request_retire(ring, request->seqno);
  1790. /* We know the GPU must have read the request to have
  1791. * sent us the seqno + interrupt, so use the position
  1792. * of tail of the request to update the last known position
  1793. * of the GPU head.
  1794. */
  1795. ring->last_retired_head = request->tail;
  1796. list_del(&request->list);
  1797. i915_gem_request_remove_from_client(request);
  1798. kfree(request);
  1799. }
  1800. /* Move any buffers on the active list that are no longer referenced
  1801. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1802. */
  1803. while (!list_empty(&ring->active_list)) {
  1804. struct drm_i915_gem_object *obj;
  1805. obj = list_first_entry(&ring->active_list,
  1806. struct drm_i915_gem_object,
  1807. ring_list);
  1808. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1809. break;
  1810. i915_gem_object_move_to_inactive(obj);
  1811. }
  1812. if (unlikely(ring->trace_irq_seqno &&
  1813. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1814. ring->irq_put(ring);
  1815. ring->trace_irq_seqno = 0;
  1816. }
  1817. WARN_ON(i915_verify_lists(ring->dev));
  1818. }
  1819. void
  1820. i915_gem_retire_requests(struct drm_device *dev)
  1821. {
  1822. drm_i915_private_t *dev_priv = dev->dev_private;
  1823. struct intel_ring_buffer *ring;
  1824. int i;
  1825. for_each_ring(ring, dev_priv, i)
  1826. i915_gem_retire_requests_ring(ring);
  1827. }
  1828. static void
  1829. i915_gem_retire_work_handler(struct work_struct *work)
  1830. {
  1831. drm_i915_private_t *dev_priv;
  1832. struct drm_device *dev;
  1833. struct intel_ring_buffer *ring;
  1834. bool idle;
  1835. int i;
  1836. dev_priv = container_of(work, drm_i915_private_t,
  1837. mm.retire_work.work);
  1838. dev = dev_priv->dev;
  1839. /* Come back later if the device is busy... */
  1840. if (!mutex_trylock(&dev->struct_mutex)) {
  1841. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1842. return;
  1843. }
  1844. i915_gem_retire_requests(dev);
  1845. /* Send a periodic flush down the ring so we don't hold onto GEM
  1846. * objects indefinitely.
  1847. */
  1848. idle = true;
  1849. for_each_ring(ring, dev_priv, i) {
  1850. if (ring->gpu_caches_dirty)
  1851. i915_add_request(ring, NULL, NULL);
  1852. idle &= list_empty(&ring->request_list);
  1853. }
  1854. if (!dev_priv->mm.suspended && !idle)
  1855. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1856. if (idle)
  1857. intel_mark_idle(dev);
  1858. mutex_unlock(&dev->struct_mutex);
  1859. }
  1860. /**
  1861. * Ensures that an object will eventually get non-busy by flushing any required
  1862. * write domains, emitting any outstanding lazy request and retiring and
  1863. * completed requests.
  1864. */
  1865. static int
  1866. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1867. {
  1868. int ret;
  1869. if (obj->active) {
  1870. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1871. if (ret)
  1872. return ret;
  1873. i915_gem_retire_requests_ring(obj->ring);
  1874. }
  1875. return 0;
  1876. }
  1877. /**
  1878. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1879. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1880. *
  1881. * Returns 0 if successful, else an error is returned with the remaining time in
  1882. * the timeout parameter.
  1883. * -ETIME: object is still busy after timeout
  1884. * -ERESTARTSYS: signal interrupted the wait
  1885. * -ENONENT: object doesn't exist
  1886. * Also possible, but rare:
  1887. * -EAGAIN: GPU wedged
  1888. * -ENOMEM: damn
  1889. * -ENODEV: Internal IRQ fail
  1890. * -E?: The add request failed
  1891. *
  1892. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1893. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1894. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1895. * without holding struct_mutex the object may become re-busied before this
  1896. * function completes. A similar but shorter * race condition exists in the busy
  1897. * ioctl
  1898. */
  1899. int
  1900. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1901. {
  1902. struct drm_i915_gem_wait *args = data;
  1903. struct drm_i915_gem_object *obj;
  1904. struct intel_ring_buffer *ring = NULL;
  1905. struct timespec timeout_stack, *timeout = NULL;
  1906. u32 seqno = 0;
  1907. int ret = 0;
  1908. if (args->timeout_ns >= 0) {
  1909. timeout_stack = ns_to_timespec(args->timeout_ns);
  1910. timeout = &timeout_stack;
  1911. }
  1912. ret = i915_mutex_lock_interruptible(dev);
  1913. if (ret)
  1914. return ret;
  1915. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1916. if (&obj->base == NULL) {
  1917. mutex_unlock(&dev->struct_mutex);
  1918. return -ENOENT;
  1919. }
  1920. /* Need to make sure the object gets inactive eventually. */
  1921. ret = i915_gem_object_flush_active(obj);
  1922. if (ret)
  1923. goto out;
  1924. if (obj->active) {
  1925. seqno = obj->last_read_seqno;
  1926. ring = obj->ring;
  1927. }
  1928. if (seqno == 0)
  1929. goto out;
  1930. /* Do this after OLR check to make sure we make forward progress polling
  1931. * on this IOCTL with a 0 timeout (like busy ioctl)
  1932. */
  1933. if (!args->timeout_ns) {
  1934. ret = -ETIME;
  1935. goto out;
  1936. }
  1937. drm_gem_object_unreference(&obj->base);
  1938. mutex_unlock(&dev->struct_mutex);
  1939. ret = __wait_seqno(ring, seqno, true, timeout);
  1940. if (timeout) {
  1941. WARN_ON(!timespec_valid(timeout));
  1942. args->timeout_ns = timespec_to_ns(timeout);
  1943. }
  1944. return ret;
  1945. out:
  1946. drm_gem_object_unreference(&obj->base);
  1947. mutex_unlock(&dev->struct_mutex);
  1948. return ret;
  1949. }
  1950. /**
  1951. * i915_gem_object_sync - sync an object to a ring.
  1952. *
  1953. * @obj: object which may be in use on another ring.
  1954. * @to: ring we wish to use the object on. May be NULL.
  1955. *
  1956. * This code is meant to abstract object synchronization with the GPU.
  1957. * Calling with NULL implies synchronizing the object with the CPU
  1958. * rather than a particular GPU ring.
  1959. *
  1960. * Returns 0 if successful, else propagates up the lower layer error.
  1961. */
  1962. int
  1963. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1964. struct intel_ring_buffer *to)
  1965. {
  1966. struct intel_ring_buffer *from = obj->ring;
  1967. u32 seqno;
  1968. int ret, idx;
  1969. if (from == NULL || to == from)
  1970. return 0;
  1971. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1972. return i915_gem_object_wait_rendering(obj, false);
  1973. idx = intel_ring_sync_index(from, to);
  1974. seqno = obj->last_read_seqno;
  1975. if (seqno <= from->sync_seqno[idx])
  1976. return 0;
  1977. ret = i915_gem_check_olr(obj->ring, seqno);
  1978. if (ret)
  1979. return ret;
  1980. ret = to->sync_to(to, from, seqno);
  1981. if (!ret)
  1982. from->sync_seqno[idx] = seqno;
  1983. return ret;
  1984. }
  1985. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1986. {
  1987. u32 old_write_domain, old_read_domains;
  1988. /* Act a barrier for all accesses through the GTT */
  1989. mb();
  1990. /* Force a pagefault for domain tracking on next user access */
  1991. i915_gem_release_mmap(obj);
  1992. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1993. return;
  1994. old_read_domains = obj->base.read_domains;
  1995. old_write_domain = obj->base.write_domain;
  1996. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1997. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1998. trace_i915_gem_object_change_domain(obj,
  1999. old_read_domains,
  2000. old_write_domain);
  2001. }
  2002. /**
  2003. * Unbinds an object from the GTT aperture.
  2004. */
  2005. int
  2006. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2007. {
  2008. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2009. int ret = 0;
  2010. if (obj->gtt_space == NULL)
  2011. return 0;
  2012. if (obj->pin_count)
  2013. return -EBUSY;
  2014. BUG_ON(obj->pages == NULL);
  2015. ret = i915_gem_object_finish_gpu(obj);
  2016. if (ret)
  2017. return ret;
  2018. /* Continue on if we fail due to EIO, the GPU is hung so we
  2019. * should be safe and we need to cleanup or else we might
  2020. * cause memory corruption through use-after-free.
  2021. */
  2022. i915_gem_object_finish_gtt(obj);
  2023. /* release the fence reg _after_ flushing */
  2024. ret = i915_gem_object_put_fence(obj);
  2025. if (ret)
  2026. return ret;
  2027. trace_i915_gem_object_unbind(obj);
  2028. if (obj->has_global_gtt_mapping)
  2029. i915_gem_gtt_unbind_object(obj);
  2030. if (obj->has_aliasing_ppgtt_mapping) {
  2031. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2032. obj->has_aliasing_ppgtt_mapping = 0;
  2033. }
  2034. i915_gem_gtt_finish_object(obj);
  2035. list_del(&obj->mm_list);
  2036. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2037. /* Avoid an unnecessary call to unbind on rebind. */
  2038. obj->map_and_fenceable = true;
  2039. drm_mm_put_block(obj->gtt_space);
  2040. obj->gtt_space = NULL;
  2041. obj->gtt_offset = 0;
  2042. return 0;
  2043. }
  2044. static int i915_ring_idle(struct intel_ring_buffer *ring)
  2045. {
  2046. if (list_empty(&ring->active_list))
  2047. return 0;
  2048. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  2049. }
  2050. int i915_gpu_idle(struct drm_device *dev)
  2051. {
  2052. drm_i915_private_t *dev_priv = dev->dev_private;
  2053. struct intel_ring_buffer *ring;
  2054. int ret, i;
  2055. /* Flush everything onto the inactive list. */
  2056. for_each_ring(ring, dev_priv, i) {
  2057. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2058. if (ret)
  2059. return ret;
  2060. ret = i915_ring_idle(ring);
  2061. if (ret)
  2062. return ret;
  2063. }
  2064. return 0;
  2065. }
  2066. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  2067. struct drm_i915_gem_object *obj)
  2068. {
  2069. drm_i915_private_t *dev_priv = dev->dev_private;
  2070. uint64_t val;
  2071. if (obj) {
  2072. u32 size = obj->gtt_space->size;
  2073. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2074. 0xfffff000) << 32;
  2075. val |= obj->gtt_offset & 0xfffff000;
  2076. val |= (uint64_t)((obj->stride / 128) - 1) <<
  2077. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2078. if (obj->tiling_mode == I915_TILING_Y)
  2079. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2080. val |= I965_FENCE_REG_VALID;
  2081. } else
  2082. val = 0;
  2083. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  2084. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  2085. }
  2086. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2087. struct drm_i915_gem_object *obj)
  2088. {
  2089. drm_i915_private_t *dev_priv = dev->dev_private;
  2090. uint64_t val;
  2091. if (obj) {
  2092. u32 size = obj->gtt_space->size;
  2093. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2094. 0xfffff000) << 32;
  2095. val |= obj->gtt_offset & 0xfffff000;
  2096. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2097. if (obj->tiling_mode == I915_TILING_Y)
  2098. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2099. val |= I965_FENCE_REG_VALID;
  2100. } else
  2101. val = 0;
  2102. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2103. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2104. }
  2105. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2106. struct drm_i915_gem_object *obj)
  2107. {
  2108. drm_i915_private_t *dev_priv = dev->dev_private;
  2109. u32 val;
  2110. if (obj) {
  2111. u32 size = obj->gtt_space->size;
  2112. int pitch_val;
  2113. int tile_width;
  2114. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2115. (size & -size) != size ||
  2116. (obj->gtt_offset & (size - 1)),
  2117. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2118. obj->gtt_offset, obj->map_and_fenceable, size);
  2119. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2120. tile_width = 128;
  2121. else
  2122. tile_width = 512;
  2123. /* Note: pitch better be a power of two tile widths */
  2124. pitch_val = obj->stride / tile_width;
  2125. pitch_val = ffs(pitch_val) - 1;
  2126. val = obj->gtt_offset;
  2127. if (obj->tiling_mode == I915_TILING_Y)
  2128. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2129. val |= I915_FENCE_SIZE_BITS(size);
  2130. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2131. val |= I830_FENCE_REG_VALID;
  2132. } else
  2133. val = 0;
  2134. if (reg < 8)
  2135. reg = FENCE_REG_830_0 + reg * 4;
  2136. else
  2137. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2138. I915_WRITE(reg, val);
  2139. POSTING_READ(reg);
  2140. }
  2141. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2142. struct drm_i915_gem_object *obj)
  2143. {
  2144. drm_i915_private_t *dev_priv = dev->dev_private;
  2145. uint32_t val;
  2146. if (obj) {
  2147. u32 size = obj->gtt_space->size;
  2148. uint32_t pitch_val;
  2149. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2150. (size & -size) != size ||
  2151. (obj->gtt_offset & (size - 1)),
  2152. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2153. obj->gtt_offset, size);
  2154. pitch_val = obj->stride / 128;
  2155. pitch_val = ffs(pitch_val) - 1;
  2156. val = obj->gtt_offset;
  2157. if (obj->tiling_mode == I915_TILING_Y)
  2158. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2159. val |= I830_FENCE_SIZE_BITS(size);
  2160. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2161. val |= I830_FENCE_REG_VALID;
  2162. } else
  2163. val = 0;
  2164. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2165. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2166. }
  2167. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2168. struct drm_i915_gem_object *obj)
  2169. {
  2170. switch (INTEL_INFO(dev)->gen) {
  2171. case 7:
  2172. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2173. case 5:
  2174. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2175. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2176. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2177. default: break;
  2178. }
  2179. }
  2180. static inline int fence_number(struct drm_i915_private *dev_priv,
  2181. struct drm_i915_fence_reg *fence)
  2182. {
  2183. return fence - dev_priv->fence_regs;
  2184. }
  2185. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2186. struct drm_i915_fence_reg *fence,
  2187. bool enable)
  2188. {
  2189. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2190. int reg = fence_number(dev_priv, fence);
  2191. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2192. if (enable) {
  2193. obj->fence_reg = reg;
  2194. fence->obj = obj;
  2195. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2196. } else {
  2197. obj->fence_reg = I915_FENCE_REG_NONE;
  2198. fence->obj = NULL;
  2199. list_del_init(&fence->lru_list);
  2200. }
  2201. }
  2202. static int
  2203. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2204. {
  2205. if (obj->last_fenced_seqno) {
  2206. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2207. if (ret)
  2208. return ret;
  2209. obj->last_fenced_seqno = 0;
  2210. }
  2211. /* Ensure that all CPU reads are completed before installing a fence
  2212. * and all writes before removing the fence.
  2213. */
  2214. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2215. mb();
  2216. obj->fenced_gpu_access = false;
  2217. return 0;
  2218. }
  2219. int
  2220. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2221. {
  2222. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2223. int ret;
  2224. ret = i915_gem_object_flush_fence(obj);
  2225. if (ret)
  2226. return ret;
  2227. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2228. return 0;
  2229. i915_gem_object_update_fence(obj,
  2230. &dev_priv->fence_regs[obj->fence_reg],
  2231. false);
  2232. i915_gem_object_fence_lost(obj);
  2233. return 0;
  2234. }
  2235. static struct drm_i915_fence_reg *
  2236. i915_find_fence_reg(struct drm_device *dev)
  2237. {
  2238. struct drm_i915_private *dev_priv = dev->dev_private;
  2239. struct drm_i915_fence_reg *reg, *avail;
  2240. int i;
  2241. /* First try to find a free reg */
  2242. avail = NULL;
  2243. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2244. reg = &dev_priv->fence_regs[i];
  2245. if (!reg->obj)
  2246. return reg;
  2247. if (!reg->pin_count)
  2248. avail = reg;
  2249. }
  2250. if (avail == NULL)
  2251. return NULL;
  2252. /* None available, try to steal one or wait for a user to finish */
  2253. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2254. if (reg->pin_count)
  2255. continue;
  2256. return reg;
  2257. }
  2258. return NULL;
  2259. }
  2260. /**
  2261. * i915_gem_object_get_fence - set up fencing for an object
  2262. * @obj: object to map through a fence reg
  2263. *
  2264. * When mapping objects through the GTT, userspace wants to be able to write
  2265. * to them without having to worry about swizzling if the object is tiled.
  2266. * This function walks the fence regs looking for a free one for @obj,
  2267. * stealing one if it can't find any.
  2268. *
  2269. * It then sets up the reg based on the object's properties: address, pitch
  2270. * and tiling format.
  2271. *
  2272. * For an untiled surface, this removes any existing fence.
  2273. */
  2274. int
  2275. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2276. {
  2277. struct drm_device *dev = obj->base.dev;
  2278. struct drm_i915_private *dev_priv = dev->dev_private;
  2279. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2280. struct drm_i915_fence_reg *reg;
  2281. int ret;
  2282. /* Have we updated the tiling parameters upon the object and so
  2283. * will need to serialise the write to the associated fence register?
  2284. */
  2285. if (obj->fence_dirty) {
  2286. ret = i915_gem_object_flush_fence(obj);
  2287. if (ret)
  2288. return ret;
  2289. }
  2290. /* Just update our place in the LRU if our fence is getting reused. */
  2291. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2292. reg = &dev_priv->fence_regs[obj->fence_reg];
  2293. if (!obj->fence_dirty) {
  2294. list_move_tail(&reg->lru_list,
  2295. &dev_priv->mm.fence_list);
  2296. return 0;
  2297. }
  2298. } else if (enable) {
  2299. reg = i915_find_fence_reg(dev);
  2300. if (reg == NULL)
  2301. return -EDEADLK;
  2302. if (reg->obj) {
  2303. struct drm_i915_gem_object *old = reg->obj;
  2304. ret = i915_gem_object_flush_fence(old);
  2305. if (ret)
  2306. return ret;
  2307. i915_gem_object_fence_lost(old);
  2308. }
  2309. } else
  2310. return 0;
  2311. i915_gem_object_update_fence(obj, reg, enable);
  2312. obj->fence_dirty = false;
  2313. return 0;
  2314. }
  2315. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2316. struct drm_mm_node *gtt_space,
  2317. unsigned long cache_level)
  2318. {
  2319. struct drm_mm_node *other;
  2320. /* On non-LLC machines we have to be careful when putting differing
  2321. * types of snoopable memory together to avoid the prefetcher
  2322. * crossing memory domains and dieing.
  2323. */
  2324. if (HAS_LLC(dev))
  2325. return true;
  2326. if (gtt_space == NULL)
  2327. return true;
  2328. if (list_empty(&gtt_space->node_list))
  2329. return true;
  2330. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2331. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2332. return false;
  2333. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2334. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2335. return false;
  2336. return true;
  2337. }
  2338. static void i915_gem_verify_gtt(struct drm_device *dev)
  2339. {
  2340. #if WATCH_GTT
  2341. struct drm_i915_private *dev_priv = dev->dev_private;
  2342. struct drm_i915_gem_object *obj;
  2343. int err = 0;
  2344. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2345. if (obj->gtt_space == NULL) {
  2346. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2347. err++;
  2348. continue;
  2349. }
  2350. if (obj->cache_level != obj->gtt_space->color) {
  2351. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2352. obj->gtt_space->start,
  2353. obj->gtt_space->start + obj->gtt_space->size,
  2354. obj->cache_level,
  2355. obj->gtt_space->color);
  2356. err++;
  2357. continue;
  2358. }
  2359. if (!i915_gem_valid_gtt_space(dev,
  2360. obj->gtt_space,
  2361. obj->cache_level)) {
  2362. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2363. obj->gtt_space->start,
  2364. obj->gtt_space->start + obj->gtt_space->size,
  2365. obj->cache_level);
  2366. err++;
  2367. continue;
  2368. }
  2369. }
  2370. WARN_ON(err);
  2371. #endif
  2372. }
  2373. /**
  2374. * Finds free space in the GTT aperture and binds the object there.
  2375. */
  2376. static int
  2377. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2378. unsigned alignment,
  2379. bool map_and_fenceable,
  2380. bool nonblocking)
  2381. {
  2382. struct drm_device *dev = obj->base.dev;
  2383. drm_i915_private_t *dev_priv = dev->dev_private;
  2384. struct drm_mm_node *free_space;
  2385. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2386. bool mappable, fenceable;
  2387. int ret;
  2388. if (obj->madv != I915_MADV_WILLNEED) {
  2389. DRM_ERROR("Attempting to bind a purgeable object\n");
  2390. return -EINVAL;
  2391. }
  2392. fence_size = i915_gem_get_gtt_size(dev,
  2393. obj->base.size,
  2394. obj->tiling_mode);
  2395. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2396. obj->base.size,
  2397. obj->tiling_mode);
  2398. unfenced_alignment =
  2399. i915_gem_get_unfenced_gtt_alignment(dev,
  2400. obj->base.size,
  2401. obj->tiling_mode);
  2402. if (alignment == 0)
  2403. alignment = map_and_fenceable ? fence_alignment :
  2404. unfenced_alignment;
  2405. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2406. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2407. return -EINVAL;
  2408. }
  2409. size = map_and_fenceable ? fence_size : obj->base.size;
  2410. /* If the object is bigger than the entire aperture, reject it early
  2411. * before evicting everything in a vain attempt to find space.
  2412. */
  2413. if (obj->base.size >
  2414. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2415. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2416. return -E2BIG;
  2417. }
  2418. ret = i915_gem_object_get_pages(obj);
  2419. if (ret)
  2420. return ret;
  2421. search_free:
  2422. if (map_and_fenceable)
  2423. free_space =
  2424. drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
  2425. size, alignment, obj->cache_level,
  2426. 0, dev_priv->mm.gtt_mappable_end,
  2427. false);
  2428. else
  2429. free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
  2430. size, alignment, obj->cache_level,
  2431. false);
  2432. if (free_space != NULL) {
  2433. if (map_and_fenceable)
  2434. obj->gtt_space =
  2435. drm_mm_get_block_range_generic(free_space,
  2436. size, alignment, obj->cache_level,
  2437. 0, dev_priv->mm.gtt_mappable_end,
  2438. false);
  2439. else
  2440. obj->gtt_space =
  2441. drm_mm_get_block_generic(free_space,
  2442. size, alignment, obj->cache_level,
  2443. false);
  2444. }
  2445. if (obj->gtt_space == NULL) {
  2446. ret = i915_gem_evict_something(dev, size, alignment,
  2447. obj->cache_level,
  2448. map_and_fenceable,
  2449. nonblocking);
  2450. if (ret)
  2451. return ret;
  2452. goto search_free;
  2453. }
  2454. if (WARN_ON(!i915_gem_valid_gtt_space(dev,
  2455. obj->gtt_space,
  2456. obj->cache_level))) {
  2457. drm_mm_put_block(obj->gtt_space);
  2458. obj->gtt_space = NULL;
  2459. return -EINVAL;
  2460. }
  2461. ret = i915_gem_gtt_prepare_object(obj);
  2462. if (ret) {
  2463. drm_mm_put_block(obj->gtt_space);
  2464. obj->gtt_space = NULL;
  2465. return ret;
  2466. }
  2467. if (!dev_priv->mm.aliasing_ppgtt)
  2468. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2469. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2470. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2471. obj->gtt_offset = obj->gtt_space->start;
  2472. fenceable =
  2473. obj->gtt_space->size == fence_size &&
  2474. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2475. mappable =
  2476. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2477. obj->map_and_fenceable = mappable && fenceable;
  2478. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2479. i915_gem_verify_gtt(dev);
  2480. return 0;
  2481. }
  2482. void
  2483. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2484. {
  2485. /* If we don't have a page list set up, then we're not pinned
  2486. * to GPU, and we can ignore the cache flush because it'll happen
  2487. * again at bind time.
  2488. */
  2489. if (obj->pages == NULL)
  2490. return;
  2491. /* If the GPU is snooping the contents of the CPU cache,
  2492. * we do not need to manually clear the CPU cache lines. However,
  2493. * the caches are only snooped when the render cache is
  2494. * flushed/invalidated. As we always have to emit invalidations
  2495. * and flushes when moving into and out of the RENDER domain, correct
  2496. * snooping behaviour occurs naturally as the result of our domain
  2497. * tracking.
  2498. */
  2499. if (obj->cache_level != I915_CACHE_NONE)
  2500. return;
  2501. trace_i915_gem_object_clflush(obj);
  2502. drm_clflush_sg(obj->pages);
  2503. }
  2504. /** Flushes the GTT write domain for the object if it's dirty. */
  2505. static void
  2506. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2507. {
  2508. uint32_t old_write_domain;
  2509. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2510. return;
  2511. /* No actual flushing is required for the GTT write domain. Writes
  2512. * to it immediately go to main memory as far as we know, so there's
  2513. * no chipset flush. It also doesn't land in render cache.
  2514. *
  2515. * However, we do have to enforce the order so that all writes through
  2516. * the GTT land before any writes to the device, such as updates to
  2517. * the GATT itself.
  2518. */
  2519. wmb();
  2520. old_write_domain = obj->base.write_domain;
  2521. obj->base.write_domain = 0;
  2522. trace_i915_gem_object_change_domain(obj,
  2523. obj->base.read_domains,
  2524. old_write_domain);
  2525. }
  2526. /** Flushes the CPU write domain for the object if it's dirty. */
  2527. static void
  2528. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2529. {
  2530. uint32_t old_write_domain;
  2531. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2532. return;
  2533. i915_gem_clflush_object(obj);
  2534. intel_gtt_chipset_flush();
  2535. old_write_domain = obj->base.write_domain;
  2536. obj->base.write_domain = 0;
  2537. trace_i915_gem_object_change_domain(obj,
  2538. obj->base.read_domains,
  2539. old_write_domain);
  2540. }
  2541. /**
  2542. * Moves a single object to the GTT read, and possibly write domain.
  2543. *
  2544. * This function returns when the move is complete, including waiting on
  2545. * flushes to occur.
  2546. */
  2547. int
  2548. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2549. {
  2550. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2551. uint32_t old_write_domain, old_read_domains;
  2552. int ret;
  2553. /* Not valid to be called on unbound objects. */
  2554. if (obj->gtt_space == NULL)
  2555. return -EINVAL;
  2556. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2557. return 0;
  2558. ret = i915_gem_object_wait_rendering(obj, !write);
  2559. if (ret)
  2560. return ret;
  2561. i915_gem_object_flush_cpu_write_domain(obj);
  2562. old_write_domain = obj->base.write_domain;
  2563. old_read_domains = obj->base.read_domains;
  2564. /* It should now be out of any other write domains, and we can update
  2565. * the domain values for our changes.
  2566. */
  2567. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2568. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2569. if (write) {
  2570. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2571. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2572. obj->dirty = 1;
  2573. }
  2574. trace_i915_gem_object_change_domain(obj,
  2575. old_read_domains,
  2576. old_write_domain);
  2577. /* And bump the LRU for this access */
  2578. if (i915_gem_object_is_inactive(obj))
  2579. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2580. return 0;
  2581. }
  2582. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2583. enum i915_cache_level cache_level)
  2584. {
  2585. struct drm_device *dev = obj->base.dev;
  2586. drm_i915_private_t *dev_priv = dev->dev_private;
  2587. int ret;
  2588. if (obj->cache_level == cache_level)
  2589. return 0;
  2590. if (obj->pin_count) {
  2591. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2592. return -EBUSY;
  2593. }
  2594. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2595. ret = i915_gem_object_unbind(obj);
  2596. if (ret)
  2597. return ret;
  2598. }
  2599. if (obj->gtt_space) {
  2600. ret = i915_gem_object_finish_gpu(obj);
  2601. if (ret)
  2602. return ret;
  2603. i915_gem_object_finish_gtt(obj);
  2604. /* Before SandyBridge, you could not use tiling or fence
  2605. * registers with snooped memory, so relinquish any fences
  2606. * currently pointing to our region in the aperture.
  2607. */
  2608. if (INTEL_INFO(dev)->gen < 6) {
  2609. ret = i915_gem_object_put_fence(obj);
  2610. if (ret)
  2611. return ret;
  2612. }
  2613. if (obj->has_global_gtt_mapping)
  2614. i915_gem_gtt_bind_object(obj, cache_level);
  2615. if (obj->has_aliasing_ppgtt_mapping)
  2616. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2617. obj, cache_level);
  2618. obj->gtt_space->color = cache_level;
  2619. }
  2620. if (cache_level == I915_CACHE_NONE) {
  2621. u32 old_read_domains, old_write_domain;
  2622. /* If we're coming from LLC cached, then we haven't
  2623. * actually been tracking whether the data is in the
  2624. * CPU cache or not, since we only allow one bit set
  2625. * in obj->write_domain and have been skipping the clflushes.
  2626. * Just set it to the CPU cache for now.
  2627. */
  2628. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2629. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2630. old_read_domains = obj->base.read_domains;
  2631. old_write_domain = obj->base.write_domain;
  2632. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2633. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2634. trace_i915_gem_object_change_domain(obj,
  2635. old_read_domains,
  2636. old_write_domain);
  2637. }
  2638. obj->cache_level = cache_level;
  2639. i915_gem_verify_gtt(dev);
  2640. return 0;
  2641. }
  2642. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2643. struct drm_file *file)
  2644. {
  2645. struct drm_i915_gem_caching *args = data;
  2646. struct drm_i915_gem_object *obj;
  2647. int ret;
  2648. ret = i915_mutex_lock_interruptible(dev);
  2649. if (ret)
  2650. return ret;
  2651. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2652. if (&obj->base == NULL) {
  2653. ret = -ENOENT;
  2654. goto unlock;
  2655. }
  2656. args->caching = obj->cache_level != I915_CACHE_NONE;
  2657. drm_gem_object_unreference(&obj->base);
  2658. unlock:
  2659. mutex_unlock(&dev->struct_mutex);
  2660. return ret;
  2661. }
  2662. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2663. struct drm_file *file)
  2664. {
  2665. struct drm_i915_gem_caching *args = data;
  2666. struct drm_i915_gem_object *obj;
  2667. enum i915_cache_level level;
  2668. int ret;
  2669. switch (args->caching) {
  2670. case I915_CACHING_NONE:
  2671. level = I915_CACHE_NONE;
  2672. break;
  2673. case I915_CACHING_CACHED:
  2674. level = I915_CACHE_LLC;
  2675. break;
  2676. default:
  2677. return -EINVAL;
  2678. }
  2679. ret = i915_mutex_lock_interruptible(dev);
  2680. if (ret)
  2681. return ret;
  2682. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2683. if (&obj->base == NULL) {
  2684. ret = -ENOENT;
  2685. goto unlock;
  2686. }
  2687. ret = i915_gem_object_set_cache_level(obj, level);
  2688. drm_gem_object_unreference(&obj->base);
  2689. unlock:
  2690. mutex_unlock(&dev->struct_mutex);
  2691. return ret;
  2692. }
  2693. /*
  2694. * Prepare buffer for display plane (scanout, cursors, etc).
  2695. * Can be called from an uninterruptible phase (modesetting) and allows
  2696. * any flushes to be pipelined (for pageflips).
  2697. */
  2698. int
  2699. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2700. u32 alignment,
  2701. struct intel_ring_buffer *pipelined)
  2702. {
  2703. u32 old_read_domains, old_write_domain;
  2704. int ret;
  2705. if (pipelined != obj->ring) {
  2706. ret = i915_gem_object_sync(obj, pipelined);
  2707. if (ret)
  2708. return ret;
  2709. }
  2710. /* The display engine is not coherent with the LLC cache on gen6. As
  2711. * a result, we make sure that the pinning that is about to occur is
  2712. * done with uncached PTEs. This is lowest common denominator for all
  2713. * chipsets.
  2714. *
  2715. * However for gen6+, we could do better by using the GFDT bit instead
  2716. * of uncaching, which would allow us to flush all the LLC-cached data
  2717. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2718. */
  2719. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2720. if (ret)
  2721. return ret;
  2722. /* As the user may map the buffer once pinned in the display plane
  2723. * (e.g. libkms for the bootup splash), we have to ensure that we
  2724. * always use map_and_fenceable for all scanout buffers.
  2725. */
  2726. ret = i915_gem_object_pin(obj, alignment, true, false);
  2727. if (ret)
  2728. return ret;
  2729. i915_gem_object_flush_cpu_write_domain(obj);
  2730. old_write_domain = obj->base.write_domain;
  2731. old_read_domains = obj->base.read_domains;
  2732. /* It should now be out of any other write domains, and we can update
  2733. * the domain values for our changes.
  2734. */
  2735. obj->base.write_domain = 0;
  2736. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2737. trace_i915_gem_object_change_domain(obj,
  2738. old_read_domains,
  2739. old_write_domain);
  2740. return 0;
  2741. }
  2742. int
  2743. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2744. {
  2745. int ret;
  2746. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2747. return 0;
  2748. ret = i915_gem_object_wait_rendering(obj, false);
  2749. if (ret)
  2750. return ret;
  2751. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2752. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2753. return 0;
  2754. }
  2755. /**
  2756. * Moves a single object to the CPU read, and possibly write domain.
  2757. *
  2758. * This function returns when the move is complete, including waiting on
  2759. * flushes to occur.
  2760. */
  2761. int
  2762. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2763. {
  2764. uint32_t old_write_domain, old_read_domains;
  2765. int ret;
  2766. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2767. return 0;
  2768. ret = i915_gem_object_wait_rendering(obj, !write);
  2769. if (ret)
  2770. return ret;
  2771. i915_gem_object_flush_gtt_write_domain(obj);
  2772. old_write_domain = obj->base.write_domain;
  2773. old_read_domains = obj->base.read_domains;
  2774. /* Flush the CPU cache if it's still invalid. */
  2775. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2776. i915_gem_clflush_object(obj);
  2777. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2778. }
  2779. /* It should now be out of any other write domains, and we can update
  2780. * the domain values for our changes.
  2781. */
  2782. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2783. /* If we're writing through the CPU, then the GPU read domains will
  2784. * need to be invalidated at next use.
  2785. */
  2786. if (write) {
  2787. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2788. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2789. }
  2790. trace_i915_gem_object_change_domain(obj,
  2791. old_read_domains,
  2792. old_write_domain);
  2793. return 0;
  2794. }
  2795. /* Throttle our rendering by waiting until the ring has completed our requests
  2796. * emitted over 20 msec ago.
  2797. *
  2798. * Note that if we were to use the current jiffies each time around the loop,
  2799. * we wouldn't escape the function with any frames outstanding if the time to
  2800. * render a frame was over 20ms.
  2801. *
  2802. * This should get us reasonable parallelism between CPU and GPU but also
  2803. * relatively low latency when blocking on a particular request to finish.
  2804. */
  2805. static int
  2806. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2807. {
  2808. struct drm_i915_private *dev_priv = dev->dev_private;
  2809. struct drm_i915_file_private *file_priv = file->driver_priv;
  2810. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2811. struct drm_i915_gem_request *request;
  2812. struct intel_ring_buffer *ring = NULL;
  2813. u32 seqno = 0;
  2814. int ret;
  2815. if (atomic_read(&dev_priv->mm.wedged))
  2816. return -EIO;
  2817. spin_lock(&file_priv->mm.lock);
  2818. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2819. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2820. break;
  2821. ring = request->ring;
  2822. seqno = request->seqno;
  2823. }
  2824. spin_unlock(&file_priv->mm.lock);
  2825. if (seqno == 0)
  2826. return 0;
  2827. ret = __wait_seqno(ring, seqno, true, NULL);
  2828. if (ret == 0)
  2829. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2830. return ret;
  2831. }
  2832. int
  2833. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2834. uint32_t alignment,
  2835. bool map_and_fenceable,
  2836. bool nonblocking)
  2837. {
  2838. int ret;
  2839. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  2840. return -EBUSY;
  2841. if (obj->gtt_space != NULL) {
  2842. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2843. (map_and_fenceable && !obj->map_and_fenceable)) {
  2844. WARN(obj->pin_count,
  2845. "bo is already pinned with incorrect alignment:"
  2846. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2847. " obj->map_and_fenceable=%d\n",
  2848. obj->gtt_offset, alignment,
  2849. map_and_fenceable,
  2850. obj->map_and_fenceable);
  2851. ret = i915_gem_object_unbind(obj);
  2852. if (ret)
  2853. return ret;
  2854. }
  2855. }
  2856. if (obj->gtt_space == NULL) {
  2857. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2858. map_and_fenceable,
  2859. nonblocking);
  2860. if (ret)
  2861. return ret;
  2862. }
  2863. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2864. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2865. obj->pin_count++;
  2866. obj->pin_mappable |= map_and_fenceable;
  2867. return 0;
  2868. }
  2869. void
  2870. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2871. {
  2872. BUG_ON(obj->pin_count == 0);
  2873. BUG_ON(obj->gtt_space == NULL);
  2874. if (--obj->pin_count == 0)
  2875. obj->pin_mappable = false;
  2876. }
  2877. int
  2878. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2879. struct drm_file *file)
  2880. {
  2881. struct drm_i915_gem_pin *args = data;
  2882. struct drm_i915_gem_object *obj;
  2883. int ret;
  2884. ret = i915_mutex_lock_interruptible(dev);
  2885. if (ret)
  2886. return ret;
  2887. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2888. if (&obj->base == NULL) {
  2889. ret = -ENOENT;
  2890. goto unlock;
  2891. }
  2892. if (obj->madv != I915_MADV_WILLNEED) {
  2893. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2894. ret = -EINVAL;
  2895. goto out;
  2896. }
  2897. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2898. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2899. args->handle);
  2900. ret = -EINVAL;
  2901. goto out;
  2902. }
  2903. obj->user_pin_count++;
  2904. obj->pin_filp = file;
  2905. if (obj->user_pin_count == 1) {
  2906. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2907. if (ret)
  2908. goto out;
  2909. }
  2910. /* XXX - flush the CPU caches for pinned objects
  2911. * as the X server doesn't manage domains yet
  2912. */
  2913. i915_gem_object_flush_cpu_write_domain(obj);
  2914. args->offset = obj->gtt_offset;
  2915. out:
  2916. drm_gem_object_unreference(&obj->base);
  2917. unlock:
  2918. mutex_unlock(&dev->struct_mutex);
  2919. return ret;
  2920. }
  2921. int
  2922. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2923. struct drm_file *file)
  2924. {
  2925. struct drm_i915_gem_pin *args = data;
  2926. struct drm_i915_gem_object *obj;
  2927. int ret;
  2928. ret = i915_mutex_lock_interruptible(dev);
  2929. if (ret)
  2930. return ret;
  2931. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2932. if (&obj->base == NULL) {
  2933. ret = -ENOENT;
  2934. goto unlock;
  2935. }
  2936. if (obj->pin_filp != file) {
  2937. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2938. args->handle);
  2939. ret = -EINVAL;
  2940. goto out;
  2941. }
  2942. obj->user_pin_count--;
  2943. if (obj->user_pin_count == 0) {
  2944. obj->pin_filp = NULL;
  2945. i915_gem_object_unpin(obj);
  2946. }
  2947. out:
  2948. drm_gem_object_unreference(&obj->base);
  2949. unlock:
  2950. mutex_unlock(&dev->struct_mutex);
  2951. return ret;
  2952. }
  2953. int
  2954. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2955. struct drm_file *file)
  2956. {
  2957. struct drm_i915_gem_busy *args = data;
  2958. struct drm_i915_gem_object *obj;
  2959. int ret;
  2960. ret = i915_mutex_lock_interruptible(dev);
  2961. if (ret)
  2962. return ret;
  2963. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2964. if (&obj->base == NULL) {
  2965. ret = -ENOENT;
  2966. goto unlock;
  2967. }
  2968. /* Count all active objects as busy, even if they are currently not used
  2969. * by the gpu. Users of this interface expect objects to eventually
  2970. * become non-busy without any further actions, therefore emit any
  2971. * necessary flushes here.
  2972. */
  2973. ret = i915_gem_object_flush_active(obj);
  2974. args->busy = obj->active;
  2975. if (obj->ring) {
  2976. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2977. args->busy |= intel_ring_flag(obj->ring) << 16;
  2978. }
  2979. drm_gem_object_unreference(&obj->base);
  2980. unlock:
  2981. mutex_unlock(&dev->struct_mutex);
  2982. return ret;
  2983. }
  2984. int
  2985. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2986. struct drm_file *file_priv)
  2987. {
  2988. return i915_gem_ring_throttle(dev, file_priv);
  2989. }
  2990. int
  2991. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2992. struct drm_file *file_priv)
  2993. {
  2994. struct drm_i915_gem_madvise *args = data;
  2995. struct drm_i915_gem_object *obj;
  2996. int ret;
  2997. switch (args->madv) {
  2998. case I915_MADV_DONTNEED:
  2999. case I915_MADV_WILLNEED:
  3000. break;
  3001. default:
  3002. return -EINVAL;
  3003. }
  3004. ret = i915_mutex_lock_interruptible(dev);
  3005. if (ret)
  3006. return ret;
  3007. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3008. if (&obj->base == NULL) {
  3009. ret = -ENOENT;
  3010. goto unlock;
  3011. }
  3012. if (obj->pin_count) {
  3013. ret = -EINVAL;
  3014. goto out;
  3015. }
  3016. if (obj->madv != __I915_MADV_PURGED)
  3017. obj->madv = args->madv;
  3018. /* if the object is no longer attached, discard its backing storage */
  3019. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3020. i915_gem_object_truncate(obj);
  3021. args->retained = obj->madv != __I915_MADV_PURGED;
  3022. out:
  3023. drm_gem_object_unreference(&obj->base);
  3024. unlock:
  3025. mutex_unlock(&dev->struct_mutex);
  3026. return ret;
  3027. }
  3028. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3029. const struct drm_i915_gem_object_ops *ops)
  3030. {
  3031. INIT_LIST_HEAD(&obj->mm_list);
  3032. INIT_LIST_HEAD(&obj->gtt_list);
  3033. INIT_LIST_HEAD(&obj->ring_list);
  3034. INIT_LIST_HEAD(&obj->exec_list);
  3035. obj->ops = ops;
  3036. obj->fence_reg = I915_FENCE_REG_NONE;
  3037. obj->madv = I915_MADV_WILLNEED;
  3038. /* Avoid an unnecessary call to unbind on the first bind. */
  3039. obj->map_and_fenceable = true;
  3040. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3041. }
  3042. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3043. .get_pages = i915_gem_object_get_pages_gtt,
  3044. .put_pages = i915_gem_object_put_pages_gtt,
  3045. };
  3046. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3047. size_t size)
  3048. {
  3049. struct drm_i915_gem_object *obj;
  3050. struct address_space *mapping;
  3051. u32 mask;
  3052. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3053. if (obj == NULL)
  3054. return NULL;
  3055. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3056. kfree(obj);
  3057. return NULL;
  3058. }
  3059. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3060. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3061. /* 965gm cannot relocate objects above 4GiB. */
  3062. mask &= ~__GFP_HIGHMEM;
  3063. mask |= __GFP_DMA32;
  3064. }
  3065. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3066. mapping_set_gfp_mask(mapping, mask);
  3067. i915_gem_object_init(obj, &i915_gem_object_ops);
  3068. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3069. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3070. if (HAS_LLC(dev)) {
  3071. /* On some devices, we can have the GPU use the LLC (the CPU
  3072. * cache) for about a 10% performance improvement
  3073. * compared to uncached. Graphics requests other than
  3074. * display scanout are coherent with the CPU in
  3075. * accessing this cache. This means in this mode we
  3076. * don't need to clflush on the CPU side, and on the
  3077. * GPU side we only need to flush internal caches to
  3078. * get data visible to the CPU.
  3079. *
  3080. * However, we maintain the display planes as UC, and so
  3081. * need to rebind when first used as such.
  3082. */
  3083. obj->cache_level = I915_CACHE_LLC;
  3084. } else
  3085. obj->cache_level = I915_CACHE_NONE;
  3086. return obj;
  3087. }
  3088. int i915_gem_init_object(struct drm_gem_object *obj)
  3089. {
  3090. BUG();
  3091. return 0;
  3092. }
  3093. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3094. {
  3095. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3096. struct drm_device *dev = obj->base.dev;
  3097. drm_i915_private_t *dev_priv = dev->dev_private;
  3098. trace_i915_gem_object_destroy(obj);
  3099. if (obj->phys_obj)
  3100. i915_gem_detach_phys_object(dev, obj);
  3101. obj->pin_count = 0;
  3102. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3103. bool was_interruptible;
  3104. was_interruptible = dev_priv->mm.interruptible;
  3105. dev_priv->mm.interruptible = false;
  3106. WARN_ON(i915_gem_object_unbind(obj));
  3107. dev_priv->mm.interruptible = was_interruptible;
  3108. }
  3109. obj->pages_pin_count = 0;
  3110. i915_gem_object_put_pages(obj);
  3111. i915_gem_object_free_mmap_offset(obj);
  3112. BUG_ON(obj->pages);
  3113. if (obj->base.import_attach)
  3114. drm_prime_gem_destroy(&obj->base, NULL);
  3115. drm_gem_object_release(&obj->base);
  3116. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3117. kfree(obj->bit_17);
  3118. kfree(obj);
  3119. }
  3120. int
  3121. i915_gem_idle(struct drm_device *dev)
  3122. {
  3123. drm_i915_private_t *dev_priv = dev->dev_private;
  3124. int ret;
  3125. mutex_lock(&dev->struct_mutex);
  3126. if (dev_priv->mm.suspended) {
  3127. mutex_unlock(&dev->struct_mutex);
  3128. return 0;
  3129. }
  3130. ret = i915_gpu_idle(dev);
  3131. if (ret) {
  3132. mutex_unlock(&dev->struct_mutex);
  3133. return ret;
  3134. }
  3135. i915_gem_retire_requests(dev);
  3136. /* Under UMS, be paranoid and evict. */
  3137. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3138. i915_gem_evict_everything(dev);
  3139. i915_gem_reset_fences(dev);
  3140. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3141. * We need to replace this with a semaphore, or something.
  3142. * And not confound mm.suspended!
  3143. */
  3144. dev_priv->mm.suspended = 1;
  3145. del_timer_sync(&dev_priv->hangcheck_timer);
  3146. i915_kernel_lost_context(dev);
  3147. i915_gem_cleanup_ringbuffer(dev);
  3148. mutex_unlock(&dev->struct_mutex);
  3149. /* Cancel the retire work handler, which should be idle now. */
  3150. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3151. return 0;
  3152. }
  3153. void i915_gem_l3_remap(struct drm_device *dev)
  3154. {
  3155. drm_i915_private_t *dev_priv = dev->dev_private;
  3156. u32 misccpctl;
  3157. int i;
  3158. if (!IS_IVYBRIDGE(dev))
  3159. return;
  3160. if (!dev_priv->mm.l3_remap_info)
  3161. return;
  3162. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3163. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3164. POSTING_READ(GEN7_MISCCPCTL);
  3165. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3166. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3167. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  3168. DRM_DEBUG("0x%x was already programmed to %x\n",
  3169. GEN7_L3LOG_BASE + i, remap);
  3170. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  3171. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3172. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  3173. }
  3174. /* Make sure all the writes land before disabling dop clock gating */
  3175. POSTING_READ(GEN7_L3LOG_BASE);
  3176. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3177. }
  3178. void i915_gem_init_swizzling(struct drm_device *dev)
  3179. {
  3180. drm_i915_private_t *dev_priv = dev->dev_private;
  3181. if (INTEL_INFO(dev)->gen < 5 ||
  3182. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3183. return;
  3184. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3185. DISP_TILE_SURFACE_SWIZZLING);
  3186. if (IS_GEN5(dev))
  3187. return;
  3188. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3189. if (IS_GEN6(dev))
  3190. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3191. else
  3192. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3193. }
  3194. void i915_gem_init_ppgtt(struct drm_device *dev)
  3195. {
  3196. drm_i915_private_t *dev_priv = dev->dev_private;
  3197. uint32_t pd_offset;
  3198. struct intel_ring_buffer *ring;
  3199. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3200. uint32_t __iomem *pd_addr;
  3201. uint32_t pd_entry;
  3202. int i;
  3203. if (!dev_priv->mm.aliasing_ppgtt)
  3204. return;
  3205. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3206. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3207. dma_addr_t pt_addr;
  3208. if (dev_priv->mm.gtt->needs_dmar)
  3209. pt_addr = ppgtt->pt_dma_addr[i];
  3210. else
  3211. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3212. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3213. pd_entry |= GEN6_PDE_VALID;
  3214. writel(pd_entry, pd_addr + i);
  3215. }
  3216. readl(pd_addr);
  3217. pd_offset = ppgtt->pd_offset;
  3218. pd_offset /= 64; /* in cachelines, */
  3219. pd_offset <<= 16;
  3220. if (INTEL_INFO(dev)->gen == 6) {
  3221. uint32_t ecochk, gab_ctl, ecobits;
  3222. ecobits = I915_READ(GAC_ECO_BITS);
  3223. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3224. gab_ctl = I915_READ(GAB_CTL);
  3225. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3226. ecochk = I915_READ(GAM_ECOCHK);
  3227. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3228. ECOCHK_PPGTT_CACHE64B);
  3229. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3230. } else if (INTEL_INFO(dev)->gen >= 7) {
  3231. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3232. /* GFX_MODE is per-ring on gen7+ */
  3233. }
  3234. for_each_ring(ring, dev_priv, i) {
  3235. if (INTEL_INFO(dev)->gen >= 7)
  3236. I915_WRITE(RING_MODE_GEN7(ring),
  3237. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3238. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3239. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3240. }
  3241. }
  3242. static bool
  3243. intel_enable_blt(struct drm_device *dev)
  3244. {
  3245. if (!HAS_BLT(dev))
  3246. return false;
  3247. /* The blitter was dysfunctional on early prototypes */
  3248. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3249. DRM_INFO("BLT not supported on this pre-production hardware;"
  3250. " graphics performance will be degraded.\n");
  3251. return false;
  3252. }
  3253. return true;
  3254. }
  3255. int
  3256. i915_gem_init_hw(struct drm_device *dev)
  3257. {
  3258. drm_i915_private_t *dev_priv = dev->dev_private;
  3259. int ret;
  3260. if (!intel_enable_gtt())
  3261. return -EIO;
  3262. if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
  3263. I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
  3264. i915_gem_l3_remap(dev);
  3265. i915_gem_init_swizzling(dev);
  3266. ret = intel_init_render_ring_buffer(dev);
  3267. if (ret)
  3268. return ret;
  3269. if (HAS_BSD(dev)) {
  3270. ret = intel_init_bsd_ring_buffer(dev);
  3271. if (ret)
  3272. goto cleanup_render_ring;
  3273. }
  3274. if (intel_enable_blt(dev)) {
  3275. ret = intel_init_blt_ring_buffer(dev);
  3276. if (ret)
  3277. goto cleanup_bsd_ring;
  3278. }
  3279. dev_priv->next_seqno = 1;
  3280. /*
  3281. * XXX: There was some w/a described somewhere suggesting loading
  3282. * contexts before PPGTT.
  3283. */
  3284. i915_gem_context_init(dev);
  3285. i915_gem_init_ppgtt(dev);
  3286. return 0;
  3287. cleanup_bsd_ring:
  3288. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3289. cleanup_render_ring:
  3290. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3291. return ret;
  3292. }
  3293. static bool
  3294. intel_enable_ppgtt(struct drm_device *dev)
  3295. {
  3296. if (i915_enable_ppgtt >= 0)
  3297. return i915_enable_ppgtt;
  3298. #ifdef CONFIG_INTEL_IOMMU
  3299. /* Disable ppgtt on SNB if VT-d is on. */
  3300. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3301. return false;
  3302. #endif
  3303. return true;
  3304. }
  3305. int i915_gem_init(struct drm_device *dev)
  3306. {
  3307. struct drm_i915_private *dev_priv = dev->dev_private;
  3308. unsigned long gtt_size, mappable_size;
  3309. int ret;
  3310. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3311. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3312. mutex_lock(&dev->struct_mutex);
  3313. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3314. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3315. * aperture accordingly when using aliasing ppgtt. */
  3316. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3317. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3318. ret = i915_gem_init_aliasing_ppgtt(dev);
  3319. if (ret) {
  3320. mutex_unlock(&dev->struct_mutex);
  3321. return ret;
  3322. }
  3323. } else {
  3324. /* Let GEM Manage all of the aperture.
  3325. *
  3326. * However, leave one page at the end still bound to the scratch
  3327. * page. There are a number of places where the hardware
  3328. * apparently prefetches past the end of the object, and we've
  3329. * seen multiple hangs with the GPU head pointer stuck in a
  3330. * batchbuffer bound at the last page of the aperture. One page
  3331. * should be enough to keep any prefetching inside of the
  3332. * aperture.
  3333. */
  3334. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3335. gtt_size);
  3336. }
  3337. ret = i915_gem_init_hw(dev);
  3338. mutex_unlock(&dev->struct_mutex);
  3339. if (ret) {
  3340. i915_gem_cleanup_aliasing_ppgtt(dev);
  3341. return ret;
  3342. }
  3343. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3344. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3345. dev_priv->dri1.allow_batchbuffer = 1;
  3346. return 0;
  3347. }
  3348. void
  3349. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3350. {
  3351. drm_i915_private_t *dev_priv = dev->dev_private;
  3352. struct intel_ring_buffer *ring;
  3353. int i;
  3354. for_each_ring(ring, dev_priv, i)
  3355. intel_cleanup_ring_buffer(ring);
  3356. }
  3357. int
  3358. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3359. struct drm_file *file_priv)
  3360. {
  3361. drm_i915_private_t *dev_priv = dev->dev_private;
  3362. int ret;
  3363. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3364. return 0;
  3365. if (atomic_read(&dev_priv->mm.wedged)) {
  3366. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3367. atomic_set(&dev_priv->mm.wedged, 0);
  3368. }
  3369. mutex_lock(&dev->struct_mutex);
  3370. dev_priv->mm.suspended = 0;
  3371. ret = i915_gem_init_hw(dev);
  3372. if (ret != 0) {
  3373. mutex_unlock(&dev->struct_mutex);
  3374. return ret;
  3375. }
  3376. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3377. mutex_unlock(&dev->struct_mutex);
  3378. ret = drm_irq_install(dev);
  3379. if (ret)
  3380. goto cleanup_ringbuffer;
  3381. return 0;
  3382. cleanup_ringbuffer:
  3383. mutex_lock(&dev->struct_mutex);
  3384. i915_gem_cleanup_ringbuffer(dev);
  3385. dev_priv->mm.suspended = 1;
  3386. mutex_unlock(&dev->struct_mutex);
  3387. return ret;
  3388. }
  3389. int
  3390. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3391. struct drm_file *file_priv)
  3392. {
  3393. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3394. return 0;
  3395. drm_irq_uninstall(dev);
  3396. return i915_gem_idle(dev);
  3397. }
  3398. void
  3399. i915_gem_lastclose(struct drm_device *dev)
  3400. {
  3401. int ret;
  3402. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3403. return;
  3404. ret = i915_gem_idle(dev);
  3405. if (ret)
  3406. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3407. }
  3408. static void
  3409. init_ring_lists(struct intel_ring_buffer *ring)
  3410. {
  3411. INIT_LIST_HEAD(&ring->active_list);
  3412. INIT_LIST_HEAD(&ring->request_list);
  3413. }
  3414. void
  3415. i915_gem_load(struct drm_device *dev)
  3416. {
  3417. int i;
  3418. drm_i915_private_t *dev_priv = dev->dev_private;
  3419. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3420. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3421. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3422. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3423. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3424. for (i = 0; i < I915_NUM_RINGS; i++)
  3425. init_ring_lists(&dev_priv->ring[i]);
  3426. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3427. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3428. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3429. i915_gem_retire_work_handler);
  3430. init_completion(&dev_priv->error_completion);
  3431. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3432. if (IS_GEN3(dev)) {
  3433. I915_WRITE(MI_ARB_STATE,
  3434. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3435. }
  3436. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3437. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3438. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3439. dev_priv->fence_reg_start = 3;
  3440. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3441. dev_priv->num_fence_regs = 16;
  3442. else
  3443. dev_priv->num_fence_regs = 8;
  3444. /* Initialize fence registers to zero */
  3445. i915_gem_reset_fences(dev);
  3446. i915_gem_detect_bit_6_swizzle(dev);
  3447. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3448. dev_priv->mm.interruptible = true;
  3449. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3450. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3451. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3452. }
  3453. /*
  3454. * Create a physically contiguous memory object for this object
  3455. * e.g. for cursor + overlay regs
  3456. */
  3457. static int i915_gem_init_phys_object(struct drm_device *dev,
  3458. int id, int size, int align)
  3459. {
  3460. drm_i915_private_t *dev_priv = dev->dev_private;
  3461. struct drm_i915_gem_phys_object *phys_obj;
  3462. int ret;
  3463. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3464. return 0;
  3465. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3466. if (!phys_obj)
  3467. return -ENOMEM;
  3468. phys_obj->id = id;
  3469. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3470. if (!phys_obj->handle) {
  3471. ret = -ENOMEM;
  3472. goto kfree_obj;
  3473. }
  3474. #ifdef CONFIG_X86
  3475. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3476. #endif
  3477. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3478. return 0;
  3479. kfree_obj:
  3480. kfree(phys_obj);
  3481. return ret;
  3482. }
  3483. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3484. {
  3485. drm_i915_private_t *dev_priv = dev->dev_private;
  3486. struct drm_i915_gem_phys_object *phys_obj;
  3487. if (!dev_priv->mm.phys_objs[id - 1])
  3488. return;
  3489. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3490. if (phys_obj->cur_obj) {
  3491. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3492. }
  3493. #ifdef CONFIG_X86
  3494. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3495. #endif
  3496. drm_pci_free(dev, phys_obj->handle);
  3497. kfree(phys_obj);
  3498. dev_priv->mm.phys_objs[id - 1] = NULL;
  3499. }
  3500. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3501. {
  3502. int i;
  3503. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3504. i915_gem_free_phys_object(dev, i);
  3505. }
  3506. void i915_gem_detach_phys_object(struct drm_device *dev,
  3507. struct drm_i915_gem_object *obj)
  3508. {
  3509. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3510. char *vaddr;
  3511. int i;
  3512. int page_count;
  3513. if (!obj->phys_obj)
  3514. return;
  3515. vaddr = obj->phys_obj->handle->vaddr;
  3516. page_count = obj->base.size / PAGE_SIZE;
  3517. for (i = 0; i < page_count; i++) {
  3518. struct page *page = shmem_read_mapping_page(mapping, i);
  3519. if (!IS_ERR(page)) {
  3520. char *dst = kmap_atomic(page);
  3521. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3522. kunmap_atomic(dst);
  3523. drm_clflush_pages(&page, 1);
  3524. set_page_dirty(page);
  3525. mark_page_accessed(page);
  3526. page_cache_release(page);
  3527. }
  3528. }
  3529. intel_gtt_chipset_flush();
  3530. obj->phys_obj->cur_obj = NULL;
  3531. obj->phys_obj = NULL;
  3532. }
  3533. int
  3534. i915_gem_attach_phys_object(struct drm_device *dev,
  3535. struct drm_i915_gem_object *obj,
  3536. int id,
  3537. int align)
  3538. {
  3539. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3540. drm_i915_private_t *dev_priv = dev->dev_private;
  3541. int ret = 0;
  3542. int page_count;
  3543. int i;
  3544. if (id > I915_MAX_PHYS_OBJECT)
  3545. return -EINVAL;
  3546. if (obj->phys_obj) {
  3547. if (obj->phys_obj->id == id)
  3548. return 0;
  3549. i915_gem_detach_phys_object(dev, obj);
  3550. }
  3551. /* create a new object */
  3552. if (!dev_priv->mm.phys_objs[id - 1]) {
  3553. ret = i915_gem_init_phys_object(dev, id,
  3554. obj->base.size, align);
  3555. if (ret) {
  3556. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3557. id, obj->base.size);
  3558. return ret;
  3559. }
  3560. }
  3561. /* bind to the object */
  3562. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3563. obj->phys_obj->cur_obj = obj;
  3564. page_count = obj->base.size / PAGE_SIZE;
  3565. for (i = 0; i < page_count; i++) {
  3566. struct page *page;
  3567. char *dst, *src;
  3568. page = shmem_read_mapping_page(mapping, i);
  3569. if (IS_ERR(page))
  3570. return PTR_ERR(page);
  3571. src = kmap_atomic(page);
  3572. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3573. memcpy(dst, src, PAGE_SIZE);
  3574. kunmap_atomic(src);
  3575. mark_page_accessed(page);
  3576. page_cache_release(page);
  3577. }
  3578. return 0;
  3579. }
  3580. static int
  3581. i915_gem_phys_pwrite(struct drm_device *dev,
  3582. struct drm_i915_gem_object *obj,
  3583. struct drm_i915_gem_pwrite *args,
  3584. struct drm_file *file_priv)
  3585. {
  3586. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3587. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3588. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3589. unsigned long unwritten;
  3590. /* The physical object once assigned is fixed for the lifetime
  3591. * of the obj, so we can safely drop the lock and continue
  3592. * to access vaddr.
  3593. */
  3594. mutex_unlock(&dev->struct_mutex);
  3595. unwritten = copy_from_user(vaddr, user_data, args->size);
  3596. mutex_lock(&dev->struct_mutex);
  3597. if (unwritten)
  3598. return -EFAULT;
  3599. }
  3600. intel_gtt_chipset_flush();
  3601. return 0;
  3602. }
  3603. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3604. {
  3605. struct drm_i915_file_private *file_priv = file->driver_priv;
  3606. /* Clean up our request list when the client is going away, so that
  3607. * later retire_requests won't dereference our soon-to-be-gone
  3608. * file_priv.
  3609. */
  3610. spin_lock(&file_priv->mm.lock);
  3611. while (!list_empty(&file_priv->mm.request_list)) {
  3612. struct drm_i915_gem_request *request;
  3613. request = list_first_entry(&file_priv->mm.request_list,
  3614. struct drm_i915_gem_request,
  3615. client_list);
  3616. list_del(&request->client_list);
  3617. request->file_priv = NULL;
  3618. }
  3619. spin_unlock(&file_priv->mm.lock);
  3620. }
  3621. static int
  3622. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3623. {
  3624. struct drm_i915_private *dev_priv =
  3625. container_of(shrinker,
  3626. struct drm_i915_private,
  3627. mm.inactive_shrinker);
  3628. struct drm_device *dev = dev_priv->dev;
  3629. struct drm_i915_gem_object *obj;
  3630. int nr_to_scan = sc->nr_to_scan;
  3631. int cnt;
  3632. if (!mutex_trylock(&dev->struct_mutex))
  3633. return 0;
  3634. if (nr_to_scan) {
  3635. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3636. if (nr_to_scan > 0)
  3637. i915_gem_shrink_all(dev_priv);
  3638. }
  3639. cnt = 0;
  3640. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3641. if (obj->pages_pin_count == 0)
  3642. cnt += obj->base.size >> PAGE_SHIFT;
  3643. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3644. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3645. cnt += obj->base.size >> PAGE_SHIFT;
  3646. mutex_unlock(&dev->struct_mutex);
  3647. return cnt;
  3648. }