random.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #include <linux/irq.h>
  257. #include <asm/processor.h>
  258. #include <asm/uaccess.h>
  259. #include <asm/irq.h>
  260. #include <asm/irq_regs.h>
  261. #include <asm/io.h>
  262. #define CREATE_TRACE_POINTS
  263. #include <trace/events/random.h>
  264. /*
  265. * Configuration information
  266. */
  267. #define INPUT_POOL_WORDS 128
  268. #define OUTPUT_POOL_WORDS 32
  269. #define SEC_XFER_SIZE 512
  270. #define EXTRACT_SIZE 10
  271. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  272. /*
  273. * The minimum number of bits of entropy before we wake up a read on
  274. * /dev/random. Should be enough to do a significant reseed.
  275. */
  276. static int random_read_wakeup_thresh = 64;
  277. /*
  278. * If the entropy count falls under this number of bits, then we
  279. * should wake up processes which are selecting or polling on write
  280. * access to /dev/random.
  281. */
  282. static int random_write_wakeup_thresh = 128;
  283. /*
  284. * When the input pool goes over trickle_thresh, start dropping most
  285. * samples to avoid wasting CPU time and reduce lock contention.
  286. */
  287. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  288. static DEFINE_PER_CPU(int, trickle_count);
  289. /*
  290. * A pool of size .poolwords is stirred with a primitive polynomial
  291. * of degree .poolwords over GF(2). The taps for various sizes are
  292. * defined below. They are chosen to be evenly spaced (minimum RMS
  293. * distance from evenly spaced; the numbers in the comments are a
  294. * scaled squared error sum) except for the last tap, which is 1 to
  295. * get the twisting happening as fast as possible.
  296. */
  297. static struct poolinfo {
  298. int poolwords;
  299. int tap1, tap2, tap3, tap4, tap5;
  300. } poolinfo_table[] = {
  301. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  302. { 128, 103, 76, 51, 25, 1 },
  303. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  304. { 32, 26, 20, 14, 7, 1 },
  305. #if 0
  306. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  307. { 2048, 1638, 1231, 819, 411, 1 },
  308. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  309. { 1024, 817, 615, 412, 204, 1 },
  310. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  311. { 1024, 819, 616, 410, 207, 2 },
  312. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  313. { 512, 411, 308, 208, 104, 1 },
  314. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  315. { 512, 409, 307, 206, 102, 2 },
  316. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  317. { 512, 409, 309, 205, 103, 2 },
  318. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  319. { 256, 205, 155, 101, 52, 1 },
  320. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  321. { 128, 103, 78, 51, 27, 2 },
  322. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  323. { 64, 52, 39, 26, 14, 1 },
  324. #endif
  325. };
  326. #define POOLBITS poolwords*32
  327. #define POOLBYTES poolwords*4
  328. /*
  329. * For the purposes of better mixing, we use the CRC-32 polynomial as
  330. * well to make a twisted Generalized Feedback Shift Reigster
  331. *
  332. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  333. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  334. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  335. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  336. *
  337. * Thanks to Colin Plumb for suggesting this.
  338. *
  339. * We have not analyzed the resultant polynomial to prove it primitive;
  340. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  341. * of a random large-degree polynomial over GF(2) are more than large enough
  342. * that periodicity is not a concern.
  343. *
  344. * The input hash is much less sensitive than the output hash. All
  345. * that we want of it is that it be a good non-cryptographic hash;
  346. * i.e. it not produce collisions when fed "random" data of the sort
  347. * we expect to see. As long as the pool state differs for different
  348. * inputs, we have preserved the input entropy and done a good job.
  349. * The fact that an intelligent attacker can construct inputs that
  350. * will produce controlled alterations to the pool's state is not
  351. * important because we don't consider such inputs to contribute any
  352. * randomness. The only property we need with respect to them is that
  353. * the attacker can't increase his/her knowledge of the pool's state.
  354. * Since all additions are reversible (knowing the final state and the
  355. * input, you can reconstruct the initial state), if an attacker has
  356. * any uncertainty about the initial state, he/she can only shuffle
  357. * that uncertainty about, but never cause any collisions (which would
  358. * decrease the uncertainty).
  359. *
  360. * The chosen system lets the state of the pool be (essentially) the input
  361. * modulo the generator polymnomial. Now, for random primitive polynomials,
  362. * this is a universal class of hash functions, meaning that the chance
  363. * of a collision is limited by the attacker's knowledge of the generator
  364. * polynomail, so if it is chosen at random, an attacker can never force
  365. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  366. * ###--> it is unknown to the processes generating the input entropy. <-###
  367. * Because of this important property, this is a good, collision-resistant
  368. * hash; hash collisions will occur no more often than chance.
  369. */
  370. /*
  371. * Static global variables
  372. */
  373. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  374. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  375. static struct fasync_struct *fasync;
  376. static bool debug;
  377. module_param(debug, bool, 0644);
  378. #define DEBUG_ENT(fmt, arg...) do { \
  379. if (debug) \
  380. printk(KERN_DEBUG "random %04d %04d %04d: " \
  381. fmt,\
  382. input_pool.entropy_count,\
  383. blocking_pool.entropy_count,\
  384. nonblocking_pool.entropy_count,\
  385. ## arg); } while (0)
  386. /**********************************************************************
  387. *
  388. * OS independent entropy store. Here are the functions which handle
  389. * storing entropy in an entropy pool.
  390. *
  391. **********************************************************************/
  392. struct entropy_store;
  393. struct entropy_store {
  394. /* read-only data: */
  395. struct poolinfo *poolinfo;
  396. __u32 *pool;
  397. const char *name;
  398. struct entropy_store *pull;
  399. int limit;
  400. /* read-write data: */
  401. spinlock_t lock;
  402. unsigned add_ptr;
  403. unsigned input_rotate;
  404. int entropy_count;
  405. int entropy_total;
  406. unsigned int initialized:1;
  407. bool last_data_init;
  408. __u8 last_data[EXTRACT_SIZE];
  409. };
  410. static __u32 input_pool_data[INPUT_POOL_WORDS];
  411. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  412. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  413. static struct entropy_store input_pool = {
  414. .poolinfo = &poolinfo_table[0],
  415. .name = "input",
  416. .limit = 1,
  417. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  418. .pool = input_pool_data
  419. };
  420. static struct entropy_store blocking_pool = {
  421. .poolinfo = &poolinfo_table[1],
  422. .name = "blocking",
  423. .limit = 1,
  424. .pull = &input_pool,
  425. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  426. .pool = blocking_pool_data
  427. };
  428. static struct entropy_store nonblocking_pool = {
  429. .poolinfo = &poolinfo_table[1],
  430. .name = "nonblocking",
  431. .pull = &input_pool,
  432. .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
  433. .pool = nonblocking_pool_data
  434. };
  435. static __u32 const twist_table[8] = {
  436. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  437. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  438. /*
  439. * This function adds bytes into the entropy "pool". It does not
  440. * update the entropy estimate. The caller should call
  441. * credit_entropy_bits if this is appropriate.
  442. *
  443. * The pool is stirred with a primitive polynomial of the appropriate
  444. * degree, and then twisted. We twist by three bits at a time because
  445. * it's cheap to do so and helps slightly in the expected case where
  446. * the entropy is concentrated in the low-order bits.
  447. */
  448. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  449. int nbytes, __u8 out[64])
  450. {
  451. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  452. int input_rotate;
  453. int wordmask = r->poolinfo->poolwords - 1;
  454. const char *bytes = in;
  455. __u32 w;
  456. tap1 = r->poolinfo->tap1;
  457. tap2 = r->poolinfo->tap2;
  458. tap3 = r->poolinfo->tap3;
  459. tap4 = r->poolinfo->tap4;
  460. tap5 = r->poolinfo->tap5;
  461. smp_rmb();
  462. input_rotate = ACCESS_ONCE(r->input_rotate);
  463. i = ACCESS_ONCE(r->add_ptr);
  464. /* mix one byte at a time to simplify size handling and churn faster */
  465. while (nbytes--) {
  466. w = rol32(*bytes++, input_rotate & 31);
  467. i = (i - 1) & wordmask;
  468. /* XOR in the various taps */
  469. w ^= r->pool[i];
  470. w ^= r->pool[(i + tap1) & wordmask];
  471. w ^= r->pool[(i + tap2) & wordmask];
  472. w ^= r->pool[(i + tap3) & wordmask];
  473. w ^= r->pool[(i + tap4) & wordmask];
  474. w ^= r->pool[(i + tap5) & wordmask];
  475. /* Mix the result back in with a twist */
  476. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  477. /*
  478. * Normally, we add 7 bits of rotation to the pool.
  479. * At the beginning of the pool, add an extra 7 bits
  480. * rotation, so that successive passes spread the
  481. * input bits across the pool evenly.
  482. */
  483. input_rotate += i ? 7 : 14;
  484. }
  485. ACCESS_ONCE(r->input_rotate) = input_rotate;
  486. ACCESS_ONCE(r->add_ptr) = i;
  487. smp_wmb();
  488. if (out)
  489. for (j = 0; j < 16; j++)
  490. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  491. }
  492. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  493. int nbytes, __u8 out[64])
  494. {
  495. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  496. _mix_pool_bytes(r, in, nbytes, out);
  497. }
  498. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  499. int nbytes, __u8 out[64])
  500. {
  501. unsigned long flags;
  502. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  503. spin_lock_irqsave(&r->lock, flags);
  504. _mix_pool_bytes(r, in, nbytes, out);
  505. spin_unlock_irqrestore(&r->lock, flags);
  506. }
  507. struct fast_pool {
  508. __u32 pool[4];
  509. unsigned long last;
  510. unsigned short count;
  511. unsigned char rotate;
  512. unsigned char last_timer_intr;
  513. };
  514. /*
  515. * This is a fast mixing routine used by the interrupt randomness
  516. * collector. It's hardcoded for an 128 bit pool and assumes that any
  517. * locks that might be needed are taken by the caller.
  518. */
  519. static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
  520. {
  521. const char *bytes = in;
  522. __u32 w;
  523. unsigned i = f->count;
  524. unsigned input_rotate = f->rotate;
  525. while (nbytes--) {
  526. w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
  527. f->pool[(i + 1) & 3];
  528. f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
  529. input_rotate += (i++ & 3) ? 7 : 14;
  530. }
  531. f->count = i;
  532. f->rotate = input_rotate;
  533. }
  534. /*
  535. * Credit (or debit) the entropy store with n bits of entropy
  536. */
  537. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  538. {
  539. int entropy_count, orig;
  540. if (!nbits)
  541. return;
  542. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  543. retry:
  544. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  545. entropy_count += nbits;
  546. if (entropy_count < 0) {
  547. DEBUG_ENT("negative entropy/overflow\n");
  548. entropy_count = 0;
  549. } else if (entropy_count > r->poolinfo->POOLBITS)
  550. entropy_count = r->poolinfo->POOLBITS;
  551. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  552. goto retry;
  553. if (!r->initialized && nbits > 0) {
  554. r->entropy_total += nbits;
  555. if (r->entropy_total > 128) {
  556. r->initialized = 1;
  557. if (r == &nonblocking_pool)
  558. prandom_reseed_late();
  559. }
  560. }
  561. trace_credit_entropy_bits(r->name, nbits, entropy_count,
  562. r->entropy_total, _RET_IP_);
  563. /* should we wake readers? */
  564. if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
  565. wake_up_interruptible(&random_read_wait);
  566. kill_fasync(&fasync, SIGIO, POLL_IN);
  567. }
  568. }
  569. /*********************************************************************
  570. *
  571. * Entropy input management
  572. *
  573. *********************************************************************/
  574. /* There is one of these per entropy source */
  575. struct timer_rand_state {
  576. cycles_t last_time;
  577. long last_delta, last_delta2;
  578. unsigned dont_count_entropy:1;
  579. };
  580. /*
  581. * Add device- or boot-specific data to the input and nonblocking
  582. * pools to help initialize them to unique values.
  583. *
  584. * None of this adds any entropy, it is meant to avoid the
  585. * problem of the nonblocking pool having similar initial state
  586. * across largely identical devices.
  587. */
  588. void add_device_randomness(const void *buf, unsigned int size)
  589. {
  590. unsigned long time = random_get_entropy() ^ jiffies;
  591. mix_pool_bytes(&input_pool, buf, size, NULL);
  592. mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  593. mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  594. mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  595. }
  596. EXPORT_SYMBOL(add_device_randomness);
  597. static struct timer_rand_state input_timer_state;
  598. /*
  599. * This function adds entropy to the entropy "pool" by using timing
  600. * delays. It uses the timer_rand_state structure to make an estimate
  601. * of how many bits of entropy this call has added to the pool.
  602. *
  603. * The number "num" is also added to the pool - it should somehow describe
  604. * the type of event which just happened. This is currently 0-255 for
  605. * keyboard scan codes, and 256 upwards for interrupts.
  606. *
  607. */
  608. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  609. {
  610. struct {
  611. long jiffies;
  612. unsigned cycles;
  613. unsigned num;
  614. } sample;
  615. long delta, delta2, delta3;
  616. preempt_disable();
  617. /* if over the trickle threshold, use only 1 in 4096 samples */
  618. if (input_pool.entropy_count > trickle_thresh &&
  619. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  620. goto out;
  621. sample.jiffies = jiffies;
  622. sample.cycles = random_get_entropy();
  623. sample.num = num;
  624. mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
  625. /*
  626. * Calculate number of bits of randomness we probably added.
  627. * We take into account the first, second and third-order deltas
  628. * in order to make our estimate.
  629. */
  630. if (!state->dont_count_entropy) {
  631. delta = sample.jiffies - state->last_time;
  632. state->last_time = sample.jiffies;
  633. delta2 = delta - state->last_delta;
  634. state->last_delta = delta;
  635. delta3 = delta2 - state->last_delta2;
  636. state->last_delta2 = delta2;
  637. if (delta < 0)
  638. delta = -delta;
  639. if (delta2 < 0)
  640. delta2 = -delta2;
  641. if (delta3 < 0)
  642. delta3 = -delta3;
  643. if (delta > delta2)
  644. delta = delta2;
  645. if (delta > delta3)
  646. delta = delta3;
  647. /*
  648. * delta is now minimum absolute delta.
  649. * Round down by 1 bit on general principles,
  650. * and limit entropy entimate to 12 bits.
  651. */
  652. credit_entropy_bits(&input_pool,
  653. min_t(int, fls(delta>>1), 11));
  654. }
  655. out:
  656. preempt_enable();
  657. }
  658. void add_input_randomness(unsigned int type, unsigned int code,
  659. unsigned int value)
  660. {
  661. static unsigned char last_value;
  662. /* ignore autorepeat and the like */
  663. if (value == last_value)
  664. return;
  665. DEBUG_ENT("input event\n");
  666. last_value = value;
  667. add_timer_randomness(&input_timer_state,
  668. (type << 4) ^ code ^ (code >> 4) ^ value);
  669. }
  670. EXPORT_SYMBOL_GPL(add_input_randomness);
  671. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  672. void add_interrupt_randomness(int irq, int irq_flags)
  673. {
  674. struct entropy_store *r;
  675. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  676. struct pt_regs *regs = get_irq_regs();
  677. unsigned long now = jiffies;
  678. __u32 input[4], cycles = random_get_entropy();
  679. input[0] = cycles ^ jiffies;
  680. input[1] = irq;
  681. if (regs) {
  682. __u64 ip = instruction_pointer(regs);
  683. input[2] = ip;
  684. input[3] = ip >> 32;
  685. }
  686. fast_mix(fast_pool, input, sizeof(input));
  687. if ((fast_pool->count & 1023) &&
  688. !time_after(now, fast_pool->last + HZ))
  689. return;
  690. fast_pool->last = now;
  691. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  692. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  693. /*
  694. * If we don't have a valid cycle counter, and we see
  695. * back-to-back timer interrupts, then skip giving credit for
  696. * any entropy.
  697. */
  698. if (cycles == 0) {
  699. if (irq_flags & __IRQF_TIMER) {
  700. if (fast_pool->last_timer_intr)
  701. return;
  702. fast_pool->last_timer_intr = 1;
  703. } else
  704. fast_pool->last_timer_intr = 0;
  705. }
  706. credit_entropy_bits(r, 1);
  707. }
  708. #ifdef CONFIG_BLOCK
  709. void add_disk_randomness(struct gendisk *disk)
  710. {
  711. if (!disk || !disk->random)
  712. return;
  713. /* first major is 1, so we get >= 0x200 here */
  714. DEBUG_ENT("disk event %d:%d\n",
  715. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  716. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  717. }
  718. #endif
  719. /*********************************************************************
  720. *
  721. * Entropy extraction routines
  722. *
  723. *********************************************************************/
  724. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  725. size_t nbytes, int min, int rsvd);
  726. /*
  727. * This utility inline function is responsible for transferring entropy
  728. * from the primary pool to the secondary extraction pool. We make
  729. * sure we pull enough for a 'catastrophic reseed'.
  730. */
  731. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  732. {
  733. __u32 tmp[OUTPUT_POOL_WORDS];
  734. if (r->pull && r->entropy_count < nbytes * 8 &&
  735. r->entropy_count < r->poolinfo->POOLBITS) {
  736. /* If we're limited, always leave two wakeup worth's BITS */
  737. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  738. int bytes = nbytes;
  739. /* pull at least as many as BYTES as wakeup BITS */
  740. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  741. /* but never more than the buffer size */
  742. bytes = min_t(int, bytes, sizeof(tmp));
  743. DEBUG_ENT("going to reseed %s with %d bits "
  744. "(%zu of %d requested)\n",
  745. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  746. bytes = extract_entropy(r->pull, tmp, bytes,
  747. random_read_wakeup_thresh / 8, rsvd);
  748. mix_pool_bytes(r, tmp, bytes, NULL);
  749. credit_entropy_bits(r, bytes*8);
  750. }
  751. }
  752. /*
  753. * These functions extracts randomness from the "entropy pool", and
  754. * returns it in a buffer.
  755. *
  756. * The min parameter specifies the minimum amount we can pull before
  757. * failing to avoid races that defeat catastrophic reseeding while the
  758. * reserved parameter indicates how much entropy we must leave in the
  759. * pool after each pull to avoid starving other readers.
  760. *
  761. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  762. */
  763. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  764. int reserved)
  765. {
  766. unsigned long flags;
  767. int wakeup_write = 0;
  768. /* Hold lock while accounting */
  769. spin_lock_irqsave(&r->lock, flags);
  770. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  771. DEBUG_ENT("trying to extract %zu bits from %s\n",
  772. nbytes * 8, r->name);
  773. /* Can we pull enough? */
  774. if (r->entropy_count / 8 < min + reserved) {
  775. nbytes = 0;
  776. } else {
  777. int entropy_count, orig;
  778. retry:
  779. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  780. /* If limited, never pull more than available */
  781. if (r->limit && nbytes + reserved >= entropy_count / 8)
  782. nbytes = entropy_count/8 - reserved;
  783. if (entropy_count / 8 >= nbytes + reserved) {
  784. entropy_count -= nbytes*8;
  785. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  786. goto retry;
  787. } else {
  788. entropy_count = reserved;
  789. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  790. goto retry;
  791. }
  792. if (entropy_count < random_write_wakeup_thresh)
  793. wakeup_write = 1;
  794. }
  795. DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
  796. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  797. spin_unlock_irqrestore(&r->lock, flags);
  798. if (wakeup_write) {
  799. wake_up_interruptible(&random_write_wait);
  800. kill_fasync(&fasync, SIGIO, POLL_OUT);
  801. }
  802. return nbytes;
  803. }
  804. static void extract_buf(struct entropy_store *r, __u8 *out)
  805. {
  806. int i;
  807. union {
  808. __u32 w[5];
  809. unsigned long l[LONGS(EXTRACT_SIZE)];
  810. } hash;
  811. __u32 workspace[SHA_WORKSPACE_WORDS];
  812. __u8 extract[64];
  813. unsigned long flags;
  814. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  815. sha_init(hash.w);
  816. spin_lock_irqsave(&r->lock, flags);
  817. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  818. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  819. /*
  820. * We mix the hash back into the pool to prevent backtracking
  821. * attacks (where the attacker knows the state of the pool
  822. * plus the current outputs, and attempts to find previous
  823. * ouputs), unless the hash function can be inverted. By
  824. * mixing at least a SHA1 worth of hash data back, we make
  825. * brute-forcing the feedback as hard as brute-forcing the
  826. * hash.
  827. */
  828. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  829. spin_unlock_irqrestore(&r->lock, flags);
  830. /*
  831. * To avoid duplicates, we atomically extract a portion of the
  832. * pool while mixing, and hash one final time.
  833. */
  834. sha_transform(hash.w, extract, workspace);
  835. memset(extract, 0, sizeof(extract));
  836. memset(workspace, 0, sizeof(workspace));
  837. /*
  838. * In case the hash function has some recognizable output
  839. * pattern, we fold it in half. Thus, we always feed back
  840. * twice as much data as we output.
  841. */
  842. hash.w[0] ^= hash.w[3];
  843. hash.w[1] ^= hash.w[4];
  844. hash.w[2] ^= rol32(hash.w[2], 16);
  845. /*
  846. * If we have a architectural hardware random number
  847. * generator, mix that in, too.
  848. */
  849. for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
  850. unsigned long v;
  851. if (!arch_get_random_long(&v))
  852. break;
  853. hash.l[i] ^= v;
  854. }
  855. memcpy(out, &hash, EXTRACT_SIZE);
  856. memset(&hash, 0, sizeof(hash));
  857. }
  858. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  859. size_t nbytes, int min, int reserved)
  860. {
  861. ssize_t ret = 0, i;
  862. __u8 tmp[EXTRACT_SIZE];
  863. unsigned long flags;
  864. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  865. if (fips_enabled) {
  866. spin_lock_irqsave(&r->lock, flags);
  867. if (!r->last_data_init) {
  868. r->last_data_init = true;
  869. spin_unlock_irqrestore(&r->lock, flags);
  870. trace_extract_entropy(r->name, EXTRACT_SIZE,
  871. r->entropy_count, _RET_IP_);
  872. xfer_secondary_pool(r, EXTRACT_SIZE);
  873. extract_buf(r, tmp);
  874. spin_lock_irqsave(&r->lock, flags);
  875. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  876. }
  877. spin_unlock_irqrestore(&r->lock, flags);
  878. }
  879. trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
  880. xfer_secondary_pool(r, nbytes);
  881. nbytes = account(r, nbytes, min, reserved);
  882. while (nbytes) {
  883. extract_buf(r, tmp);
  884. if (fips_enabled) {
  885. spin_lock_irqsave(&r->lock, flags);
  886. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  887. panic("Hardware RNG duplicated output!\n");
  888. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  889. spin_unlock_irqrestore(&r->lock, flags);
  890. }
  891. i = min_t(int, nbytes, EXTRACT_SIZE);
  892. memcpy(buf, tmp, i);
  893. nbytes -= i;
  894. buf += i;
  895. ret += i;
  896. }
  897. /* Wipe data just returned from memory */
  898. memset(tmp, 0, sizeof(tmp));
  899. return ret;
  900. }
  901. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  902. size_t nbytes)
  903. {
  904. ssize_t ret = 0, i;
  905. __u8 tmp[EXTRACT_SIZE];
  906. trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
  907. xfer_secondary_pool(r, nbytes);
  908. nbytes = account(r, nbytes, 0, 0);
  909. while (nbytes) {
  910. if (need_resched()) {
  911. if (signal_pending(current)) {
  912. if (ret == 0)
  913. ret = -ERESTARTSYS;
  914. break;
  915. }
  916. schedule();
  917. }
  918. extract_buf(r, tmp);
  919. i = min_t(int, nbytes, EXTRACT_SIZE);
  920. if (copy_to_user(buf, tmp, i)) {
  921. ret = -EFAULT;
  922. break;
  923. }
  924. nbytes -= i;
  925. buf += i;
  926. ret += i;
  927. }
  928. /* Wipe data just returned from memory */
  929. memset(tmp, 0, sizeof(tmp));
  930. return ret;
  931. }
  932. /*
  933. * This function is the exported kernel interface. It returns some
  934. * number of good random numbers, suitable for key generation, seeding
  935. * TCP sequence numbers, etc. It does not use the hw random number
  936. * generator, if available; use get_random_bytes_arch() for that.
  937. */
  938. void get_random_bytes(void *buf, int nbytes)
  939. {
  940. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  941. }
  942. EXPORT_SYMBOL(get_random_bytes);
  943. /*
  944. * This function will use the architecture-specific hardware random
  945. * number generator if it is available. The arch-specific hw RNG will
  946. * almost certainly be faster than what we can do in software, but it
  947. * is impossible to verify that it is implemented securely (as
  948. * opposed, to, say, the AES encryption of a sequence number using a
  949. * key known by the NSA). So it's useful if we need the speed, but
  950. * only if we're willing to trust the hardware manufacturer not to
  951. * have put in a back door.
  952. */
  953. void get_random_bytes_arch(void *buf, int nbytes)
  954. {
  955. char *p = buf;
  956. trace_get_random_bytes(nbytes, _RET_IP_);
  957. while (nbytes) {
  958. unsigned long v;
  959. int chunk = min(nbytes, (int)sizeof(unsigned long));
  960. if (!arch_get_random_long(&v))
  961. break;
  962. memcpy(p, &v, chunk);
  963. p += chunk;
  964. nbytes -= chunk;
  965. }
  966. if (nbytes)
  967. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  968. }
  969. EXPORT_SYMBOL(get_random_bytes_arch);
  970. /*
  971. * init_std_data - initialize pool with system data
  972. *
  973. * @r: pool to initialize
  974. *
  975. * This function clears the pool's entropy count and mixes some system
  976. * data into the pool to prepare it for use. The pool is not cleared
  977. * as that can only decrease the entropy in the pool.
  978. */
  979. static void init_std_data(struct entropy_store *r)
  980. {
  981. int i;
  982. ktime_t now = ktime_get_real();
  983. unsigned long rv;
  984. r->entropy_count = 0;
  985. r->entropy_total = 0;
  986. r->last_data_init = false;
  987. mix_pool_bytes(r, &now, sizeof(now), NULL);
  988. for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
  989. if (!arch_get_random_long(&rv))
  990. break;
  991. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  992. }
  993. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  994. }
  995. /*
  996. * Note that setup_arch() may call add_device_randomness()
  997. * long before we get here. This allows seeding of the pools
  998. * with some platform dependent data very early in the boot
  999. * process. But it limits our options here. We must use
  1000. * statically allocated structures that already have all
  1001. * initializations complete at compile time. We should also
  1002. * take care not to overwrite the precious per platform data
  1003. * we were given.
  1004. */
  1005. static int rand_initialize(void)
  1006. {
  1007. init_std_data(&input_pool);
  1008. init_std_data(&blocking_pool);
  1009. init_std_data(&nonblocking_pool);
  1010. return 0;
  1011. }
  1012. module_init(rand_initialize);
  1013. #ifdef CONFIG_BLOCK
  1014. void rand_initialize_disk(struct gendisk *disk)
  1015. {
  1016. struct timer_rand_state *state;
  1017. /*
  1018. * If kzalloc returns null, we just won't use that entropy
  1019. * source.
  1020. */
  1021. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1022. if (state)
  1023. disk->random = state;
  1024. }
  1025. #endif
  1026. static ssize_t
  1027. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1028. {
  1029. ssize_t n, retval = 0, count = 0;
  1030. if (nbytes == 0)
  1031. return 0;
  1032. while (nbytes > 0) {
  1033. n = nbytes;
  1034. if (n > SEC_XFER_SIZE)
  1035. n = SEC_XFER_SIZE;
  1036. DEBUG_ENT("reading %zu bits\n", n*8);
  1037. n = extract_entropy_user(&blocking_pool, buf, n);
  1038. if (n < 0) {
  1039. retval = n;
  1040. break;
  1041. }
  1042. DEBUG_ENT("read got %zd bits (%zd still needed)\n",
  1043. n*8, (nbytes-n)*8);
  1044. if (n == 0) {
  1045. if (file->f_flags & O_NONBLOCK) {
  1046. retval = -EAGAIN;
  1047. break;
  1048. }
  1049. DEBUG_ENT("sleeping?\n");
  1050. wait_event_interruptible(random_read_wait,
  1051. input_pool.entropy_count >=
  1052. random_read_wakeup_thresh);
  1053. DEBUG_ENT("awake\n");
  1054. if (signal_pending(current)) {
  1055. retval = -ERESTARTSYS;
  1056. break;
  1057. }
  1058. continue;
  1059. }
  1060. count += n;
  1061. buf += n;
  1062. nbytes -= n;
  1063. break; /* This break makes the device work */
  1064. /* like a named pipe */
  1065. }
  1066. return (count ? count : retval);
  1067. }
  1068. static ssize_t
  1069. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1070. {
  1071. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1072. }
  1073. static unsigned int
  1074. random_poll(struct file *file, poll_table * wait)
  1075. {
  1076. unsigned int mask;
  1077. poll_wait(file, &random_read_wait, wait);
  1078. poll_wait(file, &random_write_wait, wait);
  1079. mask = 0;
  1080. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  1081. mask |= POLLIN | POLLRDNORM;
  1082. if (input_pool.entropy_count < random_write_wakeup_thresh)
  1083. mask |= POLLOUT | POLLWRNORM;
  1084. return mask;
  1085. }
  1086. static int
  1087. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1088. {
  1089. size_t bytes;
  1090. __u32 buf[16];
  1091. const char __user *p = buffer;
  1092. while (count > 0) {
  1093. bytes = min(count, sizeof(buf));
  1094. if (copy_from_user(&buf, p, bytes))
  1095. return -EFAULT;
  1096. count -= bytes;
  1097. p += bytes;
  1098. mix_pool_bytes(r, buf, bytes, NULL);
  1099. cond_resched();
  1100. }
  1101. return 0;
  1102. }
  1103. static ssize_t random_write(struct file *file, const char __user *buffer,
  1104. size_t count, loff_t *ppos)
  1105. {
  1106. size_t ret;
  1107. ret = write_pool(&blocking_pool, buffer, count);
  1108. if (ret)
  1109. return ret;
  1110. ret = write_pool(&nonblocking_pool, buffer, count);
  1111. if (ret)
  1112. return ret;
  1113. return (ssize_t)count;
  1114. }
  1115. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1116. {
  1117. int size, ent_count;
  1118. int __user *p = (int __user *)arg;
  1119. int retval;
  1120. switch (cmd) {
  1121. case RNDGETENTCNT:
  1122. /* inherently racy, no point locking */
  1123. if (put_user(input_pool.entropy_count, p))
  1124. return -EFAULT;
  1125. return 0;
  1126. case RNDADDTOENTCNT:
  1127. if (!capable(CAP_SYS_ADMIN))
  1128. return -EPERM;
  1129. if (get_user(ent_count, p))
  1130. return -EFAULT;
  1131. credit_entropy_bits(&input_pool, ent_count);
  1132. return 0;
  1133. case RNDADDENTROPY:
  1134. if (!capable(CAP_SYS_ADMIN))
  1135. return -EPERM;
  1136. if (get_user(ent_count, p++))
  1137. return -EFAULT;
  1138. if (ent_count < 0)
  1139. return -EINVAL;
  1140. if (get_user(size, p++))
  1141. return -EFAULT;
  1142. retval = write_pool(&input_pool, (const char __user *)p,
  1143. size);
  1144. if (retval < 0)
  1145. return retval;
  1146. credit_entropy_bits(&input_pool, ent_count);
  1147. return 0;
  1148. case RNDZAPENTCNT:
  1149. case RNDCLEARPOOL:
  1150. /* Clear the entropy pool counters. */
  1151. if (!capable(CAP_SYS_ADMIN))
  1152. return -EPERM;
  1153. rand_initialize();
  1154. return 0;
  1155. default:
  1156. return -EINVAL;
  1157. }
  1158. }
  1159. static int random_fasync(int fd, struct file *filp, int on)
  1160. {
  1161. return fasync_helper(fd, filp, on, &fasync);
  1162. }
  1163. const struct file_operations random_fops = {
  1164. .read = random_read,
  1165. .write = random_write,
  1166. .poll = random_poll,
  1167. .unlocked_ioctl = random_ioctl,
  1168. .fasync = random_fasync,
  1169. .llseek = noop_llseek,
  1170. };
  1171. const struct file_operations urandom_fops = {
  1172. .read = urandom_read,
  1173. .write = random_write,
  1174. .unlocked_ioctl = random_ioctl,
  1175. .fasync = random_fasync,
  1176. .llseek = noop_llseek,
  1177. };
  1178. /***************************************************************
  1179. * Random UUID interface
  1180. *
  1181. * Used here for a Boot ID, but can be useful for other kernel
  1182. * drivers.
  1183. ***************************************************************/
  1184. /*
  1185. * Generate random UUID
  1186. */
  1187. void generate_random_uuid(unsigned char uuid_out[16])
  1188. {
  1189. get_random_bytes(uuid_out, 16);
  1190. /* Set UUID version to 4 --- truly random generation */
  1191. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1192. /* Set the UUID variant to DCE */
  1193. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1194. }
  1195. EXPORT_SYMBOL(generate_random_uuid);
  1196. /********************************************************************
  1197. *
  1198. * Sysctl interface
  1199. *
  1200. ********************************************************************/
  1201. #ifdef CONFIG_SYSCTL
  1202. #include <linux/sysctl.h>
  1203. static int min_read_thresh = 8, min_write_thresh;
  1204. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1205. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1206. static char sysctl_bootid[16];
  1207. /*
  1208. * These functions is used to return both the bootid UUID, and random
  1209. * UUID. The difference is in whether table->data is NULL; if it is,
  1210. * then a new UUID is generated and returned to the user.
  1211. *
  1212. * If the user accesses this via the proc interface, it will be returned
  1213. * as an ASCII string in the standard UUID format. If accesses via the
  1214. * sysctl system call, it is returned as 16 bytes of binary data.
  1215. */
  1216. static int proc_do_uuid(struct ctl_table *table, int write,
  1217. void __user *buffer, size_t *lenp, loff_t *ppos)
  1218. {
  1219. struct ctl_table fake_table;
  1220. unsigned char buf[64], tmp_uuid[16], *uuid;
  1221. uuid = table->data;
  1222. if (!uuid) {
  1223. uuid = tmp_uuid;
  1224. generate_random_uuid(uuid);
  1225. } else {
  1226. static DEFINE_SPINLOCK(bootid_spinlock);
  1227. spin_lock(&bootid_spinlock);
  1228. if (!uuid[8])
  1229. generate_random_uuid(uuid);
  1230. spin_unlock(&bootid_spinlock);
  1231. }
  1232. sprintf(buf, "%pU", uuid);
  1233. fake_table.data = buf;
  1234. fake_table.maxlen = sizeof(buf);
  1235. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1236. }
  1237. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1238. extern struct ctl_table random_table[];
  1239. struct ctl_table random_table[] = {
  1240. {
  1241. .procname = "poolsize",
  1242. .data = &sysctl_poolsize,
  1243. .maxlen = sizeof(int),
  1244. .mode = 0444,
  1245. .proc_handler = proc_dointvec,
  1246. },
  1247. {
  1248. .procname = "entropy_avail",
  1249. .maxlen = sizeof(int),
  1250. .mode = 0444,
  1251. .proc_handler = proc_dointvec,
  1252. .data = &input_pool.entropy_count,
  1253. },
  1254. {
  1255. .procname = "read_wakeup_threshold",
  1256. .data = &random_read_wakeup_thresh,
  1257. .maxlen = sizeof(int),
  1258. .mode = 0644,
  1259. .proc_handler = proc_dointvec_minmax,
  1260. .extra1 = &min_read_thresh,
  1261. .extra2 = &max_read_thresh,
  1262. },
  1263. {
  1264. .procname = "write_wakeup_threshold",
  1265. .data = &random_write_wakeup_thresh,
  1266. .maxlen = sizeof(int),
  1267. .mode = 0644,
  1268. .proc_handler = proc_dointvec_minmax,
  1269. .extra1 = &min_write_thresh,
  1270. .extra2 = &max_write_thresh,
  1271. },
  1272. {
  1273. .procname = "boot_id",
  1274. .data = &sysctl_bootid,
  1275. .maxlen = 16,
  1276. .mode = 0444,
  1277. .proc_handler = proc_do_uuid,
  1278. },
  1279. {
  1280. .procname = "uuid",
  1281. .maxlen = 16,
  1282. .mode = 0444,
  1283. .proc_handler = proc_do_uuid,
  1284. },
  1285. { }
  1286. };
  1287. #endif /* CONFIG_SYSCTL */
  1288. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1289. int random_int_secret_init(void)
  1290. {
  1291. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1292. return 0;
  1293. }
  1294. /*
  1295. * Get a random word for internal kernel use only. Similar to urandom but
  1296. * with the goal of minimal entropy pool depletion. As a result, the random
  1297. * value is not cryptographically secure but for several uses the cost of
  1298. * depleting entropy is too high
  1299. */
  1300. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1301. unsigned int get_random_int(void)
  1302. {
  1303. __u32 *hash;
  1304. unsigned int ret;
  1305. if (arch_get_random_int(&ret))
  1306. return ret;
  1307. hash = get_cpu_var(get_random_int_hash);
  1308. hash[0] += current->pid + jiffies + random_get_entropy();
  1309. md5_transform(hash, random_int_secret);
  1310. ret = hash[0];
  1311. put_cpu_var(get_random_int_hash);
  1312. return ret;
  1313. }
  1314. EXPORT_SYMBOL(get_random_int);
  1315. /*
  1316. * randomize_range() returns a start address such that
  1317. *
  1318. * [...... <range> .....]
  1319. * start end
  1320. *
  1321. * a <range> with size "len" starting at the return value is inside in the
  1322. * area defined by [start, end], but is otherwise randomized.
  1323. */
  1324. unsigned long
  1325. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1326. {
  1327. unsigned long range = end - len - start;
  1328. if (end <= start + len)
  1329. return 0;
  1330. return PAGE_ALIGN(get_random_int() % range + start);
  1331. }