i915_gem.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. struct change_domains {
  38. uint32_t invalidate_domains;
  39. uint32_t flush_domains;
  40. uint32_t flush_rings;
  41. };
  42. static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
  43. static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
  44. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  45. bool pipelined);
  46. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  47. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  49. int write);
  50. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  51. uint64_t offset,
  52. uint64_t size);
  53. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  54. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  55. bool interruptible);
  56. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  57. unsigned alignment,
  58. bool map_and_fenceable);
  59. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  60. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  61. struct drm_i915_gem_pwrite *args,
  62. struct drm_file *file_priv);
  63. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  64. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  65. int nr_to_scan,
  66. gfp_t gfp_mask);
  67. /* some bookkeeping */
  68. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  69. size_t size)
  70. {
  71. dev_priv->mm.object_count++;
  72. dev_priv->mm.object_memory += size;
  73. }
  74. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75. size_t size)
  76. {
  77. dev_priv->mm.object_count--;
  78. dev_priv->mm.object_memory -= size;
  79. }
  80. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  81. struct drm_i915_gem_object *obj)
  82. {
  83. dev_priv->mm.gtt_count++;
  84. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  85. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  86. dev_priv->mm.mappable_gtt_used +=
  87. min_t(size_t, obj->gtt_space->size,
  88. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  89. }
  90. }
  91. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  92. struct drm_i915_gem_object *obj)
  93. {
  94. dev_priv->mm.gtt_count--;
  95. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  96. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  97. dev_priv->mm.mappable_gtt_used -=
  98. min_t(size_t, obj->gtt_space->size,
  99. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  100. }
  101. }
  102. /**
  103. * Update the mappable working set counters. Call _only_ when there is a change
  104. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  105. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  106. */
  107. static void
  108. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  109. struct drm_i915_gem_object *obj,
  110. bool mappable)
  111. {
  112. if (mappable) {
  113. if (obj->pin_mappable && obj->fault_mappable)
  114. /* Combined state was already mappable. */
  115. return;
  116. dev_priv->mm.gtt_mappable_count++;
  117. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  118. } else {
  119. if (obj->pin_mappable || obj->fault_mappable)
  120. /* Combined state still mappable. */
  121. return;
  122. dev_priv->mm.gtt_mappable_count--;
  123. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  124. }
  125. }
  126. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  127. struct drm_i915_gem_object *obj,
  128. bool mappable)
  129. {
  130. dev_priv->mm.pin_count++;
  131. dev_priv->mm.pin_memory += obj->gtt_space->size;
  132. if (mappable) {
  133. obj->pin_mappable = true;
  134. i915_gem_info_update_mappable(dev_priv, obj, true);
  135. }
  136. }
  137. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  138. struct drm_i915_gem_object *obj)
  139. {
  140. dev_priv->mm.pin_count--;
  141. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  142. if (obj->pin_mappable) {
  143. obj->pin_mappable = false;
  144. i915_gem_info_update_mappable(dev_priv, obj, false);
  145. }
  146. }
  147. int
  148. i915_gem_check_is_wedged(struct drm_device *dev)
  149. {
  150. struct drm_i915_private *dev_priv = dev->dev_private;
  151. struct completion *x = &dev_priv->error_completion;
  152. unsigned long flags;
  153. int ret;
  154. if (!atomic_read(&dev_priv->mm.wedged))
  155. return 0;
  156. ret = wait_for_completion_interruptible(x);
  157. if (ret)
  158. return ret;
  159. /* Success, we reset the GPU! */
  160. if (!atomic_read(&dev_priv->mm.wedged))
  161. return 0;
  162. /* GPU is hung, bump the completion count to account for
  163. * the token we just consumed so that we never hit zero and
  164. * end up waiting upon a subsequent completion event that
  165. * will never happen.
  166. */
  167. spin_lock_irqsave(&x->wait.lock, flags);
  168. x->done++;
  169. spin_unlock_irqrestore(&x->wait.lock, flags);
  170. return -EIO;
  171. }
  172. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  173. {
  174. struct drm_i915_private *dev_priv = dev->dev_private;
  175. int ret;
  176. ret = i915_gem_check_is_wedged(dev);
  177. if (ret)
  178. return ret;
  179. ret = mutex_lock_interruptible(&dev->struct_mutex);
  180. if (ret)
  181. return ret;
  182. if (atomic_read(&dev_priv->mm.wedged)) {
  183. mutex_unlock(&dev->struct_mutex);
  184. return -EAGAIN;
  185. }
  186. WARN_ON(i915_verify_lists(dev));
  187. return 0;
  188. }
  189. static inline bool
  190. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  191. {
  192. return obj_priv->gtt_space &&
  193. !obj_priv->active &&
  194. obj_priv->pin_count == 0;
  195. }
  196. int i915_gem_do_init(struct drm_device *dev,
  197. unsigned long start,
  198. unsigned long mappable_end,
  199. unsigned long end)
  200. {
  201. drm_i915_private_t *dev_priv = dev->dev_private;
  202. if (start >= end ||
  203. (start & (PAGE_SIZE - 1)) != 0 ||
  204. (end & (PAGE_SIZE - 1)) != 0) {
  205. return -EINVAL;
  206. }
  207. drm_mm_init(&dev_priv->mm.gtt_space, start,
  208. end - start);
  209. dev_priv->mm.gtt_total = end - start;
  210. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  211. dev_priv->mm.gtt_mappable_end = mappable_end;
  212. return 0;
  213. }
  214. int
  215. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_init *args = data;
  219. int ret;
  220. mutex_lock(&dev->struct_mutex);
  221. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  222. mutex_unlock(&dev->struct_mutex);
  223. return ret;
  224. }
  225. int
  226. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  227. struct drm_file *file_priv)
  228. {
  229. struct drm_i915_private *dev_priv = dev->dev_private;
  230. struct drm_i915_gem_get_aperture *args = data;
  231. if (!(dev->driver->driver_features & DRIVER_GEM))
  232. return -ENODEV;
  233. mutex_lock(&dev->struct_mutex);
  234. args->aper_size = dev_priv->mm.gtt_total;
  235. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  236. mutex_unlock(&dev->struct_mutex);
  237. return 0;
  238. }
  239. /**
  240. * Creates a new mm object and returns a handle to it.
  241. */
  242. int
  243. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  244. struct drm_file *file_priv)
  245. {
  246. struct drm_i915_gem_create *args = data;
  247. struct drm_gem_object *obj;
  248. int ret;
  249. u32 handle;
  250. args->size = roundup(args->size, PAGE_SIZE);
  251. /* Allocate the new object */
  252. obj = i915_gem_alloc_object(dev, args->size);
  253. if (obj == NULL)
  254. return -ENOMEM;
  255. ret = drm_gem_handle_create(file_priv, obj, &handle);
  256. if (ret) {
  257. drm_gem_object_release(obj);
  258. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  259. kfree(obj);
  260. return ret;
  261. }
  262. /* drop reference from allocate - handle holds it now */
  263. drm_gem_object_unreference(obj);
  264. trace_i915_gem_object_create(obj);
  265. args->handle = handle;
  266. return 0;
  267. }
  268. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  269. {
  270. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  271. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  272. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  273. obj_priv->tiling_mode != I915_TILING_NONE;
  274. }
  275. static inline void
  276. slow_shmem_copy(struct page *dst_page,
  277. int dst_offset,
  278. struct page *src_page,
  279. int src_offset,
  280. int length)
  281. {
  282. char *dst_vaddr, *src_vaddr;
  283. dst_vaddr = kmap(dst_page);
  284. src_vaddr = kmap(src_page);
  285. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  286. kunmap(src_page);
  287. kunmap(dst_page);
  288. }
  289. static inline void
  290. slow_shmem_bit17_copy(struct page *gpu_page,
  291. int gpu_offset,
  292. struct page *cpu_page,
  293. int cpu_offset,
  294. int length,
  295. int is_read)
  296. {
  297. char *gpu_vaddr, *cpu_vaddr;
  298. /* Use the unswizzled path if this page isn't affected. */
  299. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  300. if (is_read)
  301. return slow_shmem_copy(cpu_page, cpu_offset,
  302. gpu_page, gpu_offset, length);
  303. else
  304. return slow_shmem_copy(gpu_page, gpu_offset,
  305. cpu_page, cpu_offset, length);
  306. }
  307. gpu_vaddr = kmap(gpu_page);
  308. cpu_vaddr = kmap(cpu_page);
  309. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  310. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  311. */
  312. while (length > 0) {
  313. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  314. int this_length = min(cacheline_end - gpu_offset, length);
  315. int swizzled_gpu_offset = gpu_offset ^ 64;
  316. if (is_read) {
  317. memcpy(cpu_vaddr + cpu_offset,
  318. gpu_vaddr + swizzled_gpu_offset,
  319. this_length);
  320. } else {
  321. memcpy(gpu_vaddr + swizzled_gpu_offset,
  322. cpu_vaddr + cpu_offset,
  323. this_length);
  324. }
  325. cpu_offset += this_length;
  326. gpu_offset += this_length;
  327. length -= this_length;
  328. }
  329. kunmap(cpu_page);
  330. kunmap(gpu_page);
  331. }
  332. /**
  333. * This is the fast shmem pread path, which attempts to copy_from_user directly
  334. * from the backing pages of the object to the user's address space. On a
  335. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  336. */
  337. static int
  338. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  339. struct drm_i915_gem_pread *args,
  340. struct drm_file *file_priv)
  341. {
  342. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  343. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  344. ssize_t remain;
  345. loff_t offset;
  346. char __user *user_data;
  347. int page_offset, page_length;
  348. user_data = (char __user *) (uintptr_t) args->data_ptr;
  349. remain = args->size;
  350. obj_priv = to_intel_bo(obj);
  351. offset = args->offset;
  352. while (remain > 0) {
  353. struct page *page;
  354. char *vaddr;
  355. int ret;
  356. /* Operation in this page
  357. *
  358. * page_offset = offset within page
  359. * page_length = bytes to copy for this page
  360. */
  361. page_offset = offset & (PAGE_SIZE-1);
  362. page_length = remain;
  363. if ((page_offset + remain) > PAGE_SIZE)
  364. page_length = PAGE_SIZE - page_offset;
  365. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  366. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  367. if (IS_ERR(page))
  368. return PTR_ERR(page);
  369. vaddr = kmap_atomic(page);
  370. ret = __copy_to_user_inatomic(user_data,
  371. vaddr + page_offset,
  372. page_length);
  373. kunmap_atomic(vaddr);
  374. mark_page_accessed(page);
  375. page_cache_release(page);
  376. if (ret)
  377. return -EFAULT;
  378. remain -= page_length;
  379. user_data += page_length;
  380. offset += page_length;
  381. }
  382. return 0;
  383. }
  384. /**
  385. * This is the fallback shmem pread path, which allocates temporary storage
  386. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  387. * can copy out of the object's backing pages while holding the struct mutex
  388. * and not take page faults.
  389. */
  390. static int
  391. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  392. struct drm_i915_gem_pread *args,
  393. struct drm_file *file_priv)
  394. {
  395. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  396. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  397. struct mm_struct *mm = current->mm;
  398. struct page **user_pages;
  399. ssize_t remain;
  400. loff_t offset, pinned_pages, i;
  401. loff_t first_data_page, last_data_page, num_pages;
  402. int shmem_page_offset;
  403. int data_page_index, data_page_offset;
  404. int page_length;
  405. int ret;
  406. uint64_t data_ptr = args->data_ptr;
  407. int do_bit17_swizzling;
  408. remain = args->size;
  409. /* Pin the user pages containing the data. We can't fault while
  410. * holding the struct mutex, yet we want to hold it while
  411. * dereferencing the user data.
  412. */
  413. first_data_page = data_ptr / PAGE_SIZE;
  414. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  415. num_pages = last_data_page - first_data_page + 1;
  416. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  417. if (user_pages == NULL)
  418. return -ENOMEM;
  419. mutex_unlock(&dev->struct_mutex);
  420. down_read(&mm->mmap_sem);
  421. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  422. num_pages, 1, 0, user_pages, NULL);
  423. up_read(&mm->mmap_sem);
  424. mutex_lock(&dev->struct_mutex);
  425. if (pinned_pages < num_pages) {
  426. ret = -EFAULT;
  427. goto out;
  428. }
  429. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  430. args->offset,
  431. args->size);
  432. if (ret)
  433. goto out;
  434. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  435. obj_priv = to_intel_bo(obj);
  436. offset = args->offset;
  437. while (remain > 0) {
  438. struct page *page;
  439. /* Operation in this page
  440. *
  441. * shmem_page_offset = offset within page in shmem file
  442. * data_page_index = page number in get_user_pages return
  443. * data_page_offset = offset with data_page_index page.
  444. * page_length = bytes to copy for this page
  445. */
  446. shmem_page_offset = offset & ~PAGE_MASK;
  447. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  448. data_page_offset = data_ptr & ~PAGE_MASK;
  449. page_length = remain;
  450. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  451. page_length = PAGE_SIZE - shmem_page_offset;
  452. if ((data_page_offset + page_length) > PAGE_SIZE)
  453. page_length = PAGE_SIZE - data_page_offset;
  454. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  455. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  456. if (IS_ERR(page))
  457. return PTR_ERR(page);
  458. if (do_bit17_swizzling) {
  459. slow_shmem_bit17_copy(page,
  460. shmem_page_offset,
  461. user_pages[data_page_index],
  462. data_page_offset,
  463. page_length,
  464. 1);
  465. } else {
  466. slow_shmem_copy(user_pages[data_page_index],
  467. data_page_offset,
  468. page,
  469. shmem_page_offset,
  470. page_length);
  471. }
  472. mark_page_accessed(page);
  473. page_cache_release(page);
  474. remain -= page_length;
  475. data_ptr += page_length;
  476. offset += page_length;
  477. }
  478. out:
  479. for (i = 0; i < pinned_pages; i++) {
  480. SetPageDirty(user_pages[i]);
  481. mark_page_accessed(user_pages[i]);
  482. page_cache_release(user_pages[i]);
  483. }
  484. drm_free_large(user_pages);
  485. return ret;
  486. }
  487. /**
  488. * Reads data from the object referenced by handle.
  489. *
  490. * On error, the contents of *data are undefined.
  491. */
  492. int
  493. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  494. struct drm_file *file_priv)
  495. {
  496. struct drm_i915_gem_pread *args = data;
  497. struct drm_gem_object *obj;
  498. struct drm_i915_gem_object *obj_priv;
  499. int ret = 0;
  500. ret = i915_mutex_lock_interruptible(dev);
  501. if (ret)
  502. return ret;
  503. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  504. if (obj == NULL) {
  505. ret = -ENOENT;
  506. goto unlock;
  507. }
  508. obj_priv = to_intel_bo(obj);
  509. /* Bounds check source. */
  510. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  511. ret = -EINVAL;
  512. goto out;
  513. }
  514. if (args->size == 0)
  515. goto out;
  516. if (!access_ok(VERIFY_WRITE,
  517. (char __user *)(uintptr_t)args->data_ptr,
  518. args->size)) {
  519. ret = -EFAULT;
  520. goto out;
  521. }
  522. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  523. args->size);
  524. if (ret) {
  525. ret = -EFAULT;
  526. goto out;
  527. }
  528. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  529. args->offset,
  530. args->size);
  531. if (ret)
  532. goto out;
  533. ret = -EFAULT;
  534. if (!i915_gem_object_needs_bit17_swizzle(obj))
  535. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  536. if (ret == -EFAULT)
  537. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  538. out:
  539. drm_gem_object_unreference(obj);
  540. unlock:
  541. mutex_unlock(&dev->struct_mutex);
  542. return ret;
  543. }
  544. /* This is the fast write path which cannot handle
  545. * page faults in the source data
  546. */
  547. static inline int
  548. fast_user_write(struct io_mapping *mapping,
  549. loff_t page_base, int page_offset,
  550. char __user *user_data,
  551. int length)
  552. {
  553. char *vaddr_atomic;
  554. unsigned long unwritten;
  555. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  556. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  557. user_data, length);
  558. io_mapping_unmap_atomic(vaddr_atomic);
  559. return unwritten;
  560. }
  561. /* Here's the write path which can sleep for
  562. * page faults
  563. */
  564. static inline void
  565. slow_kernel_write(struct io_mapping *mapping,
  566. loff_t gtt_base, int gtt_offset,
  567. struct page *user_page, int user_offset,
  568. int length)
  569. {
  570. char __iomem *dst_vaddr;
  571. char *src_vaddr;
  572. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  573. src_vaddr = kmap(user_page);
  574. memcpy_toio(dst_vaddr + gtt_offset,
  575. src_vaddr + user_offset,
  576. length);
  577. kunmap(user_page);
  578. io_mapping_unmap(dst_vaddr);
  579. }
  580. /**
  581. * This is the fast pwrite path, where we copy the data directly from the
  582. * user into the GTT, uncached.
  583. */
  584. static int
  585. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  586. struct drm_i915_gem_pwrite *args,
  587. struct drm_file *file_priv)
  588. {
  589. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  590. drm_i915_private_t *dev_priv = dev->dev_private;
  591. ssize_t remain;
  592. loff_t offset, page_base;
  593. char __user *user_data;
  594. int page_offset, page_length;
  595. user_data = (char __user *) (uintptr_t) args->data_ptr;
  596. remain = args->size;
  597. obj_priv = to_intel_bo(obj);
  598. offset = obj_priv->gtt_offset + args->offset;
  599. while (remain > 0) {
  600. /* Operation in this page
  601. *
  602. * page_base = page offset within aperture
  603. * page_offset = offset within page
  604. * page_length = bytes to copy for this page
  605. */
  606. page_base = (offset & ~(PAGE_SIZE-1));
  607. page_offset = offset & (PAGE_SIZE-1);
  608. page_length = remain;
  609. if ((page_offset + remain) > PAGE_SIZE)
  610. page_length = PAGE_SIZE - page_offset;
  611. /* If we get a fault while copying data, then (presumably) our
  612. * source page isn't available. Return the error and we'll
  613. * retry in the slow path.
  614. */
  615. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  616. page_offset, user_data, page_length))
  617. return -EFAULT;
  618. remain -= page_length;
  619. user_data += page_length;
  620. offset += page_length;
  621. }
  622. return 0;
  623. }
  624. /**
  625. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  626. * the memory and maps it using kmap_atomic for copying.
  627. *
  628. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  629. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  630. */
  631. static int
  632. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  633. struct drm_i915_gem_pwrite *args,
  634. struct drm_file *file_priv)
  635. {
  636. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  637. drm_i915_private_t *dev_priv = dev->dev_private;
  638. ssize_t remain;
  639. loff_t gtt_page_base, offset;
  640. loff_t first_data_page, last_data_page, num_pages;
  641. loff_t pinned_pages, i;
  642. struct page **user_pages;
  643. struct mm_struct *mm = current->mm;
  644. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  645. int ret;
  646. uint64_t data_ptr = args->data_ptr;
  647. remain = args->size;
  648. /* Pin the user pages containing the data. We can't fault while
  649. * holding the struct mutex, and all of the pwrite implementations
  650. * want to hold it while dereferencing the user data.
  651. */
  652. first_data_page = data_ptr / PAGE_SIZE;
  653. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  654. num_pages = last_data_page - first_data_page + 1;
  655. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  656. if (user_pages == NULL)
  657. return -ENOMEM;
  658. mutex_unlock(&dev->struct_mutex);
  659. down_read(&mm->mmap_sem);
  660. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  661. num_pages, 0, 0, user_pages, NULL);
  662. up_read(&mm->mmap_sem);
  663. mutex_lock(&dev->struct_mutex);
  664. if (pinned_pages < num_pages) {
  665. ret = -EFAULT;
  666. goto out_unpin_pages;
  667. }
  668. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  669. if (ret)
  670. goto out_unpin_pages;
  671. obj_priv = to_intel_bo(obj);
  672. offset = obj_priv->gtt_offset + args->offset;
  673. while (remain > 0) {
  674. /* Operation in this page
  675. *
  676. * gtt_page_base = page offset within aperture
  677. * gtt_page_offset = offset within page in aperture
  678. * data_page_index = page number in get_user_pages return
  679. * data_page_offset = offset with data_page_index page.
  680. * page_length = bytes to copy for this page
  681. */
  682. gtt_page_base = offset & PAGE_MASK;
  683. gtt_page_offset = offset & ~PAGE_MASK;
  684. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  685. data_page_offset = data_ptr & ~PAGE_MASK;
  686. page_length = remain;
  687. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  688. page_length = PAGE_SIZE - gtt_page_offset;
  689. if ((data_page_offset + page_length) > PAGE_SIZE)
  690. page_length = PAGE_SIZE - data_page_offset;
  691. slow_kernel_write(dev_priv->mm.gtt_mapping,
  692. gtt_page_base, gtt_page_offset,
  693. user_pages[data_page_index],
  694. data_page_offset,
  695. page_length);
  696. remain -= page_length;
  697. offset += page_length;
  698. data_ptr += page_length;
  699. }
  700. out_unpin_pages:
  701. for (i = 0; i < pinned_pages; i++)
  702. page_cache_release(user_pages[i]);
  703. drm_free_large(user_pages);
  704. return ret;
  705. }
  706. /**
  707. * This is the fast shmem pwrite path, which attempts to directly
  708. * copy_from_user into the kmapped pages backing the object.
  709. */
  710. static int
  711. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  712. struct drm_i915_gem_pwrite *args,
  713. struct drm_file *file_priv)
  714. {
  715. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  716. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  717. ssize_t remain;
  718. loff_t offset;
  719. char __user *user_data;
  720. int page_offset, page_length;
  721. user_data = (char __user *) (uintptr_t) args->data_ptr;
  722. remain = args->size;
  723. obj_priv = to_intel_bo(obj);
  724. offset = args->offset;
  725. obj_priv->dirty = 1;
  726. while (remain > 0) {
  727. struct page *page;
  728. char *vaddr;
  729. int ret;
  730. /* Operation in this page
  731. *
  732. * page_offset = offset within page
  733. * page_length = bytes to copy for this page
  734. */
  735. page_offset = offset & (PAGE_SIZE-1);
  736. page_length = remain;
  737. if ((page_offset + remain) > PAGE_SIZE)
  738. page_length = PAGE_SIZE - page_offset;
  739. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  740. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  741. if (IS_ERR(page))
  742. return PTR_ERR(page);
  743. vaddr = kmap_atomic(page, KM_USER0);
  744. ret = __copy_from_user_inatomic(vaddr + page_offset,
  745. user_data,
  746. page_length);
  747. kunmap_atomic(vaddr, KM_USER0);
  748. set_page_dirty(page);
  749. mark_page_accessed(page);
  750. page_cache_release(page);
  751. /* If we get a fault while copying data, then (presumably) our
  752. * source page isn't available. Return the error and we'll
  753. * retry in the slow path.
  754. */
  755. if (ret)
  756. return -EFAULT;
  757. remain -= page_length;
  758. user_data += page_length;
  759. offset += page_length;
  760. }
  761. return 0;
  762. }
  763. /**
  764. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  765. * the memory and maps it using kmap_atomic for copying.
  766. *
  767. * This avoids taking mmap_sem for faulting on the user's address while the
  768. * struct_mutex is held.
  769. */
  770. static int
  771. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  772. struct drm_i915_gem_pwrite *args,
  773. struct drm_file *file_priv)
  774. {
  775. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  776. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  777. struct mm_struct *mm = current->mm;
  778. struct page **user_pages;
  779. ssize_t remain;
  780. loff_t offset, pinned_pages, i;
  781. loff_t first_data_page, last_data_page, num_pages;
  782. int shmem_page_offset;
  783. int data_page_index, data_page_offset;
  784. int page_length;
  785. int ret;
  786. uint64_t data_ptr = args->data_ptr;
  787. int do_bit17_swizzling;
  788. remain = args->size;
  789. /* Pin the user pages containing the data. We can't fault while
  790. * holding the struct mutex, and all of the pwrite implementations
  791. * want to hold it while dereferencing the user data.
  792. */
  793. first_data_page = data_ptr / PAGE_SIZE;
  794. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  795. num_pages = last_data_page - first_data_page + 1;
  796. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  797. if (user_pages == NULL)
  798. return -ENOMEM;
  799. mutex_unlock(&dev->struct_mutex);
  800. down_read(&mm->mmap_sem);
  801. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  802. num_pages, 0, 0, user_pages, NULL);
  803. up_read(&mm->mmap_sem);
  804. mutex_lock(&dev->struct_mutex);
  805. if (pinned_pages < num_pages) {
  806. ret = -EFAULT;
  807. goto out;
  808. }
  809. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  810. if (ret)
  811. goto out;
  812. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  813. obj_priv = to_intel_bo(obj);
  814. offset = args->offset;
  815. obj_priv->dirty = 1;
  816. while (remain > 0) {
  817. struct page *page;
  818. /* Operation in this page
  819. *
  820. * shmem_page_offset = offset within page in shmem file
  821. * data_page_index = page number in get_user_pages return
  822. * data_page_offset = offset with data_page_index page.
  823. * page_length = bytes to copy for this page
  824. */
  825. shmem_page_offset = offset & ~PAGE_MASK;
  826. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  827. data_page_offset = data_ptr & ~PAGE_MASK;
  828. page_length = remain;
  829. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  830. page_length = PAGE_SIZE - shmem_page_offset;
  831. if ((data_page_offset + page_length) > PAGE_SIZE)
  832. page_length = PAGE_SIZE - data_page_offset;
  833. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  834. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  835. if (IS_ERR(page)) {
  836. ret = PTR_ERR(page);
  837. goto out;
  838. }
  839. if (do_bit17_swizzling) {
  840. slow_shmem_bit17_copy(page,
  841. shmem_page_offset,
  842. user_pages[data_page_index],
  843. data_page_offset,
  844. page_length,
  845. 0);
  846. } else {
  847. slow_shmem_copy(page,
  848. shmem_page_offset,
  849. user_pages[data_page_index],
  850. data_page_offset,
  851. page_length);
  852. }
  853. set_page_dirty(page);
  854. mark_page_accessed(page);
  855. page_cache_release(page);
  856. remain -= page_length;
  857. data_ptr += page_length;
  858. offset += page_length;
  859. }
  860. out:
  861. for (i = 0; i < pinned_pages; i++)
  862. page_cache_release(user_pages[i]);
  863. drm_free_large(user_pages);
  864. return ret;
  865. }
  866. /**
  867. * Writes data to the object referenced by handle.
  868. *
  869. * On error, the contents of the buffer that were to be modified are undefined.
  870. */
  871. int
  872. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  873. struct drm_file *file)
  874. {
  875. struct drm_i915_gem_pwrite *args = data;
  876. struct drm_gem_object *obj;
  877. struct drm_i915_gem_object *obj_priv;
  878. int ret = 0;
  879. ret = i915_mutex_lock_interruptible(dev);
  880. if (ret)
  881. return ret;
  882. obj = drm_gem_object_lookup(dev, file, args->handle);
  883. if (obj == NULL) {
  884. ret = -ENOENT;
  885. goto unlock;
  886. }
  887. obj_priv = to_intel_bo(obj);
  888. /* Bounds check destination. */
  889. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  890. ret = -EINVAL;
  891. goto out;
  892. }
  893. if (args->size == 0)
  894. goto out;
  895. if (!access_ok(VERIFY_READ,
  896. (char __user *)(uintptr_t)args->data_ptr,
  897. args->size)) {
  898. ret = -EFAULT;
  899. goto out;
  900. }
  901. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  902. args->size);
  903. if (ret) {
  904. ret = -EFAULT;
  905. goto out;
  906. }
  907. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  908. * it would end up going through the fenced access, and we'll get
  909. * different detiling behavior between reading and writing.
  910. * pread/pwrite currently are reading and writing from the CPU
  911. * perspective, requiring manual detiling by the client.
  912. */
  913. if (obj_priv->phys_obj)
  914. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  915. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  916. obj_priv->gtt_space &&
  917. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  918. ret = i915_gem_object_pin(obj, 0, true);
  919. if (ret)
  920. goto out;
  921. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  922. if (ret)
  923. goto out_unpin;
  924. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  925. if (ret == -EFAULT)
  926. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  927. out_unpin:
  928. i915_gem_object_unpin(obj);
  929. } else {
  930. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  931. if (ret)
  932. goto out;
  933. ret = -EFAULT;
  934. if (!i915_gem_object_needs_bit17_swizzle(obj))
  935. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  936. if (ret == -EFAULT)
  937. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  938. }
  939. out:
  940. drm_gem_object_unreference(obj);
  941. unlock:
  942. mutex_unlock(&dev->struct_mutex);
  943. return ret;
  944. }
  945. /**
  946. * Called when user space prepares to use an object with the CPU, either
  947. * through the mmap ioctl's mapping or a GTT mapping.
  948. */
  949. int
  950. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  951. struct drm_file *file_priv)
  952. {
  953. struct drm_i915_private *dev_priv = dev->dev_private;
  954. struct drm_i915_gem_set_domain *args = data;
  955. struct drm_gem_object *obj;
  956. struct drm_i915_gem_object *obj_priv;
  957. uint32_t read_domains = args->read_domains;
  958. uint32_t write_domain = args->write_domain;
  959. int ret;
  960. if (!(dev->driver->driver_features & DRIVER_GEM))
  961. return -ENODEV;
  962. /* Only handle setting domains to types used by the CPU. */
  963. if (write_domain & I915_GEM_GPU_DOMAINS)
  964. return -EINVAL;
  965. if (read_domains & I915_GEM_GPU_DOMAINS)
  966. return -EINVAL;
  967. /* Having something in the write domain implies it's in the read
  968. * domain, and only that read domain. Enforce that in the request.
  969. */
  970. if (write_domain != 0 && read_domains != write_domain)
  971. return -EINVAL;
  972. ret = i915_mutex_lock_interruptible(dev);
  973. if (ret)
  974. return ret;
  975. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  976. if (obj == NULL) {
  977. ret = -ENOENT;
  978. goto unlock;
  979. }
  980. obj_priv = to_intel_bo(obj);
  981. intel_mark_busy(dev, obj);
  982. if (read_domains & I915_GEM_DOMAIN_GTT) {
  983. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  984. /* Update the LRU on the fence for the CPU access that's
  985. * about to occur.
  986. */
  987. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  988. struct drm_i915_fence_reg *reg =
  989. &dev_priv->fence_regs[obj_priv->fence_reg];
  990. list_move_tail(&reg->lru_list,
  991. &dev_priv->mm.fence_list);
  992. }
  993. /* Silently promote "you're not bound, there was nothing to do"
  994. * to success, since the client was just asking us to
  995. * make sure everything was done.
  996. */
  997. if (ret == -EINVAL)
  998. ret = 0;
  999. } else {
  1000. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1001. }
  1002. /* Maintain LRU order of "inactive" objects */
  1003. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1004. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1005. drm_gem_object_unreference(obj);
  1006. unlock:
  1007. mutex_unlock(&dev->struct_mutex);
  1008. return ret;
  1009. }
  1010. /**
  1011. * Called when user space has done writes to this buffer
  1012. */
  1013. int
  1014. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1015. struct drm_file *file_priv)
  1016. {
  1017. struct drm_i915_gem_sw_finish *args = data;
  1018. struct drm_gem_object *obj;
  1019. int ret = 0;
  1020. if (!(dev->driver->driver_features & DRIVER_GEM))
  1021. return -ENODEV;
  1022. ret = i915_mutex_lock_interruptible(dev);
  1023. if (ret)
  1024. return ret;
  1025. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1026. if (obj == NULL) {
  1027. ret = -ENOENT;
  1028. goto unlock;
  1029. }
  1030. /* Pinned buffers may be scanout, so flush the cache */
  1031. if (to_intel_bo(obj)->pin_count)
  1032. i915_gem_object_flush_cpu_write_domain(obj);
  1033. drm_gem_object_unreference(obj);
  1034. unlock:
  1035. mutex_unlock(&dev->struct_mutex);
  1036. return ret;
  1037. }
  1038. /**
  1039. * Maps the contents of an object, returning the address it is mapped
  1040. * into.
  1041. *
  1042. * While the mapping holds a reference on the contents of the object, it doesn't
  1043. * imply a ref on the object itself.
  1044. */
  1045. int
  1046. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1047. struct drm_file *file_priv)
  1048. {
  1049. struct drm_i915_private *dev_priv = dev->dev_private;
  1050. struct drm_i915_gem_mmap *args = data;
  1051. struct drm_gem_object *obj;
  1052. loff_t offset;
  1053. unsigned long addr;
  1054. if (!(dev->driver->driver_features & DRIVER_GEM))
  1055. return -ENODEV;
  1056. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1057. if (obj == NULL)
  1058. return -ENOENT;
  1059. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1060. drm_gem_object_unreference_unlocked(obj);
  1061. return -E2BIG;
  1062. }
  1063. offset = args->offset;
  1064. down_write(&current->mm->mmap_sem);
  1065. addr = do_mmap(obj->filp, 0, args->size,
  1066. PROT_READ | PROT_WRITE, MAP_SHARED,
  1067. args->offset);
  1068. up_write(&current->mm->mmap_sem);
  1069. drm_gem_object_unreference_unlocked(obj);
  1070. if (IS_ERR((void *)addr))
  1071. return addr;
  1072. args->addr_ptr = (uint64_t) addr;
  1073. return 0;
  1074. }
  1075. /**
  1076. * i915_gem_fault - fault a page into the GTT
  1077. * vma: VMA in question
  1078. * vmf: fault info
  1079. *
  1080. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1081. * from userspace. The fault handler takes care of binding the object to
  1082. * the GTT (if needed), allocating and programming a fence register (again,
  1083. * only if needed based on whether the old reg is still valid or the object
  1084. * is tiled) and inserting a new PTE into the faulting process.
  1085. *
  1086. * Note that the faulting process may involve evicting existing objects
  1087. * from the GTT and/or fence registers to make room. So performance may
  1088. * suffer if the GTT working set is large or there are few fence registers
  1089. * left.
  1090. */
  1091. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1092. {
  1093. struct drm_gem_object *obj = vma->vm_private_data;
  1094. struct drm_device *dev = obj->dev;
  1095. drm_i915_private_t *dev_priv = dev->dev_private;
  1096. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1097. pgoff_t page_offset;
  1098. unsigned long pfn;
  1099. int ret = 0;
  1100. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1101. /* We don't use vmf->pgoff since that has the fake offset */
  1102. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1103. PAGE_SHIFT;
  1104. /* Now bind it into the GTT if needed */
  1105. mutex_lock(&dev->struct_mutex);
  1106. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1107. if (obj_priv->gtt_space) {
  1108. if (!obj_priv->map_and_fenceable) {
  1109. ret = i915_gem_object_unbind(obj);
  1110. if (ret)
  1111. goto unlock;
  1112. }
  1113. }
  1114. if (!obj_priv->gtt_space) {
  1115. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1116. if (ret)
  1117. goto unlock;
  1118. }
  1119. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1120. if (ret)
  1121. goto unlock;
  1122. if (!obj_priv->fault_mappable) {
  1123. obj_priv->fault_mappable = true;
  1124. i915_gem_info_update_mappable(dev_priv, obj_priv, true);
  1125. }
  1126. /* Need a new fence register? */
  1127. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1128. ret = i915_gem_object_get_fence_reg(obj, true);
  1129. if (ret)
  1130. goto unlock;
  1131. }
  1132. if (i915_gem_object_is_inactive(obj_priv))
  1133. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1134. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1135. page_offset;
  1136. /* Finally, remap it using the new GTT offset */
  1137. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1138. unlock:
  1139. mutex_unlock(&dev->struct_mutex);
  1140. switch (ret) {
  1141. case 0:
  1142. case -ERESTARTSYS:
  1143. return VM_FAULT_NOPAGE;
  1144. case -ENOMEM:
  1145. case -EAGAIN:
  1146. return VM_FAULT_OOM;
  1147. default:
  1148. return VM_FAULT_SIGBUS;
  1149. }
  1150. }
  1151. /**
  1152. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1153. * @obj: obj in question
  1154. *
  1155. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1156. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1157. * up the object based on the offset and sets up the various memory mapping
  1158. * structures.
  1159. *
  1160. * This routine allocates and attaches a fake offset for @obj.
  1161. */
  1162. static int
  1163. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1164. {
  1165. struct drm_device *dev = obj->dev;
  1166. struct drm_gem_mm *mm = dev->mm_private;
  1167. struct drm_map_list *list;
  1168. struct drm_local_map *map;
  1169. int ret = 0;
  1170. /* Set the object up for mmap'ing */
  1171. list = &obj->map_list;
  1172. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1173. if (!list->map)
  1174. return -ENOMEM;
  1175. map = list->map;
  1176. map->type = _DRM_GEM;
  1177. map->size = obj->size;
  1178. map->handle = obj;
  1179. /* Get a DRM GEM mmap offset allocated... */
  1180. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1181. obj->size / PAGE_SIZE, 0, 0);
  1182. if (!list->file_offset_node) {
  1183. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1184. ret = -ENOSPC;
  1185. goto out_free_list;
  1186. }
  1187. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1188. obj->size / PAGE_SIZE, 0);
  1189. if (!list->file_offset_node) {
  1190. ret = -ENOMEM;
  1191. goto out_free_list;
  1192. }
  1193. list->hash.key = list->file_offset_node->start;
  1194. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1195. if (ret) {
  1196. DRM_ERROR("failed to add to map hash\n");
  1197. goto out_free_mm;
  1198. }
  1199. return 0;
  1200. out_free_mm:
  1201. drm_mm_put_block(list->file_offset_node);
  1202. out_free_list:
  1203. kfree(list->map);
  1204. list->map = NULL;
  1205. return ret;
  1206. }
  1207. /**
  1208. * i915_gem_release_mmap - remove physical page mappings
  1209. * @obj: obj in question
  1210. *
  1211. * Preserve the reservation of the mmapping with the DRM core code, but
  1212. * relinquish ownership of the pages back to the system.
  1213. *
  1214. * It is vital that we remove the page mapping if we have mapped a tiled
  1215. * object through the GTT and then lose the fence register due to
  1216. * resource pressure. Similarly if the object has been moved out of the
  1217. * aperture, than pages mapped into userspace must be revoked. Removing the
  1218. * mapping will then trigger a page fault on the next user access, allowing
  1219. * fixup by i915_gem_fault().
  1220. */
  1221. void
  1222. i915_gem_release_mmap(struct drm_gem_object *obj)
  1223. {
  1224. struct drm_device *dev = obj->dev;
  1225. struct drm_i915_private *dev_priv = dev->dev_private;
  1226. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1227. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1228. unmap_mapping_range(dev->dev_mapping,
  1229. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1230. obj->size, 1);
  1231. if (obj_priv->fault_mappable) {
  1232. obj_priv->fault_mappable = false;
  1233. i915_gem_info_update_mappable(dev_priv, obj_priv, false);
  1234. }
  1235. }
  1236. static void
  1237. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1238. {
  1239. struct drm_device *dev = obj->dev;
  1240. struct drm_gem_mm *mm = dev->mm_private;
  1241. struct drm_map_list *list = &obj->map_list;
  1242. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1243. drm_mm_put_block(list->file_offset_node);
  1244. kfree(list->map);
  1245. list->map = NULL;
  1246. }
  1247. /**
  1248. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1249. * @obj: object to check
  1250. *
  1251. * Return the required GTT alignment for an object, taking into account
  1252. * potential fence register mapping if needed.
  1253. */
  1254. static uint32_t
  1255. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1256. {
  1257. struct drm_device *dev = obj_priv->base.dev;
  1258. /*
  1259. * Minimum alignment is 4k (GTT page size), but might be greater
  1260. * if a fence register is needed for the object.
  1261. */
  1262. if (INTEL_INFO(dev)->gen >= 4 ||
  1263. obj_priv->tiling_mode == I915_TILING_NONE)
  1264. return 4096;
  1265. /*
  1266. * Previous chips need to be aligned to the size of the smallest
  1267. * fence register that can contain the object.
  1268. */
  1269. return i915_gem_get_gtt_size(obj_priv);
  1270. }
  1271. static uint32_t
  1272. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
  1273. {
  1274. struct drm_device *dev = obj_priv->base.dev;
  1275. uint32_t size;
  1276. /*
  1277. * Minimum alignment is 4k (GTT page size), but might be greater
  1278. * if a fence register is needed for the object.
  1279. */
  1280. if (INTEL_INFO(dev)->gen >= 4)
  1281. return obj_priv->base.size;
  1282. /*
  1283. * Previous chips need to be aligned to the size of the smallest
  1284. * fence register that can contain the object.
  1285. */
  1286. if (INTEL_INFO(dev)->gen == 3)
  1287. size = 1024*1024;
  1288. else
  1289. size = 512*1024;
  1290. while (size < obj_priv->base.size)
  1291. size <<= 1;
  1292. return size;
  1293. }
  1294. /**
  1295. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1296. * @dev: DRM device
  1297. * @data: GTT mapping ioctl data
  1298. * @file_priv: GEM object info
  1299. *
  1300. * Simply returns the fake offset to userspace so it can mmap it.
  1301. * The mmap call will end up in drm_gem_mmap(), which will set things
  1302. * up so we can get faults in the handler above.
  1303. *
  1304. * The fault handler will take care of binding the object into the GTT
  1305. * (since it may have been evicted to make room for something), allocating
  1306. * a fence register, and mapping the appropriate aperture address into
  1307. * userspace.
  1308. */
  1309. int
  1310. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1311. struct drm_file *file_priv)
  1312. {
  1313. struct drm_i915_private *dev_priv = dev->dev_private;
  1314. struct drm_i915_gem_mmap_gtt *args = data;
  1315. struct drm_gem_object *obj;
  1316. struct drm_i915_gem_object *obj_priv;
  1317. int ret;
  1318. if (!(dev->driver->driver_features & DRIVER_GEM))
  1319. return -ENODEV;
  1320. ret = i915_mutex_lock_interruptible(dev);
  1321. if (ret)
  1322. return ret;
  1323. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1324. if (obj == NULL) {
  1325. ret = -ENOENT;
  1326. goto unlock;
  1327. }
  1328. obj_priv = to_intel_bo(obj);
  1329. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1330. ret = -E2BIG;
  1331. goto unlock;
  1332. }
  1333. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1334. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1335. ret = -EINVAL;
  1336. goto out;
  1337. }
  1338. if (!obj->map_list.map) {
  1339. ret = i915_gem_create_mmap_offset(obj);
  1340. if (ret)
  1341. goto out;
  1342. }
  1343. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1344. out:
  1345. drm_gem_object_unreference(obj);
  1346. unlock:
  1347. mutex_unlock(&dev->struct_mutex);
  1348. return ret;
  1349. }
  1350. static int
  1351. i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
  1352. gfp_t gfpmask)
  1353. {
  1354. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1355. int page_count, i;
  1356. struct address_space *mapping;
  1357. struct inode *inode;
  1358. struct page *page;
  1359. /* Get the list of pages out of our struct file. They'll be pinned
  1360. * at this point until we release them.
  1361. */
  1362. page_count = obj->size / PAGE_SIZE;
  1363. BUG_ON(obj_priv->pages != NULL);
  1364. obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1365. if (obj_priv->pages == NULL)
  1366. return -ENOMEM;
  1367. inode = obj->filp->f_path.dentry->d_inode;
  1368. mapping = inode->i_mapping;
  1369. for (i = 0; i < page_count; i++) {
  1370. page = read_cache_page_gfp(mapping, i,
  1371. GFP_HIGHUSER |
  1372. __GFP_COLD |
  1373. __GFP_RECLAIMABLE |
  1374. gfpmask);
  1375. if (IS_ERR(page))
  1376. goto err_pages;
  1377. obj_priv->pages[i] = page;
  1378. }
  1379. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1380. i915_gem_object_do_bit_17_swizzle(obj);
  1381. return 0;
  1382. err_pages:
  1383. while (i--)
  1384. page_cache_release(obj_priv->pages[i]);
  1385. drm_free_large(obj_priv->pages);
  1386. obj_priv->pages = NULL;
  1387. return PTR_ERR(page);
  1388. }
  1389. static void
  1390. i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
  1391. {
  1392. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1393. int page_count = obj->size / PAGE_SIZE;
  1394. int i;
  1395. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1396. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1397. i915_gem_object_save_bit_17_swizzle(obj);
  1398. if (obj_priv->madv == I915_MADV_DONTNEED)
  1399. obj_priv->dirty = 0;
  1400. for (i = 0; i < page_count; i++) {
  1401. if (obj_priv->dirty)
  1402. set_page_dirty(obj_priv->pages[i]);
  1403. if (obj_priv->madv == I915_MADV_WILLNEED)
  1404. mark_page_accessed(obj_priv->pages[i]);
  1405. page_cache_release(obj_priv->pages[i]);
  1406. }
  1407. obj_priv->dirty = 0;
  1408. drm_free_large(obj_priv->pages);
  1409. obj_priv->pages = NULL;
  1410. }
  1411. static uint32_t
  1412. i915_gem_next_request_seqno(struct drm_device *dev,
  1413. struct intel_ring_buffer *ring)
  1414. {
  1415. drm_i915_private_t *dev_priv = dev->dev_private;
  1416. ring->outstanding_lazy_request = true;
  1417. return dev_priv->next_seqno;
  1418. }
  1419. static void
  1420. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1421. struct intel_ring_buffer *ring)
  1422. {
  1423. struct drm_device *dev = obj->dev;
  1424. struct drm_i915_private *dev_priv = dev->dev_private;
  1425. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1426. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1427. BUG_ON(ring == NULL);
  1428. obj_priv->ring = ring;
  1429. /* Add a reference if we're newly entering the active list. */
  1430. if (!obj_priv->active) {
  1431. drm_gem_object_reference(obj);
  1432. obj_priv->active = 1;
  1433. }
  1434. /* Move from whatever list we were on to the tail of execution. */
  1435. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1436. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1437. obj_priv->last_rendering_seqno = seqno;
  1438. }
  1439. static void
  1440. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1441. {
  1442. struct drm_device *dev = obj->dev;
  1443. drm_i915_private_t *dev_priv = dev->dev_private;
  1444. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1445. BUG_ON(!obj_priv->active);
  1446. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1447. list_del_init(&obj_priv->ring_list);
  1448. obj_priv->last_rendering_seqno = 0;
  1449. }
  1450. /* Immediately discard the backing storage */
  1451. static void
  1452. i915_gem_object_truncate(struct drm_gem_object *obj)
  1453. {
  1454. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1455. struct inode *inode;
  1456. /* Our goal here is to return as much of the memory as
  1457. * is possible back to the system as we are called from OOM.
  1458. * To do this we must instruct the shmfs to drop all of its
  1459. * backing pages, *now*. Here we mirror the actions taken
  1460. * when by shmem_delete_inode() to release the backing store.
  1461. */
  1462. inode = obj->filp->f_path.dentry->d_inode;
  1463. truncate_inode_pages(inode->i_mapping, 0);
  1464. if (inode->i_op->truncate_range)
  1465. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1466. obj_priv->madv = __I915_MADV_PURGED;
  1467. }
  1468. static inline int
  1469. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1470. {
  1471. return obj_priv->madv == I915_MADV_DONTNEED;
  1472. }
  1473. static void
  1474. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1475. {
  1476. struct drm_device *dev = obj->dev;
  1477. drm_i915_private_t *dev_priv = dev->dev_private;
  1478. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1479. if (obj_priv->pin_count != 0)
  1480. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1481. else
  1482. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1483. list_del_init(&obj_priv->ring_list);
  1484. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1485. obj_priv->last_rendering_seqno = 0;
  1486. obj_priv->ring = NULL;
  1487. if (obj_priv->active) {
  1488. obj_priv->active = 0;
  1489. drm_gem_object_unreference(obj);
  1490. }
  1491. WARN_ON(i915_verify_lists(dev));
  1492. }
  1493. static void
  1494. i915_gem_process_flushing_list(struct drm_device *dev,
  1495. uint32_t flush_domains,
  1496. struct intel_ring_buffer *ring)
  1497. {
  1498. drm_i915_private_t *dev_priv = dev->dev_private;
  1499. struct drm_i915_gem_object *obj_priv, *next;
  1500. list_for_each_entry_safe(obj_priv, next,
  1501. &ring->gpu_write_list,
  1502. gpu_write_list) {
  1503. struct drm_gem_object *obj = &obj_priv->base;
  1504. if (obj->write_domain & flush_domains) {
  1505. uint32_t old_write_domain = obj->write_domain;
  1506. obj->write_domain = 0;
  1507. list_del_init(&obj_priv->gpu_write_list);
  1508. i915_gem_object_move_to_active(obj, ring);
  1509. /* update the fence lru list */
  1510. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1511. struct drm_i915_fence_reg *reg =
  1512. &dev_priv->fence_regs[obj_priv->fence_reg];
  1513. list_move_tail(&reg->lru_list,
  1514. &dev_priv->mm.fence_list);
  1515. }
  1516. trace_i915_gem_object_change_domain(obj,
  1517. obj->read_domains,
  1518. old_write_domain);
  1519. }
  1520. }
  1521. }
  1522. int
  1523. i915_add_request(struct drm_device *dev,
  1524. struct drm_file *file,
  1525. struct drm_i915_gem_request *request,
  1526. struct intel_ring_buffer *ring)
  1527. {
  1528. drm_i915_private_t *dev_priv = dev->dev_private;
  1529. struct drm_i915_file_private *file_priv = NULL;
  1530. uint32_t seqno;
  1531. int was_empty;
  1532. int ret;
  1533. BUG_ON(request == NULL);
  1534. if (file != NULL)
  1535. file_priv = file->driver_priv;
  1536. ret = ring->add_request(ring, &seqno);
  1537. if (ret)
  1538. return ret;
  1539. ring->outstanding_lazy_request = false;
  1540. request->seqno = seqno;
  1541. request->ring = ring;
  1542. request->emitted_jiffies = jiffies;
  1543. was_empty = list_empty(&ring->request_list);
  1544. list_add_tail(&request->list, &ring->request_list);
  1545. if (file_priv) {
  1546. spin_lock(&file_priv->mm.lock);
  1547. request->file_priv = file_priv;
  1548. list_add_tail(&request->client_list,
  1549. &file_priv->mm.request_list);
  1550. spin_unlock(&file_priv->mm.lock);
  1551. }
  1552. if (!dev_priv->mm.suspended) {
  1553. mod_timer(&dev_priv->hangcheck_timer,
  1554. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1555. if (was_empty)
  1556. queue_delayed_work(dev_priv->wq,
  1557. &dev_priv->mm.retire_work, HZ);
  1558. }
  1559. return 0;
  1560. }
  1561. /**
  1562. * Command execution barrier
  1563. *
  1564. * Ensures that all commands in the ring are finished
  1565. * before signalling the CPU
  1566. */
  1567. static void
  1568. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1569. {
  1570. uint32_t flush_domains = 0;
  1571. /* The sampler always gets flushed on i965 (sigh) */
  1572. if (INTEL_INFO(dev)->gen >= 4)
  1573. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1574. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1575. }
  1576. static inline void
  1577. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1578. {
  1579. struct drm_i915_file_private *file_priv = request->file_priv;
  1580. if (!file_priv)
  1581. return;
  1582. spin_lock(&file_priv->mm.lock);
  1583. list_del(&request->client_list);
  1584. request->file_priv = NULL;
  1585. spin_unlock(&file_priv->mm.lock);
  1586. }
  1587. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1588. struct intel_ring_buffer *ring)
  1589. {
  1590. while (!list_empty(&ring->request_list)) {
  1591. struct drm_i915_gem_request *request;
  1592. request = list_first_entry(&ring->request_list,
  1593. struct drm_i915_gem_request,
  1594. list);
  1595. list_del(&request->list);
  1596. i915_gem_request_remove_from_client(request);
  1597. kfree(request);
  1598. }
  1599. while (!list_empty(&ring->active_list)) {
  1600. struct drm_i915_gem_object *obj_priv;
  1601. obj_priv = list_first_entry(&ring->active_list,
  1602. struct drm_i915_gem_object,
  1603. ring_list);
  1604. obj_priv->base.write_domain = 0;
  1605. list_del_init(&obj_priv->gpu_write_list);
  1606. i915_gem_object_move_to_inactive(&obj_priv->base);
  1607. }
  1608. }
  1609. void i915_gem_reset(struct drm_device *dev)
  1610. {
  1611. struct drm_i915_private *dev_priv = dev->dev_private;
  1612. struct drm_i915_gem_object *obj_priv;
  1613. int i;
  1614. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1615. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1616. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1617. /* Remove anything from the flushing lists. The GPU cache is likely
  1618. * to be lost on reset along with the data, so simply move the
  1619. * lost bo to the inactive list.
  1620. */
  1621. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1622. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1623. struct drm_i915_gem_object,
  1624. mm_list);
  1625. obj_priv->base.write_domain = 0;
  1626. list_del_init(&obj_priv->gpu_write_list);
  1627. i915_gem_object_move_to_inactive(&obj_priv->base);
  1628. }
  1629. /* Move everything out of the GPU domains to ensure we do any
  1630. * necessary invalidation upon reuse.
  1631. */
  1632. list_for_each_entry(obj_priv,
  1633. &dev_priv->mm.inactive_list,
  1634. mm_list)
  1635. {
  1636. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1637. }
  1638. /* The fence registers are invalidated so clear them out */
  1639. for (i = 0; i < 16; i++) {
  1640. struct drm_i915_fence_reg *reg;
  1641. reg = &dev_priv->fence_regs[i];
  1642. if (!reg->obj)
  1643. continue;
  1644. i915_gem_clear_fence_reg(reg->obj);
  1645. }
  1646. }
  1647. /**
  1648. * This function clears the request list as sequence numbers are passed.
  1649. */
  1650. static void
  1651. i915_gem_retire_requests_ring(struct drm_device *dev,
  1652. struct intel_ring_buffer *ring)
  1653. {
  1654. drm_i915_private_t *dev_priv = dev->dev_private;
  1655. uint32_t seqno;
  1656. if (!ring->status_page.page_addr ||
  1657. list_empty(&ring->request_list))
  1658. return;
  1659. WARN_ON(i915_verify_lists(dev));
  1660. seqno = ring->get_seqno(ring);
  1661. while (!list_empty(&ring->request_list)) {
  1662. struct drm_i915_gem_request *request;
  1663. request = list_first_entry(&ring->request_list,
  1664. struct drm_i915_gem_request,
  1665. list);
  1666. if (!i915_seqno_passed(seqno, request->seqno))
  1667. break;
  1668. trace_i915_gem_request_retire(dev, request->seqno);
  1669. list_del(&request->list);
  1670. i915_gem_request_remove_from_client(request);
  1671. kfree(request);
  1672. }
  1673. /* Move any buffers on the active list that are no longer referenced
  1674. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1675. */
  1676. while (!list_empty(&ring->active_list)) {
  1677. struct drm_gem_object *obj;
  1678. struct drm_i915_gem_object *obj_priv;
  1679. obj_priv = list_first_entry(&ring->active_list,
  1680. struct drm_i915_gem_object,
  1681. ring_list);
  1682. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1683. break;
  1684. obj = &obj_priv->base;
  1685. if (obj->write_domain != 0)
  1686. i915_gem_object_move_to_flushing(obj);
  1687. else
  1688. i915_gem_object_move_to_inactive(obj);
  1689. }
  1690. if (unlikely (dev_priv->trace_irq_seqno &&
  1691. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1692. ring->user_irq_put(ring);
  1693. dev_priv->trace_irq_seqno = 0;
  1694. }
  1695. WARN_ON(i915_verify_lists(dev));
  1696. }
  1697. void
  1698. i915_gem_retire_requests(struct drm_device *dev)
  1699. {
  1700. drm_i915_private_t *dev_priv = dev->dev_private;
  1701. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1702. struct drm_i915_gem_object *obj_priv, *tmp;
  1703. /* We must be careful that during unbind() we do not
  1704. * accidentally infinitely recurse into retire requests.
  1705. * Currently:
  1706. * retire -> free -> unbind -> wait -> retire_ring
  1707. */
  1708. list_for_each_entry_safe(obj_priv, tmp,
  1709. &dev_priv->mm.deferred_free_list,
  1710. mm_list)
  1711. i915_gem_free_object_tail(&obj_priv->base);
  1712. }
  1713. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1714. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1715. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1716. }
  1717. static void
  1718. i915_gem_retire_work_handler(struct work_struct *work)
  1719. {
  1720. drm_i915_private_t *dev_priv;
  1721. struct drm_device *dev;
  1722. dev_priv = container_of(work, drm_i915_private_t,
  1723. mm.retire_work.work);
  1724. dev = dev_priv->dev;
  1725. /* Come back later if the device is busy... */
  1726. if (!mutex_trylock(&dev->struct_mutex)) {
  1727. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1728. return;
  1729. }
  1730. i915_gem_retire_requests(dev);
  1731. if (!dev_priv->mm.suspended &&
  1732. (!list_empty(&dev_priv->render_ring.request_list) ||
  1733. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1734. !list_empty(&dev_priv->blt_ring.request_list)))
  1735. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1736. mutex_unlock(&dev->struct_mutex);
  1737. }
  1738. int
  1739. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1740. bool interruptible, struct intel_ring_buffer *ring)
  1741. {
  1742. drm_i915_private_t *dev_priv = dev->dev_private;
  1743. u32 ier;
  1744. int ret = 0;
  1745. BUG_ON(seqno == 0);
  1746. if (atomic_read(&dev_priv->mm.wedged))
  1747. return -EAGAIN;
  1748. if (ring->outstanding_lazy_request) {
  1749. struct drm_i915_gem_request *request;
  1750. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1751. if (request == NULL)
  1752. return -ENOMEM;
  1753. ret = i915_add_request(dev, NULL, request, ring);
  1754. if (ret) {
  1755. kfree(request);
  1756. return ret;
  1757. }
  1758. seqno = request->seqno;
  1759. }
  1760. BUG_ON(seqno == dev_priv->next_seqno);
  1761. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1762. if (HAS_PCH_SPLIT(dev))
  1763. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1764. else
  1765. ier = I915_READ(IER);
  1766. if (!ier) {
  1767. DRM_ERROR("something (likely vbetool) disabled "
  1768. "interrupts, re-enabling\n");
  1769. i915_driver_irq_preinstall(dev);
  1770. i915_driver_irq_postinstall(dev);
  1771. }
  1772. trace_i915_gem_request_wait_begin(dev, seqno);
  1773. ring->waiting_seqno = seqno;
  1774. ring->user_irq_get(ring);
  1775. if (interruptible)
  1776. ret = wait_event_interruptible(ring->irq_queue,
  1777. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1778. || atomic_read(&dev_priv->mm.wedged));
  1779. else
  1780. wait_event(ring->irq_queue,
  1781. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1782. || atomic_read(&dev_priv->mm.wedged));
  1783. ring->user_irq_put(ring);
  1784. ring->waiting_seqno = 0;
  1785. trace_i915_gem_request_wait_end(dev, seqno);
  1786. }
  1787. if (atomic_read(&dev_priv->mm.wedged))
  1788. ret = -EAGAIN;
  1789. if (ret && ret != -ERESTARTSYS)
  1790. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1791. __func__, ret, seqno, ring->get_seqno(ring),
  1792. dev_priv->next_seqno);
  1793. /* Directly dispatch request retiring. While we have the work queue
  1794. * to handle this, the waiter on a request often wants an associated
  1795. * buffer to have made it to the inactive list, and we would need
  1796. * a separate wait queue to handle that.
  1797. */
  1798. if (ret == 0)
  1799. i915_gem_retire_requests_ring(dev, ring);
  1800. return ret;
  1801. }
  1802. /**
  1803. * Waits for a sequence number to be signaled, and cleans up the
  1804. * request and object lists appropriately for that event.
  1805. */
  1806. static int
  1807. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1808. struct intel_ring_buffer *ring)
  1809. {
  1810. return i915_do_wait_request(dev, seqno, 1, ring);
  1811. }
  1812. static void
  1813. i915_gem_flush_ring(struct drm_device *dev,
  1814. struct drm_file *file_priv,
  1815. struct intel_ring_buffer *ring,
  1816. uint32_t invalidate_domains,
  1817. uint32_t flush_domains)
  1818. {
  1819. ring->flush(ring, invalidate_domains, flush_domains);
  1820. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1821. }
  1822. static void
  1823. i915_gem_flush(struct drm_device *dev,
  1824. struct drm_file *file_priv,
  1825. uint32_t invalidate_domains,
  1826. uint32_t flush_domains,
  1827. uint32_t flush_rings)
  1828. {
  1829. drm_i915_private_t *dev_priv = dev->dev_private;
  1830. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1831. drm_agp_chipset_flush(dev);
  1832. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1833. if (flush_rings & RING_RENDER)
  1834. i915_gem_flush_ring(dev, file_priv,
  1835. &dev_priv->render_ring,
  1836. invalidate_domains, flush_domains);
  1837. if (flush_rings & RING_BSD)
  1838. i915_gem_flush_ring(dev, file_priv,
  1839. &dev_priv->bsd_ring,
  1840. invalidate_domains, flush_domains);
  1841. if (flush_rings & RING_BLT)
  1842. i915_gem_flush_ring(dev, file_priv,
  1843. &dev_priv->blt_ring,
  1844. invalidate_domains, flush_domains);
  1845. }
  1846. }
  1847. /**
  1848. * Ensures that all rendering to the object has completed and the object is
  1849. * safe to unbind from the GTT or access from the CPU.
  1850. */
  1851. static int
  1852. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1853. bool interruptible)
  1854. {
  1855. struct drm_device *dev = obj->dev;
  1856. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1857. int ret;
  1858. /* This function only exists to support waiting for existing rendering,
  1859. * not for emitting required flushes.
  1860. */
  1861. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1862. /* If there is rendering queued on the buffer being evicted, wait for
  1863. * it.
  1864. */
  1865. if (obj_priv->active) {
  1866. ret = i915_do_wait_request(dev,
  1867. obj_priv->last_rendering_seqno,
  1868. interruptible,
  1869. obj_priv->ring);
  1870. if (ret)
  1871. return ret;
  1872. }
  1873. return 0;
  1874. }
  1875. /**
  1876. * Unbinds an object from the GTT aperture.
  1877. */
  1878. int
  1879. i915_gem_object_unbind(struct drm_gem_object *obj)
  1880. {
  1881. struct drm_device *dev = obj->dev;
  1882. struct drm_i915_private *dev_priv = dev->dev_private;
  1883. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1884. int ret = 0;
  1885. if (obj_priv->gtt_space == NULL)
  1886. return 0;
  1887. if (obj_priv->pin_count != 0) {
  1888. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1889. return -EINVAL;
  1890. }
  1891. /* blow away mappings if mapped through GTT */
  1892. i915_gem_release_mmap(obj);
  1893. /* Move the object to the CPU domain to ensure that
  1894. * any possible CPU writes while it's not in the GTT
  1895. * are flushed when we go to remap it. This will
  1896. * also ensure that all pending GPU writes are finished
  1897. * before we unbind.
  1898. */
  1899. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1900. if (ret == -ERESTARTSYS)
  1901. return ret;
  1902. /* Continue on if we fail due to EIO, the GPU is hung so we
  1903. * should be safe and we need to cleanup or else we might
  1904. * cause memory corruption through use-after-free.
  1905. */
  1906. if (ret) {
  1907. i915_gem_clflush_object(obj);
  1908. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1909. }
  1910. /* release the fence reg _after_ flushing */
  1911. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1912. i915_gem_clear_fence_reg(obj);
  1913. drm_unbind_agp(obj_priv->agp_mem);
  1914. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1915. i915_gem_object_put_pages_gtt(obj);
  1916. i915_gem_info_remove_gtt(dev_priv, obj_priv);
  1917. list_del_init(&obj_priv->mm_list);
  1918. /* Avoid an unnecessary call to unbind on rebind. */
  1919. obj_priv->map_and_fenceable = true;
  1920. drm_mm_put_block(obj_priv->gtt_space);
  1921. obj_priv->gtt_space = NULL;
  1922. obj_priv->gtt_offset = 0;
  1923. if (i915_gem_object_is_purgeable(obj_priv))
  1924. i915_gem_object_truncate(obj);
  1925. trace_i915_gem_object_unbind(obj);
  1926. return ret;
  1927. }
  1928. static int i915_ring_idle(struct drm_device *dev,
  1929. struct intel_ring_buffer *ring)
  1930. {
  1931. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1932. return 0;
  1933. i915_gem_flush_ring(dev, NULL, ring,
  1934. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1935. return i915_wait_request(dev,
  1936. i915_gem_next_request_seqno(dev, ring),
  1937. ring);
  1938. }
  1939. int
  1940. i915_gpu_idle(struct drm_device *dev)
  1941. {
  1942. drm_i915_private_t *dev_priv = dev->dev_private;
  1943. bool lists_empty;
  1944. int ret;
  1945. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1946. list_empty(&dev_priv->mm.active_list));
  1947. if (lists_empty)
  1948. return 0;
  1949. /* Flush everything onto the inactive list. */
  1950. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1951. if (ret)
  1952. return ret;
  1953. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1954. if (ret)
  1955. return ret;
  1956. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1957. if (ret)
  1958. return ret;
  1959. return 0;
  1960. }
  1961. static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
  1962. {
  1963. struct drm_device *dev = obj->dev;
  1964. drm_i915_private_t *dev_priv = dev->dev_private;
  1965. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1966. u32 size = i915_gem_get_gtt_size(obj_priv);
  1967. int regnum = obj_priv->fence_reg;
  1968. uint64_t val;
  1969. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1970. 0xfffff000) << 32;
  1971. val |= obj_priv->gtt_offset & 0xfffff000;
  1972. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1973. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1974. if (obj_priv->tiling_mode == I915_TILING_Y)
  1975. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1976. val |= I965_FENCE_REG_VALID;
  1977. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1978. }
  1979. static void i965_write_fence_reg(struct drm_gem_object *obj)
  1980. {
  1981. struct drm_device *dev = obj->dev;
  1982. drm_i915_private_t *dev_priv = dev->dev_private;
  1983. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1984. u32 size = i915_gem_get_gtt_size(obj_priv);
  1985. int regnum = obj_priv->fence_reg;
  1986. uint64_t val;
  1987. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1988. 0xfffff000) << 32;
  1989. val |= obj_priv->gtt_offset & 0xfffff000;
  1990. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1991. if (obj_priv->tiling_mode == I915_TILING_Y)
  1992. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1993. val |= I965_FENCE_REG_VALID;
  1994. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1995. }
  1996. static void i915_write_fence_reg(struct drm_gem_object *obj)
  1997. {
  1998. struct drm_device *dev = obj->dev;
  1999. drm_i915_private_t *dev_priv = dev->dev_private;
  2000. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2001. u32 size = i915_gem_get_gtt_size(obj_priv);
  2002. uint32_t fence_reg, val, pitch_val;
  2003. int tile_width;
  2004. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2005. (obj_priv->gtt_offset & (size - 1))) {
  2006. WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
  2007. __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
  2008. obj_priv->gtt_space->start, obj_priv->gtt_space->size);
  2009. return;
  2010. }
  2011. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2012. HAS_128_BYTE_Y_TILING(dev))
  2013. tile_width = 128;
  2014. else
  2015. tile_width = 512;
  2016. /* Note: pitch better be a power of two tile widths */
  2017. pitch_val = obj_priv->stride / tile_width;
  2018. pitch_val = ffs(pitch_val) - 1;
  2019. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2020. HAS_128_BYTE_Y_TILING(dev))
  2021. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2022. else
  2023. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2024. val = obj_priv->gtt_offset;
  2025. if (obj_priv->tiling_mode == I915_TILING_Y)
  2026. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2027. val |= I915_FENCE_SIZE_BITS(size);
  2028. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2029. val |= I830_FENCE_REG_VALID;
  2030. fence_reg = obj_priv->fence_reg;
  2031. if (fence_reg < 8)
  2032. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2033. else
  2034. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2035. I915_WRITE(fence_reg, val);
  2036. }
  2037. static void i830_write_fence_reg(struct drm_gem_object *obj)
  2038. {
  2039. struct drm_device *dev = obj->dev;
  2040. drm_i915_private_t *dev_priv = dev->dev_private;
  2041. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2042. u32 size = i915_gem_get_gtt_size(obj_priv);
  2043. int regnum = obj_priv->fence_reg;
  2044. uint32_t val;
  2045. uint32_t pitch_val;
  2046. uint32_t fence_size_bits;
  2047. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2048. (obj_priv->gtt_offset & (obj->size - 1))) {
  2049. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2050. __func__, obj_priv->gtt_offset);
  2051. return;
  2052. }
  2053. pitch_val = obj_priv->stride / 128;
  2054. pitch_val = ffs(pitch_val) - 1;
  2055. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2056. val = obj_priv->gtt_offset;
  2057. if (obj_priv->tiling_mode == I915_TILING_Y)
  2058. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2059. fence_size_bits = I830_FENCE_SIZE_BITS(size);
  2060. WARN_ON(fence_size_bits & ~0x00000f00);
  2061. val |= fence_size_bits;
  2062. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2063. val |= I830_FENCE_REG_VALID;
  2064. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2065. }
  2066. static int i915_find_fence_reg(struct drm_device *dev,
  2067. bool interruptible)
  2068. {
  2069. struct drm_i915_private *dev_priv = dev->dev_private;
  2070. struct drm_i915_fence_reg *reg;
  2071. struct drm_i915_gem_object *obj_priv = NULL;
  2072. int i, avail, ret;
  2073. /* First try to find a free reg */
  2074. avail = 0;
  2075. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2076. reg = &dev_priv->fence_regs[i];
  2077. if (!reg->obj)
  2078. return i;
  2079. obj_priv = to_intel_bo(reg->obj);
  2080. if (!obj_priv->pin_count)
  2081. avail++;
  2082. }
  2083. if (avail == 0)
  2084. return -ENOSPC;
  2085. /* None available, try to steal one or wait for a user to finish */
  2086. avail = I915_FENCE_REG_NONE;
  2087. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2088. lru_list) {
  2089. obj_priv = to_intel_bo(reg->obj);
  2090. if (obj_priv->pin_count)
  2091. continue;
  2092. /* found one! */
  2093. avail = obj_priv->fence_reg;
  2094. break;
  2095. }
  2096. BUG_ON(avail == I915_FENCE_REG_NONE);
  2097. /* We only have a reference on obj from the active list. put_fence_reg
  2098. * might drop that one, causing a use-after-free in it. So hold a
  2099. * private reference to obj like the other callers of put_fence_reg
  2100. * (set_tiling ioctl) do. */
  2101. drm_gem_object_reference(&obj_priv->base);
  2102. ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
  2103. drm_gem_object_unreference(&obj_priv->base);
  2104. if (ret != 0)
  2105. return ret;
  2106. return avail;
  2107. }
  2108. /**
  2109. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2110. * @obj: object to map through a fence reg
  2111. *
  2112. * When mapping objects through the GTT, userspace wants to be able to write
  2113. * to them without having to worry about swizzling if the object is tiled.
  2114. *
  2115. * This function walks the fence regs looking for a free one for @obj,
  2116. * stealing one if it can't find any.
  2117. *
  2118. * It then sets up the reg based on the object's properties: address, pitch
  2119. * and tiling format.
  2120. */
  2121. int
  2122. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2123. bool interruptible)
  2124. {
  2125. struct drm_device *dev = obj->dev;
  2126. struct drm_i915_private *dev_priv = dev->dev_private;
  2127. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2128. struct drm_i915_fence_reg *reg = NULL;
  2129. int ret;
  2130. /* Just update our place in the LRU if our fence is getting used. */
  2131. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2132. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2133. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2134. return 0;
  2135. }
  2136. switch (obj_priv->tiling_mode) {
  2137. case I915_TILING_NONE:
  2138. WARN(1, "allocating a fence for non-tiled object?\n");
  2139. break;
  2140. case I915_TILING_X:
  2141. if (!obj_priv->stride)
  2142. return -EINVAL;
  2143. WARN((obj_priv->stride & (512 - 1)),
  2144. "object 0x%08x is X tiled but has non-512B pitch\n",
  2145. obj_priv->gtt_offset);
  2146. break;
  2147. case I915_TILING_Y:
  2148. if (!obj_priv->stride)
  2149. return -EINVAL;
  2150. WARN((obj_priv->stride & (128 - 1)),
  2151. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2152. obj_priv->gtt_offset);
  2153. break;
  2154. }
  2155. ret = i915_find_fence_reg(dev, interruptible);
  2156. if (ret < 0)
  2157. return ret;
  2158. obj_priv->fence_reg = ret;
  2159. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2160. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2161. reg->obj = obj;
  2162. switch (INTEL_INFO(dev)->gen) {
  2163. case 6:
  2164. sandybridge_write_fence_reg(obj);
  2165. break;
  2166. case 5:
  2167. case 4:
  2168. i965_write_fence_reg(obj);
  2169. break;
  2170. case 3:
  2171. i915_write_fence_reg(obj);
  2172. break;
  2173. case 2:
  2174. i830_write_fence_reg(obj);
  2175. break;
  2176. }
  2177. trace_i915_gem_object_get_fence(obj,
  2178. obj_priv->fence_reg,
  2179. obj_priv->tiling_mode);
  2180. return 0;
  2181. }
  2182. /**
  2183. * i915_gem_clear_fence_reg - clear out fence register info
  2184. * @obj: object to clear
  2185. *
  2186. * Zeroes out the fence register itself and clears out the associated
  2187. * data structures in dev_priv and obj_priv.
  2188. */
  2189. static void
  2190. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2191. {
  2192. struct drm_device *dev = obj->dev;
  2193. drm_i915_private_t *dev_priv = dev->dev_private;
  2194. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2195. struct drm_i915_fence_reg *reg =
  2196. &dev_priv->fence_regs[obj_priv->fence_reg];
  2197. uint32_t fence_reg;
  2198. switch (INTEL_INFO(dev)->gen) {
  2199. case 6:
  2200. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2201. (obj_priv->fence_reg * 8), 0);
  2202. break;
  2203. case 5:
  2204. case 4:
  2205. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2206. break;
  2207. case 3:
  2208. if (obj_priv->fence_reg >= 8)
  2209. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2210. else
  2211. case 2:
  2212. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2213. I915_WRITE(fence_reg, 0);
  2214. break;
  2215. }
  2216. reg->obj = NULL;
  2217. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2218. list_del_init(&reg->lru_list);
  2219. }
  2220. /**
  2221. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2222. * to the buffer to finish, and then resets the fence register.
  2223. * @obj: tiled object holding a fence register.
  2224. * @bool: whether the wait upon the fence is interruptible
  2225. *
  2226. * Zeroes out the fence register itself and clears out the associated
  2227. * data structures in dev_priv and obj_priv.
  2228. */
  2229. int
  2230. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2231. bool interruptible)
  2232. {
  2233. struct drm_device *dev = obj->dev;
  2234. struct drm_i915_private *dev_priv = dev->dev_private;
  2235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2236. struct drm_i915_fence_reg *reg;
  2237. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2238. return 0;
  2239. /* If we've changed tiling, GTT-mappings of the object
  2240. * need to re-fault to ensure that the correct fence register
  2241. * setup is in place.
  2242. */
  2243. i915_gem_release_mmap(obj);
  2244. /* On the i915, GPU access to tiled buffers is via a fence,
  2245. * therefore we must wait for any outstanding access to complete
  2246. * before clearing the fence.
  2247. */
  2248. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2249. if (reg->gpu) {
  2250. int ret;
  2251. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2252. if (ret)
  2253. return ret;
  2254. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2255. if (ret)
  2256. return ret;
  2257. reg->gpu = false;
  2258. }
  2259. i915_gem_object_flush_gtt_write_domain(obj);
  2260. i915_gem_clear_fence_reg(obj);
  2261. return 0;
  2262. }
  2263. /**
  2264. * Finds free space in the GTT aperture and binds the object there.
  2265. */
  2266. static int
  2267. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2268. unsigned alignment,
  2269. bool map_and_fenceable)
  2270. {
  2271. struct drm_device *dev = obj->dev;
  2272. drm_i915_private_t *dev_priv = dev->dev_private;
  2273. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2274. struct drm_mm_node *free_space;
  2275. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2276. u32 size, fence_size, fence_alignment;
  2277. bool mappable, fenceable;
  2278. int ret;
  2279. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2280. DRM_ERROR("Attempting to bind a purgeable object\n");
  2281. return -EINVAL;
  2282. }
  2283. fence_size = i915_gem_get_gtt_size(obj_priv);
  2284. fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
  2285. if (alignment == 0)
  2286. alignment = map_and_fenceable ? fence_alignment : 4096;
  2287. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2288. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2289. return -EINVAL;
  2290. }
  2291. size = map_and_fenceable ? fence_size : obj->size;
  2292. /* If the object is bigger than the entire aperture, reject it early
  2293. * before evicting everything in a vain attempt to find space.
  2294. */
  2295. if (obj->size >
  2296. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2297. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2298. return -E2BIG;
  2299. }
  2300. search_free:
  2301. if (map_and_fenceable)
  2302. free_space =
  2303. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2304. size, alignment, 0,
  2305. dev_priv->mm.gtt_mappable_end,
  2306. 0);
  2307. else
  2308. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2309. size, alignment, 0);
  2310. if (free_space != NULL) {
  2311. if (map_and_fenceable)
  2312. obj_priv->gtt_space =
  2313. drm_mm_get_block_range_generic(free_space,
  2314. size, alignment, 0,
  2315. dev_priv->mm.gtt_mappable_end,
  2316. 0);
  2317. else
  2318. obj_priv->gtt_space =
  2319. drm_mm_get_block(free_space, size, alignment);
  2320. }
  2321. if (obj_priv->gtt_space == NULL) {
  2322. /* If the gtt is empty and we're still having trouble
  2323. * fitting our object in, we're out of memory.
  2324. */
  2325. ret = i915_gem_evict_something(dev, size, alignment,
  2326. map_and_fenceable);
  2327. if (ret)
  2328. return ret;
  2329. goto search_free;
  2330. }
  2331. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2332. if (ret) {
  2333. drm_mm_put_block(obj_priv->gtt_space);
  2334. obj_priv->gtt_space = NULL;
  2335. if (ret == -ENOMEM) {
  2336. /* first try to clear up some space from the GTT */
  2337. ret = i915_gem_evict_something(dev, size,
  2338. alignment,
  2339. map_and_fenceable);
  2340. if (ret) {
  2341. /* now try to shrink everyone else */
  2342. if (gfpmask) {
  2343. gfpmask = 0;
  2344. goto search_free;
  2345. }
  2346. return ret;
  2347. }
  2348. goto search_free;
  2349. }
  2350. return ret;
  2351. }
  2352. /* Create an AGP memory structure pointing at our pages, and bind it
  2353. * into the GTT.
  2354. */
  2355. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2356. obj_priv->pages,
  2357. obj->size >> PAGE_SHIFT,
  2358. obj_priv->gtt_space->start,
  2359. obj_priv->agp_type);
  2360. if (obj_priv->agp_mem == NULL) {
  2361. i915_gem_object_put_pages_gtt(obj);
  2362. drm_mm_put_block(obj_priv->gtt_space);
  2363. obj_priv->gtt_space = NULL;
  2364. ret = i915_gem_evict_something(dev, size,
  2365. alignment, map_and_fenceable);
  2366. if (ret)
  2367. return ret;
  2368. goto search_free;
  2369. }
  2370. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2371. /* keep track of bounds object by adding it to the inactive list */
  2372. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2373. i915_gem_info_add_gtt(dev_priv, obj_priv);
  2374. /* Assert that the object is not currently in any GPU domain. As it
  2375. * wasn't in the GTT, there shouldn't be any way it could have been in
  2376. * a GPU cache
  2377. */
  2378. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2379. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2380. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
  2381. fenceable =
  2382. obj_priv->gtt_space->size == fence_size &&
  2383. (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
  2384. mappable =
  2385. obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
  2386. obj_priv->map_and_fenceable = mappable && fenceable;
  2387. return 0;
  2388. }
  2389. void
  2390. i915_gem_clflush_object(struct drm_gem_object *obj)
  2391. {
  2392. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2393. /* If we don't have a page list set up, then we're not pinned
  2394. * to GPU, and we can ignore the cache flush because it'll happen
  2395. * again at bind time.
  2396. */
  2397. if (obj_priv->pages == NULL)
  2398. return;
  2399. trace_i915_gem_object_clflush(obj);
  2400. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2401. }
  2402. /** Flushes any GPU write domain for the object if it's dirty. */
  2403. static int
  2404. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2405. bool pipelined)
  2406. {
  2407. struct drm_device *dev = obj->dev;
  2408. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2409. return 0;
  2410. /* Queue the GPU write cache flushing we need. */
  2411. i915_gem_flush_ring(dev, NULL,
  2412. to_intel_bo(obj)->ring,
  2413. 0, obj->write_domain);
  2414. BUG_ON(obj->write_domain);
  2415. if (pipelined)
  2416. return 0;
  2417. return i915_gem_object_wait_rendering(obj, true);
  2418. }
  2419. /** Flushes the GTT write domain for the object if it's dirty. */
  2420. static void
  2421. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2422. {
  2423. uint32_t old_write_domain;
  2424. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2425. return;
  2426. /* No actual flushing is required for the GTT write domain. Writes
  2427. * to it immediately go to main memory as far as we know, so there's
  2428. * no chipset flush. It also doesn't land in render cache.
  2429. */
  2430. i915_gem_release_mmap(obj);
  2431. old_write_domain = obj->write_domain;
  2432. obj->write_domain = 0;
  2433. trace_i915_gem_object_change_domain(obj,
  2434. obj->read_domains,
  2435. old_write_domain);
  2436. }
  2437. /** Flushes the CPU write domain for the object if it's dirty. */
  2438. static void
  2439. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2440. {
  2441. struct drm_device *dev = obj->dev;
  2442. uint32_t old_write_domain;
  2443. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2444. return;
  2445. i915_gem_clflush_object(obj);
  2446. drm_agp_chipset_flush(dev);
  2447. old_write_domain = obj->write_domain;
  2448. obj->write_domain = 0;
  2449. trace_i915_gem_object_change_domain(obj,
  2450. obj->read_domains,
  2451. old_write_domain);
  2452. }
  2453. /**
  2454. * Moves a single object to the GTT read, and possibly write domain.
  2455. *
  2456. * This function returns when the move is complete, including waiting on
  2457. * flushes to occur.
  2458. */
  2459. int
  2460. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2461. {
  2462. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2463. uint32_t old_write_domain, old_read_domains;
  2464. int ret;
  2465. /* Not valid to be called on unbound objects. */
  2466. if (obj_priv->gtt_space == NULL)
  2467. return -EINVAL;
  2468. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2469. if (ret != 0)
  2470. return ret;
  2471. i915_gem_object_flush_cpu_write_domain(obj);
  2472. if (write) {
  2473. ret = i915_gem_object_wait_rendering(obj, true);
  2474. if (ret)
  2475. return ret;
  2476. }
  2477. old_write_domain = obj->write_domain;
  2478. old_read_domains = obj->read_domains;
  2479. /* It should now be out of any other write domains, and we can update
  2480. * the domain values for our changes.
  2481. */
  2482. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2483. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2484. if (write) {
  2485. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2486. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2487. obj_priv->dirty = 1;
  2488. }
  2489. trace_i915_gem_object_change_domain(obj,
  2490. old_read_domains,
  2491. old_write_domain);
  2492. return 0;
  2493. }
  2494. /*
  2495. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2496. * wait, as in modesetting process we're not supposed to be interrupted.
  2497. */
  2498. int
  2499. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2500. bool pipelined)
  2501. {
  2502. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2503. uint32_t old_read_domains;
  2504. int ret;
  2505. /* Not valid to be called on unbound objects. */
  2506. if (obj_priv->gtt_space == NULL)
  2507. return -EINVAL;
  2508. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2509. if (ret)
  2510. return ret;
  2511. /* Currently, we are always called from an non-interruptible context. */
  2512. if (!pipelined) {
  2513. ret = i915_gem_object_wait_rendering(obj, false);
  2514. if (ret)
  2515. return ret;
  2516. }
  2517. i915_gem_object_flush_cpu_write_domain(obj);
  2518. old_read_domains = obj->read_domains;
  2519. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2520. trace_i915_gem_object_change_domain(obj,
  2521. old_read_domains,
  2522. obj->write_domain);
  2523. return 0;
  2524. }
  2525. /**
  2526. * Moves a single object to the CPU read, and possibly write domain.
  2527. *
  2528. * This function returns when the move is complete, including waiting on
  2529. * flushes to occur.
  2530. */
  2531. static int
  2532. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2533. {
  2534. uint32_t old_write_domain, old_read_domains;
  2535. int ret;
  2536. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2537. if (ret != 0)
  2538. return ret;
  2539. i915_gem_object_flush_gtt_write_domain(obj);
  2540. /* If we have a partially-valid cache of the object in the CPU,
  2541. * finish invalidating it and free the per-page flags.
  2542. */
  2543. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2544. if (write) {
  2545. ret = i915_gem_object_wait_rendering(obj, true);
  2546. if (ret)
  2547. return ret;
  2548. }
  2549. old_write_domain = obj->write_domain;
  2550. old_read_domains = obj->read_domains;
  2551. /* Flush the CPU cache if it's still invalid. */
  2552. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2553. i915_gem_clflush_object(obj);
  2554. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2555. }
  2556. /* It should now be out of any other write domains, and we can update
  2557. * the domain values for our changes.
  2558. */
  2559. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2560. /* If we're writing through the CPU, then the GPU read domains will
  2561. * need to be invalidated at next use.
  2562. */
  2563. if (write) {
  2564. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2565. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2566. }
  2567. trace_i915_gem_object_change_domain(obj,
  2568. old_read_domains,
  2569. old_write_domain);
  2570. return 0;
  2571. }
  2572. /*
  2573. * Set the next domain for the specified object. This
  2574. * may not actually perform the necessary flushing/invaliding though,
  2575. * as that may want to be batched with other set_domain operations
  2576. *
  2577. * This is (we hope) the only really tricky part of gem. The goal
  2578. * is fairly simple -- track which caches hold bits of the object
  2579. * and make sure they remain coherent. A few concrete examples may
  2580. * help to explain how it works. For shorthand, we use the notation
  2581. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2582. * a pair of read and write domain masks.
  2583. *
  2584. * Case 1: the batch buffer
  2585. *
  2586. * 1. Allocated
  2587. * 2. Written by CPU
  2588. * 3. Mapped to GTT
  2589. * 4. Read by GPU
  2590. * 5. Unmapped from GTT
  2591. * 6. Freed
  2592. *
  2593. * Let's take these a step at a time
  2594. *
  2595. * 1. Allocated
  2596. * Pages allocated from the kernel may still have
  2597. * cache contents, so we set them to (CPU, CPU) always.
  2598. * 2. Written by CPU (using pwrite)
  2599. * The pwrite function calls set_domain (CPU, CPU) and
  2600. * this function does nothing (as nothing changes)
  2601. * 3. Mapped by GTT
  2602. * This function asserts that the object is not
  2603. * currently in any GPU-based read or write domains
  2604. * 4. Read by GPU
  2605. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2606. * As write_domain is zero, this function adds in the
  2607. * current read domains (CPU+COMMAND, 0).
  2608. * flush_domains is set to CPU.
  2609. * invalidate_domains is set to COMMAND
  2610. * clflush is run to get data out of the CPU caches
  2611. * then i915_dev_set_domain calls i915_gem_flush to
  2612. * emit an MI_FLUSH and drm_agp_chipset_flush
  2613. * 5. Unmapped from GTT
  2614. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2615. * flush_domains and invalidate_domains end up both zero
  2616. * so no flushing/invalidating happens
  2617. * 6. Freed
  2618. * yay, done
  2619. *
  2620. * Case 2: The shared render buffer
  2621. *
  2622. * 1. Allocated
  2623. * 2. Mapped to GTT
  2624. * 3. Read/written by GPU
  2625. * 4. set_domain to (CPU,CPU)
  2626. * 5. Read/written by CPU
  2627. * 6. Read/written by GPU
  2628. *
  2629. * 1. Allocated
  2630. * Same as last example, (CPU, CPU)
  2631. * 2. Mapped to GTT
  2632. * Nothing changes (assertions find that it is not in the GPU)
  2633. * 3. Read/written by GPU
  2634. * execbuffer calls set_domain (RENDER, RENDER)
  2635. * flush_domains gets CPU
  2636. * invalidate_domains gets GPU
  2637. * clflush (obj)
  2638. * MI_FLUSH and drm_agp_chipset_flush
  2639. * 4. set_domain (CPU, CPU)
  2640. * flush_domains gets GPU
  2641. * invalidate_domains gets CPU
  2642. * wait_rendering (obj) to make sure all drawing is complete.
  2643. * This will include an MI_FLUSH to get the data from GPU
  2644. * to memory
  2645. * clflush (obj) to invalidate the CPU cache
  2646. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2647. * 5. Read/written by CPU
  2648. * cache lines are loaded and dirtied
  2649. * 6. Read written by GPU
  2650. * Same as last GPU access
  2651. *
  2652. * Case 3: The constant buffer
  2653. *
  2654. * 1. Allocated
  2655. * 2. Written by CPU
  2656. * 3. Read by GPU
  2657. * 4. Updated (written) by CPU again
  2658. * 5. Read by GPU
  2659. *
  2660. * 1. Allocated
  2661. * (CPU, CPU)
  2662. * 2. Written by CPU
  2663. * (CPU, CPU)
  2664. * 3. Read by GPU
  2665. * (CPU+RENDER, 0)
  2666. * flush_domains = CPU
  2667. * invalidate_domains = RENDER
  2668. * clflush (obj)
  2669. * MI_FLUSH
  2670. * drm_agp_chipset_flush
  2671. * 4. Updated (written) by CPU again
  2672. * (CPU, CPU)
  2673. * flush_domains = 0 (no previous write domain)
  2674. * invalidate_domains = 0 (no new read domains)
  2675. * 5. Read by GPU
  2676. * (CPU+RENDER, 0)
  2677. * flush_domains = CPU
  2678. * invalidate_domains = RENDER
  2679. * clflush (obj)
  2680. * MI_FLUSH
  2681. * drm_agp_chipset_flush
  2682. */
  2683. static void
  2684. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2685. struct intel_ring_buffer *ring,
  2686. struct change_domains *cd)
  2687. {
  2688. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2689. uint32_t invalidate_domains = 0;
  2690. uint32_t flush_domains = 0;
  2691. /*
  2692. * If the object isn't moving to a new write domain,
  2693. * let the object stay in multiple read domains
  2694. */
  2695. if (obj->pending_write_domain == 0)
  2696. obj->pending_read_domains |= obj->read_domains;
  2697. /*
  2698. * Flush the current write domain if
  2699. * the new read domains don't match. Invalidate
  2700. * any read domains which differ from the old
  2701. * write domain
  2702. */
  2703. if (obj->write_domain &&
  2704. (obj->write_domain != obj->pending_read_domains ||
  2705. obj_priv->ring != ring)) {
  2706. flush_domains |= obj->write_domain;
  2707. invalidate_domains |=
  2708. obj->pending_read_domains & ~obj->write_domain;
  2709. }
  2710. /*
  2711. * Invalidate any read caches which may have
  2712. * stale data. That is, any new read domains.
  2713. */
  2714. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2715. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2716. i915_gem_clflush_object(obj);
  2717. /* blow away mappings if mapped through GTT */
  2718. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2719. i915_gem_release_mmap(obj);
  2720. /* The actual obj->write_domain will be updated with
  2721. * pending_write_domain after we emit the accumulated flush for all
  2722. * of our domain changes in execbuffers (which clears objects'
  2723. * write_domains). So if we have a current write domain that we
  2724. * aren't changing, set pending_write_domain to that.
  2725. */
  2726. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2727. obj->pending_write_domain = obj->write_domain;
  2728. cd->invalidate_domains |= invalidate_domains;
  2729. cd->flush_domains |= flush_domains;
  2730. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2731. cd->flush_rings |= obj_priv->ring->id;
  2732. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2733. cd->flush_rings |= ring->id;
  2734. }
  2735. /**
  2736. * Moves the object from a partially CPU read to a full one.
  2737. *
  2738. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2739. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2740. */
  2741. static void
  2742. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2743. {
  2744. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2745. if (!obj_priv->page_cpu_valid)
  2746. return;
  2747. /* If we're partially in the CPU read domain, finish moving it in.
  2748. */
  2749. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2750. int i;
  2751. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2752. if (obj_priv->page_cpu_valid[i])
  2753. continue;
  2754. drm_clflush_pages(obj_priv->pages + i, 1);
  2755. }
  2756. }
  2757. /* Free the page_cpu_valid mappings which are now stale, whether
  2758. * or not we've got I915_GEM_DOMAIN_CPU.
  2759. */
  2760. kfree(obj_priv->page_cpu_valid);
  2761. obj_priv->page_cpu_valid = NULL;
  2762. }
  2763. /**
  2764. * Set the CPU read domain on a range of the object.
  2765. *
  2766. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2767. * not entirely valid. The page_cpu_valid member of the object flags which
  2768. * pages have been flushed, and will be respected by
  2769. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2770. * of the whole object.
  2771. *
  2772. * This function returns when the move is complete, including waiting on
  2773. * flushes to occur.
  2774. */
  2775. static int
  2776. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2777. uint64_t offset, uint64_t size)
  2778. {
  2779. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2780. uint32_t old_read_domains;
  2781. int i, ret;
  2782. if (offset == 0 && size == obj->size)
  2783. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2784. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2785. if (ret != 0)
  2786. return ret;
  2787. i915_gem_object_flush_gtt_write_domain(obj);
  2788. /* If we're already fully in the CPU read domain, we're done. */
  2789. if (obj_priv->page_cpu_valid == NULL &&
  2790. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2791. return 0;
  2792. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2793. * newly adding I915_GEM_DOMAIN_CPU
  2794. */
  2795. if (obj_priv->page_cpu_valid == NULL) {
  2796. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2797. GFP_KERNEL);
  2798. if (obj_priv->page_cpu_valid == NULL)
  2799. return -ENOMEM;
  2800. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2801. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2802. /* Flush the cache on any pages that are still invalid from the CPU's
  2803. * perspective.
  2804. */
  2805. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2806. i++) {
  2807. if (obj_priv->page_cpu_valid[i])
  2808. continue;
  2809. drm_clflush_pages(obj_priv->pages + i, 1);
  2810. obj_priv->page_cpu_valid[i] = 1;
  2811. }
  2812. /* It should now be out of any other write domains, and we can update
  2813. * the domain values for our changes.
  2814. */
  2815. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2816. old_read_domains = obj->read_domains;
  2817. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2818. trace_i915_gem_object_change_domain(obj,
  2819. old_read_domains,
  2820. obj->write_domain);
  2821. return 0;
  2822. }
  2823. /**
  2824. * Pin an object to the GTT and evaluate the relocations landing in it.
  2825. */
  2826. static int
  2827. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2828. struct drm_file *file_priv,
  2829. struct drm_i915_gem_exec_object2 *entry)
  2830. {
  2831. struct drm_device *dev = obj->base.dev;
  2832. drm_i915_private_t *dev_priv = dev->dev_private;
  2833. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2834. struct drm_gem_object *target_obj = NULL;
  2835. uint32_t target_handle = 0;
  2836. int i, ret = 0;
  2837. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2838. for (i = 0; i < entry->relocation_count; i++) {
  2839. struct drm_i915_gem_relocation_entry reloc;
  2840. uint32_t target_offset;
  2841. if (__copy_from_user_inatomic(&reloc,
  2842. user_relocs+i,
  2843. sizeof(reloc))) {
  2844. ret = -EFAULT;
  2845. break;
  2846. }
  2847. if (reloc.target_handle != target_handle) {
  2848. drm_gem_object_unreference(target_obj);
  2849. target_obj = drm_gem_object_lookup(dev, file_priv,
  2850. reloc.target_handle);
  2851. if (target_obj == NULL) {
  2852. ret = -ENOENT;
  2853. break;
  2854. }
  2855. target_handle = reloc.target_handle;
  2856. }
  2857. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2858. #if WATCH_RELOC
  2859. DRM_INFO("%s: obj %p offset %08x target %d "
  2860. "read %08x write %08x gtt %08x "
  2861. "presumed %08x delta %08x\n",
  2862. __func__,
  2863. obj,
  2864. (int) reloc.offset,
  2865. (int) reloc.target_handle,
  2866. (int) reloc.read_domains,
  2867. (int) reloc.write_domain,
  2868. (int) target_offset,
  2869. (int) reloc.presumed_offset,
  2870. reloc.delta);
  2871. #endif
  2872. /* The target buffer should have appeared before us in the
  2873. * exec_object list, so it should have a GTT space bound by now.
  2874. */
  2875. if (target_offset == 0) {
  2876. DRM_ERROR("No GTT space found for object %d\n",
  2877. reloc.target_handle);
  2878. ret = -EINVAL;
  2879. break;
  2880. }
  2881. /* Validate that the target is in a valid r/w GPU domain */
  2882. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2883. DRM_ERROR("reloc with multiple write domains: "
  2884. "obj %p target %d offset %d "
  2885. "read %08x write %08x",
  2886. obj, reloc.target_handle,
  2887. (int) reloc.offset,
  2888. reloc.read_domains,
  2889. reloc.write_domain);
  2890. ret = -EINVAL;
  2891. break;
  2892. }
  2893. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2894. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2895. DRM_ERROR("reloc with read/write CPU domains: "
  2896. "obj %p target %d offset %d "
  2897. "read %08x write %08x",
  2898. obj, reloc.target_handle,
  2899. (int) reloc.offset,
  2900. reloc.read_domains,
  2901. reloc.write_domain);
  2902. ret = -EINVAL;
  2903. break;
  2904. }
  2905. if (reloc.write_domain && target_obj->pending_write_domain &&
  2906. reloc.write_domain != target_obj->pending_write_domain) {
  2907. DRM_ERROR("Write domain conflict: "
  2908. "obj %p target %d offset %d "
  2909. "new %08x old %08x\n",
  2910. obj, reloc.target_handle,
  2911. (int) reloc.offset,
  2912. reloc.write_domain,
  2913. target_obj->pending_write_domain);
  2914. ret = -EINVAL;
  2915. break;
  2916. }
  2917. target_obj->pending_read_domains |= reloc.read_domains;
  2918. target_obj->pending_write_domain |= reloc.write_domain;
  2919. /* If the relocation already has the right value in it, no
  2920. * more work needs to be done.
  2921. */
  2922. if (target_offset == reloc.presumed_offset)
  2923. continue;
  2924. /* Check that the relocation address is valid... */
  2925. if (reloc.offset > obj->base.size - 4) {
  2926. DRM_ERROR("Relocation beyond object bounds: "
  2927. "obj %p target %d offset %d size %d.\n",
  2928. obj, reloc.target_handle,
  2929. (int) reloc.offset, (int) obj->base.size);
  2930. ret = -EINVAL;
  2931. break;
  2932. }
  2933. if (reloc.offset & 3) {
  2934. DRM_ERROR("Relocation not 4-byte aligned: "
  2935. "obj %p target %d offset %d.\n",
  2936. obj, reloc.target_handle,
  2937. (int) reloc.offset);
  2938. ret = -EINVAL;
  2939. break;
  2940. }
  2941. /* and points to somewhere within the target object. */
  2942. if (reloc.delta >= target_obj->size) {
  2943. DRM_ERROR("Relocation beyond target object bounds: "
  2944. "obj %p target %d delta %d size %d.\n",
  2945. obj, reloc.target_handle,
  2946. (int) reloc.delta, (int) target_obj->size);
  2947. ret = -EINVAL;
  2948. break;
  2949. }
  2950. reloc.delta += target_offset;
  2951. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2952. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2953. char *vaddr;
  2954. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2955. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2956. kunmap_atomic(vaddr);
  2957. } else {
  2958. uint32_t __iomem *reloc_entry;
  2959. void __iomem *reloc_page;
  2960. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2961. if (ret)
  2962. break;
  2963. /* Map the page containing the relocation we're going to perform. */
  2964. reloc.offset += obj->gtt_offset;
  2965. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2966. reloc.offset & PAGE_MASK);
  2967. reloc_entry = (uint32_t __iomem *)
  2968. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2969. iowrite32(reloc.delta, reloc_entry);
  2970. io_mapping_unmap_atomic(reloc_page);
  2971. }
  2972. /* and update the user's relocation entry */
  2973. reloc.presumed_offset = target_offset;
  2974. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2975. &reloc.presumed_offset,
  2976. sizeof(reloc.presumed_offset))) {
  2977. ret = -EFAULT;
  2978. break;
  2979. }
  2980. }
  2981. drm_gem_object_unreference(target_obj);
  2982. return ret;
  2983. }
  2984. static int
  2985. i915_gem_execbuffer_pin(struct drm_device *dev,
  2986. struct drm_file *file,
  2987. struct drm_gem_object **object_list,
  2988. struct drm_i915_gem_exec_object2 *exec_list,
  2989. int count)
  2990. {
  2991. struct drm_i915_private *dev_priv = dev->dev_private;
  2992. int ret, i, retry;
  2993. /* attempt to pin all of the buffers into the GTT */
  2994. retry = 0;
  2995. do {
  2996. ret = 0;
  2997. for (i = 0; i < count; i++) {
  2998. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2999. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3000. bool need_fence =
  3001. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3002. obj->tiling_mode != I915_TILING_NONE;
  3003. /* g33/pnv can't fence buffers in the unmappable part */
  3004. bool need_mappable =
  3005. entry->relocation_count ? true : need_fence;
  3006. /* Check fence reg constraints and rebind if necessary */
  3007. if (need_mappable && !obj->map_and_fenceable) {
  3008. ret = i915_gem_object_unbind(&obj->base);
  3009. if (ret)
  3010. break;
  3011. }
  3012. ret = i915_gem_object_pin(&obj->base,
  3013. entry->alignment,
  3014. need_mappable);
  3015. if (ret)
  3016. break;
  3017. /*
  3018. * Pre-965 chips need a fence register set up in order
  3019. * to properly handle blits to/from tiled surfaces.
  3020. */
  3021. if (need_fence) {
  3022. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3023. if (ret) {
  3024. i915_gem_object_unpin(&obj->base);
  3025. break;
  3026. }
  3027. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3028. }
  3029. entry->offset = obj->gtt_offset;
  3030. }
  3031. while (i--)
  3032. i915_gem_object_unpin(object_list[i]);
  3033. if (ret != -ENOSPC || retry > 1)
  3034. return ret;
  3035. /* First attempt, just clear anything that is purgeable.
  3036. * Second attempt, clear the entire GTT.
  3037. */
  3038. ret = i915_gem_evict_everything(dev, retry == 0);
  3039. if (ret)
  3040. return ret;
  3041. retry++;
  3042. } while (1);
  3043. }
  3044. static int
  3045. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  3046. struct drm_file *file,
  3047. struct intel_ring_buffer *ring,
  3048. struct drm_gem_object **objects,
  3049. int count)
  3050. {
  3051. struct change_domains cd;
  3052. int ret, i;
  3053. cd.invalidate_domains = 0;
  3054. cd.flush_domains = 0;
  3055. cd.flush_rings = 0;
  3056. for (i = 0; i < count; i++)
  3057. i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
  3058. if (cd.invalidate_domains | cd.flush_domains) {
  3059. #if WATCH_EXEC
  3060. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3061. __func__,
  3062. cd.invalidate_domains,
  3063. cd.flush_domains);
  3064. #endif
  3065. i915_gem_flush(dev, file,
  3066. cd.invalidate_domains,
  3067. cd.flush_domains,
  3068. cd.flush_rings);
  3069. }
  3070. for (i = 0; i < count; i++) {
  3071. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  3072. /* XXX replace with semaphores */
  3073. if (obj->ring && ring != obj->ring) {
  3074. ret = i915_gem_object_wait_rendering(&obj->base, true);
  3075. if (ret)
  3076. return ret;
  3077. }
  3078. }
  3079. return 0;
  3080. }
  3081. /* Throttle our rendering by waiting until the ring has completed our requests
  3082. * emitted over 20 msec ago.
  3083. *
  3084. * Note that if we were to use the current jiffies each time around the loop,
  3085. * we wouldn't escape the function with any frames outstanding if the time to
  3086. * render a frame was over 20ms.
  3087. *
  3088. * This should get us reasonable parallelism between CPU and GPU but also
  3089. * relatively low latency when blocking on a particular request to finish.
  3090. */
  3091. static int
  3092. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3093. {
  3094. struct drm_i915_private *dev_priv = dev->dev_private;
  3095. struct drm_i915_file_private *file_priv = file->driver_priv;
  3096. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3097. struct drm_i915_gem_request *request;
  3098. struct intel_ring_buffer *ring = NULL;
  3099. u32 seqno = 0;
  3100. int ret;
  3101. spin_lock(&file_priv->mm.lock);
  3102. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3103. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3104. break;
  3105. ring = request->ring;
  3106. seqno = request->seqno;
  3107. }
  3108. spin_unlock(&file_priv->mm.lock);
  3109. if (seqno == 0)
  3110. return 0;
  3111. ret = 0;
  3112. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3113. /* And wait for the seqno passing without holding any locks and
  3114. * causing extra latency for others. This is safe as the irq
  3115. * generation is designed to be run atomically and so is
  3116. * lockless.
  3117. */
  3118. ring->user_irq_get(ring);
  3119. ret = wait_event_interruptible(ring->irq_queue,
  3120. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3121. || atomic_read(&dev_priv->mm.wedged));
  3122. ring->user_irq_put(ring);
  3123. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3124. ret = -EIO;
  3125. }
  3126. if (ret == 0)
  3127. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3128. return ret;
  3129. }
  3130. static int
  3131. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3132. uint64_t exec_offset)
  3133. {
  3134. uint32_t exec_start, exec_len;
  3135. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3136. exec_len = (uint32_t) exec->batch_len;
  3137. if ((exec_start | exec_len) & 0x7)
  3138. return -EINVAL;
  3139. if (!exec_start)
  3140. return -EINVAL;
  3141. return 0;
  3142. }
  3143. static int
  3144. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3145. int count)
  3146. {
  3147. int i;
  3148. for (i = 0; i < count; i++) {
  3149. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3150. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3151. if (!access_ok(VERIFY_READ, ptr, length))
  3152. return -EFAULT;
  3153. /* we may also need to update the presumed offsets */
  3154. if (!access_ok(VERIFY_WRITE, ptr, length))
  3155. return -EFAULT;
  3156. if (fault_in_pages_readable(ptr, length))
  3157. return -EFAULT;
  3158. }
  3159. return 0;
  3160. }
  3161. static int
  3162. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3163. struct drm_file *file,
  3164. struct drm_i915_gem_execbuffer2 *args,
  3165. struct drm_i915_gem_exec_object2 *exec_list)
  3166. {
  3167. drm_i915_private_t *dev_priv = dev->dev_private;
  3168. struct drm_gem_object **object_list = NULL;
  3169. struct drm_gem_object *batch_obj;
  3170. struct drm_clip_rect *cliprects = NULL;
  3171. struct drm_i915_gem_request *request = NULL;
  3172. int ret, i, flips;
  3173. uint64_t exec_offset;
  3174. struct intel_ring_buffer *ring = NULL;
  3175. ret = i915_gem_check_is_wedged(dev);
  3176. if (ret)
  3177. return ret;
  3178. ret = validate_exec_list(exec_list, args->buffer_count);
  3179. if (ret)
  3180. return ret;
  3181. #if WATCH_EXEC
  3182. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3183. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3184. #endif
  3185. switch (args->flags & I915_EXEC_RING_MASK) {
  3186. case I915_EXEC_DEFAULT:
  3187. case I915_EXEC_RENDER:
  3188. ring = &dev_priv->render_ring;
  3189. break;
  3190. case I915_EXEC_BSD:
  3191. if (!HAS_BSD(dev)) {
  3192. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3193. return -EINVAL;
  3194. }
  3195. ring = &dev_priv->bsd_ring;
  3196. break;
  3197. case I915_EXEC_BLT:
  3198. if (!HAS_BLT(dev)) {
  3199. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3200. return -EINVAL;
  3201. }
  3202. ring = &dev_priv->blt_ring;
  3203. break;
  3204. default:
  3205. DRM_ERROR("execbuf with unknown ring: %d\n",
  3206. (int)(args->flags & I915_EXEC_RING_MASK));
  3207. return -EINVAL;
  3208. }
  3209. if (args->buffer_count < 1) {
  3210. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3211. return -EINVAL;
  3212. }
  3213. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3214. if (object_list == NULL) {
  3215. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3216. args->buffer_count);
  3217. ret = -ENOMEM;
  3218. goto pre_mutex_err;
  3219. }
  3220. if (args->num_cliprects != 0) {
  3221. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3222. GFP_KERNEL);
  3223. if (cliprects == NULL) {
  3224. ret = -ENOMEM;
  3225. goto pre_mutex_err;
  3226. }
  3227. ret = copy_from_user(cliprects,
  3228. (struct drm_clip_rect __user *)
  3229. (uintptr_t) args->cliprects_ptr,
  3230. sizeof(*cliprects) * args->num_cliprects);
  3231. if (ret != 0) {
  3232. DRM_ERROR("copy %d cliprects failed: %d\n",
  3233. args->num_cliprects, ret);
  3234. ret = -EFAULT;
  3235. goto pre_mutex_err;
  3236. }
  3237. }
  3238. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3239. if (request == NULL) {
  3240. ret = -ENOMEM;
  3241. goto pre_mutex_err;
  3242. }
  3243. ret = i915_mutex_lock_interruptible(dev);
  3244. if (ret)
  3245. goto pre_mutex_err;
  3246. if (dev_priv->mm.suspended) {
  3247. mutex_unlock(&dev->struct_mutex);
  3248. ret = -EBUSY;
  3249. goto pre_mutex_err;
  3250. }
  3251. /* Look up object handles */
  3252. for (i = 0; i < args->buffer_count; i++) {
  3253. struct drm_i915_gem_object *obj_priv;
  3254. object_list[i] = drm_gem_object_lookup(dev, file,
  3255. exec_list[i].handle);
  3256. if (object_list[i] == NULL) {
  3257. DRM_ERROR("Invalid object handle %d at index %d\n",
  3258. exec_list[i].handle, i);
  3259. /* prevent error path from reading uninitialized data */
  3260. args->buffer_count = i + 1;
  3261. ret = -ENOENT;
  3262. goto err;
  3263. }
  3264. obj_priv = to_intel_bo(object_list[i]);
  3265. if (obj_priv->in_execbuffer) {
  3266. DRM_ERROR("Object %p appears more than once in object list\n",
  3267. object_list[i]);
  3268. /* prevent error path from reading uninitialized data */
  3269. args->buffer_count = i + 1;
  3270. ret = -EINVAL;
  3271. goto err;
  3272. }
  3273. obj_priv->in_execbuffer = true;
  3274. }
  3275. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3276. ret = i915_gem_execbuffer_pin(dev, file,
  3277. object_list, exec_list,
  3278. args->buffer_count);
  3279. if (ret)
  3280. goto err;
  3281. /* The objects are in their final locations, apply the relocations. */
  3282. for (i = 0; i < args->buffer_count; i++) {
  3283. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3284. obj->base.pending_read_domains = 0;
  3285. obj->base.pending_write_domain = 0;
  3286. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3287. if (ret)
  3288. goto err;
  3289. }
  3290. /* Set the pending read domains for the batch buffer to COMMAND */
  3291. batch_obj = object_list[args->buffer_count-1];
  3292. if (batch_obj->pending_write_domain) {
  3293. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3294. ret = -EINVAL;
  3295. goto err;
  3296. }
  3297. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3298. /* Sanity check the batch buffer */
  3299. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3300. ret = i915_gem_check_execbuffer(args, exec_offset);
  3301. if (ret != 0) {
  3302. DRM_ERROR("execbuf with invalid offset/length\n");
  3303. goto err;
  3304. }
  3305. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3306. object_list, args->buffer_count);
  3307. if (ret)
  3308. goto err;
  3309. #if WATCH_COHERENCY
  3310. for (i = 0; i < args->buffer_count; i++) {
  3311. i915_gem_object_check_coherency(object_list[i],
  3312. exec_list[i].handle);
  3313. }
  3314. #endif
  3315. #if WATCH_EXEC
  3316. i915_gem_dump_object(batch_obj,
  3317. args->batch_len,
  3318. __func__,
  3319. ~0);
  3320. #endif
  3321. /* Check for any pending flips. As we only maintain a flip queue depth
  3322. * of 1, we can simply insert a WAIT for the next display flip prior
  3323. * to executing the batch and avoid stalling the CPU.
  3324. */
  3325. flips = 0;
  3326. for (i = 0; i < args->buffer_count; i++) {
  3327. if (object_list[i]->write_domain)
  3328. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3329. }
  3330. if (flips) {
  3331. int plane, flip_mask;
  3332. for (plane = 0; flips >> plane; plane++) {
  3333. if (((flips >> plane) & 1) == 0)
  3334. continue;
  3335. if (plane)
  3336. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3337. else
  3338. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3339. ret = intel_ring_begin(ring, 2);
  3340. if (ret)
  3341. goto err;
  3342. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3343. intel_ring_emit(ring, MI_NOOP);
  3344. intel_ring_advance(ring);
  3345. }
  3346. }
  3347. /* Exec the batchbuffer */
  3348. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3349. if (ret) {
  3350. DRM_ERROR("dispatch failed %d\n", ret);
  3351. goto err;
  3352. }
  3353. for (i = 0; i < args->buffer_count; i++) {
  3354. struct drm_gem_object *obj = object_list[i];
  3355. obj->read_domains = obj->pending_read_domains;
  3356. obj->write_domain = obj->pending_write_domain;
  3357. i915_gem_object_move_to_active(obj, ring);
  3358. if (obj->write_domain) {
  3359. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3360. obj_priv->dirty = 1;
  3361. list_move_tail(&obj_priv->gpu_write_list,
  3362. &ring->gpu_write_list);
  3363. intel_mark_busy(dev, obj);
  3364. }
  3365. trace_i915_gem_object_change_domain(obj,
  3366. obj->read_domains,
  3367. obj->write_domain);
  3368. }
  3369. /*
  3370. * Ensure that the commands in the batch buffer are
  3371. * finished before the interrupt fires
  3372. */
  3373. i915_retire_commands(dev, ring);
  3374. if (i915_add_request(dev, file, request, ring))
  3375. ring->outstanding_lazy_request = true;
  3376. else
  3377. request = NULL;
  3378. err:
  3379. for (i = 0; i < args->buffer_count; i++) {
  3380. if (object_list[i] == NULL)
  3381. break;
  3382. to_intel_bo(object_list[i])->in_execbuffer = false;
  3383. drm_gem_object_unreference(object_list[i]);
  3384. }
  3385. mutex_unlock(&dev->struct_mutex);
  3386. pre_mutex_err:
  3387. drm_free_large(object_list);
  3388. kfree(cliprects);
  3389. kfree(request);
  3390. return ret;
  3391. }
  3392. /*
  3393. * Legacy execbuffer just creates an exec2 list from the original exec object
  3394. * list array and passes it to the real function.
  3395. */
  3396. int
  3397. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3398. struct drm_file *file_priv)
  3399. {
  3400. struct drm_i915_gem_execbuffer *args = data;
  3401. struct drm_i915_gem_execbuffer2 exec2;
  3402. struct drm_i915_gem_exec_object *exec_list = NULL;
  3403. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3404. int ret, i;
  3405. #if WATCH_EXEC
  3406. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3407. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3408. #endif
  3409. if (args->buffer_count < 1) {
  3410. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3411. return -EINVAL;
  3412. }
  3413. /* Copy in the exec list from userland */
  3414. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3415. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3416. if (exec_list == NULL || exec2_list == NULL) {
  3417. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3418. args->buffer_count);
  3419. drm_free_large(exec_list);
  3420. drm_free_large(exec2_list);
  3421. return -ENOMEM;
  3422. }
  3423. ret = copy_from_user(exec_list,
  3424. (struct drm_i915_relocation_entry __user *)
  3425. (uintptr_t) args->buffers_ptr,
  3426. sizeof(*exec_list) * args->buffer_count);
  3427. if (ret != 0) {
  3428. DRM_ERROR("copy %d exec entries failed %d\n",
  3429. args->buffer_count, ret);
  3430. drm_free_large(exec_list);
  3431. drm_free_large(exec2_list);
  3432. return -EFAULT;
  3433. }
  3434. for (i = 0; i < args->buffer_count; i++) {
  3435. exec2_list[i].handle = exec_list[i].handle;
  3436. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3437. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3438. exec2_list[i].alignment = exec_list[i].alignment;
  3439. exec2_list[i].offset = exec_list[i].offset;
  3440. if (INTEL_INFO(dev)->gen < 4)
  3441. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3442. else
  3443. exec2_list[i].flags = 0;
  3444. }
  3445. exec2.buffers_ptr = args->buffers_ptr;
  3446. exec2.buffer_count = args->buffer_count;
  3447. exec2.batch_start_offset = args->batch_start_offset;
  3448. exec2.batch_len = args->batch_len;
  3449. exec2.DR1 = args->DR1;
  3450. exec2.DR4 = args->DR4;
  3451. exec2.num_cliprects = args->num_cliprects;
  3452. exec2.cliprects_ptr = args->cliprects_ptr;
  3453. exec2.flags = I915_EXEC_RENDER;
  3454. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3455. if (!ret) {
  3456. /* Copy the new buffer offsets back to the user's exec list. */
  3457. for (i = 0; i < args->buffer_count; i++)
  3458. exec_list[i].offset = exec2_list[i].offset;
  3459. /* ... and back out to userspace */
  3460. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3461. (uintptr_t) args->buffers_ptr,
  3462. exec_list,
  3463. sizeof(*exec_list) * args->buffer_count);
  3464. if (ret) {
  3465. ret = -EFAULT;
  3466. DRM_ERROR("failed to copy %d exec entries "
  3467. "back to user (%d)\n",
  3468. args->buffer_count, ret);
  3469. }
  3470. }
  3471. drm_free_large(exec_list);
  3472. drm_free_large(exec2_list);
  3473. return ret;
  3474. }
  3475. int
  3476. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3477. struct drm_file *file_priv)
  3478. {
  3479. struct drm_i915_gem_execbuffer2 *args = data;
  3480. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3481. int ret;
  3482. #if WATCH_EXEC
  3483. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3484. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3485. #endif
  3486. if (args->buffer_count < 1) {
  3487. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3488. return -EINVAL;
  3489. }
  3490. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3491. if (exec2_list == NULL) {
  3492. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3493. args->buffer_count);
  3494. return -ENOMEM;
  3495. }
  3496. ret = copy_from_user(exec2_list,
  3497. (struct drm_i915_relocation_entry __user *)
  3498. (uintptr_t) args->buffers_ptr,
  3499. sizeof(*exec2_list) * args->buffer_count);
  3500. if (ret != 0) {
  3501. DRM_ERROR("copy %d exec entries failed %d\n",
  3502. args->buffer_count, ret);
  3503. drm_free_large(exec2_list);
  3504. return -EFAULT;
  3505. }
  3506. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3507. if (!ret) {
  3508. /* Copy the new buffer offsets back to the user's exec list. */
  3509. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3510. (uintptr_t) args->buffers_ptr,
  3511. exec2_list,
  3512. sizeof(*exec2_list) * args->buffer_count);
  3513. if (ret) {
  3514. ret = -EFAULT;
  3515. DRM_ERROR("failed to copy %d exec entries "
  3516. "back to user (%d)\n",
  3517. args->buffer_count, ret);
  3518. }
  3519. }
  3520. drm_free_large(exec2_list);
  3521. return ret;
  3522. }
  3523. int
  3524. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3525. bool map_and_fenceable)
  3526. {
  3527. struct drm_device *dev = obj->dev;
  3528. struct drm_i915_private *dev_priv = dev->dev_private;
  3529. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3530. int ret;
  3531. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3532. BUG_ON(map_and_fenceable && !map_and_fenceable);
  3533. WARN_ON(i915_verify_lists(dev));
  3534. if (obj_priv->gtt_space != NULL) {
  3535. if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
  3536. (map_and_fenceable && !obj_priv->map_and_fenceable)) {
  3537. WARN(obj_priv->pin_count,
  3538. "bo is already pinned with incorrect alignment:"
  3539. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  3540. " obj->map_and_fenceable=%d\n",
  3541. obj_priv->gtt_offset, alignment,
  3542. map_and_fenceable,
  3543. obj_priv->map_and_fenceable);
  3544. ret = i915_gem_object_unbind(obj);
  3545. if (ret)
  3546. return ret;
  3547. }
  3548. }
  3549. if (obj_priv->gtt_space == NULL) {
  3550. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3551. map_and_fenceable);
  3552. if (ret)
  3553. return ret;
  3554. }
  3555. if (obj_priv->pin_count++ == 0) {
  3556. i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
  3557. if (!obj_priv->active)
  3558. list_move_tail(&obj_priv->mm_list,
  3559. &dev_priv->mm.pinned_list);
  3560. }
  3561. BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
  3562. WARN_ON(i915_verify_lists(dev));
  3563. return 0;
  3564. }
  3565. void
  3566. i915_gem_object_unpin(struct drm_gem_object *obj)
  3567. {
  3568. struct drm_device *dev = obj->dev;
  3569. drm_i915_private_t *dev_priv = dev->dev_private;
  3570. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3571. WARN_ON(i915_verify_lists(dev));
  3572. BUG_ON(obj_priv->pin_count == 0);
  3573. BUG_ON(obj_priv->gtt_space == NULL);
  3574. if (--obj_priv->pin_count == 0) {
  3575. if (!obj_priv->active)
  3576. list_move_tail(&obj_priv->mm_list,
  3577. &dev_priv->mm.inactive_list);
  3578. i915_gem_info_remove_pin(dev_priv, obj_priv);
  3579. }
  3580. WARN_ON(i915_verify_lists(dev));
  3581. }
  3582. int
  3583. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3584. struct drm_file *file_priv)
  3585. {
  3586. struct drm_i915_gem_pin *args = data;
  3587. struct drm_gem_object *obj;
  3588. struct drm_i915_gem_object *obj_priv;
  3589. int ret;
  3590. ret = i915_mutex_lock_interruptible(dev);
  3591. if (ret)
  3592. return ret;
  3593. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3594. if (obj == NULL) {
  3595. ret = -ENOENT;
  3596. goto unlock;
  3597. }
  3598. obj_priv = to_intel_bo(obj);
  3599. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3600. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3601. ret = -EINVAL;
  3602. goto out;
  3603. }
  3604. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3605. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3606. args->handle);
  3607. ret = -EINVAL;
  3608. goto out;
  3609. }
  3610. obj_priv->user_pin_count++;
  3611. obj_priv->pin_filp = file_priv;
  3612. if (obj_priv->user_pin_count == 1) {
  3613. ret = i915_gem_object_pin(obj, args->alignment, true);
  3614. if (ret)
  3615. goto out;
  3616. }
  3617. /* XXX - flush the CPU caches for pinned objects
  3618. * as the X server doesn't manage domains yet
  3619. */
  3620. i915_gem_object_flush_cpu_write_domain(obj);
  3621. args->offset = obj_priv->gtt_offset;
  3622. out:
  3623. drm_gem_object_unreference(obj);
  3624. unlock:
  3625. mutex_unlock(&dev->struct_mutex);
  3626. return ret;
  3627. }
  3628. int
  3629. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3630. struct drm_file *file_priv)
  3631. {
  3632. struct drm_i915_gem_pin *args = data;
  3633. struct drm_gem_object *obj;
  3634. struct drm_i915_gem_object *obj_priv;
  3635. int ret;
  3636. ret = i915_mutex_lock_interruptible(dev);
  3637. if (ret)
  3638. return ret;
  3639. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3640. if (obj == NULL) {
  3641. ret = -ENOENT;
  3642. goto unlock;
  3643. }
  3644. obj_priv = to_intel_bo(obj);
  3645. if (obj_priv->pin_filp != file_priv) {
  3646. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3647. args->handle);
  3648. ret = -EINVAL;
  3649. goto out;
  3650. }
  3651. obj_priv->user_pin_count--;
  3652. if (obj_priv->user_pin_count == 0) {
  3653. obj_priv->pin_filp = NULL;
  3654. i915_gem_object_unpin(obj);
  3655. }
  3656. out:
  3657. drm_gem_object_unreference(obj);
  3658. unlock:
  3659. mutex_unlock(&dev->struct_mutex);
  3660. return ret;
  3661. }
  3662. int
  3663. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3664. struct drm_file *file_priv)
  3665. {
  3666. struct drm_i915_gem_busy *args = data;
  3667. struct drm_gem_object *obj;
  3668. struct drm_i915_gem_object *obj_priv;
  3669. int ret;
  3670. ret = i915_mutex_lock_interruptible(dev);
  3671. if (ret)
  3672. return ret;
  3673. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3674. if (obj == NULL) {
  3675. ret = -ENOENT;
  3676. goto unlock;
  3677. }
  3678. obj_priv = to_intel_bo(obj);
  3679. /* Count all active objects as busy, even if they are currently not used
  3680. * by the gpu. Users of this interface expect objects to eventually
  3681. * become non-busy without any further actions, therefore emit any
  3682. * necessary flushes here.
  3683. */
  3684. args->busy = obj_priv->active;
  3685. if (args->busy) {
  3686. /* Unconditionally flush objects, even when the gpu still uses this
  3687. * object. Userspace calling this function indicates that it wants to
  3688. * use this buffer rather sooner than later, so issuing the required
  3689. * flush earlier is beneficial.
  3690. */
  3691. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3692. i915_gem_flush_ring(dev, file_priv,
  3693. obj_priv->ring,
  3694. 0, obj->write_domain);
  3695. /* Update the active list for the hardware's current position.
  3696. * Otherwise this only updates on a delayed timer or when irqs
  3697. * are actually unmasked, and our working set ends up being
  3698. * larger than required.
  3699. */
  3700. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3701. args->busy = obj_priv->active;
  3702. }
  3703. drm_gem_object_unreference(obj);
  3704. unlock:
  3705. mutex_unlock(&dev->struct_mutex);
  3706. return ret;
  3707. }
  3708. int
  3709. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3710. struct drm_file *file_priv)
  3711. {
  3712. return i915_gem_ring_throttle(dev, file_priv);
  3713. }
  3714. int
  3715. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3716. struct drm_file *file_priv)
  3717. {
  3718. struct drm_i915_gem_madvise *args = data;
  3719. struct drm_gem_object *obj;
  3720. struct drm_i915_gem_object *obj_priv;
  3721. int ret;
  3722. switch (args->madv) {
  3723. case I915_MADV_DONTNEED:
  3724. case I915_MADV_WILLNEED:
  3725. break;
  3726. default:
  3727. return -EINVAL;
  3728. }
  3729. ret = i915_mutex_lock_interruptible(dev);
  3730. if (ret)
  3731. return ret;
  3732. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3733. if (obj == NULL) {
  3734. ret = -ENOENT;
  3735. goto unlock;
  3736. }
  3737. obj_priv = to_intel_bo(obj);
  3738. if (obj_priv->pin_count) {
  3739. ret = -EINVAL;
  3740. goto out;
  3741. }
  3742. if (obj_priv->madv != __I915_MADV_PURGED)
  3743. obj_priv->madv = args->madv;
  3744. /* if the object is no longer bound, discard its backing storage */
  3745. if (i915_gem_object_is_purgeable(obj_priv) &&
  3746. obj_priv->gtt_space == NULL)
  3747. i915_gem_object_truncate(obj);
  3748. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3749. out:
  3750. drm_gem_object_unreference(obj);
  3751. unlock:
  3752. mutex_unlock(&dev->struct_mutex);
  3753. return ret;
  3754. }
  3755. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3756. size_t size)
  3757. {
  3758. struct drm_i915_private *dev_priv = dev->dev_private;
  3759. struct drm_i915_gem_object *obj;
  3760. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3761. if (obj == NULL)
  3762. return NULL;
  3763. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3764. kfree(obj);
  3765. return NULL;
  3766. }
  3767. i915_gem_info_add_obj(dev_priv, size);
  3768. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3769. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3770. obj->agp_type = AGP_USER_MEMORY;
  3771. obj->base.driver_private = NULL;
  3772. obj->fence_reg = I915_FENCE_REG_NONE;
  3773. INIT_LIST_HEAD(&obj->mm_list);
  3774. INIT_LIST_HEAD(&obj->ring_list);
  3775. INIT_LIST_HEAD(&obj->gpu_write_list);
  3776. obj->madv = I915_MADV_WILLNEED;
  3777. /* Avoid an unnecessary call to unbind on the first bind. */
  3778. obj->map_and_fenceable = true;
  3779. return &obj->base;
  3780. }
  3781. int i915_gem_init_object(struct drm_gem_object *obj)
  3782. {
  3783. BUG();
  3784. return 0;
  3785. }
  3786. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3787. {
  3788. struct drm_device *dev = obj->dev;
  3789. drm_i915_private_t *dev_priv = dev->dev_private;
  3790. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3791. int ret;
  3792. ret = i915_gem_object_unbind(obj);
  3793. if (ret == -ERESTARTSYS) {
  3794. list_move(&obj_priv->mm_list,
  3795. &dev_priv->mm.deferred_free_list);
  3796. return;
  3797. }
  3798. if (obj->map_list.map)
  3799. i915_gem_free_mmap_offset(obj);
  3800. drm_gem_object_release(obj);
  3801. i915_gem_info_remove_obj(dev_priv, obj->size);
  3802. kfree(obj_priv->page_cpu_valid);
  3803. kfree(obj_priv->bit_17);
  3804. kfree(obj_priv);
  3805. }
  3806. void i915_gem_free_object(struct drm_gem_object *obj)
  3807. {
  3808. struct drm_device *dev = obj->dev;
  3809. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3810. trace_i915_gem_object_destroy(obj);
  3811. while (obj_priv->pin_count > 0)
  3812. i915_gem_object_unpin(obj);
  3813. if (obj_priv->phys_obj)
  3814. i915_gem_detach_phys_object(dev, obj);
  3815. i915_gem_free_object_tail(obj);
  3816. }
  3817. int
  3818. i915_gem_idle(struct drm_device *dev)
  3819. {
  3820. drm_i915_private_t *dev_priv = dev->dev_private;
  3821. int ret;
  3822. mutex_lock(&dev->struct_mutex);
  3823. if (dev_priv->mm.suspended) {
  3824. mutex_unlock(&dev->struct_mutex);
  3825. return 0;
  3826. }
  3827. ret = i915_gpu_idle(dev);
  3828. if (ret) {
  3829. mutex_unlock(&dev->struct_mutex);
  3830. return ret;
  3831. }
  3832. /* Under UMS, be paranoid and evict. */
  3833. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3834. ret = i915_gem_evict_inactive(dev, false);
  3835. if (ret) {
  3836. mutex_unlock(&dev->struct_mutex);
  3837. return ret;
  3838. }
  3839. }
  3840. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3841. * We need to replace this with a semaphore, or something.
  3842. * And not confound mm.suspended!
  3843. */
  3844. dev_priv->mm.suspended = 1;
  3845. del_timer_sync(&dev_priv->hangcheck_timer);
  3846. i915_kernel_lost_context(dev);
  3847. i915_gem_cleanup_ringbuffer(dev);
  3848. mutex_unlock(&dev->struct_mutex);
  3849. /* Cancel the retire work handler, which should be idle now. */
  3850. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3851. return 0;
  3852. }
  3853. /*
  3854. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3855. * over cache flushing.
  3856. */
  3857. static int
  3858. i915_gem_init_pipe_control(struct drm_device *dev)
  3859. {
  3860. drm_i915_private_t *dev_priv = dev->dev_private;
  3861. struct drm_gem_object *obj;
  3862. struct drm_i915_gem_object *obj_priv;
  3863. int ret;
  3864. obj = i915_gem_alloc_object(dev, 4096);
  3865. if (obj == NULL) {
  3866. DRM_ERROR("Failed to allocate seqno page\n");
  3867. ret = -ENOMEM;
  3868. goto err;
  3869. }
  3870. obj_priv = to_intel_bo(obj);
  3871. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3872. ret = i915_gem_object_pin(obj, 4096, true);
  3873. if (ret)
  3874. goto err_unref;
  3875. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3876. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3877. if (dev_priv->seqno_page == NULL)
  3878. goto err_unpin;
  3879. dev_priv->seqno_obj = obj;
  3880. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3881. return 0;
  3882. err_unpin:
  3883. i915_gem_object_unpin(obj);
  3884. err_unref:
  3885. drm_gem_object_unreference(obj);
  3886. err:
  3887. return ret;
  3888. }
  3889. static void
  3890. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3891. {
  3892. drm_i915_private_t *dev_priv = dev->dev_private;
  3893. struct drm_gem_object *obj;
  3894. struct drm_i915_gem_object *obj_priv;
  3895. obj = dev_priv->seqno_obj;
  3896. obj_priv = to_intel_bo(obj);
  3897. kunmap(obj_priv->pages[0]);
  3898. i915_gem_object_unpin(obj);
  3899. drm_gem_object_unreference(obj);
  3900. dev_priv->seqno_obj = NULL;
  3901. dev_priv->seqno_page = NULL;
  3902. }
  3903. int
  3904. i915_gem_init_ringbuffer(struct drm_device *dev)
  3905. {
  3906. drm_i915_private_t *dev_priv = dev->dev_private;
  3907. int ret;
  3908. if (HAS_PIPE_CONTROL(dev)) {
  3909. ret = i915_gem_init_pipe_control(dev);
  3910. if (ret)
  3911. return ret;
  3912. }
  3913. ret = intel_init_render_ring_buffer(dev);
  3914. if (ret)
  3915. goto cleanup_pipe_control;
  3916. if (HAS_BSD(dev)) {
  3917. ret = intel_init_bsd_ring_buffer(dev);
  3918. if (ret)
  3919. goto cleanup_render_ring;
  3920. }
  3921. if (HAS_BLT(dev)) {
  3922. ret = intel_init_blt_ring_buffer(dev);
  3923. if (ret)
  3924. goto cleanup_bsd_ring;
  3925. }
  3926. dev_priv->next_seqno = 1;
  3927. return 0;
  3928. cleanup_bsd_ring:
  3929. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3930. cleanup_render_ring:
  3931. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3932. cleanup_pipe_control:
  3933. if (HAS_PIPE_CONTROL(dev))
  3934. i915_gem_cleanup_pipe_control(dev);
  3935. return ret;
  3936. }
  3937. void
  3938. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3939. {
  3940. drm_i915_private_t *dev_priv = dev->dev_private;
  3941. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3942. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3943. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3944. if (HAS_PIPE_CONTROL(dev))
  3945. i915_gem_cleanup_pipe_control(dev);
  3946. }
  3947. int
  3948. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3949. struct drm_file *file_priv)
  3950. {
  3951. drm_i915_private_t *dev_priv = dev->dev_private;
  3952. int ret;
  3953. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3954. return 0;
  3955. if (atomic_read(&dev_priv->mm.wedged)) {
  3956. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3957. atomic_set(&dev_priv->mm.wedged, 0);
  3958. }
  3959. mutex_lock(&dev->struct_mutex);
  3960. dev_priv->mm.suspended = 0;
  3961. ret = i915_gem_init_ringbuffer(dev);
  3962. if (ret != 0) {
  3963. mutex_unlock(&dev->struct_mutex);
  3964. return ret;
  3965. }
  3966. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3967. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3968. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3969. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3970. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3971. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3972. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3973. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3974. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3975. mutex_unlock(&dev->struct_mutex);
  3976. ret = drm_irq_install(dev);
  3977. if (ret)
  3978. goto cleanup_ringbuffer;
  3979. return 0;
  3980. cleanup_ringbuffer:
  3981. mutex_lock(&dev->struct_mutex);
  3982. i915_gem_cleanup_ringbuffer(dev);
  3983. dev_priv->mm.suspended = 1;
  3984. mutex_unlock(&dev->struct_mutex);
  3985. return ret;
  3986. }
  3987. int
  3988. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3989. struct drm_file *file_priv)
  3990. {
  3991. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3992. return 0;
  3993. drm_irq_uninstall(dev);
  3994. return i915_gem_idle(dev);
  3995. }
  3996. void
  3997. i915_gem_lastclose(struct drm_device *dev)
  3998. {
  3999. int ret;
  4000. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4001. return;
  4002. ret = i915_gem_idle(dev);
  4003. if (ret)
  4004. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4005. }
  4006. static void
  4007. init_ring_lists(struct intel_ring_buffer *ring)
  4008. {
  4009. INIT_LIST_HEAD(&ring->active_list);
  4010. INIT_LIST_HEAD(&ring->request_list);
  4011. INIT_LIST_HEAD(&ring->gpu_write_list);
  4012. }
  4013. void
  4014. i915_gem_load(struct drm_device *dev)
  4015. {
  4016. int i;
  4017. drm_i915_private_t *dev_priv = dev->dev_private;
  4018. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4019. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4020. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4021. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4022. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4023. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4024. init_ring_lists(&dev_priv->render_ring);
  4025. init_ring_lists(&dev_priv->bsd_ring);
  4026. init_ring_lists(&dev_priv->blt_ring);
  4027. for (i = 0; i < 16; i++)
  4028. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4029. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4030. i915_gem_retire_work_handler);
  4031. init_completion(&dev_priv->error_completion);
  4032. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4033. if (IS_GEN3(dev)) {
  4034. u32 tmp = I915_READ(MI_ARB_STATE);
  4035. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4036. /* arb state is a masked write, so set bit + bit in mask */
  4037. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4038. I915_WRITE(MI_ARB_STATE, tmp);
  4039. }
  4040. }
  4041. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4042. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4043. dev_priv->fence_reg_start = 3;
  4044. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4045. dev_priv->num_fence_regs = 16;
  4046. else
  4047. dev_priv->num_fence_regs = 8;
  4048. /* Initialize fence registers to zero */
  4049. switch (INTEL_INFO(dev)->gen) {
  4050. case 6:
  4051. for (i = 0; i < 16; i++)
  4052. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4053. break;
  4054. case 5:
  4055. case 4:
  4056. for (i = 0; i < 16; i++)
  4057. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4058. break;
  4059. case 3:
  4060. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4061. for (i = 0; i < 8; i++)
  4062. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4063. case 2:
  4064. for (i = 0; i < 8; i++)
  4065. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4066. break;
  4067. }
  4068. i915_gem_detect_bit_6_swizzle(dev);
  4069. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4070. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4071. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4072. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4073. }
  4074. /*
  4075. * Create a physically contiguous memory object for this object
  4076. * e.g. for cursor + overlay regs
  4077. */
  4078. static int i915_gem_init_phys_object(struct drm_device *dev,
  4079. int id, int size, int align)
  4080. {
  4081. drm_i915_private_t *dev_priv = dev->dev_private;
  4082. struct drm_i915_gem_phys_object *phys_obj;
  4083. int ret;
  4084. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4085. return 0;
  4086. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4087. if (!phys_obj)
  4088. return -ENOMEM;
  4089. phys_obj->id = id;
  4090. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4091. if (!phys_obj->handle) {
  4092. ret = -ENOMEM;
  4093. goto kfree_obj;
  4094. }
  4095. #ifdef CONFIG_X86
  4096. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4097. #endif
  4098. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4099. return 0;
  4100. kfree_obj:
  4101. kfree(phys_obj);
  4102. return ret;
  4103. }
  4104. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4105. {
  4106. drm_i915_private_t *dev_priv = dev->dev_private;
  4107. struct drm_i915_gem_phys_object *phys_obj;
  4108. if (!dev_priv->mm.phys_objs[id - 1])
  4109. return;
  4110. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4111. if (phys_obj->cur_obj) {
  4112. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4113. }
  4114. #ifdef CONFIG_X86
  4115. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4116. #endif
  4117. drm_pci_free(dev, phys_obj->handle);
  4118. kfree(phys_obj);
  4119. dev_priv->mm.phys_objs[id - 1] = NULL;
  4120. }
  4121. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4122. {
  4123. int i;
  4124. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4125. i915_gem_free_phys_object(dev, i);
  4126. }
  4127. void i915_gem_detach_phys_object(struct drm_device *dev,
  4128. struct drm_gem_object *obj)
  4129. {
  4130. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4131. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4132. char *vaddr;
  4133. int i;
  4134. int page_count;
  4135. if (!obj_priv->phys_obj)
  4136. return;
  4137. vaddr = obj_priv->phys_obj->handle->vaddr;
  4138. page_count = obj->size / PAGE_SIZE;
  4139. for (i = 0; i < page_count; i++) {
  4140. struct page *page = read_cache_page_gfp(mapping, i,
  4141. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4142. if (!IS_ERR(page)) {
  4143. char *dst = kmap_atomic(page);
  4144. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4145. kunmap_atomic(dst);
  4146. drm_clflush_pages(&page, 1);
  4147. set_page_dirty(page);
  4148. mark_page_accessed(page);
  4149. page_cache_release(page);
  4150. }
  4151. }
  4152. drm_agp_chipset_flush(dev);
  4153. obj_priv->phys_obj->cur_obj = NULL;
  4154. obj_priv->phys_obj = NULL;
  4155. }
  4156. int
  4157. i915_gem_attach_phys_object(struct drm_device *dev,
  4158. struct drm_gem_object *obj,
  4159. int id,
  4160. int align)
  4161. {
  4162. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4163. drm_i915_private_t *dev_priv = dev->dev_private;
  4164. struct drm_i915_gem_object *obj_priv;
  4165. int ret = 0;
  4166. int page_count;
  4167. int i;
  4168. if (id > I915_MAX_PHYS_OBJECT)
  4169. return -EINVAL;
  4170. obj_priv = to_intel_bo(obj);
  4171. if (obj_priv->phys_obj) {
  4172. if (obj_priv->phys_obj->id == id)
  4173. return 0;
  4174. i915_gem_detach_phys_object(dev, obj);
  4175. }
  4176. /* create a new object */
  4177. if (!dev_priv->mm.phys_objs[id - 1]) {
  4178. ret = i915_gem_init_phys_object(dev, id,
  4179. obj->size, align);
  4180. if (ret) {
  4181. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4182. return ret;
  4183. }
  4184. }
  4185. /* bind to the object */
  4186. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4187. obj_priv->phys_obj->cur_obj = obj;
  4188. page_count = obj->size / PAGE_SIZE;
  4189. for (i = 0; i < page_count; i++) {
  4190. struct page *page;
  4191. char *dst, *src;
  4192. page = read_cache_page_gfp(mapping, i,
  4193. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4194. if (IS_ERR(page))
  4195. return PTR_ERR(page);
  4196. src = kmap_atomic(page);
  4197. dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4198. memcpy(dst, src, PAGE_SIZE);
  4199. kunmap_atomic(src);
  4200. mark_page_accessed(page);
  4201. page_cache_release(page);
  4202. }
  4203. return 0;
  4204. }
  4205. static int
  4206. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4207. struct drm_i915_gem_pwrite *args,
  4208. struct drm_file *file_priv)
  4209. {
  4210. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4211. void *obj_addr;
  4212. int ret;
  4213. char __user *user_data;
  4214. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4215. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4216. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4217. ret = copy_from_user(obj_addr, user_data, args->size);
  4218. if (ret)
  4219. return -EFAULT;
  4220. drm_agp_chipset_flush(dev);
  4221. return 0;
  4222. }
  4223. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4224. {
  4225. struct drm_i915_file_private *file_priv = file->driver_priv;
  4226. /* Clean up our request list when the client is going away, so that
  4227. * later retire_requests won't dereference our soon-to-be-gone
  4228. * file_priv.
  4229. */
  4230. spin_lock(&file_priv->mm.lock);
  4231. while (!list_empty(&file_priv->mm.request_list)) {
  4232. struct drm_i915_gem_request *request;
  4233. request = list_first_entry(&file_priv->mm.request_list,
  4234. struct drm_i915_gem_request,
  4235. client_list);
  4236. list_del(&request->client_list);
  4237. request->file_priv = NULL;
  4238. }
  4239. spin_unlock(&file_priv->mm.lock);
  4240. }
  4241. static int
  4242. i915_gpu_is_active(struct drm_device *dev)
  4243. {
  4244. drm_i915_private_t *dev_priv = dev->dev_private;
  4245. int lists_empty;
  4246. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4247. list_empty(&dev_priv->mm.active_list);
  4248. return !lists_empty;
  4249. }
  4250. static int
  4251. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4252. int nr_to_scan,
  4253. gfp_t gfp_mask)
  4254. {
  4255. struct drm_i915_private *dev_priv =
  4256. container_of(shrinker,
  4257. struct drm_i915_private,
  4258. mm.inactive_shrinker);
  4259. struct drm_device *dev = dev_priv->dev;
  4260. struct drm_i915_gem_object *obj, *next;
  4261. int cnt;
  4262. if (!mutex_trylock(&dev->struct_mutex))
  4263. return 0;
  4264. /* "fast-path" to count number of available objects */
  4265. if (nr_to_scan == 0) {
  4266. cnt = 0;
  4267. list_for_each_entry(obj,
  4268. &dev_priv->mm.inactive_list,
  4269. mm_list)
  4270. cnt++;
  4271. mutex_unlock(&dev->struct_mutex);
  4272. return cnt / 100 * sysctl_vfs_cache_pressure;
  4273. }
  4274. rescan:
  4275. /* first scan for clean buffers */
  4276. i915_gem_retire_requests(dev);
  4277. list_for_each_entry_safe(obj, next,
  4278. &dev_priv->mm.inactive_list,
  4279. mm_list) {
  4280. if (i915_gem_object_is_purgeable(obj)) {
  4281. i915_gem_object_unbind(&obj->base);
  4282. if (--nr_to_scan == 0)
  4283. break;
  4284. }
  4285. }
  4286. /* second pass, evict/count anything still on the inactive list */
  4287. cnt = 0;
  4288. list_for_each_entry_safe(obj, next,
  4289. &dev_priv->mm.inactive_list,
  4290. mm_list) {
  4291. if (nr_to_scan) {
  4292. i915_gem_object_unbind(&obj->base);
  4293. nr_to_scan--;
  4294. } else
  4295. cnt++;
  4296. }
  4297. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4298. /*
  4299. * We are desperate for pages, so as a last resort, wait
  4300. * for the GPU to finish and discard whatever we can.
  4301. * This has a dramatic impact to reduce the number of
  4302. * OOM-killer events whilst running the GPU aggressively.
  4303. */
  4304. if (i915_gpu_idle(dev) == 0)
  4305. goto rescan;
  4306. }
  4307. mutex_unlock(&dev->struct_mutex);
  4308. return cnt / 100 * sysctl_vfs_cache_pressure;
  4309. }