sched.c 223 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. struct cpupri cpupri;
  359. };
  360. /*
  361. * By default the system creates a single root-domain with all cpus as
  362. * members (mimicking the global state we have today).
  363. */
  364. static struct root_domain def_root_domain;
  365. #endif /* CONFIG_SMP */
  366. /*
  367. * This is the main, per-CPU runqueue data structure.
  368. *
  369. * Locking rule: those places that want to lock multiple runqueues
  370. * (such as the load balancing or the thread migration code), lock
  371. * acquire operations must be ordered by ascending &runqueue.
  372. */
  373. struct rq {
  374. /* runqueue lock: */
  375. raw_spinlock_t lock;
  376. /*
  377. * nr_running and cpu_load should be in the same cacheline because
  378. * remote CPUs use both these fields when doing load calculation.
  379. */
  380. unsigned long nr_running;
  381. #define CPU_LOAD_IDX_MAX 5
  382. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  383. unsigned long last_load_update_tick;
  384. #ifdef CONFIG_NO_HZ
  385. u64 nohz_stamp;
  386. unsigned char nohz_balance_kick;
  387. #endif
  388. unsigned int skip_clock_update;
  389. /* capture load from *all* tasks on this cpu: */
  390. struct load_weight load;
  391. unsigned long nr_load_updates;
  392. u64 nr_switches;
  393. struct cfs_rq cfs;
  394. struct rt_rq rt;
  395. #ifdef CONFIG_FAIR_GROUP_SCHED
  396. /* list of leaf cfs_rq on this cpu: */
  397. struct list_head leaf_cfs_rq_list;
  398. #endif
  399. #ifdef CONFIG_RT_GROUP_SCHED
  400. struct list_head leaf_rt_rq_list;
  401. #endif
  402. /*
  403. * This is part of a global counter where only the total sum
  404. * over all CPUs matters. A task can increase this counter on
  405. * one CPU and if it got migrated afterwards it may decrease
  406. * it on another CPU. Always updated under the runqueue lock:
  407. */
  408. unsigned long nr_uninterruptible;
  409. struct task_struct *curr, *idle, *stop;
  410. unsigned long next_balance;
  411. struct mm_struct *prev_mm;
  412. u64 clock;
  413. atomic_t nr_iowait;
  414. #ifdef CONFIG_SMP
  415. struct root_domain *rd;
  416. struct sched_domain *sd;
  417. unsigned long cpu_power;
  418. unsigned char idle_at_tick;
  419. /* For active balancing */
  420. int post_schedule;
  421. int active_balance;
  422. int push_cpu;
  423. struct cpu_stop_work active_balance_work;
  424. /* cpu of this runqueue: */
  425. int cpu;
  426. int online;
  427. unsigned long avg_load_per_task;
  428. u64 rt_avg;
  429. u64 age_stamp;
  430. u64 idle_stamp;
  431. u64 avg_idle;
  432. #endif
  433. /* calc_load related fields */
  434. unsigned long calc_load_update;
  435. long calc_load_active;
  436. #ifdef CONFIG_SCHED_HRTICK
  437. #ifdef CONFIG_SMP
  438. int hrtick_csd_pending;
  439. struct call_single_data hrtick_csd;
  440. #endif
  441. struct hrtimer hrtick_timer;
  442. #endif
  443. #ifdef CONFIG_SCHEDSTATS
  444. /* latency stats */
  445. struct sched_info rq_sched_info;
  446. unsigned long long rq_cpu_time;
  447. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  448. /* sys_sched_yield() stats */
  449. unsigned int yld_count;
  450. /* schedule() stats */
  451. unsigned int sched_switch;
  452. unsigned int sched_count;
  453. unsigned int sched_goidle;
  454. /* try_to_wake_up() stats */
  455. unsigned int ttwu_count;
  456. unsigned int ttwu_local;
  457. /* BKL stats */
  458. unsigned int bkl_count;
  459. #endif
  460. };
  461. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  462. static inline
  463. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  464. {
  465. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  466. /*
  467. * A queue event has occurred, and we're going to schedule. In
  468. * this case, we can save a useless back to back clock update.
  469. */
  470. if (test_tsk_need_resched(p))
  471. rq->skip_clock_update = 1;
  472. }
  473. static inline int cpu_of(struct rq *rq)
  474. {
  475. #ifdef CONFIG_SMP
  476. return rq->cpu;
  477. #else
  478. return 0;
  479. #endif
  480. }
  481. #define rcu_dereference_check_sched_domain(p) \
  482. rcu_dereference_check((p), \
  483. rcu_read_lock_sched_held() || \
  484. lockdep_is_held(&sched_domains_mutex))
  485. /*
  486. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  487. * See detach_destroy_domains: synchronize_sched for details.
  488. *
  489. * The domain tree of any CPU may only be accessed from within
  490. * preempt-disabled sections.
  491. */
  492. #define for_each_domain(cpu, __sd) \
  493. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  494. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  495. #define this_rq() (&__get_cpu_var(runqueues))
  496. #define task_rq(p) cpu_rq(task_cpu(p))
  497. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  498. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  499. #ifdef CONFIG_CGROUP_SCHED
  500. /*
  501. * Return the group to which this tasks belongs.
  502. *
  503. * We use task_subsys_state_check() and extend the RCU verification
  504. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  505. * holds that lock for each task it moves into the cgroup. Therefore
  506. * by holding that lock, we pin the task to the current cgroup.
  507. */
  508. static inline struct task_group *task_group(struct task_struct *p)
  509. {
  510. struct cgroup_subsys_state *css;
  511. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  512. lockdep_is_held(&task_rq(p)->lock));
  513. return container_of(css, struct task_group, css);
  514. }
  515. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  516. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  517. {
  518. #ifdef CONFIG_FAIR_GROUP_SCHED
  519. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  520. p->se.parent = task_group(p)->se[cpu];
  521. #endif
  522. #ifdef CONFIG_RT_GROUP_SCHED
  523. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  524. p->rt.parent = task_group(p)->rt_se[cpu];
  525. #endif
  526. }
  527. #else /* CONFIG_CGROUP_SCHED */
  528. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  529. static inline struct task_group *task_group(struct task_struct *p)
  530. {
  531. return NULL;
  532. }
  533. #endif /* CONFIG_CGROUP_SCHED */
  534. inline void update_rq_clock(struct rq *rq)
  535. {
  536. if (!rq->skip_clock_update)
  537. rq->clock = sched_clock_cpu(cpu_of(rq));
  538. }
  539. /*
  540. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  541. */
  542. #ifdef CONFIG_SCHED_DEBUG
  543. # define const_debug __read_mostly
  544. #else
  545. # define const_debug static const
  546. #endif
  547. /**
  548. * runqueue_is_locked
  549. * @cpu: the processor in question.
  550. *
  551. * Returns true if the current cpu runqueue is locked.
  552. * This interface allows printk to be called with the runqueue lock
  553. * held and know whether or not it is OK to wake up the klogd.
  554. */
  555. int runqueue_is_locked(int cpu)
  556. {
  557. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  558. }
  559. /*
  560. * Debugging: various feature bits
  561. */
  562. #define SCHED_FEAT(name, enabled) \
  563. __SCHED_FEAT_##name ,
  564. enum {
  565. #include "sched_features.h"
  566. };
  567. #undef SCHED_FEAT
  568. #define SCHED_FEAT(name, enabled) \
  569. (1UL << __SCHED_FEAT_##name) * enabled |
  570. const_debug unsigned int sysctl_sched_features =
  571. #include "sched_features.h"
  572. 0;
  573. #undef SCHED_FEAT
  574. #ifdef CONFIG_SCHED_DEBUG
  575. #define SCHED_FEAT(name, enabled) \
  576. #name ,
  577. static __read_mostly char *sched_feat_names[] = {
  578. #include "sched_features.h"
  579. NULL
  580. };
  581. #undef SCHED_FEAT
  582. static int sched_feat_show(struct seq_file *m, void *v)
  583. {
  584. int i;
  585. for (i = 0; sched_feat_names[i]; i++) {
  586. if (!(sysctl_sched_features & (1UL << i)))
  587. seq_puts(m, "NO_");
  588. seq_printf(m, "%s ", sched_feat_names[i]);
  589. }
  590. seq_puts(m, "\n");
  591. return 0;
  592. }
  593. static ssize_t
  594. sched_feat_write(struct file *filp, const char __user *ubuf,
  595. size_t cnt, loff_t *ppos)
  596. {
  597. char buf[64];
  598. char *cmp;
  599. int neg = 0;
  600. int i;
  601. if (cnt > 63)
  602. cnt = 63;
  603. if (copy_from_user(&buf, ubuf, cnt))
  604. return -EFAULT;
  605. buf[cnt] = 0;
  606. cmp = strstrip(buf);
  607. if (strncmp(buf, "NO_", 3) == 0) {
  608. neg = 1;
  609. cmp += 3;
  610. }
  611. for (i = 0; sched_feat_names[i]; i++) {
  612. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  613. if (neg)
  614. sysctl_sched_features &= ~(1UL << i);
  615. else
  616. sysctl_sched_features |= (1UL << i);
  617. break;
  618. }
  619. }
  620. if (!sched_feat_names[i])
  621. return -EINVAL;
  622. *ppos += cnt;
  623. return cnt;
  624. }
  625. static int sched_feat_open(struct inode *inode, struct file *filp)
  626. {
  627. return single_open(filp, sched_feat_show, NULL);
  628. }
  629. static const struct file_operations sched_feat_fops = {
  630. .open = sched_feat_open,
  631. .write = sched_feat_write,
  632. .read = seq_read,
  633. .llseek = seq_lseek,
  634. .release = single_release,
  635. };
  636. static __init int sched_init_debug(void)
  637. {
  638. debugfs_create_file("sched_features", 0644, NULL, NULL,
  639. &sched_feat_fops);
  640. return 0;
  641. }
  642. late_initcall(sched_init_debug);
  643. #endif
  644. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  645. /*
  646. * Number of tasks to iterate in a single balance run.
  647. * Limited because this is done with IRQs disabled.
  648. */
  649. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  650. /*
  651. * ratelimit for updating the group shares.
  652. * default: 0.25ms
  653. */
  654. unsigned int sysctl_sched_shares_ratelimit = 250000;
  655. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  656. /*
  657. * Inject some fuzzyness into changing the per-cpu group shares
  658. * this avoids remote rq-locks at the expense of fairness.
  659. * default: 4
  660. */
  661. unsigned int sysctl_sched_shares_thresh = 4;
  662. /*
  663. * period over which we average the RT time consumption, measured
  664. * in ms.
  665. *
  666. * default: 1s
  667. */
  668. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  669. /*
  670. * period over which we measure -rt task cpu usage in us.
  671. * default: 1s
  672. */
  673. unsigned int sysctl_sched_rt_period = 1000000;
  674. static __read_mostly int scheduler_running;
  675. /*
  676. * part of the period that we allow rt tasks to run in us.
  677. * default: 0.95s
  678. */
  679. int sysctl_sched_rt_runtime = 950000;
  680. static inline u64 global_rt_period(void)
  681. {
  682. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  683. }
  684. static inline u64 global_rt_runtime(void)
  685. {
  686. if (sysctl_sched_rt_runtime < 0)
  687. return RUNTIME_INF;
  688. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  689. }
  690. #ifndef prepare_arch_switch
  691. # define prepare_arch_switch(next) do { } while (0)
  692. #endif
  693. #ifndef finish_arch_switch
  694. # define finish_arch_switch(prev) do { } while (0)
  695. #endif
  696. static inline int task_current(struct rq *rq, struct task_struct *p)
  697. {
  698. return rq->curr == p;
  699. }
  700. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  701. static inline int task_running(struct rq *rq, struct task_struct *p)
  702. {
  703. return task_current(rq, p);
  704. }
  705. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  706. {
  707. }
  708. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  709. {
  710. #ifdef CONFIG_DEBUG_SPINLOCK
  711. /* this is a valid case when another task releases the spinlock */
  712. rq->lock.owner = current;
  713. #endif
  714. /*
  715. * If we are tracking spinlock dependencies then we have to
  716. * fix up the runqueue lock - which gets 'carried over' from
  717. * prev into current:
  718. */
  719. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  720. raw_spin_unlock_irq(&rq->lock);
  721. }
  722. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  723. static inline int task_running(struct rq *rq, struct task_struct *p)
  724. {
  725. #ifdef CONFIG_SMP
  726. return p->oncpu;
  727. #else
  728. return task_current(rq, p);
  729. #endif
  730. }
  731. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  732. {
  733. #ifdef CONFIG_SMP
  734. /*
  735. * We can optimise this out completely for !SMP, because the
  736. * SMP rebalancing from interrupt is the only thing that cares
  737. * here.
  738. */
  739. next->oncpu = 1;
  740. #endif
  741. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  742. raw_spin_unlock_irq(&rq->lock);
  743. #else
  744. raw_spin_unlock(&rq->lock);
  745. #endif
  746. }
  747. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  748. {
  749. #ifdef CONFIG_SMP
  750. /*
  751. * After ->oncpu is cleared, the task can be moved to a different CPU.
  752. * We must ensure this doesn't happen until the switch is completely
  753. * finished.
  754. */
  755. smp_wmb();
  756. prev->oncpu = 0;
  757. #endif
  758. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  759. local_irq_enable();
  760. #endif
  761. }
  762. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  763. /*
  764. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  765. * against ttwu().
  766. */
  767. static inline int task_is_waking(struct task_struct *p)
  768. {
  769. return unlikely(p->state == TASK_WAKING);
  770. }
  771. /*
  772. * __task_rq_lock - lock the runqueue a given task resides on.
  773. * Must be called interrupts disabled.
  774. */
  775. static inline struct rq *__task_rq_lock(struct task_struct *p)
  776. __acquires(rq->lock)
  777. {
  778. struct rq *rq;
  779. for (;;) {
  780. rq = task_rq(p);
  781. raw_spin_lock(&rq->lock);
  782. if (likely(rq == task_rq(p)))
  783. return rq;
  784. raw_spin_unlock(&rq->lock);
  785. }
  786. }
  787. /*
  788. * task_rq_lock - lock the runqueue a given task resides on and disable
  789. * interrupts. Note the ordering: we can safely lookup the task_rq without
  790. * explicitly disabling preemption.
  791. */
  792. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. for (;;) {
  797. local_irq_save(*flags);
  798. rq = task_rq(p);
  799. raw_spin_lock(&rq->lock);
  800. if (likely(rq == task_rq(p)))
  801. return rq;
  802. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  803. }
  804. }
  805. static void __task_rq_unlock(struct rq *rq)
  806. __releases(rq->lock)
  807. {
  808. raw_spin_unlock(&rq->lock);
  809. }
  810. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  811. __releases(rq->lock)
  812. {
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. /*
  816. * this_rq_lock - lock this runqueue and disable interrupts.
  817. */
  818. static struct rq *this_rq_lock(void)
  819. __acquires(rq->lock)
  820. {
  821. struct rq *rq;
  822. local_irq_disable();
  823. rq = this_rq();
  824. raw_spin_lock(&rq->lock);
  825. return rq;
  826. }
  827. #ifdef CONFIG_SCHED_HRTICK
  828. /*
  829. * Use HR-timers to deliver accurate preemption points.
  830. *
  831. * Its all a bit involved since we cannot program an hrt while holding the
  832. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  833. * reschedule event.
  834. *
  835. * When we get rescheduled we reprogram the hrtick_timer outside of the
  836. * rq->lock.
  837. */
  838. /*
  839. * Use hrtick when:
  840. * - enabled by features
  841. * - hrtimer is actually high res
  842. */
  843. static inline int hrtick_enabled(struct rq *rq)
  844. {
  845. if (!sched_feat(HRTICK))
  846. return 0;
  847. if (!cpu_active(cpu_of(rq)))
  848. return 0;
  849. return hrtimer_is_hres_active(&rq->hrtick_timer);
  850. }
  851. static void hrtick_clear(struct rq *rq)
  852. {
  853. if (hrtimer_active(&rq->hrtick_timer))
  854. hrtimer_cancel(&rq->hrtick_timer);
  855. }
  856. /*
  857. * High-resolution timer tick.
  858. * Runs from hardirq context with interrupts disabled.
  859. */
  860. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  861. {
  862. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  863. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  864. raw_spin_lock(&rq->lock);
  865. update_rq_clock(rq);
  866. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  867. raw_spin_unlock(&rq->lock);
  868. return HRTIMER_NORESTART;
  869. }
  870. #ifdef CONFIG_SMP
  871. /*
  872. * called from hardirq (IPI) context
  873. */
  874. static void __hrtick_start(void *arg)
  875. {
  876. struct rq *rq = arg;
  877. raw_spin_lock(&rq->lock);
  878. hrtimer_restart(&rq->hrtick_timer);
  879. rq->hrtick_csd_pending = 0;
  880. raw_spin_unlock(&rq->lock);
  881. }
  882. /*
  883. * Called to set the hrtick timer state.
  884. *
  885. * called with rq->lock held and irqs disabled
  886. */
  887. static void hrtick_start(struct rq *rq, u64 delay)
  888. {
  889. struct hrtimer *timer = &rq->hrtick_timer;
  890. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  891. hrtimer_set_expires(timer, time);
  892. if (rq == this_rq()) {
  893. hrtimer_restart(timer);
  894. } else if (!rq->hrtick_csd_pending) {
  895. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  896. rq->hrtick_csd_pending = 1;
  897. }
  898. }
  899. static int
  900. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  901. {
  902. int cpu = (int)(long)hcpu;
  903. switch (action) {
  904. case CPU_UP_CANCELED:
  905. case CPU_UP_CANCELED_FROZEN:
  906. case CPU_DOWN_PREPARE:
  907. case CPU_DOWN_PREPARE_FROZEN:
  908. case CPU_DEAD:
  909. case CPU_DEAD_FROZEN:
  910. hrtick_clear(cpu_rq(cpu));
  911. return NOTIFY_OK;
  912. }
  913. return NOTIFY_DONE;
  914. }
  915. static __init void init_hrtick(void)
  916. {
  917. hotcpu_notifier(hotplug_hrtick, 0);
  918. }
  919. #else
  920. /*
  921. * Called to set the hrtick timer state.
  922. *
  923. * called with rq->lock held and irqs disabled
  924. */
  925. static void hrtick_start(struct rq *rq, u64 delay)
  926. {
  927. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  928. HRTIMER_MODE_REL_PINNED, 0);
  929. }
  930. static inline void init_hrtick(void)
  931. {
  932. }
  933. #endif /* CONFIG_SMP */
  934. static void init_rq_hrtick(struct rq *rq)
  935. {
  936. #ifdef CONFIG_SMP
  937. rq->hrtick_csd_pending = 0;
  938. rq->hrtick_csd.flags = 0;
  939. rq->hrtick_csd.func = __hrtick_start;
  940. rq->hrtick_csd.info = rq;
  941. #endif
  942. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. rq->hrtick_timer.function = hrtick;
  944. }
  945. #else /* CONFIG_SCHED_HRTICK */
  946. static inline void hrtick_clear(struct rq *rq)
  947. {
  948. }
  949. static inline void init_rq_hrtick(struct rq *rq)
  950. {
  951. }
  952. static inline void init_hrtick(void)
  953. {
  954. }
  955. #endif /* CONFIG_SCHED_HRTICK */
  956. /*
  957. * resched_task - mark a task 'to be rescheduled now'.
  958. *
  959. * On UP this means the setting of the need_resched flag, on SMP it
  960. * might also involve a cross-CPU call to trigger the scheduler on
  961. * the target CPU.
  962. */
  963. #ifdef CONFIG_SMP
  964. #ifndef tsk_is_polling
  965. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  966. #endif
  967. static void resched_task(struct task_struct *p)
  968. {
  969. int cpu;
  970. assert_raw_spin_locked(&task_rq(p)->lock);
  971. if (test_tsk_need_resched(p))
  972. return;
  973. set_tsk_need_resched(p);
  974. cpu = task_cpu(p);
  975. if (cpu == smp_processor_id())
  976. return;
  977. /* NEED_RESCHED must be visible before we test polling */
  978. smp_mb();
  979. if (!tsk_is_polling(p))
  980. smp_send_reschedule(cpu);
  981. }
  982. static void resched_cpu(int cpu)
  983. {
  984. struct rq *rq = cpu_rq(cpu);
  985. unsigned long flags;
  986. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  987. return;
  988. resched_task(cpu_curr(cpu));
  989. raw_spin_unlock_irqrestore(&rq->lock, flags);
  990. }
  991. #ifdef CONFIG_NO_HZ
  992. /*
  993. * In the semi idle case, use the nearest busy cpu for migrating timers
  994. * from an idle cpu. This is good for power-savings.
  995. *
  996. * We don't do similar optimization for completely idle system, as
  997. * selecting an idle cpu will add more delays to the timers than intended
  998. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  999. */
  1000. int get_nohz_timer_target(void)
  1001. {
  1002. int cpu = smp_processor_id();
  1003. int i;
  1004. struct sched_domain *sd;
  1005. for_each_domain(cpu, sd) {
  1006. for_each_cpu(i, sched_domain_span(sd))
  1007. if (!idle_cpu(i))
  1008. return i;
  1009. }
  1010. return cpu;
  1011. }
  1012. /*
  1013. * When add_timer_on() enqueues a timer into the timer wheel of an
  1014. * idle CPU then this timer might expire before the next timer event
  1015. * which is scheduled to wake up that CPU. In case of a completely
  1016. * idle system the next event might even be infinite time into the
  1017. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1018. * leaves the inner idle loop so the newly added timer is taken into
  1019. * account when the CPU goes back to idle and evaluates the timer
  1020. * wheel for the next timer event.
  1021. */
  1022. void wake_up_idle_cpu(int cpu)
  1023. {
  1024. struct rq *rq = cpu_rq(cpu);
  1025. if (cpu == smp_processor_id())
  1026. return;
  1027. /*
  1028. * This is safe, as this function is called with the timer
  1029. * wheel base lock of (cpu) held. When the CPU is on the way
  1030. * to idle and has not yet set rq->curr to idle then it will
  1031. * be serialized on the timer wheel base lock and take the new
  1032. * timer into account automatically.
  1033. */
  1034. if (rq->curr != rq->idle)
  1035. return;
  1036. /*
  1037. * We can set TIF_RESCHED on the idle task of the other CPU
  1038. * lockless. The worst case is that the other CPU runs the
  1039. * idle task through an additional NOOP schedule()
  1040. */
  1041. set_tsk_need_resched(rq->idle);
  1042. /* NEED_RESCHED must be visible before we test polling */
  1043. smp_mb();
  1044. if (!tsk_is_polling(rq->idle))
  1045. smp_send_reschedule(cpu);
  1046. }
  1047. #endif /* CONFIG_NO_HZ */
  1048. static u64 sched_avg_period(void)
  1049. {
  1050. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1051. }
  1052. static void sched_avg_update(struct rq *rq)
  1053. {
  1054. s64 period = sched_avg_period();
  1055. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1056. /*
  1057. * Inline assembly required to prevent the compiler
  1058. * optimising this loop into a divmod call.
  1059. * See __iter_div_u64_rem() for another example of this.
  1060. */
  1061. asm("" : "+rm" (rq->age_stamp));
  1062. rq->age_stamp += period;
  1063. rq->rt_avg /= 2;
  1064. }
  1065. }
  1066. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1067. {
  1068. rq->rt_avg += rt_delta;
  1069. sched_avg_update(rq);
  1070. }
  1071. #else /* !CONFIG_SMP */
  1072. static void resched_task(struct task_struct *p)
  1073. {
  1074. assert_raw_spin_locked(&task_rq(p)->lock);
  1075. set_tsk_need_resched(p);
  1076. }
  1077. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1078. {
  1079. }
  1080. static void sched_avg_update(struct rq *rq)
  1081. {
  1082. }
  1083. #endif /* CONFIG_SMP */
  1084. #if BITS_PER_LONG == 32
  1085. # define WMULT_CONST (~0UL)
  1086. #else
  1087. # define WMULT_CONST (1UL << 32)
  1088. #endif
  1089. #define WMULT_SHIFT 32
  1090. /*
  1091. * Shift right and round:
  1092. */
  1093. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1094. /*
  1095. * delta *= weight / lw
  1096. */
  1097. static unsigned long
  1098. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1099. struct load_weight *lw)
  1100. {
  1101. u64 tmp;
  1102. if (!lw->inv_weight) {
  1103. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1104. lw->inv_weight = 1;
  1105. else
  1106. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1107. / (lw->weight+1);
  1108. }
  1109. tmp = (u64)delta_exec * weight;
  1110. /*
  1111. * Check whether we'd overflow the 64-bit multiplication:
  1112. */
  1113. if (unlikely(tmp > WMULT_CONST))
  1114. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1115. WMULT_SHIFT/2);
  1116. else
  1117. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1118. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1119. }
  1120. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1121. {
  1122. lw->weight += inc;
  1123. lw->inv_weight = 0;
  1124. }
  1125. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1126. {
  1127. lw->weight -= dec;
  1128. lw->inv_weight = 0;
  1129. }
  1130. /*
  1131. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1132. * of tasks with abnormal "nice" values across CPUs the contribution that
  1133. * each task makes to its run queue's load is weighted according to its
  1134. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1135. * scaled version of the new time slice allocation that they receive on time
  1136. * slice expiry etc.
  1137. */
  1138. #define WEIGHT_IDLEPRIO 3
  1139. #define WMULT_IDLEPRIO 1431655765
  1140. /*
  1141. * Nice levels are multiplicative, with a gentle 10% change for every
  1142. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1143. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1144. * that remained on nice 0.
  1145. *
  1146. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1147. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1148. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1149. * If a task goes up by ~10% and another task goes down by ~10% then
  1150. * the relative distance between them is ~25%.)
  1151. */
  1152. static const int prio_to_weight[40] = {
  1153. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1154. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1155. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1156. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1157. /* 0 */ 1024, 820, 655, 526, 423,
  1158. /* 5 */ 335, 272, 215, 172, 137,
  1159. /* 10 */ 110, 87, 70, 56, 45,
  1160. /* 15 */ 36, 29, 23, 18, 15,
  1161. };
  1162. /*
  1163. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1164. *
  1165. * In cases where the weight does not change often, we can use the
  1166. * precalculated inverse to speed up arithmetics by turning divisions
  1167. * into multiplications:
  1168. */
  1169. static const u32 prio_to_wmult[40] = {
  1170. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1171. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1172. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1173. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1174. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1175. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1176. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1177. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1178. };
  1179. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1180. enum cpuacct_stat_index {
  1181. CPUACCT_STAT_USER, /* ... user mode */
  1182. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1183. CPUACCT_STAT_NSTATS,
  1184. };
  1185. #ifdef CONFIG_CGROUP_CPUACCT
  1186. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1187. static void cpuacct_update_stats(struct task_struct *tsk,
  1188. enum cpuacct_stat_index idx, cputime_t val);
  1189. #else
  1190. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1191. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1192. enum cpuacct_stat_index idx, cputime_t val) {}
  1193. #endif
  1194. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1195. {
  1196. update_load_add(&rq->load, load);
  1197. }
  1198. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1199. {
  1200. update_load_sub(&rq->load, load);
  1201. }
  1202. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1203. typedef int (*tg_visitor)(struct task_group *, void *);
  1204. /*
  1205. * Iterate the full tree, calling @down when first entering a node and @up when
  1206. * leaving it for the final time.
  1207. */
  1208. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1209. {
  1210. struct task_group *parent, *child;
  1211. int ret;
  1212. rcu_read_lock();
  1213. parent = &root_task_group;
  1214. down:
  1215. ret = (*down)(parent, data);
  1216. if (ret)
  1217. goto out_unlock;
  1218. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1219. parent = child;
  1220. goto down;
  1221. up:
  1222. continue;
  1223. }
  1224. ret = (*up)(parent, data);
  1225. if (ret)
  1226. goto out_unlock;
  1227. child = parent;
  1228. parent = parent->parent;
  1229. if (parent)
  1230. goto up;
  1231. out_unlock:
  1232. rcu_read_unlock();
  1233. return ret;
  1234. }
  1235. static int tg_nop(struct task_group *tg, void *data)
  1236. {
  1237. return 0;
  1238. }
  1239. #endif
  1240. #ifdef CONFIG_SMP
  1241. /* Used instead of source_load when we know the type == 0 */
  1242. static unsigned long weighted_cpuload(const int cpu)
  1243. {
  1244. return cpu_rq(cpu)->load.weight;
  1245. }
  1246. /*
  1247. * Return a low guess at the load of a migration-source cpu weighted
  1248. * according to the scheduling class and "nice" value.
  1249. *
  1250. * We want to under-estimate the load of migration sources, to
  1251. * balance conservatively.
  1252. */
  1253. static unsigned long source_load(int cpu, int type)
  1254. {
  1255. struct rq *rq = cpu_rq(cpu);
  1256. unsigned long total = weighted_cpuload(cpu);
  1257. if (type == 0 || !sched_feat(LB_BIAS))
  1258. return total;
  1259. return min(rq->cpu_load[type-1], total);
  1260. }
  1261. /*
  1262. * Return a high guess at the load of a migration-target cpu weighted
  1263. * according to the scheduling class and "nice" value.
  1264. */
  1265. static unsigned long target_load(int cpu, int type)
  1266. {
  1267. struct rq *rq = cpu_rq(cpu);
  1268. unsigned long total = weighted_cpuload(cpu);
  1269. if (type == 0 || !sched_feat(LB_BIAS))
  1270. return total;
  1271. return max(rq->cpu_load[type-1], total);
  1272. }
  1273. static unsigned long power_of(int cpu)
  1274. {
  1275. return cpu_rq(cpu)->cpu_power;
  1276. }
  1277. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1278. static unsigned long cpu_avg_load_per_task(int cpu)
  1279. {
  1280. struct rq *rq = cpu_rq(cpu);
  1281. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1282. if (nr_running)
  1283. rq->avg_load_per_task = rq->load.weight / nr_running;
  1284. else
  1285. rq->avg_load_per_task = 0;
  1286. return rq->avg_load_per_task;
  1287. }
  1288. #ifdef CONFIG_FAIR_GROUP_SCHED
  1289. static __read_mostly unsigned long __percpu *update_shares_data;
  1290. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1291. /*
  1292. * Calculate and set the cpu's group shares.
  1293. */
  1294. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1295. unsigned long sd_shares,
  1296. unsigned long sd_rq_weight,
  1297. unsigned long *usd_rq_weight)
  1298. {
  1299. unsigned long shares, rq_weight;
  1300. int boost = 0;
  1301. rq_weight = usd_rq_weight[cpu];
  1302. if (!rq_weight) {
  1303. boost = 1;
  1304. rq_weight = NICE_0_LOAD;
  1305. }
  1306. /*
  1307. * \Sum_j shares_j * rq_weight_i
  1308. * shares_i = -----------------------------
  1309. * \Sum_j rq_weight_j
  1310. */
  1311. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1312. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1313. if (abs(shares - tg->se[cpu]->load.weight) >
  1314. sysctl_sched_shares_thresh) {
  1315. struct rq *rq = cpu_rq(cpu);
  1316. unsigned long flags;
  1317. raw_spin_lock_irqsave(&rq->lock, flags);
  1318. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1319. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1320. __set_se_shares(tg->se[cpu], shares);
  1321. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1322. }
  1323. }
  1324. /*
  1325. * Re-compute the task group their per cpu shares over the given domain.
  1326. * This needs to be done in a bottom-up fashion because the rq weight of a
  1327. * parent group depends on the shares of its child groups.
  1328. */
  1329. static int tg_shares_up(struct task_group *tg, void *data)
  1330. {
  1331. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1332. unsigned long *usd_rq_weight;
  1333. struct sched_domain *sd = data;
  1334. unsigned long flags;
  1335. int i;
  1336. if (!tg->se[0])
  1337. return 0;
  1338. local_irq_save(flags);
  1339. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1340. for_each_cpu(i, sched_domain_span(sd)) {
  1341. weight = tg->cfs_rq[i]->load.weight;
  1342. usd_rq_weight[i] = weight;
  1343. rq_weight += weight;
  1344. /*
  1345. * If there are currently no tasks on the cpu pretend there
  1346. * is one of average load so that when a new task gets to
  1347. * run here it will not get delayed by group starvation.
  1348. */
  1349. if (!weight)
  1350. weight = NICE_0_LOAD;
  1351. sum_weight += weight;
  1352. shares += tg->cfs_rq[i]->shares;
  1353. }
  1354. if (!rq_weight)
  1355. rq_weight = sum_weight;
  1356. if ((!shares && rq_weight) || shares > tg->shares)
  1357. shares = tg->shares;
  1358. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1359. shares = tg->shares;
  1360. for_each_cpu(i, sched_domain_span(sd))
  1361. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1362. local_irq_restore(flags);
  1363. return 0;
  1364. }
  1365. /*
  1366. * Compute the cpu's hierarchical load factor for each task group.
  1367. * This needs to be done in a top-down fashion because the load of a child
  1368. * group is a fraction of its parents load.
  1369. */
  1370. static int tg_load_down(struct task_group *tg, void *data)
  1371. {
  1372. unsigned long load;
  1373. long cpu = (long)data;
  1374. if (!tg->parent) {
  1375. load = cpu_rq(cpu)->load.weight;
  1376. } else {
  1377. load = tg->parent->cfs_rq[cpu]->h_load;
  1378. load *= tg->cfs_rq[cpu]->shares;
  1379. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1380. }
  1381. tg->cfs_rq[cpu]->h_load = load;
  1382. return 0;
  1383. }
  1384. static void update_shares(struct sched_domain *sd)
  1385. {
  1386. s64 elapsed;
  1387. u64 now;
  1388. if (root_task_group_empty())
  1389. return;
  1390. now = local_clock();
  1391. elapsed = now - sd->last_update;
  1392. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1393. sd->last_update = now;
  1394. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1395. }
  1396. }
  1397. static void update_h_load(long cpu)
  1398. {
  1399. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1400. }
  1401. #else
  1402. static inline void update_shares(struct sched_domain *sd)
  1403. {
  1404. }
  1405. #endif
  1406. #ifdef CONFIG_PREEMPT
  1407. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1408. /*
  1409. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1410. * way at the expense of forcing extra atomic operations in all
  1411. * invocations. This assures that the double_lock is acquired using the
  1412. * same underlying policy as the spinlock_t on this architecture, which
  1413. * reduces latency compared to the unfair variant below. However, it
  1414. * also adds more overhead and therefore may reduce throughput.
  1415. */
  1416. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1417. __releases(this_rq->lock)
  1418. __acquires(busiest->lock)
  1419. __acquires(this_rq->lock)
  1420. {
  1421. raw_spin_unlock(&this_rq->lock);
  1422. double_rq_lock(this_rq, busiest);
  1423. return 1;
  1424. }
  1425. #else
  1426. /*
  1427. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1428. * latency by eliminating extra atomic operations when the locks are
  1429. * already in proper order on entry. This favors lower cpu-ids and will
  1430. * grant the double lock to lower cpus over higher ids under contention,
  1431. * regardless of entry order into the function.
  1432. */
  1433. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1434. __releases(this_rq->lock)
  1435. __acquires(busiest->lock)
  1436. __acquires(this_rq->lock)
  1437. {
  1438. int ret = 0;
  1439. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1440. if (busiest < this_rq) {
  1441. raw_spin_unlock(&this_rq->lock);
  1442. raw_spin_lock(&busiest->lock);
  1443. raw_spin_lock_nested(&this_rq->lock,
  1444. SINGLE_DEPTH_NESTING);
  1445. ret = 1;
  1446. } else
  1447. raw_spin_lock_nested(&busiest->lock,
  1448. SINGLE_DEPTH_NESTING);
  1449. }
  1450. return ret;
  1451. }
  1452. #endif /* CONFIG_PREEMPT */
  1453. /*
  1454. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1455. */
  1456. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1457. {
  1458. if (unlikely(!irqs_disabled())) {
  1459. /* printk() doesn't work good under rq->lock */
  1460. raw_spin_unlock(&this_rq->lock);
  1461. BUG_ON(1);
  1462. }
  1463. return _double_lock_balance(this_rq, busiest);
  1464. }
  1465. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1466. __releases(busiest->lock)
  1467. {
  1468. raw_spin_unlock(&busiest->lock);
  1469. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1470. }
  1471. /*
  1472. * double_rq_lock - safely lock two runqueues
  1473. *
  1474. * Note this does not disable interrupts like task_rq_lock,
  1475. * you need to do so manually before calling.
  1476. */
  1477. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1478. __acquires(rq1->lock)
  1479. __acquires(rq2->lock)
  1480. {
  1481. BUG_ON(!irqs_disabled());
  1482. if (rq1 == rq2) {
  1483. raw_spin_lock(&rq1->lock);
  1484. __acquire(rq2->lock); /* Fake it out ;) */
  1485. } else {
  1486. if (rq1 < rq2) {
  1487. raw_spin_lock(&rq1->lock);
  1488. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1489. } else {
  1490. raw_spin_lock(&rq2->lock);
  1491. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1492. }
  1493. }
  1494. }
  1495. /*
  1496. * double_rq_unlock - safely unlock two runqueues
  1497. *
  1498. * Note this does not restore interrupts like task_rq_unlock,
  1499. * you need to do so manually after calling.
  1500. */
  1501. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1502. __releases(rq1->lock)
  1503. __releases(rq2->lock)
  1504. {
  1505. raw_spin_unlock(&rq1->lock);
  1506. if (rq1 != rq2)
  1507. raw_spin_unlock(&rq2->lock);
  1508. else
  1509. __release(rq2->lock);
  1510. }
  1511. #endif
  1512. #ifdef CONFIG_FAIR_GROUP_SCHED
  1513. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1514. {
  1515. #ifdef CONFIG_SMP
  1516. cfs_rq->shares = shares;
  1517. #endif
  1518. }
  1519. #endif
  1520. static void calc_load_account_idle(struct rq *this_rq);
  1521. static void update_sysctl(void);
  1522. static int get_update_sysctl_factor(void);
  1523. static void update_cpu_load(struct rq *this_rq);
  1524. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1525. {
  1526. set_task_rq(p, cpu);
  1527. #ifdef CONFIG_SMP
  1528. /*
  1529. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1530. * successfuly executed on another CPU. We must ensure that updates of
  1531. * per-task data have been completed by this moment.
  1532. */
  1533. smp_wmb();
  1534. task_thread_info(p)->cpu = cpu;
  1535. #endif
  1536. }
  1537. static const struct sched_class rt_sched_class;
  1538. #define sched_class_highest (&stop_sched_class)
  1539. #define for_each_class(class) \
  1540. for (class = sched_class_highest; class; class = class->next)
  1541. #include "sched_stats.h"
  1542. static void inc_nr_running(struct rq *rq)
  1543. {
  1544. rq->nr_running++;
  1545. }
  1546. static void dec_nr_running(struct rq *rq)
  1547. {
  1548. rq->nr_running--;
  1549. }
  1550. static void set_load_weight(struct task_struct *p)
  1551. {
  1552. /*
  1553. * SCHED_IDLE tasks get minimal weight:
  1554. */
  1555. if (p->policy == SCHED_IDLE) {
  1556. p->se.load.weight = WEIGHT_IDLEPRIO;
  1557. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1558. return;
  1559. }
  1560. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1561. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1562. }
  1563. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1564. {
  1565. update_rq_clock(rq);
  1566. sched_info_queued(p);
  1567. p->sched_class->enqueue_task(rq, p, flags);
  1568. p->se.on_rq = 1;
  1569. }
  1570. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1571. {
  1572. update_rq_clock(rq);
  1573. sched_info_dequeued(p);
  1574. p->sched_class->dequeue_task(rq, p, flags);
  1575. p->se.on_rq = 0;
  1576. }
  1577. /*
  1578. * activate_task - move a task to the runqueue.
  1579. */
  1580. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1581. {
  1582. if (task_contributes_to_load(p))
  1583. rq->nr_uninterruptible--;
  1584. enqueue_task(rq, p, flags);
  1585. inc_nr_running(rq);
  1586. }
  1587. /*
  1588. * deactivate_task - remove a task from the runqueue.
  1589. */
  1590. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1591. {
  1592. if (task_contributes_to_load(p))
  1593. rq->nr_uninterruptible++;
  1594. dequeue_task(rq, p, flags);
  1595. dec_nr_running(rq);
  1596. }
  1597. #include "sched_idletask.c"
  1598. #include "sched_fair.c"
  1599. #include "sched_rt.c"
  1600. #include "sched_stoptask.c"
  1601. #ifdef CONFIG_SCHED_DEBUG
  1602. # include "sched_debug.c"
  1603. #endif
  1604. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1605. {
  1606. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1607. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1608. if (stop) {
  1609. /*
  1610. * Make it appear like a SCHED_FIFO task, its something
  1611. * userspace knows about and won't get confused about.
  1612. *
  1613. * Also, it will make PI more or less work without too
  1614. * much confusion -- but then, stop work should not
  1615. * rely on PI working anyway.
  1616. */
  1617. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1618. stop->sched_class = &stop_sched_class;
  1619. }
  1620. cpu_rq(cpu)->stop = stop;
  1621. if (old_stop) {
  1622. /*
  1623. * Reset it back to a normal scheduling class so that
  1624. * it can die in pieces.
  1625. */
  1626. old_stop->sched_class = &rt_sched_class;
  1627. }
  1628. }
  1629. /*
  1630. * __normal_prio - return the priority that is based on the static prio
  1631. */
  1632. static inline int __normal_prio(struct task_struct *p)
  1633. {
  1634. return p->static_prio;
  1635. }
  1636. /*
  1637. * Calculate the expected normal priority: i.e. priority
  1638. * without taking RT-inheritance into account. Might be
  1639. * boosted by interactivity modifiers. Changes upon fork,
  1640. * setprio syscalls, and whenever the interactivity
  1641. * estimator recalculates.
  1642. */
  1643. static inline int normal_prio(struct task_struct *p)
  1644. {
  1645. int prio;
  1646. if (task_has_rt_policy(p))
  1647. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1648. else
  1649. prio = __normal_prio(p);
  1650. return prio;
  1651. }
  1652. /*
  1653. * Calculate the current priority, i.e. the priority
  1654. * taken into account by the scheduler. This value might
  1655. * be boosted by RT tasks, or might be boosted by
  1656. * interactivity modifiers. Will be RT if the task got
  1657. * RT-boosted. If not then it returns p->normal_prio.
  1658. */
  1659. static int effective_prio(struct task_struct *p)
  1660. {
  1661. p->normal_prio = normal_prio(p);
  1662. /*
  1663. * If we are RT tasks or we were boosted to RT priority,
  1664. * keep the priority unchanged. Otherwise, update priority
  1665. * to the normal priority:
  1666. */
  1667. if (!rt_prio(p->prio))
  1668. return p->normal_prio;
  1669. return p->prio;
  1670. }
  1671. /**
  1672. * task_curr - is this task currently executing on a CPU?
  1673. * @p: the task in question.
  1674. */
  1675. inline int task_curr(const struct task_struct *p)
  1676. {
  1677. return cpu_curr(task_cpu(p)) == p;
  1678. }
  1679. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1680. const struct sched_class *prev_class,
  1681. int oldprio, int running)
  1682. {
  1683. if (prev_class != p->sched_class) {
  1684. if (prev_class->switched_from)
  1685. prev_class->switched_from(rq, p, running);
  1686. p->sched_class->switched_to(rq, p, running);
  1687. } else
  1688. p->sched_class->prio_changed(rq, p, oldprio, running);
  1689. }
  1690. #ifdef CONFIG_SMP
  1691. /*
  1692. * Is this task likely cache-hot:
  1693. */
  1694. static int
  1695. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1696. {
  1697. s64 delta;
  1698. if (p->sched_class != &fair_sched_class)
  1699. return 0;
  1700. if (unlikely(p->policy == SCHED_IDLE))
  1701. return 0;
  1702. /*
  1703. * Buddy candidates are cache hot:
  1704. */
  1705. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1706. (&p->se == cfs_rq_of(&p->se)->next ||
  1707. &p->se == cfs_rq_of(&p->se)->last))
  1708. return 1;
  1709. if (sysctl_sched_migration_cost == -1)
  1710. return 1;
  1711. if (sysctl_sched_migration_cost == 0)
  1712. return 0;
  1713. delta = now - p->se.exec_start;
  1714. return delta < (s64)sysctl_sched_migration_cost;
  1715. }
  1716. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1717. {
  1718. #ifdef CONFIG_SCHED_DEBUG
  1719. /*
  1720. * We should never call set_task_cpu() on a blocked task,
  1721. * ttwu() will sort out the placement.
  1722. */
  1723. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1724. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1725. #endif
  1726. trace_sched_migrate_task(p, new_cpu);
  1727. if (task_cpu(p) != new_cpu) {
  1728. p->se.nr_migrations++;
  1729. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1730. }
  1731. __set_task_cpu(p, new_cpu);
  1732. }
  1733. struct migration_arg {
  1734. struct task_struct *task;
  1735. int dest_cpu;
  1736. };
  1737. static int migration_cpu_stop(void *data);
  1738. /*
  1739. * The task's runqueue lock must be held.
  1740. * Returns true if you have to wait for migration thread.
  1741. */
  1742. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1743. {
  1744. struct rq *rq = task_rq(p);
  1745. /*
  1746. * If the task is not on a runqueue (and not running), then
  1747. * the next wake-up will properly place the task.
  1748. */
  1749. return p->se.on_rq || task_running(rq, p);
  1750. }
  1751. /*
  1752. * wait_task_inactive - wait for a thread to unschedule.
  1753. *
  1754. * If @match_state is nonzero, it's the @p->state value just checked and
  1755. * not expected to change. If it changes, i.e. @p might have woken up,
  1756. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1757. * we return a positive number (its total switch count). If a second call
  1758. * a short while later returns the same number, the caller can be sure that
  1759. * @p has remained unscheduled the whole time.
  1760. *
  1761. * The caller must ensure that the task *will* unschedule sometime soon,
  1762. * else this function might spin for a *long* time. This function can't
  1763. * be called with interrupts off, or it may introduce deadlock with
  1764. * smp_call_function() if an IPI is sent by the same process we are
  1765. * waiting to become inactive.
  1766. */
  1767. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1768. {
  1769. unsigned long flags;
  1770. int running, on_rq;
  1771. unsigned long ncsw;
  1772. struct rq *rq;
  1773. for (;;) {
  1774. /*
  1775. * We do the initial early heuristics without holding
  1776. * any task-queue locks at all. We'll only try to get
  1777. * the runqueue lock when things look like they will
  1778. * work out!
  1779. */
  1780. rq = task_rq(p);
  1781. /*
  1782. * If the task is actively running on another CPU
  1783. * still, just relax and busy-wait without holding
  1784. * any locks.
  1785. *
  1786. * NOTE! Since we don't hold any locks, it's not
  1787. * even sure that "rq" stays as the right runqueue!
  1788. * But we don't care, since "task_running()" will
  1789. * return false if the runqueue has changed and p
  1790. * is actually now running somewhere else!
  1791. */
  1792. while (task_running(rq, p)) {
  1793. if (match_state && unlikely(p->state != match_state))
  1794. return 0;
  1795. cpu_relax();
  1796. }
  1797. /*
  1798. * Ok, time to look more closely! We need the rq
  1799. * lock now, to be *sure*. If we're wrong, we'll
  1800. * just go back and repeat.
  1801. */
  1802. rq = task_rq_lock(p, &flags);
  1803. trace_sched_wait_task(p);
  1804. running = task_running(rq, p);
  1805. on_rq = p->se.on_rq;
  1806. ncsw = 0;
  1807. if (!match_state || p->state == match_state)
  1808. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1809. task_rq_unlock(rq, &flags);
  1810. /*
  1811. * If it changed from the expected state, bail out now.
  1812. */
  1813. if (unlikely(!ncsw))
  1814. break;
  1815. /*
  1816. * Was it really running after all now that we
  1817. * checked with the proper locks actually held?
  1818. *
  1819. * Oops. Go back and try again..
  1820. */
  1821. if (unlikely(running)) {
  1822. cpu_relax();
  1823. continue;
  1824. }
  1825. /*
  1826. * It's not enough that it's not actively running,
  1827. * it must be off the runqueue _entirely_, and not
  1828. * preempted!
  1829. *
  1830. * So if it was still runnable (but just not actively
  1831. * running right now), it's preempted, and we should
  1832. * yield - it could be a while.
  1833. */
  1834. if (unlikely(on_rq)) {
  1835. schedule_timeout_uninterruptible(1);
  1836. continue;
  1837. }
  1838. /*
  1839. * Ahh, all good. It wasn't running, and it wasn't
  1840. * runnable, which means that it will never become
  1841. * running in the future either. We're all done!
  1842. */
  1843. break;
  1844. }
  1845. return ncsw;
  1846. }
  1847. /***
  1848. * kick_process - kick a running thread to enter/exit the kernel
  1849. * @p: the to-be-kicked thread
  1850. *
  1851. * Cause a process which is running on another CPU to enter
  1852. * kernel-mode, without any delay. (to get signals handled.)
  1853. *
  1854. * NOTE: this function doesnt have to take the runqueue lock,
  1855. * because all it wants to ensure is that the remote task enters
  1856. * the kernel. If the IPI races and the task has been migrated
  1857. * to another CPU then no harm is done and the purpose has been
  1858. * achieved as well.
  1859. */
  1860. void kick_process(struct task_struct *p)
  1861. {
  1862. int cpu;
  1863. preempt_disable();
  1864. cpu = task_cpu(p);
  1865. if ((cpu != smp_processor_id()) && task_curr(p))
  1866. smp_send_reschedule(cpu);
  1867. preempt_enable();
  1868. }
  1869. EXPORT_SYMBOL_GPL(kick_process);
  1870. #endif /* CONFIG_SMP */
  1871. /**
  1872. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1873. * @p: the task to evaluate
  1874. * @func: the function to be called
  1875. * @info: the function call argument
  1876. *
  1877. * Calls the function @func when the task is currently running. This might
  1878. * be on the current CPU, which just calls the function directly
  1879. */
  1880. void task_oncpu_function_call(struct task_struct *p,
  1881. void (*func) (void *info), void *info)
  1882. {
  1883. int cpu;
  1884. preempt_disable();
  1885. cpu = task_cpu(p);
  1886. if (task_curr(p))
  1887. smp_call_function_single(cpu, func, info, 1);
  1888. preempt_enable();
  1889. }
  1890. #ifdef CONFIG_SMP
  1891. /*
  1892. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1893. */
  1894. static int select_fallback_rq(int cpu, struct task_struct *p)
  1895. {
  1896. int dest_cpu;
  1897. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1898. /* Look for allowed, online CPU in same node. */
  1899. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1900. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1901. return dest_cpu;
  1902. /* Any allowed, online CPU? */
  1903. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1904. if (dest_cpu < nr_cpu_ids)
  1905. return dest_cpu;
  1906. /* No more Mr. Nice Guy. */
  1907. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1908. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1909. /*
  1910. * Don't tell them about moving exiting tasks or
  1911. * kernel threads (both mm NULL), since they never
  1912. * leave kernel.
  1913. */
  1914. if (p->mm && printk_ratelimit()) {
  1915. printk(KERN_INFO "process %d (%s) no "
  1916. "longer affine to cpu%d\n",
  1917. task_pid_nr(p), p->comm, cpu);
  1918. }
  1919. }
  1920. return dest_cpu;
  1921. }
  1922. /*
  1923. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1924. */
  1925. static inline
  1926. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1927. {
  1928. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1929. /*
  1930. * In order not to call set_task_cpu() on a blocking task we need
  1931. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1932. * cpu.
  1933. *
  1934. * Since this is common to all placement strategies, this lives here.
  1935. *
  1936. * [ this allows ->select_task() to simply return task_cpu(p) and
  1937. * not worry about this generic constraint ]
  1938. */
  1939. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1940. !cpu_online(cpu)))
  1941. cpu = select_fallback_rq(task_cpu(p), p);
  1942. return cpu;
  1943. }
  1944. static void update_avg(u64 *avg, u64 sample)
  1945. {
  1946. s64 diff = sample - *avg;
  1947. *avg += diff >> 3;
  1948. }
  1949. #endif
  1950. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1951. bool is_sync, bool is_migrate, bool is_local,
  1952. unsigned long en_flags)
  1953. {
  1954. schedstat_inc(p, se.statistics.nr_wakeups);
  1955. if (is_sync)
  1956. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1957. if (is_migrate)
  1958. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1959. if (is_local)
  1960. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1961. else
  1962. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1963. activate_task(rq, p, en_flags);
  1964. }
  1965. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1966. int wake_flags, bool success)
  1967. {
  1968. trace_sched_wakeup(p, success);
  1969. check_preempt_curr(rq, p, wake_flags);
  1970. p->state = TASK_RUNNING;
  1971. #ifdef CONFIG_SMP
  1972. if (p->sched_class->task_woken)
  1973. p->sched_class->task_woken(rq, p);
  1974. if (unlikely(rq->idle_stamp)) {
  1975. u64 delta = rq->clock - rq->idle_stamp;
  1976. u64 max = 2*sysctl_sched_migration_cost;
  1977. if (delta > max)
  1978. rq->avg_idle = max;
  1979. else
  1980. update_avg(&rq->avg_idle, delta);
  1981. rq->idle_stamp = 0;
  1982. }
  1983. #endif
  1984. /* if a worker is waking up, notify workqueue */
  1985. if ((p->flags & PF_WQ_WORKER) && success)
  1986. wq_worker_waking_up(p, cpu_of(rq));
  1987. }
  1988. /**
  1989. * try_to_wake_up - wake up a thread
  1990. * @p: the thread to be awakened
  1991. * @state: the mask of task states that can be woken
  1992. * @wake_flags: wake modifier flags (WF_*)
  1993. *
  1994. * Put it on the run-queue if it's not already there. The "current"
  1995. * thread is always on the run-queue (except when the actual
  1996. * re-schedule is in progress), and as such you're allowed to do
  1997. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1998. * runnable without the overhead of this.
  1999. *
  2000. * Returns %true if @p was woken up, %false if it was already running
  2001. * or @state didn't match @p's state.
  2002. */
  2003. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2004. int wake_flags)
  2005. {
  2006. int cpu, orig_cpu, this_cpu, success = 0;
  2007. unsigned long flags;
  2008. unsigned long en_flags = ENQUEUE_WAKEUP;
  2009. struct rq *rq;
  2010. this_cpu = get_cpu();
  2011. smp_wmb();
  2012. rq = task_rq_lock(p, &flags);
  2013. if (!(p->state & state))
  2014. goto out;
  2015. if (p->se.on_rq)
  2016. goto out_running;
  2017. cpu = task_cpu(p);
  2018. orig_cpu = cpu;
  2019. #ifdef CONFIG_SMP
  2020. if (unlikely(task_running(rq, p)))
  2021. goto out_activate;
  2022. /*
  2023. * In order to handle concurrent wakeups and release the rq->lock
  2024. * we put the task in TASK_WAKING state.
  2025. *
  2026. * First fix up the nr_uninterruptible count:
  2027. */
  2028. if (task_contributes_to_load(p)) {
  2029. if (likely(cpu_online(orig_cpu)))
  2030. rq->nr_uninterruptible--;
  2031. else
  2032. this_rq()->nr_uninterruptible--;
  2033. }
  2034. p->state = TASK_WAKING;
  2035. if (p->sched_class->task_waking) {
  2036. p->sched_class->task_waking(rq, p);
  2037. en_flags |= ENQUEUE_WAKING;
  2038. }
  2039. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2040. if (cpu != orig_cpu)
  2041. set_task_cpu(p, cpu);
  2042. __task_rq_unlock(rq);
  2043. rq = cpu_rq(cpu);
  2044. raw_spin_lock(&rq->lock);
  2045. /*
  2046. * We migrated the task without holding either rq->lock, however
  2047. * since the task is not on the task list itself, nobody else
  2048. * will try and migrate the task, hence the rq should match the
  2049. * cpu we just moved it to.
  2050. */
  2051. WARN_ON(task_cpu(p) != cpu);
  2052. WARN_ON(p->state != TASK_WAKING);
  2053. #ifdef CONFIG_SCHEDSTATS
  2054. schedstat_inc(rq, ttwu_count);
  2055. if (cpu == this_cpu)
  2056. schedstat_inc(rq, ttwu_local);
  2057. else {
  2058. struct sched_domain *sd;
  2059. for_each_domain(this_cpu, sd) {
  2060. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2061. schedstat_inc(sd, ttwu_wake_remote);
  2062. break;
  2063. }
  2064. }
  2065. }
  2066. #endif /* CONFIG_SCHEDSTATS */
  2067. out_activate:
  2068. #endif /* CONFIG_SMP */
  2069. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2070. cpu == this_cpu, en_flags);
  2071. success = 1;
  2072. out_running:
  2073. ttwu_post_activation(p, rq, wake_flags, success);
  2074. out:
  2075. task_rq_unlock(rq, &flags);
  2076. put_cpu();
  2077. return success;
  2078. }
  2079. /**
  2080. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2081. * @p: the thread to be awakened
  2082. *
  2083. * Put @p on the run-queue if it's not alredy there. The caller must
  2084. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2085. * the current task. this_rq() stays locked over invocation.
  2086. */
  2087. static void try_to_wake_up_local(struct task_struct *p)
  2088. {
  2089. struct rq *rq = task_rq(p);
  2090. bool success = false;
  2091. BUG_ON(rq != this_rq());
  2092. BUG_ON(p == current);
  2093. lockdep_assert_held(&rq->lock);
  2094. if (!(p->state & TASK_NORMAL))
  2095. return;
  2096. if (!p->se.on_rq) {
  2097. if (likely(!task_running(rq, p))) {
  2098. schedstat_inc(rq, ttwu_count);
  2099. schedstat_inc(rq, ttwu_local);
  2100. }
  2101. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2102. success = true;
  2103. }
  2104. ttwu_post_activation(p, rq, 0, success);
  2105. }
  2106. /**
  2107. * wake_up_process - Wake up a specific process
  2108. * @p: The process to be woken up.
  2109. *
  2110. * Attempt to wake up the nominated process and move it to the set of runnable
  2111. * processes. Returns 1 if the process was woken up, 0 if it was already
  2112. * running.
  2113. *
  2114. * It may be assumed that this function implies a write memory barrier before
  2115. * changing the task state if and only if any tasks are woken up.
  2116. */
  2117. int wake_up_process(struct task_struct *p)
  2118. {
  2119. return try_to_wake_up(p, TASK_ALL, 0);
  2120. }
  2121. EXPORT_SYMBOL(wake_up_process);
  2122. int wake_up_state(struct task_struct *p, unsigned int state)
  2123. {
  2124. return try_to_wake_up(p, state, 0);
  2125. }
  2126. /*
  2127. * Perform scheduler related setup for a newly forked process p.
  2128. * p is forked by current.
  2129. *
  2130. * __sched_fork() is basic setup used by init_idle() too:
  2131. */
  2132. static void __sched_fork(struct task_struct *p)
  2133. {
  2134. p->se.exec_start = 0;
  2135. p->se.sum_exec_runtime = 0;
  2136. p->se.prev_sum_exec_runtime = 0;
  2137. p->se.nr_migrations = 0;
  2138. #ifdef CONFIG_SCHEDSTATS
  2139. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2140. #endif
  2141. INIT_LIST_HEAD(&p->rt.run_list);
  2142. p->se.on_rq = 0;
  2143. INIT_LIST_HEAD(&p->se.group_node);
  2144. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2145. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2146. #endif
  2147. }
  2148. /*
  2149. * fork()/clone()-time setup:
  2150. */
  2151. void sched_fork(struct task_struct *p, int clone_flags)
  2152. {
  2153. int cpu = get_cpu();
  2154. __sched_fork(p);
  2155. /*
  2156. * We mark the process as running here. This guarantees that
  2157. * nobody will actually run it, and a signal or other external
  2158. * event cannot wake it up and insert it on the runqueue either.
  2159. */
  2160. p->state = TASK_RUNNING;
  2161. /*
  2162. * Revert to default priority/policy on fork if requested.
  2163. */
  2164. if (unlikely(p->sched_reset_on_fork)) {
  2165. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2166. p->policy = SCHED_NORMAL;
  2167. p->normal_prio = p->static_prio;
  2168. }
  2169. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2170. p->static_prio = NICE_TO_PRIO(0);
  2171. p->normal_prio = p->static_prio;
  2172. set_load_weight(p);
  2173. }
  2174. /*
  2175. * We don't need the reset flag anymore after the fork. It has
  2176. * fulfilled its duty:
  2177. */
  2178. p->sched_reset_on_fork = 0;
  2179. }
  2180. /*
  2181. * Make sure we do not leak PI boosting priority to the child.
  2182. */
  2183. p->prio = current->normal_prio;
  2184. if (!rt_prio(p->prio))
  2185. p->sched_class = &fair_sched_class;
  2186. if (p->sched_class->task_fork)
  2187. p->sched_class->task_fork(p);
  2188. /*
  2189. * The child is not yet in the pid-hash so no cgroup attach races,
  2190. * and the cgroup is pinned to this child due to cgroup_fork()
  2191. * is ran before sched_fork().
  2192. *
  2193. * Silence PROVE_RCU.
  2194. */
  2195. rcu_read_lock();
  2196. set_task_cpu(p, cpu);
  2197. rcu_read_unlock();
  2198. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2199. if (likely(sched_info_on()))
  2200. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2201. #endif
  2202. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2203. p->oncpu = 0;
  2204. #endif
  2205. #ifdef CONFIG_PREEMPT
  2206. /* Want to start with kernel preemption disabled. */
  2207. task_thread_info(p)->preempt_count = 1;
  2208. #endif
  2209. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2210. put_cpu();
  2211. }
  2212. /*
  2213. * wake_up_new_task - wake up a newly created task for the first time.
  2214. *
  2215. * This function will do some initial scheduler statistics housekeeping
  2216. * that must be done for every newly created context, then puts the task
  2217. * on the runqueue and wakes it.
  2218. */
  2219. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2220. {
  2221. unsigned long flags;
  2222. struct rq *rq;
  2223. int cpu __maybe_unused = get_cpu();
  2224. #ifdef CONFIG_SMP
  2225. rq = task_rq_lock(p, &flags);
  2226. p->state = TASK_WAKING;
  2227. /*
  2228. * Fork balancing, do it here and not earlier because:
  2229. * - cpus_allowed can change in the fork path
  2230. * - any previously selected cpu might disappear through hotplug
  2231. *
  2232. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2233. * without people poking at ->cpus_allowed.
  2234. */
  2235. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2236. set_task_cpu(p, cpu);
  2237. p->state = TASK_RUNNING;
  2238. task_rq_unlock(rq, &flags);
  2239. #endif
  2240. rq = task_rq_lock(p, &flags);
  2241. activate_task(rq, p, 0);
  2242. trace_sched_wakeup_new(p, 1);
  2243. check_preempt_curr(rq, p, WF_FORK);
  2244. #ifdef CONFIG_SMP
  2245. if (p->sched_class->task_woken)
  2246. p->sched_class->task_woken(rq, p);
  2247. #endif
  2248. task_rq_unlock(rq, &flags);
  2249. put_cpu();
  2250. }
  2251. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2252. /**
  2253. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2254. * @notifier: notifier struct to register
  2255. */
  2256. void preempt_notifier_register(struct preempt_notifier *notifier)
  2257. {
  2258. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2259. }
  2260. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2261. /**
  2262. * preempt_notifier_unregister - no longer interested in preemption notifications
  2263. * @notifier: notifier struct to unregister
  2264. *
  2265. * This is safe to call from within a preemption notifier.
  2266. */
  2267. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2268. {
  2269. hlist_del(&notifier->link);
  2270. }
  2271. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2272. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2273. {
  2274. struct preempt_notifier *notifier;
  2275. struct hlist_node *node;
  2276. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2277. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2278. }
  2279. static void
  2280. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2281. struct task_struct *next)
  2282. {
  2283. struct preempt_notifier *notifier;
  2284. struct hlist_node *node;
  2285. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2286. notifier->ops->sched_out(notifier, next);
  2287. }
  2288. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2289. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2290. {
  2291. }
  2292. static void
  2293. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2294. struct task_struct *next)
  2295. {
  2296. }
  2297. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2298. /**
  2299. * prepare_task_switch - prepare to switch tasks
  2300. * @rq: the runqueue preparing to switch
  2301. * @prev: the current task that is being switched out
  2302. * @next: the task we are going to switch to.
  2303. *
  2304. * This is called with the rq lock held and interrupts off. It must
  2305. * be paired with a subsequent finish_task_switch after the context
  2306. * switch.
  2307. *
  2308. * prepare_task_switch sets up locking and calls architecture specific
  2309. * hooks.
  2310. */
  2311. static inline void
  2312. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2313. struct task_struct *next)
  2314. {
  2315. fire_sched_out_preempt_notifiers(prev, next);
  2316. prepare_lock_switch(rq, next);
  2317. prepare_arch_switch(next);
  2318. }
  2319. /**
  2320. * finish_task_switch - clean up after a task-switch
  2321. * @rq: runqueue associated with task-switch
  2322. * @prev: the thread we just switched away from.
  2323. *
  2324. * finish_task_switch must be called after the context switch, paired
  2325. * with a prepare_task_switch call before the context switch.
  2326. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2327. * and do any other architecture-specific cleanup actions.
  2328. *
  2329. * Note that we may have delayed dropping an mm in context_switch(). If
  2330. * so, we finish that here outside of the runqueue lock. (Doing it
  2331. * with the lock held can cause deadlocks; see schedule() for
  2332. * details.)
  2333. */
  2334. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2335. __releases(rq->lock)
  2336. {
  2337. struct mm_struct *mm = rq->prev_mm;
  2338. long prev_state;
  2339. rq->prev_mm = NULL;
  2340. /*
  2341. * A task struct has one reference for the use as "current".
  2342. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2343. * schedule one last time. The schedule call will never return, and
  2344. * the scheduled task must drop that reference.
  2345. * The test for TASK_DEAD must occur while the runqueue locks are
  2346. * still held, otherwise prev could be scheduled on another cpu, die
  2347. * there before we look at prev->state, and then the reference would
  2348. * be dropped twice.
  2349. * Manfred Spraul <manfred@colorfullife.com>
  2350. */
  2351. prev_state = prev->state;
  2352. finish_arch_switch(prev);
  2353. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2354. local_irq_disable();
  2355. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2356. perf_event_task_sched_in(current);
  2357. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2358. local_irq_enable();
  2359. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2360. finish_lock_switch(rq, prev);
  2361. fire_sched_in_preempt_notifiers(current);
  2362. if (mm)
  2363. mmdrop(mm);
  2364. if (unlikely(prev_state == TASK_DEAD)) {
  2365. /*
  2366. * Remove function-return probe instances associated with this
  2367. * task and put them back on the free list.
  2368. */
  2369. kprobe_flush_task(prev);
  2370. put_task_struct(prev);
  2371. }
  2372. }
  2373. #ifdef CONFIG_SMP
  2374. /* assumes rq->lock is held */
  2375. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2376. {
  2377. if (prev->sched_class->pre_schedule)
  2378. prev->sched_class->pre_schedule(rq, prev);
  2379. }
  2380. /* rq->lock is NOT held, but preemption is disabled */
  2381. static inline void post_schedule(struct rq *rq)
  2382. {
  2383. if (rq->post_schedule) {
  2384. unsigned long flags;
  2385. raw_spin_lock_irqsave(&rq->lock, flags);
  2386. if (rq->curr->sched_class->post_schedule)
  2387. rq->curr->sched_class->post_schedule(rq);
  2388. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2389. rq->post_schedule = 0;
  2390. }
  2391. }
  2392. #else
  2393. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2394. {
  2395. }
  2396. static inline void post_schedule(struct rq *rq)
  2397. {
  2398. }
  2399. #endif
  2400. /**
  2401. * schedule_tail - first thing a freshly forked thread must call.
  2402. * @prev: the thread we just switched away from.
  2403. */
  2404. asmlinkage void schedule_tail(struct task_struct *prev)
  2405. __releases(rq->lock)
  2406. {
  2407. struct rq *rq = this_rq();
  2408. finish_task_switch(rq, prev);
  2409. /*
  2410. * FIXME: do we need to worry about rq being invalidated by the
  2411. * task_switch?
  2412. */
  2413. post_schedule(rq);
  2414. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2415. /* In this case, finish_task_switch does not reenable preemption */
  2416. preempt_enable();
  2417. #endif
  2418. if (current->set_child_tid)
  2419. put_user(task_pid_vnr(current), current->set_child_tid);
  2420. }
  2421. /*
  2422. * context_switch - switch to the new MM and the new
  2423. * thread's register state.
  2424. */
  2425. static inline void
  2426. context_switch(struct rq *rq, struct task_struct *prev,
  2427. struct task_struct *next)
  2428. {
  2429. struct mm_struct *mm, *oldmm;
  2430. prepare_task_switch(rq, prev, next);
  2431. trace_sched_switch(prev, next);
  2432. mm = next->mm;
  2433. oldmm = prev->active_mm;
  2434. /*
  2435. * For paravirt, this is coupled with an exit in switch_to to
  2436. * combine the page table reload and the switch backend into
  2437. * one hypercall.
  2438. */
  2439. arch_start_context_switch(prev);
  2440. if (!mm) {
  2441. next->active_mm = oldmm;
  2442. atomic_inc(&oldmm->mm_count);
  2443. enter_lazy_tlb(oldmm, next);
  2444. } else
  2445. switch_mm(oldmm, mm, next);
  2446. if (!prev->mm) {
  2447. prev->active_mm = NULL;
  2448. rq->prev_mm = oldmm;
  2449. }
  2450. /*
  2451. * Since the runqueue lock will be released by the next
  2452. * task (which is an invalid locking op but in the case
  2453. * of the scheduler it's an obvious special-case), so we
  2454. * do an early lockdep release here:
  2455. */
  2456. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2457. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2458. #endif
  2459. /* Here we just switch the register state and the stack. */
  2460. switch_to(prev, next, prev);
  2461. barrier();
  2462. /*
  2463. * this_rq must be evaluated again because prev may have moved
  2464. * CPUs since it called schedule(), thus the 'rq' on its stack
  2465. * frame will be invalid.
  2466. */
  2467. finish_task_switch(this_rq(), prev);
  2468. }
  2469. /*
  2470. * nr_running, nr_uninterruptible and nr_context_switches:
  2471. *
  2472. * externally visible scheduler statistics: current number of runnable
  2473. * threads, current number of uninterruptible-sleeping threads, total
  2474. * number of context switches performed since bootup.
  2475. */
  2476. unsigned long nr_running(void)
  2477. {
  2478. unsigned long i, sum = 0;
  2479. for_each_online_cpu(i)
  2480. sum += cpu_rq(i)->nr_running;
  2481. return sum;
  2482. }
  2483. unsigned long nr_uninterruptible(void)
  2484. {
  2485. unsigned long i, sum = 0;
  2486. for_each_possible_cpu(i)
  2487. sum += cpu_rq(i)->nr_uninterruptible;
  2488. /*
  2489. * Since we read the counters lockless, it might be slightly
  2490. * inaccurate. Do not allow it to go below zero though:
  2491. */
  2492. if (unlikely((long)sum < 0))
  2493. sum = 0;
  2494. return sum;
  2495. }
  2496. unsigned long long nr_context_switches(void)
  2497. {
  2498. int i;
  2499. unsigned long long sum = 0;
  2500. for_each_possible_cpu(i)
  2501. sum += cpu_rq(i)->nr_switches;
  2502. return sum;
  2503. }
  2504. unsigned long nr_iowait(void)
  2505. {
  2506. unsigned long i, sum = 0;
  2507. for_each_possible_cpu(i)
  2508. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2509. return sum;
  2510. }
  2511. unsigned long nr_iowait_cpu(int cpu)
  2512. {
  2513. struct rq *this = cpu_rq(cpu);
  2514. return atomic_read(&this->nr_iowait);
  2515. }
  2516. unsigned long this_cpu_load(void)
  2517. {
  2518. struct rq *this = this_rq();
  2519. return this->cpu_load[0];
  2520. }
  2521. /* Variables and functions for calc_load */
  2522. static atomic_long_t calc_load_tasks;
  2523. static unsigned long calc_load_update;
  2524. unsigned long avenrun[3];
  2525. EXPORT_SYMBOL(avenrun);
  2526. static long calc_load_fold_active(struct rq *this_rq)
  2527. {
  2528. long nr_active, delta = 0;
  2529. nr_active = this_rq->nr_running;
  2530. nr_active += (long) this_rq->nr_uninterruptible;
  2531. if (nr_active != this_rq->calc_load_active) {
  2532. delta = nr_active - this_rq->calc_load_active;
  2533. this_rq->calc_load_active = nr_active;
  2534. }
  2535. return delta;
  2536. }
  2537. #ifdef CONFIG_NO_HZ
  2538. /*
  2539. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2540. *
  2541. * When making the ILB scale, we should try to pull this in as well.
  2542. */
  2543. static atomic_long_t calc_load_tasks_idle;
  2544. static void calc_load_account_idle(struct rq *this_rq)
  2545. {
  2546. long delta;
  2547. delta = calc_load_fold_active(this_rq);
  2548. if (delta)
  2549. atomic_long_add(delta, &calc_load_tasks_idle);
  2550. }
  2551. static long calc_load_fold_idle(void)
  2552. {
  2553. long delta = 0;
  2554. /*
  2555. * Its got a race, we don't care...
  2556. */
  2557. if (atomic_long_read(&calc_load_tasks_idle))
  2558. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2559. return delta;
  2560. }
  2561. #else
  2562. static void calc_load_account_idle(struct rq *this_rq)
  2563. {
  2564. }
  2565. static inline long calc_load_fold_idle(void)
  2566. {
  2567. return 0;
  2568. }
  2569. #endif
  2570. /**
  2571. * get_avenrun - get the load average array
  2572. * @loads: pointer to dest load array
  2573. * @offset: offset to add
  2574. * @shift: shift count to shift the result left
  2575. *
  2576. * These values are estimates at best, so no need for locking.
  2577. */
  2578. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2579. {
  2580. loads[0] = (avenrun[0] + offset) << shift;
  2581. loads[1] = (avenrun[1] + offset) << shift;
  2582. loads[2] = (avenrun[2] + offset) << shift;
  2583. }
  2584. static unsigned long
  2585. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2586. {
  2587. load *= exp;
  2588. load += active * (FIXED_1 - exp);
  2589. return load >> FSHIFT;
  2590. }
  2591. /*
  2592. * calc_load - update the avenrun load estimates 10 ticks after the
  2593. * CPUs have updated calc_load_tasks.
  2594. */
  2595. void calc_global_load(void)
  2596. {
  2597. unsigned long upd = calc_load_update + 10;
  2598. long active;
  2599. if (time_before(jiffies, upd))
  2600. return;
  2601. active = atomic_long_read(&calc_load_tasks);
  2602. active = active > 0 ? active * FIXED_1 : 0;
  2603. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2604. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2605. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2606. calc_load_update += LOAD_FREQ;
  2607. }
  2608. /*
  2609. * Called from update_cpu_load() to periodically update this CPU's
  2610. * active count.
  2611. */
  2612. static void calc_load_account_active(struct rq *this_rq)
  2613. {
  2614. long delta;
  2615. if (time_before(jiffies, this_rq->calc_load_update))
  2616. return;
  2617. delta = calc_load_fold_active(this_rq);
  2618. delta += calc_load_fold_idle();
  2619. if (delta)
  2620. atomic_long_add(delta, &calc_load_tasks);
  2621. this_rq->calc_load_update += LOAD_FREQ;
  2622. }
  2623. /*
  2624. * The exact cpuload at various idx values, calculated at every tick would be
  2625. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2626. *
  2627. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2628. * on nth tick when cpu may be busy, then we have:
  2629. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2630. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2631. *
  2632. * decay_load_missed() below does efficient calculation of
  2633. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2634. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2635. *
  2636. * The calculation is approximated on a 128 point scale.
  2637. * degrade_zero_ticks is the number of ticks after which load at any
  2638. * particular idx is approximated to be zero.
  2639. * degrade_factor is a precomputed table, a row for each load idx.
  2640. * Each column corresponds to degradation factor for a power of two ticks,
  2641. * based on 128 point scale.
  2642. * Example:
  2643. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2644. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2645. *
  2646. * With this power of 2 load factors, we can degrade the load n times
  2647. * by looking at 1 bits in n and doing as many mult/shift instead of
  2648. * n mult/shifts needed by the exact degradation.
  2649. */
  2650. #define DEGRADE_SHIFT 7
  2651. static const unsigned char
  2652. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2653. static const unsigned char
  2654. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2655. {0, 0, 0, 0, 0, 0, 0, 0},
  2656. {64, 32, 8, 0, 0, 0, 0, 0},
  2657. {96, 72, 40, 12, 1, 0, 0},
  2658. {112, 98, 75, 43, 15, 1, 0},
  2659. {120, 112, 98, 76, 45, 16, 2} };
  2660. /*
  2661. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2662. * would be when CPU is idle and so we just decay the old load without
  2663. * adding any new load.
  2664. */
  2665. static unsigned long
  2666. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2667. {
  2668. int j = 0;
  2669. if (!missed_updates)
  2670. return load;
  2671. if (missed_updates >= degrade_zero_ticks[idx])
  2672. return 0;
  2673. if (idx == 1)
  2674. return load >> missed_updates;
  2675. while (missed_updates) {
  2676. if (missed_updates % 2)
  2677. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2678. missed_updates >>= 1;
  2679. j++;
  2680. }
  2681. return load;
  2682. }
  2683. /*
  2684. * Update rq->cpu_load[] statistics. This function is usually called every
  2685. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2686. * every tick. We fix it up based on jiffies.
  2687. */
  2688. static void update_cpu_load(struct rq *this_rq)
  2689. {
  2690. unsigned long this_load = this_rq->load.weight;
  2691. unsigned long curr_jiffies = jiffies;
  2692. unsigned long pending_updates;
  2693. int i, scale;
  2694. this_rq->nr_load_updates++;
  2695. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2696. if (curr_jiffies == this_rq->last_load_update_tick)
  2697. return;
  2698. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2699. this_rq->last_load_update_tick = curr_jiffies;
  2700. /* Update our load: */
  2701. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2702. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2703. unsigned long old_load, new_load;
  2704. /* scale is effectively 1 << i now, and >> i divides by scale */
  2705. old_load = this_rq->cpu_load[i];
  2706. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2707. new_load = this_load;
  2708. /*
  2709. * Round up the averaging division if load is increasing. This
  2710. * prevents us from getting stuck on 9 if the load is 10, for
  2711. * example.
  2712. */
  2713. if (new_load > old_load)
  2714. new_load += scale - 1;
  2715. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2716. }
  2717. sched_avg_update(this_rq);
  2718. }
  2719. static void update_cpu_load_active(struct rq *this_rq)
  2720. {
  2721. update_cpu_load(this_rq);
  2722. calc_load_account_active(this_rq);
  2723. }
  2724. #ifdef CONFIG_SMP
  2725. /*
  2726. * sched_exec - execve() is a valuable balancing opportunity, because at
  2727. * this point the task has the smallest effective memory and cache footprint.
  2728. */
  2729. void sched_exec(void)
  2730. {
  2731. struct task_struct *p = current;
  2732. unsigned long flags;
  2733. struct rq *rq;
  2734. int dest_cpu;
  2735. rq = task_rq_lock(p, &flags);
  2736. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2737. if (dest_cpu == smp_processor_id())
  2738. goto unlock;
  2739. /*
  2740. * select_task_rq() can race against ->cpus_allowed
  2741. */
  2742. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2743. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2744. struct migration_arg arg = { p, dest_cpu };
  2745. task_rq_unlock(rq, &flags);
  2746. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2747. return;
  2748. }
  2749. unlock:
  2750. task_rq_unlock(rq, &flags);
  2751. }
  2752. #endif
  2753. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2754. EXPORT_PER_CPU_SYMBOL(kstat);
  2755. /*
  2756. * Return any ns on the sched_clock that have not yet been accounted in
  2757. * @p in case that task is currently running.
  2758. *
  2759. * Called with task_rq_lock() held on @rq.
  2760. */
  2761. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2762. {
  2763. u64 ns = 0;
  2764. if (task_current(rq, p)) {
  2765. update_rq_clock(rq);
  2766. ns = rq->clock - p->se.exec_start;
  2767. if ((s64)ns < 0)
  2768. ns = 0;
  2769. }
  2770. return ns;
  2771. }
  2772. unsigned long long task_delta_exec(struct task_struct *p)
  2773. {
  2774. unsigned long flags;
  2775. struct rq *rq;
  2776. u64 ns = 0;
  2777. rq = task_rq_lock(p, &flags);
  2778. ns = do_task_delta_exec(p, rq);
  2779. task_rq_unlock(rq, &flags);
  2780. return ns;
  2781. }
  2782. /*
  2783. * Return accounted runtime for the task.
  2784. * In case the task is currently running, return the runtime plus current's
  2785. * pending runtime that have not been accounted yet.
  2786. */
  2787. unsigned long long task_sched_runtime(struct task_struct *p)
  2788. {
  2789. unsigned long flags;
  2790. struct rq *rq;
  2791. u64 ns = 0;
  2792. rq = task_rq_lock(p, &flags);
  2793. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2794. task_rq_unlock(rq, &flags);
  2795. return ns;
  2796. }
  2797. /*
  2798. * Return sum_exec_runtime for the thread group.
  2799. * In case the task is currently running, return the sum plus current's
  2800. * pending runtime that have not been accounted yet.
  2801. *
  2802. * Note that the thread group might have other running tasks as well,
  2803. * so the return value not includes other pending runtime that other
  2804. * running tasks might have.
  2805. */
  2806. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2807. {
  2808. struct task_cputime totals;
  2809. unsigned long flags;
  2810. struct rq *rq;
  2811. u64 ns;
  2812. rq = task_rq_lock(p, &flags);
  2813. thread_group_cputime(p, &totals);
  2814. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2815. task_rq_unlock(rq, &flags);
  2816. return ns;
  2817. }
  2818. /*
  2819. * Account user cpu time to a process.
  2820. * @p: the process that the cpu time gets accounted to
  2821. * @cputime: the cpu time spent in user space since the last update
  2822. * @cputime_scaled: cputime scaled by cpu frequency
  2823. */
  2824. void account_user_time(struct task_struct *p, cputime_t cputime,
  2825. cputime_t cputime_scaled)
  2826. {
  2827. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2828. cputime64_t tmp;
  2829. /* Add user time to process. */
  2830. p->utime = cputime_add(p->utime, cputime);
  2831. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2832. account_group_user_time(p, cputime);
  2833. /* Add user time to cpustat. */
  2834. tmp = cputime_to_cputime64(cputime);
  2835. if (TASK_NICE(p) > 0)
  2836. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2837. else
  2838. cpustat->user = cputime64_add(cpustat->user, tmp);
  2839. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2840. /* Account for user time used */
  2841. acct_update_integrals(p);
  2842. }
  2843. /*
  2844. * Account guest cpu time to a process.
  2845. * @p: the process that the cpu time gets accounted to
  2846. * @cputime: the cpu time spent in virtual machine since the last update
  2847. * @cputime_scaled: cputime scaled by cpu frequency
  2848. */
  2849. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2850. cputime_t cputime_scaled)
  2851. {
  2852. cputime64_t tmp;
  2853. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2854. tmp = cputime_to_cputime64(cputime);
  2855. /* Add guest time to process. */
  2856. p->utime = cputime_add(p->utime, cputime);
  2857. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2858. account_group_user_time(p, cputime);
  2859. p->gtime = cputime_add(p->gtime, cputime);
  2860. /* Add guest time to cpustat. */
  2861. if (TASK_NICE(p) > 0) {
  2862. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2863. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2864. } else {
  2865. cpustat->user = cputime64_add(cpustat->user, tmp);
  2866. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2867. }
  2868. }
  2869. /*
  2870. * Account system cpu time to a process.
  2871. * @p: the process that the cpu time gets accounted to
  2872. * @hardirq_offset: the offset to subtract from hardirq_count()
  2873. * @cputime: the cpu time spent in kernel space since the last update
  2874. * @cputime_scaled: cputime scaled by cpu frequency
  2875. */
  2876. void account_system_time(struct task_struct *p, int hardirq_offset,
  2877. cputime_t cputime, cputime_t cputime_scaled)
  2878. {
  2879. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2880. cputime64_t tmp;
  2881. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2882. account_guest_time(p, cputime, cputime_scaled);
  2883. return;
  2884. }
  2885. /* Add system time to process. */
  2886. p->stime = cputime_add(p->stime, cputime);
  2887. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2888. account_group_system_time(p, cputime);
  2889. /* Add system time to cpustat. */
  2890. tmp = cputime_to_cputime64(cputime);
  2891. if (hardirq_count() - hardirq_offset)
  2892. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2893. else if (in_serving_softirq())
  2894. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2895. else
  2896. cpustat->system = cputime64_add(cpustat->system, tmp);
  2897. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2898. /* Account for system time used */
  2899. acct_update_integrals(p);
  2900. }
  2901. /*
  2902. * Account for involuntary wait time.
  2903. * @steal: the cpu time spent in involuntary wait
  2904. */
  2905. void account_steal_time(cputime_t cputime)
  2906. {
  2907. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2908. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2909. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2910. }
  2911. /*
  2912. * Account for idle time.
  2913. * @cputime: the cpu time spent in idle wait
  2914. */
  2915. void account_idle_time(cputime_t cputime)
  2916. {
  2917. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2918. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2919. struct rq *rq = this_rq();
  2920. if (atomic_read(&rq->nr_iowait) > 0)
  2921. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2922. else
  2923. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2924. }
  2925. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2926. /*
  2927. * Account a single tick of cpu time.
  2928. * @p: the process that the cpu time gets accounted to
  2929. * @user_tick: indicates if the tick is a user or a system tick
  2930. */
  2931. void account_process_tick(struct task_struct *p, int user_tick)
  2932. {
  2933. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2934. struct rq *rq = this_rq();
  2935. if (user_tick)
  2936. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2937. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2938. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2939. one_jiffy_scaled);
  2940. else
  2941. account_idle_time(cputime_one_jiffy);
  2942. }
  2943. /*
  2944. * Account multiple ticks of steal time.
  2945. * @p: the process from which the cpu time has been stolen
  2946. * @ticks: number of stolen ticks
  2947. */
  2948. void account_steal_ticks(unsigned long ticks)
  2949. {
  2950. account_steal_time(jiffies_to_cputime(ticks));
  2951. }
  2952. /*
  2953. * Account multiple ticks of idle time.
  2954. * @ticks: number of stolen ticks
  2955. */
  2956. void account_idle_ticks(unsigned long ticks)
  2957. {
  2958. account_idle_time(jiffies_to_cputime(ticks));
  2959. }
  2960. #endif
  2961. /*
  2962. * Use precise platform statistics if available:
  2963. */
  2964. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2965. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2966. {
  2967. *ut = p->utime;
  2968. *st = p->stime;
  2969. }
  2970. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2971. {
  2972. struct task_cputime cputime;
  2973. thread_group_cputime(p, &cputime);
  2974. *ut = cputime.utime;
  2975. *st = cputime.stime;
  2976. }
  2977. #else
  2978. #ifndef nsecs_to_cputime
  2979. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2980. #endif
  2981. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2982. {
  2983. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2984. /*
  2985. * Use CFS's precise accounting:
  2986. */
  2987. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2988. if (total) {
  2989. u64 temp = rtime;
  2990. temp *= utime;
  2991. do_div(temp, total);
  2992. utime = (cputime_t)temp;
  2993. } else
  2994. utime = rtime;
  2995. /*
  2996. * Compare with previous values, to keep monotonicity:
  2997. */
  2998. p->prev_utime = max(p->prev_utime, utime);
  2999. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3000. *ut = p->prev_utime;
  3001. *st = p->prev_stime;
  3002. }
  3003. /*
  3004. * Must be called with siglock held.
  3005. */
  3006. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3007. {
  3008. struct signal_struct *sig = p->signal;
  3009. struct task_cputime cputime;
  3010. cputime_t rtime, utime, total;
  3011. thread_group_cputime(p, &cputime);
  3012. total = cputime_add(cputime.utime, cputime.stime);
  3013. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3014. if (total) {
  3015. u64 temp = rtime;
  3016. temp *= cputime.utime;
  3017. do_div(temp, total);
  3018. utime = (cputime_t)temp;
  3019. } else
  3020. utime = rtime;
  3021. sig->prev_utime = max(sig->prev_utime, utime);
  3022. sig->prev_stime = max(sig->prev_stime,
  3023. cputime_sub(rtime, sig->prev_utime));
  3024. *ut = sig->prev_utime;
  3025. *st = sig->prev_stime;
  3026. }
  3027. #endif
  3028. /*
  3029. * This function gets called by the timer code, with HZ frequency.
  3030. * We call it with interrupts disabled.
  3031. *
  3032. * It also gets called by the fork code, when changing the parent's
  3033. * timeslices.
  3034. */
  3035. void scheduler_tick(void)
  3036. {
  3037. int cpu = smp_processor_id();
  3038. struct rq *rq = cpu_rq(cpu);
  3039. struct task_struct *curr = rq->curr;
  3040. sched_clock_tick();
  3041. raw_spin_lock(&rq->lock);
  3042. update_rq_clock(rq);
  3043. update_cpu_load_active(rq);
  3044. curr->sched_class->task_tick(rq, curr, 0);
  3045. raw_spin_unlock(&rq->lock);
  3046. perf_event_task_tick(curr);
  3047. #ifdef CONFIG_SMP
  3048. rq->idle_at_tick = idle_cpu(cpu);
  3049. trigger_load_balance(rq, cpu);
  3050. #endif
  3051. }
  3052. notrace unsigned long get_parent_ip(unsigned long addr)
  3053. {
  3054. if (in_lock_functions(addr)) {
  3055. addr = CALLER_ADDR2;
  3056. if (in_lock_functions(addr))
  3057. addr = CALLER_ADDR3;
  3058. }
  3059. return addr;
  3060. }
  3061. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3062. defined(CONFIG_PREEMPT_TRACER))
  3063. void __kprobes add_preempt_count(int val)
  3064. {
  3065. #ifdef CONFIG_DEBUG_PREEMPT
  3066. /*
  3067. * Underflow?
  3068. */
  3069. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3070. return;
  3071. #endif
  3072. preempt_count() += val;
  3073. #ifdef CONFIG_DEBUG_PREEMPT
  3074. /*
  3075. * Spinlock count overflowing soon?
  3076. */
  3077. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3078. PREEMPT_MASK - 10);
  3079. #endif
  3080. if (preempt_count() == val)
  3081. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3082. }
  3083. EXPORT_SYMBOL(add_preempt_count);
  3084. void __kprobes sub_preempt_count(int val)
  3085. {
  3086. #ifdef CONFIG_DEBUG_PREEMPT
  3087. /*
  3088. * Underflow?
  3089. */
  3090. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3091. return;
  3092. /*
  3093. * Is the spinlock portion underflowing?
  3094. */
  3095. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3096. !(preempt_count() & PREEMPT_MASK)))
  3097. return;
  3098. #endif
  3099. if (preempt_count() == val)
  3100. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3101. preempt_count() -= val;
  3102. }
  3103. EXPORT_SYMBOL(sub_preempt_count);
  3104. #endif
  3105. /*
  3106. * Print scheduling while atomic bug:
  3107. */
  3108. static noinline void __schedule_bug(struct task_struct *prev)
  3109. {
  3110. struct pt_regs *regs = get_irq_regs();
  3111. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3112. prev->comm, prev->pid, preempt_count());
  3113. debug_show_held_locks(prev);
  3114. print_modules();
  3115. if (irqs_disabled())
  3116. print_irqtrace_events(prev);
  3117. if (regs)
  3118. show_regs(regs);
  3119. else
  3120. dump_stack();
  3121. }
  3122. /*
  3123. * Various schedule()-time debugging checks and statistics:
  3124. */
  3125. static inline void schedule_debug(struct task_struct *prev)
  3126. {
  3127. /*
  3128. * Test if we are atomic. Since do_exit() needs to call into
  3129. * schedule() atomically, we ignore that path for now.
  3130. * Otherwise, whine if we are scheduling when we should not be.
  3131. */
  3132. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3133. __schedule_bug(prev);
  3134. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3135. schedstat_inc(this_rq(), sched_count);
  3136. #ifdef CONFIG_SCHEDSTATS
  3137. if (unlikely(prev->lock_depth >= 0)) {
  3138. schedstat_inc(this_rq(), bkl_count);
  3139. schedstat_inc(prev, sched_info.bkl_count);
  3140. }
  3141. #endif
  3142. }
  3143. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3144. {
  3145. if (prev->se.on_rq)
  3146. update_rq_clock(rq);
  3147. rq->skip_clock_update = 0;
  3148. prev->sched_class->put_prev_task(rq, prev);
  3149. }
  3150. /*
  3151. * Pick up the highest-prio task:
  3152. */
  3153. static inline struct task_struct *
  3154. pick_next_task(struct rq *rq)
  3155. {
  3156. const struct sched_class *class;
  3157. struct task_struct *p;
  3158. /*
  3159. * Optimization: we know that if all tasks are in
  3160. * the fair class we can call that function directly:
  3161. */
  3162. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3163. p = fair_sched_class.pick_next_task(rq);
  3164. if (likely(p))
  3165. return p;
  3166. }
  3167. for_each_class(class) {
  3168. p = class->pick_next_task(rq);
  3169. if (p)
  3170. return p;
  3171. }
  3172. BUG(); /* the idle class will always have a runnable task */
  3173. }
  3174. /*
  3175. * schedule() is the main scheduler function.
  3176. */
  3177. asmlinkage void __sched schedule(void)
  3178. {
  3179. struct task_struct *prev, *next;
  3180. unsigned long *switch_count;
  3181. struct rq *rq;
  3182. int cpu;
  3183. need_resched:
  3184. preempt_disable();
  3185. cpu = smp_processor_id();
  3186. rq = cpu_rq(cpu);
  3187. rcu_note_context_switch(cpu);
  3188. prev = rq->curr;
  3189. release_kernel_lock(prev);
  3190. need_resched_nonpreemptible:
  3191. schedule_debug(prev);
  3192. if (sched_feat(HRTICK))
  3193. hrtick_clear(rq);
  3194. raw_spin_lock_irq(&rq->lock);
  3195. clear_tsk_need_resched(prev);
  3196. switch_count = &prev->nivcsw;
  3197. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3198. if (unlikely(signal_pending_state(prev->state, prev))) {
  3199. prev->state = TASK_RUNNING;
  3200. } else {
  3201. /*
  3202. * If a worker is going to sleep, notify and
  3203. * ask workqueue whether it wants to wake up a
  3204. * task to maintain concurrency. If so, wake
  3205. * up the task.
  3206. */
  3207. if (prev->flags & PF_WQ_WORKER) {
  3208. struct task_struct *to_wakeup;
  3209. to_wakeup = wq_worker_sleeping(prev, cpu);
  3210. if (to_wakeup)
  3211. try_to_wake_up_local(to_wakeup);
  3212. }
  3213. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3214. }
  3215. switch_count = &prev->nvcsw;
  3216. }
  3217. pre_schedule(rq, prev);
  3218. if (unlikely(!rq->nr_running))
  3219. idle_balance(cpu, rq);
  3220. put_prev_task(rq, prev);
  3221. next = pick_next_task(rq);
  3222. if (likely(prev != next)) {
  3223. sched_info_switch(prev, next);
  3224. perf_event_task_sched_out(prev, next);
  3225. rq->nr_switches++;
  3226. rq->curr = next;
  3227. ++*switch_count;
  3228. context_switch(rq, prev, next); /* unlocks the rq */
  3229. /*
  3230. * The context switch have flipped the stack from under us
  3231. * and restored the local variables which were saved when
  3232. * this task called schedule() in the past. prev == current
  3233. * is still correct, but it can be moved to another cpu/rq.
  3234. */
  3235. cpu = smp_processor_id();
  3236. rq = cpu_rq(cpu);
  3237. } else
  3238. raw_spin_unlock_irq(&rq->lock);
  3239. post_schedule(rq);
  3240. if (unlikely(reacquire_kernel_lock(prev)))
  3241. goto need_resched_nonpreemptible;
  3242. preempt_enable_no_resched();
  3243. if (need_resched())
  3244. goto need_resched;
  3245. }
  3246. EXPORT_SYMBOL(schedule);
  3247. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3248. /*
  3249. * Look out! "owner" is an entirely speculative pointer
  3250. * access and not reliable.
  3251. */
  3252. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3253. {
  3254. unsigned int cpu;
  3255. struct rq *rq;
  3256. if (!sched_feat(OWNER_SPIN))
  3257. return 0;
  3258. #ifdef CONFIG_DEBUG_PAGEALLOC
  3259. /*
  3260. * Need to access the cpu field knowing that
  3261. * DEBUG_PAGEALLOC could have unmapped it if
  3262. * the mutex owner just released it and exited.
  3263. */
  3264. if (probe_kernel_address(&owner->cpu, cpu))
  3265. return 0;
  3266. #else
  3267. cpu = owner->cpu;
  3268. #endif
  3269. /*
  3270. * Even if the access succeeded (likely case),
  3271. * the cpu field may no longer be valid.
  3272. */
  3273. if (cpu >= nr_cpumask_bits)
  3274. return 0;
  3275. /*
  3276. * We need to validate that we can do a
  3277. * get_cpu() and that we have the percpu area.
  3278. */
  3279. if (!cpu_online(cpu))
  3280. return 0;
  3281. rq = cpu_rq(cpu);
  3282. for (;;) {
  3283. /*
  3284. * Owner changed, break to re-assess state.
  3285. */
  3286. if (lock->owner != owner) {
  3287. /*
  3288. * If the lock has switched to a different owner,
  3289. * we likely have heavy contention. Return 0 to quit
  3290. * optimistic spinning and not contend further:
  3291. */
  3292. if (lock->owner)
  3293. return 0;
  3294. break;
  3295. }
  3296. /*
  3297. * Is that owner really running on that cpu?
  3298. */
  3299. if (task_thread_info(rq->curr) != owner || need_resched())
  3300. return 0;
  3301. cpu_relax();
  3302. }
  3303. return 1;
  3304. }
  3305. #endif
  3306. #ifdef CONFIG_PREEMPT
  3307. /*
  3308. * this is the entry point to schedule() from in-kernel preemption
  3309. * off of preempt_enable. Kernel preemptions off return from interrupt
  3310. * occur there and call schedule directly.
  3311. */
  3312. asmlinkage void __sched notrace preempt_schedule(void)
  3313. {
  3314. struct thread_info *ti = current_thread_info();
  3315. /*
  3316. * If there is a non-zero preempt_count or interrupts are disabled,
  3317. * we do not want to preempt the current task. Just return..
  3318. */
  3319. if (likely(ti->preempt_count || irqs_disabled()))
  3320. return;
  3321. do {
  3322. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3323. schedule();
  3324. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3325. /*
  3326. * Check again in case we missed a preemption opportunity
  3327. * between schedule and now.
  3328. */
  3329. barrier();
  3330. } while (need_resched());
  3331. }
  3332. EXPORT_SYMBOL(preempt_schedule);
  3333. /*
  3334. * this is the entry point to schedule() from kernel preemption
  3335. * off of irq context.
  3336. * Note, that this is called and return with irqs disabled. This will
  3337. * protect us against recursive calling from irq.
  3338. */
  3339. asmlinkage void __sched preempt_schedule_irq(void)
  3340. {
  3341. struct thread_info *ti = current_thread_info();
  3342. /* Catch callers which need to be fixed */
  3343. BUG_ON(ti->preempt_count || !irqs_disabled());
  3344. do {
  3345. add_preempt_count(PREEMPT_ACTIVE);
  3346. local_irq_enable();
  3347. schedule();
  3348. local_irq_disable();
  3349. sub_preempt_count(PREEMPT_ACTIVE);
  3350. /*
  3351. * Check again in case we missed a preemption opportunity
  3352. * between schedule and now.
  3353. */
  3354. barrier();
  3355. } while (need_resched());
  3356. }
  3357. #endif /* CONFIG_PREEMPT */
  3358. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3359. void *key)
  3360. {
  3361. return try_to_wake_up(curr->private, mode, wake_flags);
  3362. }
  3363. EXPORT_SYMBOL(default_wake_function);
  3364. /*
  3365. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3366. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3367. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3368. *
  3369. * There are circumstances in which we can try to wake a task which has already
  3370. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3371. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3372. */
  3373. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3374. int nr_exclusive, int wake_flags, void *key)
  3375. {
  3376. wait_queue_t *curr, *next;
  3377. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3378. unsigned flags = curr->flags;
  3379. if (curr->func(curr, mode, wake_flags, key) &&
  3380. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3381. break;
  3382. }
  3383. }
  3384. /**
  3385. * __wake_up - wake up threads blocked on a waitqueue.
  3386. * @q: the waitqueue
  3387. * @mode: which threads
  3388. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3389. * @key: is directly passed to the wakeup function
  3390. *
  3391. * It may be assumed that this function implies a write memory barrier before
  3392. * changing the task state if and only if any tasks are woken up.
  3393. */
  3394. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3395. int nr_exclusive, void *key)
  3396. {
  3397. unsigned long flags;
  3398. spin_lock_irqsave(&q->lock, flags);
  3399. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3400. spin_unlock_irqrestore(&q->lock, flags);
  3401. }
  3402. EXPORT_SYMBOL(__wake_up);
  3403. /*
  3404. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3405. */
  3406. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3407. {
  3408. __wake_up_common(q, mode, 1, 0, NULL);
  3409. }
  3410. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3411. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3412. {
  3413. __wake_up_common(q, mode, 1, 0, key);
  3414. }
  3415. /**
  3416. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3417. * @q: the waitqueue
  3418. * @mode: which threads
  3419. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3420. * @key: opaque value to be passed to wakeup targets
  3421. *
  3422. * The sync wakeup differs that the waker knows that it will schedule
  3423. * away soon, so while the target thread will be woken up, it will not
  3424. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3425. * with each other. This can prevent needless bouncing between CPUs.
  3426. *
  3427. * On UP it can prevent extra preemption.
  3428. *
  3429. * It may be assumed that this function implies a write memory barrier before
  3430. * changing the task state if and only if any tasks are woken up.
  3431. */
  3432. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3433. int nr_exclusive, void *key)
  3434. {
  3435. unsigned long flags;
  3436. int wake_flags = WF_SYNC;
  3437. if (unlikely(!q))
  3438. return;
  3439. if (unlikely(!nr_exclusive))
  3440. wake_flags = 0;
  3441. spin_lock_irqsave(&q->lock, flags);
  3442. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3443. spin_unlock_irqrestore(&q->lock, flags);
  3444. }
  3445. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3446. /*
  3447. * __wake_up_sync - see __wake_up_sync_key()
  3448. */
  3449. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3450. {
  3451. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3452. }
  3453. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3454. /**
  3455. * complete: - signals a single thread waiting on this completion
  3456. * @x: holds the state of this particular completion
  3457. *
  3458. * This will wake up a single thread waiting on this completion. Threads will be
  3459. * awakened in the same order in which they were queued.
  3460. *
  3461. * See also complete_all(), wait_for_completion() and related routines.
  3462. *
  3463. * It may be assumed that this function implies a write memory barrier before
  3464. * changing the task state if and only if any tasks are woken up.
  3465. */
  3466. void complete(struct completion *x)
  3467. {
  3468. unsigned long flags;
  3469. spin_lock_irqsave(&x->wait.lock, flags);
  3470. x->done++;
  3471. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3472. spin_unlock_irqrestore(&x->wait.lock, flags);
  3473. }
  3474. EXPORT_SYMBOL(complete);
  3475. /**
  3476. * complete_all: - signals all threads waiting on this completion
  3477. * @x: holds the state of this particular completion
  3478. *
  3479. * This will wake up all threads waiting on this particular completion event.
  3480. *
  3481. * It may be assumed that this function implies a write memory barrier before
  3482. * changing the task state if and only if any tasks are woken up.
  3483. */
  3484. void complete_all(struct completion *x)
  3485. {
  3486. unsigned long flags;
  3487. spin_lock_irqsave(&x->wait.lock, flags);
  3488. x->done += UINT_MAX/2;
  3489. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3490. spin_unlock_irqrestore(&x->wait.lock, flags);
  3491. }
  3492. EXPORT_SYMBOL(complete_all);
  3493. static inline long __sched
  3494. do_wait_for_common(struct completion *x, long timeout, int state)
  3495. {
  3496. if (!x->done) {
  3497. DECLARE_WAITQUEUE(wait, current);
  3498. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3499. do {
  3500. if (signal_pending_state(state, current)) {
  3501. timeout = -ERESTARTSYS;
  3502. break;
  3503. }
  3504. __set_current_state(state);
  3505. spin_unlock_irq(&x->wait.lock);
  3506. timeout = schedule_timeout(timeout);
  3507. spin_lock_irq(&x->wait.lock);
  3508. } while (!x->done && timeout);
  3509. __remove_wait_queue(&x->wait, &wait);
  3510. if (!x->done)
  3511. return timeout;
  3512. }
  3513. x->done--;
  3514. return timeout ?: 1;
  3515. }
  3516. static long __sched
  3517. wait_for_common(struct completion *x, long timeout, int state)
  3518. {
  3519. might_sleep();
  3520. spin_lock_irq(&x->wait.lock);
  3521. timeout = do_wait_for_common(x, timeout, state);
  3522. spin_unlock_irq(&x->wait.lock);
  3523. return timeout;
  3524. }
  3525. /**
  3526. * wait_for_completion: - waits for completion of a task
  3527. * @x: holds the state of this particular completion
  3528. *
  3529. * This waits to be signaled for completion of a specific task. It is NOT
  3530. * interruptible and there is no timeout.
  3531. *
  3532. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3533. * and interrupt capability. Also see complete().
  3534. */
  3535. void __sched wait_for_completion(struct completion *x)
  3536. {
  3537. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3538. }
  3539. EXPORT_SYMBOL(wait_for_completion);
  3540. /**
  3541. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3542. * @x: holds the state of this particular completion
  3543. * @timeout: timeout value in jiffies
  3544. *
  3545. * This waits for either a completion of a specific task to be signaled or for a
  3546. * specified timeout to expire. The timeout is in jiffies. It is not
  3547. * interruptible.
  3548. */
  3549. unsigned long __sched
  3550. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3551. {
  3552. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3553. }
  3554. EXPORT_SYMBOL(wait_for_completion_timeout);
  3555. /**
  3556. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3557. * @x: holds the state of this particular completion
  3558. *
  3559. * This waits for completion of a specific task to be signaled. It is
  3560. * interruptible.
  3561. */
  3562. int __sched wait_for_completion_interruptible(struct completion *x)
  3563. {
  3564. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3565. if (t == -ERESTARTSYS)
  3566. return t;
  3567. return 0;
  3568. }
  3569. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3570. /**
  3571. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3572. * @x: holds the state of this particular completion
  3573. * @timeout: timeout value in jiffies
  3574. *
  3575. * This waits for either a completion of a specific task to be signaled or for a
  3576. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3577. */
  3578. unsigned long __sched
  3579. wait_for_completion_interruptible_timeout(struct completion *x,
  3580. unsigned long timeout)
  3581. {
  3582. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3583. }
  3584. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3585. /**
  3586. * wait_for_completion_killable: - waits for completion of a task (killable)
  3587. * @x: holds the state of this particular completion
  3588. *
  3589. * This waits to be signaled for completion of a specific task. It can be
  3590. * interrupted by a kill signal.
  3591. */
  3592. int __sched wait_for_completion_killable(struct completion *x)
  3593. {
  3594. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3595. if (t == -ERESTARTSYS)
  3596. return t;
  3597. return 0;
  3598. }
  3599. EXPORT_SYMBOL(wait_for_completion_killable);
  3600. /**
  3601. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3602. * @x: holds the state of this particular completion
  3603. * @timeout: timeout value in jiffies
  3604. *
  3605. * This waits for either a completion of a specific task to be
  3606. * signaled or for a specified timeout to expire. It can be
  3607. * interrupted by a kill signal. The timeout is in jiffies.
  3608. */
  3609. unsigned long __sched
  3610. wait_for_completion_killable_timeout(struct completion *x,
  3611. unsigned long timeout)
  3612. {
  3613. return wait_for_common(x, timeout, TASK_KILLABLE);
  3614. }
  3615. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3616. /**
  3617. * try_wait_for_completion - try to decrement a completion without blocking
  3618. * @x: completion structure
  3619. *
  3620. * Returns: 0 if a decrement cannot be done without blocking
  3621. * 1 if a decrement succeeded.
  3622. *
  3623. * If a completion is being used as a counting completion,
  3624. * attempt to decrement the counter without blocking. This
  3625. * enables us to avoid waiting if the resource the completion
  3626. * is protecting is not available.
  3627. */
  3628. bool try_wait_for_completion(struct completion *x)
  3629. {
  3630. unsigned long flags;
  3631. int ret = 1;
  3632. spin_lock_irqsave(&x->wait.lock, flags);
  3633. if (!x->done)
  3634. ret = 0;
  3635. else
  3636. x->done--;
  3637. spin_unlock_irqrestore(&x->wait.lock, flags);
  3638. return ret;
  3639. }
  3640. EXPORT_SYMBOL(try_wait_for_completion);
  3641. /**
  3642. * completion_done - Test to see if a completion has any waiters
  3643. * @x: completion structure
  3644. *
  3645. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3646. * 1 if there are no waiters.
  3647. *
  3648. */
  3649. bool completion_done(struct completion *x)
  3650. {
  3651. unsigned long flags;
  3652. int ret = 1;
  3653. spin_lock_irqsave(&x->wait.lock, flags);
  3654. if (!x->done)
  3655. ret = 0;
  3656. spin_unlock_irqrestore(&x->wait.lock, flags);
  3657. return ret;
  3658. }
  3659. EXPORT_SYMBOL(completion_done);
  3660. static long __sched
  3661. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3662. {
  3663. unsigned long flags;
  3664. wait_queue_t wait;
  3665. init_waitqueue_entry(&wait, current);
  3666. __set_current_state(state);
  3667. spin_lock_irqsave(&q->lock, flags);
  3668. __add_wait_queue(q, &wait);
  3669. spin_unlock(&q->lock);
  3670. timeout = schedule_timeout(timeout);
  3671. spin_lock_irq(&q->lock);
  3672. __remove_wait_queue(q, &wait);
  3673. spin_unlock_irqrestore(&q->lock, flags);
  3674. return timeout;
  3675. }
  3676. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3677. {
  3678. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3679. }
  3680. EXPORT_SYMBOL(interruptible_sleep_on);
  3681. long __sched
  3682. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3683. {
  3684. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3685. }
  3686. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3687. void __sched sleep_on(wait_queue_head_t *q)
  3688. {
  3689. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3690. }
  3691. EXPORT_SYMBOL(sleep_on);
  3692. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3693. {
  3694. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3695. }
  3696. EXPORT_SYMBOL(sleep_on_timeout);
  3697. #ifdef CONFIG_RT_MUTEXES
  3698. /*
  3699. * rt_mutex_setprio - set the current priority of a task
  3700. * @p: task
  3701. * @prio: prio value (kernel-internal form)
  3702. *
  3703. * This function changes the 'effective' priority of a task. It does
  3704. * not touch ->normal_prio like __setscheduler().
  3705. *
  3706. * Used by the rt_mutex code to implement priority inheritance logic.
  3707. */
  3708. void rt_mutex_setprio(struct task_struct *p, int prio)
  3709. {
  3710. unsigned long flags;
  3711. int oldprio, on_rq, running;
  3712. struct rq *rq;
  3713. const struct sched_class *prev_class;
  3714. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3715. rq = task_rq_lock(p, &flags);
  3716. trace_sched_pi_setprio(p, prio);
  3717. oldprio = p->prio;
  3718. prev_class = p->sched_class;
  3719. on_rq = p->se.on_rq;
  3720. running = task_current(rq, p);
  3721. if (on_rq)
  3722. dequeue_task(rq, p, 0);
  3723. if (running)
  3724. p->sched_class->put_prev_task(rq, p);
  3725. if (rt_prio(prio))
  3726. p->sched_class = &rt_sched_class;
  3727. else
  3728. p->sched_class = &fair_sched_class;
  3729. p->prio = prio;
  3730. if (running)
  3731. p->sched_class->set_curr_task(rq);
  3732. if (on_rq) {
  3733. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3734. check_class_changed(rq, p, prev_class, oldprio, running);
  3735. }
  3736. task_rq_unlock(rq, &flags);
  3737. }
  3738. #endif
  3739. void set_user_nice(struct task_struct *p, long nice)
  3740. {
  3741. int old_prio, delta, on_rq;
  3742. unsigned long flags;
  3743. struct rq *rq;
  3744. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3745. return;
  3746. /*
  3747. * We have to be careful, if called from sys_setpriority(),
  3748. * the task might be in the middle of scheduling on another CPU.
  3749. */
  3750. rq = task_rq_lock(p, &flags);
  3751. /*
  3752. * The RT priorities are set via sched_setscheduler(), but we still
  3753. * allow the 'normal' nice value to be set - but as expected
  3754. * it wont have any effect on scheduling until the task is
  3755. * SCHED_FIFO/SCHED_RR:
  3756. */
  3757. if (task_has_rt_policy(p)) {
  3758. p->static_prio = NICE_TO_PRIO(nice);
  3759. goto out_unlock;
  3760. }
  3761. on_rq = p->se.on_rq;
  3762. if (on_rq)
  3763. dequeue_task(rq, p, 0);
  3764. p->static_prio = NICE_TO_PRIO(nice);
  3765. set_load_weight(p);
  3766. old_prio = p->prio;
  3767. p->prio = effective_prio(p);
  3768. delta = p->prio - old_prio;
  3769. if (on_rq) {
  3770. enqueue_task(rq, p, 0);
  3771. /*
  3772. * If the task increased its priority or is running and
  3773. * lowered its priority, then reschedule its CPU:
  3774. */
  3775. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3776. resched_task(rq->curr);
  3777. }
  3778. out_unlock:
  3779. task_rq_unlock(rq, &flags);
  3780. }
  3781. EXPORT_SYMBOL(set_user_nice);
  3782. /*
  3783. * can_nice - check if a task can reduce its nice value
  3784. * @p: task
  3785. * @nice: nice value
  3786. */
  3787. int can_nice(const struct task_struct *p, const int nice)
  3788. {
  3789. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3790. int nice_rlim = 20 - nice;
  3791. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3792. capable(CAP_SYS_NICE));
  3793. }
  3794. #ifdef __ARCH_WANT_SYS_NICE
  3795. /*
  3796. * sys_nice - change the priority of the current process.
  3797. * @increment: priority increment
  3798. *
  3799. * sys_setpriority is a more generic, but much slower function that
  3800. * does similar things.
  3801. */
  3802. SYSCALL_DEFINE1(nice, int, increment)
  3803. {
  3804. long nice, retval;
  3805. /*
  3806. * Setpriority might change our priority at the same moment.
  3807. * We don't have to worry. Conceptually one call occurs first
  3808. * and we have a single winner.
  3809. */
  3810. if (increment < -40)
  3811. increment = -40;
  3812. if (increment > 40)
  3813. increment = 40;
  3814. nice = TASK_NICE(current) + increment;
  3815. if (nice < -20)
  3816. nice = -20;
  3817. if (nice > 19)
  3818. nice = 19;
  3819. if (increment < 0 && !can_nice(current, nice))
  3820. return -EPERM;
  3821. retval = security_task_setnice(current, nice);
  3822. if (retval)
  3823. return retval;
  3824. set_user_nice(current, nice);
  3825. return 0;
  3826. }
  3827. #endif
  3828. /**
  3829. * task_prio - return the priority value of a given task.
  3830. * @p: the task in question.
  3831. *
  3832. * This is the priority value as seen by users in /proc.
  3833. * RT tasks are offset by -200. Normal tasks are centered
  3834. * around 0, value goes from -16 to +15.
  3835. */
  3836. int task_prio(const struct task_struct *p)
  3837. {
  3838. return p->prio - MAX_RT_PRIO;
  3839. }
  3840. /**
  3841. * task_nice - return the nice value of a given task.
  3842. * @p: the task in question.
  3843. */
  3844. int task_nice(const struct task_struct *p)
  3845. {
  3846. return TASK_NICE(p);
  3847. }
  3848. EXPORT_SYMBOL(task_nice);
  3849. /**
  3850. * idle_cpu - is a given cpu idle currently?
  3851. * @cpu: the processor in question.
  3852. */
  3853. int idle_cpu(int cpu)
  3854. {
  3855. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3856. }
  3857. /**
  3858. * idle_task - return the idle task for a given cpu.
  3859. * @cpu: the processor in question.
  3860. */
  3861. struct task_struct *idle_task(int cpu)
  3862. {
  3863. return cpu_rq(cpu)->idle;
  3864. }
  3865. /**
  3866. * find_process_by_pid - find a process with a matching PID value.
  3867. * @pid: the pid in question.
  3868. */
  3869. static struct task_struct *find_process_by_pid(pid_t pid)
  3870. {
  3871. return pid ? find_task_by_vpid(pid) : current;
  3872. }
  3873. /* Actually do priority change: must hold rq lock. */
  3874. static void
  3875. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3876. {
  3877. BUG_ON(p->se.on_rq);
  3878. p->policy = policy;
  3879. p->rt_priority = prio;
  3880. p->normal_prio = normal_prio(p);
  3881. /* we are holding p->pi_lock already */
  3882. p->prio = rt_mutex_getprio(p);
  3883. if (rt_prio(p->prio))
  3884. p->sched_class = &rt_sched_class;
  3885. else
  3886. p->sched_class = &fair_sched_class;
  3887. set_load_weight(p);
  3888. }
  3889. /*
  3890. * check the target process has a UID that matches the current process's
  3891. */
  3892. static bool check_same_owner(struct task_struct *p)
  3893. {
  3894. const struct cred *cred = current_cred(), *pcred;
  3895. bool match;
  3896. rcu_read_lock();
  3897. pcred = __task_cred(p);
  3898. match = (cred->euid == pcred->euid ||
  3899. cred->euid == pcred->uid);
  3900. rcu_read_unlock();
  3901. return match;
  3902. }
  3903. static int __sched_setscheduler(struct task_struct *p, int policy,
  3904. struct sched_param *param, bool user)
  3905. {
  3906. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3907. unsigned long flags;
  3908. const struct sched_class *prev_class;
  3909. struct rq *rq;
  3910. int reset_on_fork;
  3911. /* may grab non-irq protected spin_locks */
  3912. BUG_ON(in_interrupt());
  3913. recheck:
  3914. /* double check policy once rq lock held */
  3915. if (policy < 0) {
  3916. reset_on_fork = p->sched_reset_on_fork;
  3917. policy = oldpolicy = p->policy;
  3918. } else {
  3919. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3920. policy &= ~SCHED_RESET_ON_FORK;
  3921. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3922. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3923. policy != SCHED_IDLE)
  3924. return -EINVAL;
  3925. }
  3926. /*
  3927. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3928. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3929. * SCHED_BATCH and SCHED_IDLE is 0.
  3930. */
  3931. if (param->sched_priority < 0 ||
  3932. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3933. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3934. return -EINVAL;
  3935. if (rt_policy(policy) != (param->sched_priority != 0))
  3936. return -EINVAL;
  3937. /*
  3938. * Allow unprivileged RT tasks to decrease priority:
  3939. */
  3940. if (user && !capable(CAP_SYS_NICE)) {
  3941. if (rt_policy(policy)) {
  3942. unsigned long rlim_rtprio =
  3943. task_rlimit(p, RLIMIT_RTPRIO);
  3944. /* can't set/change the rt policy */
  3945. if (policy != p->policy && !rlim_rtprio)
  3946. return -EPERM;
  3947. /* can't increase priority */
  3948. if (param->sched_priority > p->rt_priority &&
  3949. param->sched_priority > rlim_rtprio)
  3950. return -EPERM;
  3951. }
  3952. /*
  3953. * Like positive nice levels, dont allow tasks to
  3954. * move out of SCHED_IDLE either:
  3955. */
  3956. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3957. return -EPERM;
  3958. /* can't change other user's priorities */
  3959. if (!check_same_owner(p))
  3960. return -EPERM;
  3961. /* Normal users shall not reset the sched_reset_on_fork flag */
  3962. if (p->sched_reset_on_fork && !reset_on_fork)
  3963. return -EPERM;
  3964. }
  3965. if (user) {
  3966. retval = security_task_setscheduler(p, policy, param);
  3967. if (retval)
  3968. return retval;
  3969. }
  3970. /*
  3971. * make sure no PI-waiters arrive (or leave) while we are
  3972. * changing the priority of the task:
  3973. */
  3974. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3975. /*
  3976. * To be able to change p->policy safely, the apropriate
  3977. * runqueue lock must be held.
  3978. */
  3979. rq = __task_rq_lock(p);
  3980. /*
  3981. * Changing the policy of the stop threads its a very bad idea
  3982. */
  3983. if (p == rq->stop) {
  3984. __task_rq_unlock(rq);
  3985. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3986. return -EINVAL;
  3987. }
  3988. #ifdef CONFIG_RT_GROUP_SCHED
  3989. if (user) {
  3990. /*
  3991. * Do not allow realtime tasks into groups that have no runtime
  3992. * assigned.
  3993. */
  3994. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3995. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3996. __task_rq_unlock(rq);
  3997. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3998. return -EPERM;
  3999. }
  4000. }
  4001. #endif
  4002. /* recheck policy now with rq lock held */
  4003. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4004. policy = oldpolicy = -1;
  4005. __task_rq_unlock(rq);
  4006. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4007. goto recheck;
  4008. }
  4009. on_rq = p->se.on_rq;
  4010. running = task_current(rq, p);
  4011. if (on_rq)
  4012. deactivate_task(rq, p, 0);
  4013. if (running)
  4014. p->sched_class->put_prev_task(rq, p);
  4015. p->sched_reset_on_fork = reset_on_fork;
  4016. oldprio = p->prio;
  4017. prev_class = p->sched_class;
  4018. __setscheduler(rq, p, policy, param->sched_priority);
  4019. if (running)
  4020. p->sched_class->set_curr_task(rq);
  4021. if (on_rq) {
  4022. activate_task(rq, p, 0);
  4023. check_class_changed(rq, p, prev_class, oldprio, running);
  4024. }
  4025. __task_rq_unlock(rq);
  4026. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4027. rt_mutex_adjust_pi(p);
  4028. return 0;
  4029. }
  4030. /**
  4031. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4032. * @p: the task in question.
  4033. * @policy: new policy.
  4034. * @param: structure containing the new RT priority.
  4035. *
  4036. * NOTE that the task may be already dead.
  4037. */
  4038. int sched_setscheduler(struct task_struct *p, int policy,
  4039. struct sched_param *param)
  4040. {
  4041. return __sched_setscheduler(p, policy, param, true);
  4042. }
  4043. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4044. /**
  4045. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4046. * @p: the task in question.
  4047. * @policy: new policy.
  4048. * @param: structure containing the new RT priority.
  4049. *
  4050. * Just like sched_setscheduler, only don't bother checking if the
  4051. * current context has permission. For example, this is needed in
  4052. * stop_machine(): we create temporary high priority worker threads,
  4053. * but our caller might not have that capability.
  4054. */
  4055. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4056. struct sched_param *param)
  4057. {
  4058. return __sched_setscheduler(p, policy, param, false);
  4059. }
  4060. static int
  4061. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4062. {
  4063. struct sched_param lparam;
  4064. struct task_struct *p;
  4065. int retval;
  4066. if (!param || pid < 0)
  4067. return -EINVAL;
  4068. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4069. return -EFAULT;
  4070. rcu_read_lock();
  4071. retval = -ESRCH;
  4072. p = find_process_by_pid(pid);
  4073. if (p != NULL)
  4074. retval = sched_setscheduler(p, policy, &lparam);
  4075. rcu_read_unlock();
  4076. return retval;
  4077. }
  4078. /**
  4079. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4080. * @pid: the pid in question.
  4081. * @policy: new policy.
  4082. * @param: structure containing the new RT priority.
  4083. */
  4084. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4085. struct sched_param __user *, param)
  4086. {
  4087. /* negative values for policy are not valid */
  4088. if (policy < 0)
  4089. return -EINVAL;
  4090. return do_sched_setscheduler(pid, policy, param);
  4091. }
  4092. /**
  4093. * sys_sched_setparam - set/change the RT priority of a thread
  4094. * @pid: the pid in question.
  4095. * @param: structure containing the new RT priority.
  4096. */
  4097. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4098. {
  4099. return do_sched_setscheduler(pid, -1, param);
  4100. }
  4101. /**
  4102. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4103. * @pid: the pid in question.
  4104. */
  4105. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4106. {
  4107. struct task_struct *p;
  4108. int retval;
  4109. if (pid < 0)
  4110. return -EINVAL;
  4111. retval = -ESRCH;
  4112. rcu_read_lock();
  4113. p = find_process_by_pid(pid);
  4114. if (p) {
  4115. retval = security_task_getscheduler(p);
  4116. if (!retval)
  4117. retval = p->policy
  4118. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4119. }
  4120. rcu_read_unlock();
  4121. return retval;
  4122. }
  4123. /**
  4124. * sys_sched_getparam - get the RT priority of a thread
  4125. * @pid: the pid in question.
  4126. * @param: structure containing the RT priority.
  4127. */
  4128. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4129. {
  4130. struct sched_param lp;
  4131. struct task_struct *p;
  4132. int retval;
  4133. if (!param || pid < 0)
  4134. return -EINVAL;
  4135. rcu_read_lock();
  4136. p = find_process_by_pid(pid);
  4137. retval = -ESRCH;
  4138. if (!p)
  4139. goto out_unlock;
  4140. retval = security_task_getscheduler(p);
  4141. if (retval)
  4142. goto out_unlock;
  4143. lp.sched_priority = p->rt_priority;
  4144. rcu_read_unlock();
  4145. /*
  4146. * This one might sleep, we cannot do it with a spinlock held ...
  4147. */
  4148. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4149. return retval;
  4150. out_unlock:
  4151. rcu_read_unlock();
  4152. return retval;
  4153. }
  4154. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4155. {
  4156. cpumask_var_t cpus_allowed, new_mask;
  4157. struct task_struct *p;
  4158. int retval;
  4159. get_online_cpus();
  4160. rcu_read_lock();
  4161. p = find_process_by_pid(pid);
  4162. if (!p) {
  4163. rcu_read_unlock();
  4164. put_online_cpus();
  4165. return -ESRCH;
  4166. }
  4167. /* Prevent p going away */
  4168. get_task_struct(p);
  4169. rcu_read_unlock();
  4170. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4171. retval = -ENOMEM;
  4172. goto out_put_task;
  4173. }
  4174. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4175. retval = -ENOMEM;
  4176. goto out_free_cpus_allowed;
  4177. }
  4178. retval = -EPERM;
  4179. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4180. goto out_unlock;
  4181. retval = security_task_setscheduler(p, 0, NULL);
  4182. if (retval)
  4183. goto out_unlock;
  4184. cpuset_cpus_allowed(p, cpus_allowed);
  4185. cpumask_and(new_mask, in_mask, cpus_allowed);
  4186. again:
  4187. retval = set_cpus_allowed_ptr(p, new_mask);
  4188. if (!retval) {
  4189. cpuset_cpus_allowed(p, cpus_allowed);
  4190. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4191. /*
  4192. * We must have raced with a concurrent cpuset
  4193. * update. Just reset the cpus_allowed to the
  4194. * cpuset's cpus_allowed
  4195. */
  4196. cpumask_copy(new_mask, cpus_allowed);
  4197. goto again;
  4198. }
  4199. }
  4200. out_unlock:
  4201. free_cpumask_var(new_mask);
  4202. out_free_cpus_allowed:
  4203. free_cpumask_var(cpus_allowed);
  4204. out_put_task:
  4205. put_task_struct(p);
  4206. put_online_cpus();
  4207. return retval;
  4208. }
  4209. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4210. struct cpumask *new_mask)
  4211. {
  4212. if (len < cpumask_size())
  4213. cpumask_clear(new_mask);
  4214. else if (len > cpumask_size())
  4215. len = cpumask_size();
  4216. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4217. }
  4218. /**
  4219. * sys_sched_setaffinity - set the cpu affinity of a process
  4220. * @pid: pid of the process
  4221. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4222. * @user_mask_ptr: user-space pointer to the new cpu mask
  4223. */
  4224. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4225. unsigned long __user *, user_mask_ptr)
  4226. {
  4227. cpumask_var_t new_mask;
  4228. int retval;
  4229. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4230. return -ENOMEM;
  4231. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4232. if (retval == 0)
  4233. retval = sched_setaffinity(pid, new_mask);
  4234. free_cpumask_var(new_mask);
  4235. return retval;
  4236. }
  4237. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4238. {
  4239. struct task_struct *p;
  4240. unsigned long flags;
  4241. struct rq *rq;
  4242. int retval;
  4243. get_online_cpus();
  4244. rcu_read_lock();
  4245. retval = -ESRCH;
  4246. p = find_process_by_pid(pid);
  4247. if (!p)
  4248. goto out_unlock;
  4249. retval = security_task_getscheduler(p);
  4250. if (retval)
  4251. goto out_unlock;
  4252. rq = task_rq_lock(p, &flags);
  4253. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4254. task_rq_unlock(rq, &flags);
  4255. out_unlock:
  4256. rcu_read_unlock();
  4257. put_online_cpus();
  4258. return retval;
  4259. }
  4260. /**
  4261. * sys_sched_getaffinity - get the cpu affinity of a process
  4262. * @pid: pid of the process
  4263. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4264. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4265. */
  4266. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4267. unsigned long __user *, user_mask_ptr)
  4268. {
  4269. int ret;
  4270. cpumask_var_t mask;
  4271. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4272. return -EINVAL;
  4273. if (len & (sizeof(unsigned long)-1))
  4274. return -EINVAL;
  4275. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4276. return -ENOMEM;
  4277. ret = sched_getaffinity(pid, mask);
  4278. if (ret == 0) {
  4279. size_t retlen = min_t(size_t, len, cpumask_size());
  4280. if (copy_to_user(user_mask_ptr, mask, retlen))
  4281. ret = -EFAULT;
  4282. else
  4283. ret = retlen;
  4284. }
  4285. free_cpumask_var(mask);
  4286. return ret;
  4287. }
  4288. /**
  4289. * sys_sched_yield - yield the current processor to other threads.
  4290. *
  4291. * This function yields the current CPU to other tasks. If there are no
  4292. * other threads running on this CPU then this function will return.
  4293. */
  4294. SYSCALL_DEFINE0(sched_yield)
  4295. {
  4296. struct rq *rq = this_rq_lock();
  4297. schedstat_inc(rq, yld_count);
  4298. current->sched_class->yield_task(rq);
  4299. /*
  4300. * Since we are going to call schedule() anyway, there's
  4301. * no need to preempt or enable interrupts:
  4302. */
  4303. __release(rq->lock);
  4304. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4305. do_raw_spin_unlock(&rq->lock);
  4306. preempt_enable_no_resched();
  4307. schedule();
  4308. return 0;
  4309. }
  4310. static inline int should_resched(void)
  4311. {
  4312. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4313. }
  4314. static void __cond_resched(void)
  4315. {
  4316. add_preempt_count(PREEMPT_ACTIVE);
  4317. schedule();
  4318. sub_preempt_count(PREEMPT_ACTIVE);
  4319. }
  4320. int __sched _cond_resched(void)
  4321. {
  4322. if (should_resched()) {
  4323. __cond_resched();
  4324. return 1;
  4325. }
  4326. return 0;
  4327. }
  4328. EXPORT_SYMBOL(_cond_resched);
  4329. /*
  4330. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4331. * call schedule, and on return reacquire the lock.
  4332. *
  4333. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4334. * operations here to prevent schedule() from being called twice (once via
  4335. * spin_unlock(), once by hand).
  4336. */
  4337. int __cond_resched_lock(spinlock_t *lock)
  4338. {
  4339. int resched = should_resched();
  4340. int ret = 0;
  4341. lockdep_assert_held(lock);
  4342. if (spin_needbreak(lock) || resched) {
  4343. spin_unlock(lock);
  4344. if (resched)
  4345. __cond_resched();
  4346. else
  4347. cpu_relax();
  4348. ret = 1;
  4349. spin_lock(lock);
  4350. }
  4351. return ret;
  4352. }
  4353. EXPORT_SYMBOL(__cond_resched_lock);
  4354. int __sched __cond_resched_softirq(void)
  4355. {
  4356. BUG_ON(!in_softirq());
  4357. if (should_resched()) {
  4358. local_bh_enable();
  4359. __cond_resched();
  4360. local_bh_disable();
  4361. return 1;
  4362. }
  4363. return 0;
  4364. }
  4365. EXPORT_SYMBOL(__cond_resched_softirq);
  4366. /**
  4367. * yield - yield the current processor to other threads.
  4368. *
  4369. * This is a shortcut for kernel-space yielding - it marks the
  4370. * thread runnable and calls sys_sched_yield().
  4371. */
  4372. void __sched yield(void)
  4373. {
  4374. set_current_state(TASK_RUNNING);
  4375. sys_sched_yield();
  4376. }
  4377. EXPORT_SYMBOL(yield);
  4378. /*
  4379. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4380. * that process accounting knows that this is a task in IO wait state.
  4381. */
  4382. void __sched io_schedule(void)
  4383. {
  4384. struct rq *rq = raw_rq();
  4385. delayacct_blkio_start();
  4386. atomic_inc(&rq->nr_iowait);
  4387. current->in_iowait = 1;
  4388. schedule();
  4389. current->in_iowait = 0;
  4390. atomic_dec(&rq->nr_iowait);
  4391. delayacct_blkio_end();
  4392. }
  4393. EXPORT_SYMBOL(io_schedule);
  4394. long __sched io_schedule_timeout(long timeout)
  4395. {
  4396. struct rq *rq = raw_rq();
  4397. long ret;
  4398. delayacct_blkio_start();
  4399. atomic_inc(&rq->nr_iowait);
  4400. current->in_iowait = 1;
  4401. ret = schedule_timeout(timeout);
  4402. current->in_iowait = 0;
  4403. atomic_dec(&rq->nr_iowait);
  4404. delayacct_blkio_end();
  4405. return ret;
  4406. }
  4407. /**
  4408. * sys_sched_get_priority_max - return maximum RT priority.
  4409. * @policy: scheduling class.
  4410. *
  4411. * this syscall returns the maximum rt_priority that can be used
  4412. * by a given scheduling class.
  4413. */
  4414. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4415. {
  4416. int ret = -EINVAL;
  4417. switch (policy) {
  4418. case SCHED_FIFO:
  4419. case SCHED_RR:
  4420. ret = MAX_USER_RT_PRIO-1;
  4421. break;
  4422. case SCHED_NORMAL:
  4423. case SCHED_BATCH:
  4424. case SCHED_IDLE:
  4425. ret = 0;
  4426. break;
  4427. }
  4428. return ret;
  4429. }
  4430. /**
  4431. * sys_sched_get_priority_min - return minimum RT priority.
  4432. * @policy: scheduling class.
  4433. *
  4434. * this syscall returns the minimum rt_priority that can be used
  4435. * by a given scheduling class.
  4436. */
  4437. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4438. {
  4439. int ret = -EINVAL;
  4440. switch (policy) {
  4441. case SCHED_FIFO:
  4442. case SCHED_RR:
  4443. ret = 1;
  4444. break;
  4445. case SCHED_NORMAL:
  4446. case SCHED_BATCH:
  4447. case SCHED_IDLE:
  4448. ret = 0;
  4449. }
  4450. return ret;
  4451. }
  4452. /**
  4453. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4454. * @pid: pid of the process.
  4455. * @interval: userspace pointer to the timeslice value.
  4456. *
  4457. * this syscall writes the default timeslice value of a given process
  4458. * into the user-space timespec buffer. A value of '0' means infinity.
  4459. */
  4460. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4461. struct timespec __user *, interval)
  4462. {
  4463. struct task_struct *p;
  4464. unsigned int time_slice;
  4465. unsigned long flags;
  4466. struct rq *rq;
  4467. int retval;
  4468. struct timespec t;
  4469. if (pid < 0)
  4470. return -EINVAL;
  4471. retval = -ESRCH;
  4472. rcu_read_lock();
  4473. p = find_process_by_pid(pid);
  4474. if (!p)
  4475. goto out_unlock;
  4476. retval = security_task_getscheduler(p);
  4477. if (retval)
  4478. goto out_unlock;
  4479. rq = task_rq_lock(p, &flags);
  4480. time_slice = p->sched_class->get_rr_interval(rq, p);
  4481. task_rq_unlock(rq, &flags);
  4482. rcu_read_unlock();
  4483. jiffies_to_timespec(time_slice, &t);
  4484. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4485. return retval;
  4486. out_unlock:
  4487. rcu_read_unlock();
  4488. return retval;
  4489. }
  4490. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4491. void sched_show_task(struct task_struct *p)
  4492. {
  4493. unsigned long free = 0;
  4494. unsigned state;
  4495. state = p->state ? __ffs(p->state) + 1 : 0;
  4496. printk(KERN_INFO "%-13.13s %c", p->comm,
  4497. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4498. #if BITS_PER_LONG == 32
  4499. if (state == TASK_RUNNING)
  4500. printk(KERN_CONT " running ");
  4501. else
  4502. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4503. #else
  4504. if (state == TASK_RUNNING)
  4505. printk(KERN_CONT " running task ");
  4506. else
  4507. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4508. #endif
  4509. #ifdef CONFIG_DEBUG_STACK_USAGE
  4510. free = stack_not_used(p);
  4511. #endif
  4512. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4513. task_pid_nr(p), task_pid_nr(p->real_parent),
  4514. (unsigned long)task_thread_info(p)->flags);
  4515. show_stack(p, NULL);
  4516. }
  4517. void show_state_filter(unsigned long state_filter)
  4518. {
  4519. struct task_struct *g, *p;
  4520. #if BITS_PER_LONG == 32
  4521. printk(KERN_INFO
  4522. " task PC stack pid father\n");
  4523. #else
  4524. printk(KERN_INFO
  4525. " task PC stack pid father\n");
  4526. #endif
  4527. read_lock(&tasklist_lock);
  4528. do_each_thread(g, p) {
  4529. /*
  4530. * reset the NMI-timeout, listing all files on a slow
  4531. * console might take alot of time:
  4532. */
  4533. touch_nmi_watchdog();
  4534. if (!state_filter || (p->state & state_filter))
  4535. sched_show_task(p);
  4536. } while_each_thread(g, p);
  4537. touch_all_softlockup_watchdogs();
  4538. #ifdef CONFIG_SCHED_DEBUG
  4539. sysrq_sched_debug_show();
  4540. #endif
  4541. read_unlock(&tasklist_lock);
  4542. /*
  4543. * Only show locks if all tasks are dumped:
  4544. */
  4545. if (!state_filter)
  4546. debug_show_all_locks();
  4547. }
  4548. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4549. {
  4550. idle->sched_class = &idle_sched_class;
  4551. }
  4552. /**
  4553. * init_idle - set up an idle thread for a given CPU
  4554. * @idle: task in question
  4555. * @cpu: cpu the idle task belongs to
  4556. *
  4557. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4558. * flag, to make booting more robust.
  4559. */
  4560. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4561. {
  4562. struct rq *rq = cpu_rq(cpu);
  4563. unsigned long flags;
  4564. raw_spin_lock_irqsave(&rq->lock, flags);
  4565. __sched_fork(idle);
  4566. idle->state = TASK_RUNNING;
  4567. idle->se.exec_start = sched_clock();
  4568. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4569. __set_task_cpu(idle, cpu);
  4570. rq->curr = rq->idle = idle;
  4571. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4572. idle->oncpu = 1;
  4573. #endif
  4574. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4575. /* Set the preempt count _outside_ the spinlocks! */
  4576. #if defined(CONFIG_PREEMPT)
  4577. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4578. #else
  4579. task_thread_info(idle)->preempt_count = 0;
  4580. #endif
  4581. /*
  4582. * The idle tasks have their own, simple scheduling class:
  4583. */
  4584. idle->sched_class = &idle_sched_class;
  4585. ftrace_graph_init_task(idle);
  4586. }
  4587. /*
  4588. * In a system that switches off the HZ timer nohz_cpu_mask
  4589. * indicates which cpus entered this state. This is used
  4590. * in the rcu update to wait only for active cpus. For system
  4591. * which do not switch off the HZ timer nohz_cpu_mask should
  4592. * always be CPU_BITS_NONE.
  4593. */
  4594. cpumask_var_t nohz_cpu_mask;
  4595. /*
  4596. * Increase the granularity value when there are more CPUs,
  4597. * because with more CPUs the 'effective latency' as visible
  4598. * to users decreases. But the relationship is not linear,
  4599. * so pick a second-best guess by going with the log2 of the
  4600. * number of CPUs.
  4601. *
  4602. * This idea comes from the SD scheduler of Con Kolivas:
  4603. */
  4604. static int get_update_sysctl_factor(void)
  4605. {
  4606. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4607. unsigned int factor;
  4608. switch (sysctl_sched_tunable_scaling) {
  4609. case SCHED_TUNABLESCALING_NONE:
  4610. factor = 1;
  4611. break;
  4612. case SCHED_TUNABLESCALING_LINEAR:
  4613. factor = cpus;
  4614. break;
  4615. case SCHED_TUNABLESCALING_LOG:
  4616. default:
  4617. factor = 1 + ilog2(cpus);
  4618. break;
  4619. }
  4620. return factor;
  4621. }
  4622. static void update_sysctl(void)
  4623. {
  4624. unsigned int factor = get_update_sysctl_factor();
  4625. #define SET_SYSCTL(name) \
  4626. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4627. SET_SYSCTL(sched_min_granularity);
  4628. SET_SYSCTL(sched_latency);
  4629. SET_SYSCTL(sched_wakeup_granularity);
  4630. SET_SYSCTL(sched_shares_ratelimit);
  4631. #undef SET_SYSCTL
  4632. }
  4633. static inline void sched_init_granularity(void)
  4634. {
  4635. update_sysctl();
  4636. }
  4637. #ifdef CONFIG_SMP
  4638. /*
  4639. * This is how migration works:
  4640. *
  4641. * 1) we invoke migration_cpu_stop() on the target CPU using
  4642. * stop_one_cpu().
  4643. * 2) stopper starts to run (implicitly forcing the migrated thread
  4644. * off the CPU)
  4645. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4646. * 4) if it's in the wrong runqueue then the migration thread removes
  4647. * it and puts it into the right queue.
  4648. * 5) stopper completes and stop_one_cpu() returns and the migration
  4649. * is done.
  4650. */
  4651. /*
  4652. * Change a given task's CPU affinity. Migrate the thread to a
  4653. * proper CPU and schedule it away if the CPU it's executing on
  4654. * is removed from the allowed bitmask.
  4655. *
  4656. * NOTE: the caller must have a valid reference to the task, the
  4657. * task must not exit() & deallocate itself prematurely. The
  4658. * call is not atomic; no spinlocks may be held.
  4659. */
  4660. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4661. {
  4662. unsigned long flags;
  4663. struct rq *rq;
  4664. unsigned int dest_cpu;
  4665. int ret = 0;
  4666. /*
  4667. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4668. * drop the rq->lock and still rely on ->cpus_allowed.
  4669. */
  4670. again:
  4671. while (task_is_waking(p))
  4672. cpu_relax();
  4673. rq = task_rq_lock(p, &flags);
  4674. if (task_is_waking(p)) {
  4675. task_rq_unlock(rq, &flags);
  4676. goto again;
  4677. }
  4678. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4679. ret = -EINVAL;
  4680. goto out;
  4681. }
  4682. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4683. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4684. ret = -EINVAL;
  4685. goto out;
  4686. }
  4687. if (p->sched_class->set_cpus_allowed)
  4688. p->sched_class->set_cpus_allowed(p, new_mask);
  4689. else {
  4690. cpumask_copy(&p->cpus_allowed, new_mask);
  4691. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4692. }
  4693. /* Can the task run on the task's current CPU? If so, we're done */
  4694. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4695. goto out;
  4696. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4697. if (migrate_task(p, dest_cpu)) {
  4698. struct migration_arg arg = { p, dest_cpu };
  4699. /* Need help from migration thread: drop lock and wait. */
  4700. task_rq_unlock(rq, &flags);
  4701. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4702. tlb_migrate_finish(p->mm);
  4703. return 0;
  4704. }
  4705. out:
  4706. task_rq_unlock(rq, &flags);
  4707. return ret;
  4708. }
  4709. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4710. /*
  4711. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4712. * this because either it can't run here any more (set_cpus_allowed()
  4713. * away from this CPU, or CPU going down), or because we're
  4714. * attempting to rebalance this task on exec (sched_exec).
  4715. *
  4716. * So we race with normal scheduler movements, but that's OK, as long
  4717. * as the task is no longer on this CPU.
  4718. *
  4719. * Returns non-zero if task was successfully migrated.
  4720. */
  4721. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4722. {
  4723. struct rq *rq_dest, *rq_src;
  4724. int ret = 0;
  4725. if (unlikely(!cpu_active(dest_cpu)))
  4726. return ret;
  4727. rq_src = cpu_rq(src_cpu);
  4728. rq_dest = cpu_rq(dest_cpu);
  4729. double_rq_lock(rq_src, rq_dest);
  4730. /* Already moved. */
  4731. if (task_cpu(p) != src_cpu)
  4732. goto done;
  4733. /* Affinity changed (again). */
  4734. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4735. goto fail;
  4736. /*
  4737. * If we're not on a rq, the next wake-up will ensure we're
  4738. * placed properly.
  4739. */
  4740. if (p->se.on_rq) {
  4741. deactivate_task(rq_src, p, 0);
  4742. set_task_cpu(p, dest_cpu);
  4743. activate_task(rq_dest, p, 0);
  4744. check_preempt_curr(rq_dest, p, 0);
  4745. }
  4746. done:
  4747. ret = 1;
  4748. fail:
  4749. double_rq_unlock(rq_src, rq_dest);
  4750. return ret;
  4751. }
  4752. /*
  4753. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4754. * and performs thread migration by bumping thread off CPU then
  4755. * 'pushing' onto another runqueue.
  4756. */
  4757. static int migration_cpu_stop(void *data)
  4758. {
  4759. struct migration_arg *arg = data;
  4760. /*
  4761. * The original target cpu might have gone down and we might
  4762. * be on another cpu but it doesn't matter.
  4763. */
  4764. local_irq_disable();
  4765. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4766. local_irq_enable();
  4767. return 0;
  4768. }
  4769. #ifdef CONFIG_HOTPLUG_CPU
  4770. /*
  4771. * Figure out where task on dead CPU should go, use force if necessary.
  4772. */
  4773. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4774. {
  4775. struct rq *rq = cpu_rq(dead_cpu);
  4776. int needs_cpu, uninitialized_var(dest_cpu);
  4777. unsigned long flags;
  4778. local_irq_save(flags);
  4779. raw_spin_lock(&rq->lock);
  4780. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4781. if (needs_cpu)
  4782. dest_cpu = select_fallback_rq(dead_cpu, p);
  4783. raw_spin_unlock(&rq->lock);
  4784. /*
  4785. * It can only fail if we race with set_cpus_allowed(),
  4786. * in the racer should migrate the task anyway.
  4787. */
  4788. if (needs_cpu)
  4789. __migrate_task(p, dead_cpu, dest_cpu);
  4790. local_irq_restore(flags);
  4791. }
  4792. /*
  4793. * While a dead CPU has no uninterruptible tasks queued at this point,
  4794. * it might still have a nonzero ->nr_uninterruptible counter, because
  4795. * for performance reasons the counter is not stricly tracking tasks to
  4796. * their home CPUs. So we just add the counter to another CPU's counter,
  4797. * to keep the global sum constant after CPU-down:
  4798. */
  4799. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4800. {
  4801. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4802. unsigned long flags;
  4803. local_irq_save(flags);
  4804. double_rq_lock(rq_src, rq_dest);
  4805. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4806. rq_src->nr_uninterruptible = 0;
  4807. double_rq_unlock(rq_src, rq_dest);
  4808. local_irq_restore(flags);
  4809. }
  4810. /* Run through task list and migrate tasks from the dead cpu. */
  4811. static void migrate_live_tasks(int src_cpu)
  4812. {
  4813. struct task_struct *p, *t;
  4814. read_lock(&tasklist_lock);
  4815. do_each_thread(t, p) {
  4816. if (p == current)
  4817. continue;
  4818. if (task_cpu(p) == src_cpu)
  4819. move_task_off_dead_cpu(src_cpu, p);
  4820. } while_each_thread(t, p);
  4821. read_unlock(&tasklist_lock);
  4822. }
  4823. /*
  4824. * Schedules idle task to be the next runnable task on current CPU.
  4825. * It does so by boosting its priority to highest possible.
  4826. * Used by CPU offline code.
  4827. */
  4828. void sched_idle_next(void)
  4829. {
  4830. int this_cpu = smp_processor_id();
  4831. struct rq *rq = cpu_rq(this_cpu);
  4832. struct task_struct *p = rq->idle;
  4833. unsigned long flags;
  4834. /* cpu has to be offline */
  4835. BUG_ON(cpu_online(this_cpu));
  4836. /*
  4837. * Strictly not necessary since rest of the CPUs are stopped by now
  4838. * and interrupts disabled on the current cpu.
  4839. */
  4840. raw_spin_lock_irqsave(&rq->lock, flags);
  4841. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4842. activate_task(rq, p, 0);
  4843. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4844. }
  4845. /*
  4846. * Ensures that the idle task is using init_mm right before its cpu goes
  4847. * offline.
  4848. */
  4849. void idle_task_exit(void)
  4850. {
  4851. struct mm_struct *mm = current->active_mm;
  4852. BUG_ON(cpu_online(smp_processor_id()));
  4853. if (mm != &init_mm)
  4854. switch_mm(mm, &init_mm, current);
  4855. mmdrop(mm);
  4856. }
  4857. /* called under rq->lock with disabled interrupts */
  4858. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4859. {
  4860. struct rq *rq = cpu_rq(dead_cpu);
  4861. /* Must be exiting, otherwise would be on tasklist. */
  4862. BUG_ON(!p->exit_state);
  4863. /* Cannot have done final schedule yet: would have vanished. */
  4864. BUG_ON(p->state == TASK_DEAD);
  4865. get_task_struct(p);
  4866. /*
  4867. * Drop lock around migration; if someone else moves it,
  4868. * that's OK. No task can be added to this CPU, so iteration is
  4869. * fine.
  4870. */
  4871. raw_spin_unlock_irq(&rq->lock);
  4872. move_task_off_dead_cpu(dead_cpu, p);
  4873. raw_spin_lock_irq(&rq->lock);
  4874. put_task_struct(p);
  4875. }
  4876. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4877. static void migrate_dead_tasks(unsigned int dead_cpu)
  4878. {
  4879. struct rq *rq = cpu_rq(dead_cpu);
  4880. struct task_struct *next;
  4881. for ( ; ; ) {
  4882. if (!rq->nr_running)
  4883. break;
  4884. next = pick_next_task(rq);
  4885. if (!next)
  4886. break;
  4887. next->sched_class->put_prev_task(rq, next);
  4888. migrate_dead(dead_cpu, next);
  4889. }
  4890. }
  4891. /*
  4892. * remove the tasks which were accounted by rq from calc_load_tasks.
  4893. */
  4894. static void calc_global_load_remove(struct rq *rq)
  4895. {
  4896. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4897. rq->calc_load_active = 0;
  4898. }
  4899. #endif /* CONFIG_HOTPLUG_CPU */
  4900. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4901. static struct ctl_table sd_ctl_dir[] = {
  4902. {
  4903. .procname = "sched_domain",
  4904. .mode = 0555,
  4905. },
  4906. {}
  4907. };
  4908. static struct ctl_table sd_ctl_root[] = {
  4909. {
  4910. .procname = "kernel",
  4911. .mode = 0555,
  4912. .child = sd_ctl_dir,
  4913. },
  4914. {}
  4915. };
  4916. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4917. {
  4918. struct ctl_table *entry =
  4919. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4920. return entry;
  4921. }
  4922. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4923. {
  4924. struct ctl_table *entry;
  4925. /*
  4926. * In the intermediate directories, both the child directory and
  4927. * procname are dynamically allocated and could fail but the mode
  4928. * will always be set. In the lowest directory the names are
  4929. * static strings and all have proc handlers.
  4930. */
  4931. for (entry = *tablep; entry->mode; entry++) {
  4932. if (entry->child)
  4933. sd_free_ctl_entry(&entry->child);
  4934. if (entry->proc_handler == NULL)
  4935. kfree(entry->procname);
  4936. }
  4937. kfree(*tablep);
  4938. *tablep = NULL;
  4939. }
  4940. static void
  4941. set_table_entry(struct ctl_table *entry,
  4942. const char *procname, void *data, int maxlen,
  4943. mode_t mode, proc_handler *proc_handler)
  4944. {
  4945. entry->procname = procname;
  4946. entry->data = data;
  4947. entry->maxlen = maxlen;
  4948. entry->mode = mode;
  4949. entry->proc_handler = proc_handler;
  4950. }
  4951. static struct ctl_table *
  4952. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4953. {
  4954. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4955. if (table == NULL)
  4956. return NULL;
  4957. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4958. sizeof(long), 0644, proc_doulongvec_minmax);
  4959. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4960. sizeof(long), 0644, proc_doulongvec_minmax);
  4961. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4962. sizeof(int), 0644, proc_dointvec_minmax);
  4963. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4964. sizeof(int), 0644, proc_dointvec_minmax);
  4965. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4966. sizeof(int), 0644, proc_dointvec_minmax);
  4967. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4968. sizeof(int), 0644, proc_dointvec_minmax);
  4969. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4970. sizeof(int), 0644, proc_dointvec_minmax);
  4971. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4972. sizeof(int), 0644, proc_dointvec_minmax);
  4973. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4974. sizeof(int), 0644, proc_dointvec_minmax);
  4975. set_table_entry(&table[9], "cache_nice_tries",
  4976. &sd->cache_nice_tries,
  4977. sizeof(int), 0644, proc_dointvec_minmax);
  4978. set_table_entry(&table[10], "flags", &sd->flags,
  4979. sizeof(int), 0644, proc_dointvec_minmax);
  4980. set_table_entry(&table[11], "name", sd->name,
  4981. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4982. /* &table[12] is terminator */
  4983. return table;
  4984. }
  4985. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4986. {
  4987. struct ctl_table *entry, *table;
  4988. struct sched_domain *sd;
  4989. int domain_num = 0, i;
  4990. char buf[32];
  4991. for_each_domain(cpu, sd)
  4992. domain_num++;
  4993. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4994. if (table == NULL)
  4995. return NULL;
  4996. i = 0;
  4997. for_each_domain(cpu, sd) {
  4998. snprintf(buf, 32, "domain%d", i);
  4999. entry->procname = kstrdup(buf, GFP_KERNEL);
  5000. entry->mode = 0555;
  5001. entry->child = sd_alloc_ctl_domain_table(sd);
  5002. entry++;
  5003. i++;
  5004. }
  5005. return table;
  5006. }
  5007. static struct ctl_table_header *sd_sysctl_header;
  5008. static void register_sched_domain_sysctl(void)
  5009. {
  5010. int i, cpu_num = num_possible_cpus();
  5011. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5012. char buf[32];
  5013. WARN_ON(sd_ctl_dir[0].child);
  5014. sd_ctl_dir[0].child = entry;
  5015. if (entry == NULL)
  5016. return;
  5017. for_each_possible_cpu(i) {
  5018. snprintf(buf, 32, "cpu%d", i);
  5019. entry->procname = kstrdup(buf, GFP_KERNEL);
  5020. entry->mode = 0555;
  5021. entry->child = sd_alloc_ctl_cpu_table(i);
  5022. entry++;
  5023. }
  5024. WARN_ON(sd_sysctl_header);
  5025. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5026. }
  5027. /* may be called multiple times per register */
  5028. static void unregister_sched_domain_sysctl(void)
  5029. {
  5030. if (sd_sysctl_header)
  5031. unregister_sysctl_table(sd_sysctl_header);
  5032. sd_sysctl_header = NULL;
  5033. if (sd_ctl_dir[0].child)
  5034. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5035. }
  5036. #else
  5037. static void register_sched_domain_sysctl(void)
  5038. {
  5039. }
  5040. static void unregister_sched_domain_sysctl(void)
  5041. {
  5042. }
  5043. #endif
  5044. static void set_rq_online(struct rq *rq)
  5045. {
  5046. if (!rq->online) {
  5047. const struct sched_class *class;
  5048. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5049. rq->online = 1;
  5050. for_each_class(class) {
  5051. if (class->rq_online)
  5052. class->rq_online(rq);
  5053. }
  5054. }
  5055. }
  5056. static void set_rq_offline(struct rq *rq)
  5057. {
  5058. if (rq->online) {
  5059. const struct sched_class *class;
  5060. for_each_class(class) {
  5061. if (class->rq_offline)
  5062. class->rq_offline(rq);
  5063. }
  5064. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5065. rq->online = 0;
  5066. }
  5067. }
  5068. /*
  5069. * migration_call - callback that gets triggered when a CPU is added.
  5070. * Here we can start up the necessary migration thread for the new CPU.
  5071. */
  5072. static int __cpuinit
  5073. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5074. {
  5075. int cpu = (long)hcpu;
  5076. unsigned long flags;
  5077. struct rq *rq = cpu_rq(cpu);
  5078. switch (action) {
  5079. case CPU_UP_PREPARE:
  5080. case CPU_UP_PREPARE_FROZEN:
  5081. rq->calc_load_update = calc_load_update;
  5082. break;
  5083. case CPU_ONLINE:
  5084. case CPU_ONLINE_FROZEN:
  5085. /* Update our root-domain */
  5086. raw_spin_lock_irqsave(&rq->lock, flags);
  5087. if (rq->rd) {
  5088. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5089. set_rq_online(rq);
  5090. }
  5091. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5092. break;
  5093. #ifdef CONFIG_HOTPLUG_CPU
  5094. case CPU_DEAD:
  5095. case CPU_DEAD_FROZEN:
  5096. migrate_live_tasks(cpu);
  5097. /* Idle task back to normal (off runqueue, low prio) */
  5098. raw_spin_lock_irq(&rq->lock);
  5099. deactivate_task(rq, rq->idle, 0);
  5100. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5101. rq->idle->sched_class = &idle_sched_class;
  5102. migrate_dead_tasks(cpu);
  5103. raw_spin_unlock_irq(&rq->lock);
  5104. migrate_nr_uninterruptible(rq);
  5105. BUG_ON(rq->nr_running != 0);
  5106. calc_global_load_remove(rq);
  5107. break;
  5108. case CPU_DYING:
  5109. case CPU_DYING_FROZEN:
  5110. /* Update our root-domain */
  5111. raw_spin_lock_irqsave(&rq->lock, flags);
  5112. if (rq->rd) {
  5113. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5114. set_rq_offline(rq);
  5115. }
  5116. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5117. break;
  5118. #endif
  5119. }
  5120. return NOTIFY_OK;
  5121. }
  5122. /*
  5123. * Register at high priority so that task migration (migrate_all_tasks)
  5124. * happens before everything else. This has to be lower priority than
  5125. * the notifier in the perf_event subsystem, though.
  5126. */
  5127. static struct notifier_block __cpuinitdata migration_notifier = {
  5128. .notifier_call = migration_call,
  5129. .priority = CPU_PRI_MIGRATION,
  5130. };
  5131. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5132. unsigned long action, void *hcpu)
  5133. {
  5134. switch (action & ~CPU_TASKS_FROZEN) {
  5135. case CPU_ONLINE:
  5136. case CPU_DOWN_FAILED:
  5137. set_cpu_active((long)hcpu, true);
  5138. return NOTIFY_OK;
  5139. default:
  5140. return NOTIFY_DONE;
  5141. }
  5142. }
  5143. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5144. unsigned long action, void *hcpu)
  5145. {
  5146. switch (action & ~CPU_TASKS_FROZEN) {
  5147. case CPU_DOWN_PREPARE:
  5148. set_cpu_active((long)hcpu, false);
  5149. return NOTIFY_OK;
  5150. default:
  5151. return NOTIFY_DONE;
  5152. }
  5153. }
  5154. static int __init migration_init(void)
  5155. {
  5156. void *cpu = (void *)(long)smp_processor_id();
  5157. int err;
  5158. /* Initialize migration for the boot CPU */
  5159. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5160. BUG_ON(err == NOTIFY_BAD);
  5161. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5162. register_cpu_notifier(&migration_notifier);
  5163. /* Register cpu active notifiers */
  5164. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5165. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5166. return 0;
  5167. }
  5168. early_initcall(migration_init);
  5169. #endif
  5170. #ifdef CONFIG_SMP
  5171. #ifdef CONFIG_SCHED_DEBUG
  5172. static __read_mostly int sched_domain_debug_enabled;
  5173. static int __init sched_domain_debug_setup(char *str)
  5174. {
  5175. sched_domain_debug_enabled = 1;
  5176. return 0;
  5177. }
  5178. early_param("sched_debug", sched_domain_debug_setup);
  5179. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5180. struct cpumask *groupmask)
  5181. {
  5182. struct sched_group *group = sd->groups;
  5183. char str[256];
  5184. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5185. cpumask_clear(groupmask);
  5186. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5187. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5188. printk("does not load-balance\n");
  5189. if (sd->parent)
  5190. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5191. " has parent");
  5192. return -1;
  5193. }
  5194. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5195. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5196. printk(KERN_ERR "ERROR: domain->span does not contain "
  5197. "CPU%d\n", cpu);
  5198. }
  5199. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5200. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5201. " CPU%d\n", cpu);
  5202. }
  5203. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5204. do {
  5205. if (!group) {
  5206. printk("\n");
  5207. printk(KERN_ERR "ERROR: group is NULL\n");
  5208. break;
  5209. }
  5210. if (!group->cpu_power) {
  5211. printk(KERN_CONT "\n");
  5212. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5213. "set\n");
  5214. break;
  5215. }
  5216. if (!cpumask_weight(sched_group_cpus(group))) {
  5217. printk(KERN_CONT "\n");
  5218. printk(KERN_ERR "ERROR: empty group\n");
  5219. break;
  5220. }
  5221. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5222. printk(KERN_CONT "\n");
  5223. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5224. break;
  5225. }
  5226. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5227. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5228. printk(KERN_CONT " %s", str);
  5229. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5230. printk(KERN_CONT " (cpu_power = %d)",
  5231. group->cpu_power);
  5232. }
  5233. group = group->next;
  5234. } while (group != sd->groups);
  5235. printk(KERN_CONT "\n");
  5236. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5237. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5238. if (sd->parent &&
  5239. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5240. printk(KERN_ERR "ERROR: parent span is not a superset "
  5241. "of domain->span\n");
  5242. return 0;
  5243. }
  5244. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5245. {
  5246. cpumask_var_t groupmask;
  5247. int level = 0;
  5248. if (!sched_domain_debug_enabled)
  5249. return;
  5250. if (!sd) {
  5251. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5252. return;
  5253. }
  5254. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5255. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5256. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5257. return;
  5258. }
  5259. for (;;) {
  5260. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5261. break;
  5262. level++;
  5263. sd = sd->parent;
  5264. if (!sd)
  5265. break;
  5266. }
  5267. free_cpumask_var(groupmask);
  5268. }
  5269. #else /* !CONFIG_SCHED_DEBUG */
  5270. # define sched_domain_debug(sd, cpu) do { } while (0)
  5271. #endif /* CONFIG_SCHED_DEBUG */
  5272. static int sd_degenerate(struct sched_domain *sd)
  5273. {
  5274. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5275. return 1;
  5276. /* Following flags need at least 2 groups */
  5277. if (sd->flags & (SD_LOAD_BALANCE |
  5278. SD_BALANCE_NEWIDLE |
  5279. SD_BALANCE_FORK |
  5280. SD_BALANCE_EXEC |
  5281. SD_SHARE_CPUPOWER |
  5282. SD_SHARE_PKG_RESOURCES)) {
  5283. if (sd->groups != sd->groups->next)
  5284. return 0;
  5285. }
  5286. /* Following flags don't use groups */
  5287. if (sd->flags & (SD_WAKE_AFFINE))
  5288. return 0;
  5289. return 1;
  5290. }
  5291. static int
  5292. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5293. {
  5294. unsigned long cflags = sd->flags, pflags = parent->flags;
  5295. if (sd_degenerate(parent))
  5296. return 1;
  5297. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5298. return 0;
  5299. /* Flags needing groups don't count if only 1 group in parent */
  5300. if (parent->groups == parent->groups->next) {
  5301. pflags &= ~(SD_LOAD_BALANCE |
  5302. SD_BALANCE_NEWIDLE |
  5303. SD_BALANCE_FORK |
  5304. SD_BALANCE_EXEC |
  5305. SD_SHARE_CPUPOWER |
  5306. SD_SHARE_PKG_RESOURCES);
  5307. if (nr_node_ids == 1)
  5308. pflags &= ~SD_SERIALIZE;
  5309. }
  5310. if (~cflags & pflags)
  5311. return 0;
  5312. return 1;
  5313. }
  5314. static void free_rootdomain(struct root_domain *rd)
  5315. {
  5316. synchronize_sched();
  5317. cpupri_cleanup(&rd->cpupri);
  5318. free_cpumask_var(rd->rto_mask);
  5319. free_cpumask_var(rd->online);
  5320. free_cpumask_var(rd->span);
  5321. kfree(rd);
  5322. }
  5323. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5324. {
  5325. struct root_domain *old_rd = NULL;
  5326. unsigned long flags;
  5327. raw_spin_lock_irqsave(&rq->lock, flags);
  5328. if (rq->rd) {
  5329. old_rd = rq->rd;
  5330. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5331. set_rq_offline(rq);
  5332. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5333. /*
  5334. * If we dont want to free the old_rt yet then
  5335. * set old_rd to NULL to skip the freeing later
  5336. * in this function:
  5337. */
  5338. if (!atomic_dec_and_test(&old_rd->refcount))
  5339. old_rd = NULL;
  5340. }
  5341. atomic_inc(&rd->refcount);
  5342. rq->rd = rd;
  5343. cpumask_set_cpu(rq->cpu, rd->span);
  5344. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5345. set_rq_online(rq);
  5346. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5347. if (old_rd)
  5348. free_rootdomain(old_rd);
  5349. }
  5350. static int init_rootdomain(struct root_domain *rd)
  5351. {
  5352. memset(rd, 0, sizeof(*rd));
  5353. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5354. goto out;
  5355. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5356. goto free_span;
  5357. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5358. goto free_online;
  5359. if (cpupri_init(&rd->cpupri) != 0)
  5360. goto free_rto_mask;
  5361. return 0;
  5362. free_rto_mask:
  5363. free_cpumask_var(rd->rto_mask);
  5364. free_online:
  5365. free_cpumask_var(rd->online);
  5366. free_span:
  5367. free_cpumask_var(rd->span);
  5368. out:
  5369. return -ENOMEM;
  5370. }
  5371. static void init_defrootdomain(void)
  5372. {
  5373. init_rootdomain(&def_root_domain);
  5374. atomic_set(&def_root_domain.refcount, 1);
  5375. }
  5376. static struct root_domain *alloc_rootdomain(void)
  5377. {
  5378. struct root_domain *rd;
  5379. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5380. if (!rd)
  5381. return NULL;
  5382. if (init_rootdomain(rd) != 0) {
  5383. kfree(rd);
  5384. return NULL;
  5385. }
  5386. return rd;
  5387. }
  5388. /*
  5389. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5390. * hold the hotplug lock.
  5391. */
  5392. static void
  5393. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5394. {
  5395. struct rq *rq = cpu_rq(cpu);
  5396. struct sched_domain *tmp;
  5397. for (tmp = sd; tmp; tmp = tmp->parent)
  5398. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5399. /* Remove the sched domains which do not contribute to scheduling. */
  5400. for (tmp = sd; tmp; ) {
  5401. struct sched_domain *parent = tmp->parent;
  5402. if (!parent)
  5403. break;
  5404. if (sd_parent_degenerate(tmp, parent)) {
  5405. tmp->parent = parent->parent;
  5406. if (parent->parent)
  5407. parent->parent->child = tmp;
  5408. } else
  5409. tmp = tmp->parent;
  5410. }
  5411. if (sd && sd_degenerate(sd)) {
  5412. sd = sd->parent;
  5413. if (sd)
  5414. sd->child = NULL;
  5415. }
  5416. sched_domain_debug(sd, cpu);
  5417. rq_attach_root(rq, rd);
  5418. rcu_assign_pointer(rq->sd, sd);
  5419. }
  5420. /* cpus with isolated domains */
  5421. static cpumask_var_t cpu_isolated_map;
  5422. /* Setup the mask of cpus configured for isolated domains */
  5423. static int __init isolated_cpu_setup(char *str)
  5424. {
  5425. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5426. cpulist_parse(str, cpu_isolated_map);
  5427. return 1;
  5428. }
  5429. __setup("isolcpus=", isolated_cpu_setup);
  5430. /*
  5431. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5432. * to a function which identifies what group(along with sched group) a CPU
  5433. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5434. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5435. *
  5436. * init_sched_build_groups will build a circular linked list of the groups
  5437. * covered by the given span, and will set each group's ->cpumask correctly,
  5438. * and ->cpu_power to 0.
  5439. */
  5440. static void
  5441. init_sched_build_groups(const struct cpumask *span,
  5442. const struct cpumask *cpu_map,
  5443. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5444. struct sched_group **sg,
  5445. struct cpumask *tmpmask),
  5446. struct cpumask *covered, struct cpumask *tmpmask)
  5447. {
  5448. struct sched_group *first = NULL, *last = NULL;
  5449. int i;
  5450. cpumask_clear(covered);
  5451. for_each_cpu(i, span) {
  5452. struct sched_group *sg;
  5453. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5454. int j;
  5455. if (cpumask_test_cpu(i, covered))
  5456. continue;
  5457. cpumask_clear(sched_group_cpus(sg));
  5458. sg->cpu_power = 0;
  5459. for_each_cpu(j, span) {
  5460. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5461. continue;
  5462. cpumask_set_cpu(j, covered);
  5463. cpumask_set_cpu(j, sched_group_cpus(sg));
  5464. }
  5465. if (!first)
  5466. first = sg;
  5467. if (last)
  5468. last->next = sg;
  5469. last = sg;
  5470. }
  5471. last->next = first;
  5472. }
  5473. #define SD_NODES_PER_DOMAIN 16
  5474. #ifdef CONFIG_NUMA
  5475. /**
  5476. * find_next_best_node - find the next node to include in a sched_domain
  5477. * @node: node whose sched_domain we're building
  5478. * @used_nodes: nodes already in the sched_domain
  5479. *
  5480. * Find the next node to include in a given scheduling domain. Simply
  5481. * finds the closest node not already in the @used_nodes map.
  5482. *
  5483. * Should use nodemask_t.
  5484. */
  5485. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5486. {
  5487. int i, n, val, min_val, best_node = 0;
  5488. min_val = INT_MAX;
  5489. for (i = 0; i < nr_node_ids; i++) {
  5490. /* Start at @node */
  5491. n = (node + i) % nr_node_ids;
  5492. if (!nr_cpus_node(n))
  5493. continue;
  5494. /* Skip already used nodes */
  5495. if (node_isset(n, *used_nodes))
  5496. continue;
  5497. /* Simple min distance search */
  5498. val = node_distance(node, n);
  5499. if (val < min_val) {
  5500. min_val = val;
  5501. best_node = n;
  5502. }
  5503. }
  5504. node_set(best_node, *used_nodes);
  5505. return best_node;
  5506. }
  5507. /**
  5508. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5509. * @node: node whose cpumask we're constructing
  5510. * @span: resulting cpumask
  5511. *
  5512. * Given a node, construct a good cpumask for its sched_domain to span. It
  5513. * should be one that prevents unnecessary balancing, but also spreads tasks
  5514. * out optimally.
  5515. */
  5516. static void sched_domain_node_span(int node, struct cpumask *span)
  5517. {
  5518. nodemask_t used_nodes;
  5519. int i;
  5520. cpumask_clear(span);
  5521. nodes_clear(used_nodes);
  5522. cpumask_or(span, span, cpumask_of_node(node));
  5523. node_set(node, used_nodes);
  5524. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5525. int next_node = find_next_best_node(node, &used_nodes);
  5526. cpumask_or(span, span, cpumask_of_node(next_node));
  5527. }
  5528. }
  5529. #endif /* CONFIG_NUMA */
  5530. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5531. /*
  5532. * The cpus mask in sched_group and sched_domain hangs off the end.
  5533. *
  5534. * ( See the the comments in include/linux/sched.h:struct sched_group
  5535. * and struct sched_domain. )
  5536. */
  5537. struct static_sched_group {
  5538. struct sched_group sg;
  5539. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5540. };
  5541. struct static_sched_domain {
  5542. struct sched_domain sd;
  5543. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5544. };
  5545. struct s_data {
  5546. #ifdef CONFIG_NUMA
  5547. int sd_allnodes;
  5548. cpumask_var_t domainspan;
  5549. cpumask_var_t covered;
  5550. cpumask_var_t notcovered;
  5551. #endif
  5552. cpumask_var_t nodemask;
  5553. cpumask_var_t this_sibling_map;
  5554. cpumask_var_t this_core_map;
  5555. cpumask_var_t this_book_map;
  5556. cpumask_var_t send_covered;
  5557. cpumask_var_t tmpmask;
  5558. struct sched_group **sched_group_nodes;
  5559. struct root_domain *rd;
  5560. };
  5561. enum s_alloc {
  5562. sa_sched_groups = 0,
  5563. sa_rootdomain,
  5564. sa_tmpmask,
  5565. sa_send_covered,
  5566. sa_this_book_map,
  5567. sa_this_core_map,
  5568. sa_this_sibling_map,
  5569. sa_nodemask,
  5570. sa_sched_group_nodes,
  5571. #ifdef CONFIG_NUMA
  5572. sa_notcovered,
  5573. sa_covered,
  5574. sa_domainspan,
  5575. #endif
  5576. sa_none,
  5577. };
  5578. /*
  5579. * SMT sched-domains:
  5580. */
  5581. #ifdef CONFIG_SCHED_SMT
  5582. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5583. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5584. static int
  5585. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5586. struct sched_group **sg, struct cpumask *unused)
  5587. {
  5588. if (sg)
  5589. *sg = &per_cpu(sched_groups, cpu).sg;
  5590. return cpu;
  5591. }
  5592. #endif /* CONFIG_SCHED_SMT */
  5593. /*
  5594. * multi-core sched-domains:
  5595. */
  5596. #ifdef CONFIG_SCHED_MC
  5597. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5598. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5599. static int
  5600. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5601. struct sched_group **sg, struct cpumask *mask)
  5602. {
  5603. int group;
  5604. #ifdef CONFIG_SCHED_SMT
  5605. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5606. group = cpumask_first(mask);
  5607. #else
  5608. group = cpu;
  5609. #endif
  5610. if (sg)
  5611. *sg = &per_cpu(sched_group_core, group).sg;
  5612. return group;
  5613. }
  5614. #endif /* CONFIG_SCHED_MC */
  5615. /*
  5616. * book sched-domains:
  5617. */
  5618. #ifdef CONFIG_SCHED_BOOK
  5619. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5620. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5621. static int
  5622. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5623. struct sched_group **sg, struct cpumask *mask)
  5624. {
  5625. int group = cpu;
  5626. #ifdef CONFIG_SCHED_MC
  5627. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5628. group = cpumask_first(mask);
  5629. #elif defined(CONFIG_SCHED_SMT)
  5630. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5631. group = cpumask_first(mask);
  5632. #endif
  5633. if (sg)
  5634. *sg = &per_cpu(sched_group_book, group).sg;
  5635. return group;
  5636. }
  5637. #endif /* CONFIG_SCHED_BOOK */
  5638. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5639. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5640. static int
  5641. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5642. struct sched_group **sg, struct cpumask *mask)
  5643. {
  5644. int group;
  5645. #ifdef CONFIG_SCHED_BOOK
  5646. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5647. group = cpumask_first(mask);
  5648. #elif defined(CONFIG_SCHED_MC)
  5649. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5650. group = cpumask_first(mask);
  5651. #elif defined(CONFIG_SCHED_SMT)
  5652. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5653. group = cpumask_first(mask);
  5654. #else
  5655. group = cpu;
  5656. #endif
  5657. if (sg)
  5658. *sg = &per_cpu(sched_group_phys, group).sg;
  5659. return group;
  5660. }
  5661. #ifdef CONFIG_NUMA
  5662. /*
  5663. * The init_sched_build_groups can't handle what we want to do with node
  5664. * groups, so roll our own. Now each node has its own list of groups which
  5665. * gets dynamically allocated.
  5666. */
  5667. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5668. static struct sched_group ***sched_group_nodes_bycpu;
  5669. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5670. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5671. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5672. struct sched_group **sg,
  5673. struct cpumask *nodemask)
  5674. {
  5675. int group;
  5676. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5677. group = cpumask_first(nodemask);
  5678. if (sg)
  5679. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5680. return group;
  5681. }
  5682. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5683. {
  5684. struct sched_group *sg = group_head;
  5685. int j;
  5686. if (!sg)
  5687. return;
  5688. do {
  5689. for_each_cpu(j, sched_group_cpus(sg)) {
  5690. struct sched_domain *sd;
  5691. sd = &per_cpu(phys_domains, j).sd;
  5692. if (j != group_first_cpu(sd->groups)) {
  5693. /*
  5694. * Only add "power" once for each
  5695. * physical package.
  5696. */
  5697. continue;
  5698. }
  5699. sg->cpu_power += sd->groups->cpu_power;
  5700. }
  5701. sg = sg->next;
  5702. } while (sg != group_head);
  5703. }
  5704. static int build_numa_sched_groups(struct s_data *d,
  5705. const struct cpumask *cpu_map, int num)
  5706. {
  5707. struct sched_domain *sd;
  5708. struct sched_group *sg, *prev;
  5709. int n, j;
  5710. cpumask_clear(d->covered);
  5711. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5712. if (cpumask_empty(d->nodemask)) {
  5713. d->sched_group_nodes[num] = NULL;
  5714. goto out;
  5715. }
  5716. sched_domain_node_span(num, d->domainspan);
  5717. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5718. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5719. GFP_KERNEL, num);
  5720. if (!sg) {
  5721. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5722. num);
  5723. return -ENOMEM;
  5724. }
  5725. d->sched_group_nodes[num] = sg;
  5726. for_each_cpu(j, d->nodemask) {
  5727. sd = &per_cpu(node_domains, j).sd;
  5728. sd->groups = sg;
  5729. }
  5730. sg->cpu_power = 0;
  5731. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5732. sg->next = sg;
  5733. cpumask_or(d->covered, d->covered, d->nodemask);
  5734. prev = sg;
  5735. for (j = 0; j < nr_node_ids; j++) {
  5736. n = (num + j) % nr_node_ids;
  5737. cpumask_complement(d->notcovered, d->covered);
  5738. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5739. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5740. if (cpumask_empty(d->tmpmask))
  5741. break;
  5742. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5743. if (cpumask_empty(d->tmpmask))
  5744. continue;
  5745. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5746. GFP_KERNEL, num);
  5747. if (!sg) {
  5748. printk(KERN_WARNING
  5749. "Can not alloc domain group for node %d\n", j);
  5750. return -ENOMEM;
  5751. }
  5752. sg->cpu_power = 0;
  5753. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5754. sg->next = prev->next;
  5755. cpumask_or(d->covered, d->covered, d->tmpmask);
  5756. prev->next = sg;
  5757. prev = sg;
  5758. }
  5759. out:
  5760. return 0;
  5761. }
  5762. #endif /* CONFIG_NUMA */
  5763. #ifdef CONFIG_NUMA
  5764. /* Free memory allocated for various sched_group structures */
  5765. static void free_sched_groups(const struct cpumask *cpu_map,
  5766. struct cpumask *nodemask)
  5767. {
  5768. int cpu, i;
  5769. for_each_cpu(cpu, cpu_map) {
  5770. struct sched_group **sched_group_nodes
  5771. = sched_group_nodes_bycpu[cpu];
  5772. if (!sched_group_nodes)
  5773. continue;
  5774. for (i = 0; i < nr_node_ids; i++) {
  5775. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5776. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5777. if (cpumask_empty(nodemask))
  5778. continue;
  5779. if (sg == NULL)
  5780. continue;
  5781. sg = sg->next;
  5782. next_sg:
  5783. oldsg = sg;
  5784. sg = sg->next;
  5785. kfree(oldsg);
  5786. if (oldsg != sched_group_nodes[i])
  5787. goto next_sg;
  5788. }
  5789. kfree(sched_group_nodes);
  5790. sched_group_nodes_bycpu[cpu] = NULL;
  5791. }
  5792. }
  5793. #else /* !CONFIG_NUMA */
  5794. static void free_sched_groups(const struct cpumask *cpu_map,
  5795. struct cpumask *nodemask)
  5796. {
  5797. }
  5798. #endif /* CONFIG_NUMA */
  5799. /*
  5800. * Initialize sched groups cpu_power.
  5801. *
  5802. * cpu_power indicates the capacity of sched group, which is used while
  5803. * distributing the load between different sched groups in a sched domain.
  5804. * Typically cpu_power for all the groups in a sched domain will be same unless
  5805. * there are asymmetries in the topology. If there are asymmetries, group
  5806. * having more cpu_power will pickup more load compared to the group having
  5807. * less cpu_power.
  5808. */
  5809. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5810. {
  5811. struct sched_domain *child;
  5812. struct sched_group *group;
  5813. long power;
  5814. int weight;
  5815. WARN_ON(!sd || !sd->groups);
  5816. if (cpu != group_first_cpu(sd->groups))
  5817. return;
  5818. child = sd->child;
  5819. sd->groups->cpu_power = 0;
  5820. if (!child) {
  5821. power = SCHED_LOAD_SCALE;
  5822. weight = cpumask_weight(sched_domain_span(sd));
  5823. /*
  5824. * SMT siblings share the power of a single core.
  5825. * Usually multiple threads get a better yield out of
  5826. * that one core than a single thread would have,
  5827. * reflect that in sd->smt_gain.
  5828. */
  5829. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5830. power *= sd->smt_gain;
  5831. power /= weight;
  5832. power >>= SCHED_LOAD_SHIFT;
  5833. }
  5834. sd->groups->cpu_power += power;
  5835. return;
  5836. }
  5837. /*
  5838. * Add cpu_power of each child group to this groups cpu_power.
  5839. */
  5840. group = child->groups;
  5841. do {
  5842. sd->groups->cpu_power += group->cpu_power;
  5843. group = group->next;
  5844. } while (group != child->groups);
  5845. }
  5846. /*
  5847. * Initializers for schedule domains
  5848. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5849. */
  5850. #ifdef CONFIG_SCHED_DEBUG
  5851. # define SD_INIT_NAME(sd, type) sd->name = #type
  5852. #else
  5853. # define SD_INIT_NAME(sd, type) do { } while (0)
  5854. #endif
  5855. #define SD_INIT(sd, type) sd_init_##type(sd)
  5856. #define SD_INIT_FUNC(type) \
  5857. static noinline void sd_init_##type(struct sched_domain *sd) \
  5858. { \
  5859. memset(sd, 0, sizeof(*sd)); \
  5860. *sd = SD_##type##_INIT; \
  5861. sd->level = SD_LV_##type; \
  5862. SD_INIT_NAME(sd, type); \
  5863. }
  5864. SD_INIT_FUNC(CPU)
  5865. #ifdef CONFIG_NUMA
  5866. SD_INIT_FUNC(ALLNODES)
  5867. SD_INIT_FUNC(NODE)
  5868. #endif
  5869. #ifdef CONFIG_SCHED_SMT
  5870. SD_INIT_FUNC(SIBLING)
  5871. #endif
  5872. #ifdef CONFIG_SCHED_MC
  5873. SD_INIT_FUNC(MC)
  5874. #endif
  5875. #ifdef CONFIG_SCHED_BOOK
  5876. SD_INIT_FUNC(BOOK)
  5877. #endif
  5878. static int default_relax_domain_level = -1;
  5879. static int __init setup_relax_domain_level(char *str)
  5880. {
  5881. unsigned long val;
  5882. val = simple_strtoul(str, NULL, 0);
  5883. if (val < SD_LV_MAX)
  5884. default_relax_domain_level = val;
  5885. return 1;
  5886. }
  5887. __setup("relax_domain_level=", setup_relax_domain_level);
  5888. static void set_domain_attribute(struct sched_domain *sd,
  5889. struct sched_domain_attr *attr)
  5890. {
  5891. int request;
  5892. if (!attr || attr->relax_domain_level < 0) {
  5893. if (default_relax_domain_level < 0)
  5894. return;
  5895. else
  5896. request = default_relax_domain_level;
  5897. } else
  5898. request = attr->relax_domain_level;
  5899. if (request < sd->level) {
  5900. /* turn off idle balance on this domain */
  5901. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5902. } else {
  5903. /* turn on idle balance on this domain */
  5904. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5905. }
  5906. }
  5907. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5908. const struct cpumask *cpu_map)
  5909. {
  5910. switch (what) {
  5911. case sa_sched_groups:
  5912. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5913. d->sched_group_nodes = NULL;
  5914. case sa_rootdomain:
  5915. free_rootdomain(d->rd); /* fall through */
  5916. case sa_tmpmask:
  5917. free_cpumask_var(d->tmpmask); /* fall through */
  5918. case sa_send_covered:
  5919. free_cpumask_var(d->send_covered); /* fall through */
  5920. case sa_this_book_map:
  5921. free_cpumask_var(d->this_book_map); /* fall through */
  5922. case sa_this_core_map:
  5923. free_cpumask_var(d->this_core_map); /* fall through */
  5924. case sa_this_sibling_map:
  5925. free_cpumask_var(d->this_sibling_map); /* fall through */
  5926. case sa_nodemask:
  5927. free_cpumask_var(d->nodemask); /* fall through */
  5928. case sa_sched_group_nodes:
  5929. #ifdef CONFIG_NUMA
  5930. kfree(d->sched_group_nodes); /* fall through */
  5931. case sa_notcovered:
  5932. free_cpumask_var(d->notcovered); /* fall through */
  5933. case sa_covered:
  5934. free_cpumask_var(d->covered); /* fall through */
  5935. case sa_domainspan:
  5936. free_cpumask_var(d->domainspan); /* fall through */
  5937. #endif
  5938. case sa_none:
  5939. break;
  5940. }
  5941. }
  5942. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5943. const struct cpumask *cpu_map)
  5944. {
  5945. #ifdef CONFIG_NUMA
  5946. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5947. return sa_none;
  5948. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5949. return sa_domainspan;
  5950. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5951. return sa_covered;
  5952. /* Allocate the per-node list of sched groups */
  5953. d->sched_group_nodes = kcalloc(nr_node_ids,
  5954. sizeof(struct sched_group *), GFP_KERNEL);
  5955. if (!d->sched_group_nodes) {
  5956. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5957. return sa_notcovered;
  5958. }
  5959. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5960. #endif
  5961. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5962. return sa_sched_group_nodes;
  5963. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5964. return sa_nodemask;
  5965. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5966. return sa_this_sibling_map;
  5967. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  5968. return sa_this_core_map;
  5969. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5970. return sa_this_book_map;
  5971. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5972. return sa_send_covered;
  5973. d->rd = alloc_rootdomain();
  5974. if (!d->rd) {
  5975. printk(KERN_WARNING "Cannot alloc root domain\n");
  5976. return sa_tmpmask;
  5977. }
  5978. return sa_rootdomain;
  5979. }
  5980. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5981. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5982. {
  5983. struct sched_domain *sd = NULL;
  5984. #ifdef CONFIG_NUMA
  5985. struct sched_domain *parent;
  5986. d->sd_allnodes = 0;
  5987. if (cpumask_weight(cpu_map) >
  5988. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5989. sd = &per_cpu(allnodes_domains, i).sd;
  5990. SD_INIT(sd, ALLNODES);
  5991. set_domain_attribute(sd, attr);
  5992. cpumask_copy(sched_domain_span(sd), cpu_map);
  5993. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5994. d->sd_allnodes = 1;
  5995. }
  5996. parent = sd;
  5997. sd = &per_cpu(node_domains, i).sd;
  5998. SD_INIT(sd, NODE);
  5999. set_domain_attribute(sd, attr);
  6000. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6001. sd->parent = parent;
  6002. if (parent)
  6003. parent->child = sd;
  6004. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6005. #endif
  6006. return sd;
  6007. }
  6008. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6009. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6010. struct sched_domain *parent, int i)
  6011. {
  6012. struct sched_domain *sd;
  6013. sd = &per_cpu(phys_domains, i).sd;
  6014. SD_INIT(sd, CPU);
  6015. set_domain_attribute(sd, attr);
  6016. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6017. sd->parent = parent;
  6018. if (parent)
  6019. parent->child = sd;
  6020. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6021. return sd;
  6022. }
  6023. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6024. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6025. struct sched_domain *parent, int i)
  6026. {
  6027. struct sched_domain *sd = parent;
  6028. #ifdef CONFIG_SCHED_BOOK
  6029. sd = &per_cpu(book_domains, i).sd;
  6030. SD_INIT(sd, BOOK);
  6031. set_domain_attribute(sd, attr);
  6032. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6033. sd->parent = parent;
  6034. parent->child = sd;
  6035. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6036. #endif
  6037. return sd;
  6038. }
  6039. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6040. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6041. struct sched_domain *parent, int i)
  6042. {
  6043. struct sched_domain *sd = parent;
  6044. #ifdef CONFIG_SCHED_MC
  6045. sd = &per_cpu(core_domains, i).sd;
  6046. SD_INIT(sd, MC);
  6047. set_domain_attribute(sd, attr);
  6048. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6049. sd->parent = parent;
  6050. parent->child = sd;
  6051. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6052. #endif
  6053. return sd;
  6054. }
  6055. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6056. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6057. struct sched_domain *parent, int i)
  6058. {
  6059. struct sched_domain *sd = parent;
  6060. #ifdef CONFIG_SCHED_SMT
  6061. sd = &per_cpu(cpu_domains, i).sd;
  6062. SD_INIT(sd, SIBLING);
  6063. set_domain_attribute(sd, attr);
  6064. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6065. sd->parent = parent;
  6066. parent->child = sd;
  6067. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6068. #endif
  6069. return sd;
  6070. }
  6071. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6072. const struct cpumask *cpu_map, int cpu)
  6073. {
  6074. switch (l) {
  6075. #ifdef CONFIG_SCHED_SMT
  6076. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6077. cpumask_and(d->this_sibling_map, cpu_map,
  6078. topology_thread_cpumask(cpu));
  6079. if (cpu == cpumask_first(d->this_sibling_map))
  6080. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6081. &cpu_to_cpu_group,
  6082. d->send_covered, d->tmpmask);
  6083. break;
  6084. #endif
  6085. #ifdef CONFIG_SCHED_MC
  6086. case SD_LV_MC: /* set up multi-core groups */
  6087. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6088. if (cpu == cpumask_first(d->this_core_map))
  6089. init_sched_build_groups(d->this_core_map, cpu_map,
  6090. &cpu_to_core_group,
  6091. d->send_covered, d->tmpmask);
  6092. break;
  6093. #endif
  6094. #ifdef CONFIG_SCHED_BOOK
  6095. case SD_LV_BOOK: /* set up book groups */
  6096. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6097. if (cpu == cpumask_first(d->this_book_map))
  6098. init_sched_build_groups(d->this_book_map, cpu_map,
  6099. &cpu_to_book_group,
  6100. d->send_covered, d->tmpmask);
  6101. break;
  6102. #endif
  6103. case SD_LV_CPU: /* set up physical groups */
  6104. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6105. if (!cpumask_empty(d->nodemask))
  6106. init_sched_build_groups(d->nodemask, cpu_map,
  6107. &cpu_to_phys_group,
  6108. d->send_covered, d->tmpmask);
  6109. break;
  6110. #ifdef CONFIG_NUMA
  6111. case SD_LV_ALLNODES:
  6112. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6113. d->send_covered, d->tmpmask);
  6114. break;
  6115. #endif
  6116. default:
  6117. break;
  6118. }
  6119. }
  6120. /*
  6121. * Build sched domains for a given set of cpus and attach the sched domains
  6122. * to the individual cpus
  6123. */
  6124. static int __build_sched_domains(const struct cpumask *cpu_map,
  6125. struct sched_domain_attr *attr)
  6126. {
  6127. enum s_alloc alloc_state = sa_none;
  6128. struct s_data d;
  6129. struct sched_domain *sd;
  6130. int i;
  6131. #ifdef CONFIG_NUMA
  6132. d.sd_allnodes = 0;
  6133. #endif
  6134. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6135. if (alloc_state != sa_rootdomain)
  6136. goto error;
  6137. alloc_state = sa_sched_groups;
  6138. /*
  6139. * Set up domains for cpus specified by the cpu_map.
  6140. */
  6141. for_each_cpu(i, cpu_map) {
  6142. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6143. cpu_map);
  6144. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6145. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6146. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6147. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6148. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6149. }
  6150. for_each_cpu(i, cpu_map) {
  6151. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6152. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6153. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6154. }
  6155. /* Set up physical groups */
  6156. for (i = 0; i < nr_node_ids; i++)
  6157. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6158. #ifdef CONFIG_NUMA
  6159. /* Set up node groups */
  6160. if (d.sd_allnodes)
  6161. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6162. for (i = 0; i < nr_node_ids; i++)
  6163. if (build_numa_sched_groups(&d, cpu_map, i))
  6164. goto error;
  6165. #endif
  6166. /* Calculate CPU power for physical packages and nodes */
  6167. #ifdef CONFIG_SCHED_SMT
  6168. for_each_cpu(i, cpu_map) {
  6169. sd = &per_cpu(cpu_domains, i).sd;
  6170. init_sched_groups_power(i, sd);
  6171. }
  6172. #endif
  6173. #ifdef CONFIG_SCHED_MC
  6174. for_each_cpu(i, cpu_map) {
  6175. sd = &per_cpu(core_domains, i).sd;
  6176. init_sched_groups_power(i, sd);
  6177. }
  6178. #endif
  6179. #ifdef CONFIG_SCHED_BOOK
  6180. for_each_cpu(i, cpu_map) {
  6181. sd = &per_cpu(book_domains, i).sd;
  6182. init_sched_groups_power(i, sd);
  6183. }
  6184. #endif
  6185. for_each_cpu(i, cpu_map) {
  6186. sd = &per_cpu(phys_domains, i).sd;
  6187. init_sched_groups_power(i, sd);
  6188. }
  6189. #ifdef CONFIG_NUMA
  6190. for (i = 0; i < nr_node_ids; i++)
  6191. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6192. if (d.sd_allnodes) {
  6193. struct sched_group *sg;
  6194. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6195. d.tmpmask);
  6196. init_numa_sched_groups_power(sg);
  6197. }
  6198. #endif
  6199. /* Attach the domains */
  6200. for_each_cpu(i, cpu_map) {
  6201. #ifdef CONFIG_SCHED_SMT
  6202. sd = &per_cpu(cpu_domains, i).sd;
  6203. #elif defined(CONFIG_SCHED_MC)
  6204. sd = &per_cpu(core_domains, i).sd;
  6205. #elif defined(CONFIG_SCHED_BOOK)
  6206. sd = &per_cpu(book_domains, i).sd;
  6207. #else
  6208. sd = &per_cpu(phys_domains, i).sd;
  6209. #endif
  6210. cpu_attach_domain(sd, d.rd, i);
  6211. }
  6212. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6213. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6214. return 0;
  6215. error:
  6216. __free_domain_allocs(&d, alloc_state, cpu_map);
  6217. return -ENOMEM;
  6218. }
  6219. static int build_sched_domains(const struct cpumask *cpu_map)
  6220. {
  6221. return __build_sched_domains(cpu_map, NULL);
  6222. }
  6223. static cpumask_var_t *doms_cur; /* current sched domains */
  6224. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6225. static struct sched_domain_attr *dattr_cur;
  6226. /* attribues of custom domains in 'doms_cur' */
  6227. /*
  6228. * Special case: If a kmalloc of a doms_cur partition (array of
  6229. * cpumask) fails, then fallback to a single sched domain,
  6230. * as determined by the single cpumask fallback_doms.
  6231. */
  6232. static cpumask_var_t fallback_doms;
  6233. /*
  6234. * arch_update_cpu_topology lets virtualized architectures update the
  6235. * cpu core maps. It is supposed to return 1 if the topology changed
  6236. * or 0 if it stayed the same.
  6237. */
  6238. int __attribute__((weak)) arch_update_cpu_topology(void)
  6239. {
  6240. return 0;
  6241. }
  6242. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6243. {
  6244. int i;
  6245. cpumask_var_t *doms;
  6246. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6247. if (!doms)
  6248. return NULL;
  6249. for (i = 0; i < ndoms; i++) {
  6250. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6251. free_sched_domains(doms, i);
  6252. return NULL;
  6253. }
  6254. }
  6255. return doms;
  6256. }
  6257. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6258. {
  6259. unsigned int i;
  6260. for (i = 0; i < ndoms; i++)
  6261. free_cpumask_var(doms[i]);
  6262. kfree(doms);
  6263. }
  6264. /*
  6265. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6266. * For now this just excludes isolated cpus, but could be used to
  6267. * exclude other special cases in the future.
  6268. */
  6269. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6270. {
  6271. int err;
  6272. arch_update_cpu_topology();
  6273. ndoms_cur = 1;
  6274. doms_cur = alloc_sched_domains(ndoms_cur);
  6275. if (!doms_cur)
  6276. doms_cur = &fallback_doms;
  6277. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6278. dattr_cur = NULL;
  6279. err = build_sched_domains(doms_cur[0]);
  6280. register_sched_domain_sysctl();
  6281. return err;
  6282. }
  6283. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6284. struct cpumask *tmpmask)
  6285. {
  6286. free_sched_groups(cpu_map, tmpmask);
  6287. }
  6288. /*
  6289. * Detach sched domains from a group of cpus specified in cpu_map
  6290. * These cpus will now be attached to the NULL domain
  6291. */
  6292. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6293. {
  6294. /* Save because hotplug lock held. */
  6295. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6296. int i;
  6297. for_each_cpu(i, cpu_map)
  6298. cpu_attach_domain(NULL, &def_root_domain, i);
  6299. synchronize_sched();
  6300. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6301. }
  6302. /* handle null as "default" */
  6303. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6304. struct sched_domain_attr *new, int idx_new)
  6305. {
  6306. struct sched_domain_attr tmp;
  6307. /* fast path */
  6308. if (!new && !cur)
  6309. return 1;
  6310. tmp = SD_ATTR_INIT;
  6311. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6312. new ? (new + idx_new) : &tmp,
  6313. sizeof(struct sched_domain_attr));
  6314. }
  6315. /*
  6316. * Partition sched domains as specified by the 'ndoms_new'
  6317. * cpumasks in the array doms_new[] of cpumasks. This compares
  6318. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6319. * It destroys each deleted domain and builds each new domain.
  6320. *
  6321. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6322. * The masks don't intersect (don't overlap.) We should setup one
  6323. * sched domain for each mask. CPUs not in any of the cpumasks will
  6324. * not be load balanced. If the same cpumask appears both in the
  6325. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6326. * it as it is.
  6327. *
  6328. * The passed in 'doms_new' should be allocated using
  6329. * alloc_sched_domains. This routine takes ownership of it and will
  6330. * free_sched_domains it when done with it. If the caller failed the
  6331. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6332. * and partition_sched_domains() will fallback to the single partition
  6333. * 'fallback_doms', it also forces the domains to be rebuilt.
  6334. *
  6335. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6336. * ndoms_new == 0 is a special case for destroying existing domains,
  6337. * and it will not create the default domain.
  6338. *
  6339. * Call with hotplug lock held
  6340. */
  6341. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6342. struct sched_domain_attr *dattr_new)
  6343. {
  6344. int i, j, n;
  6345. int new_topology;
  6346. mutex_lock(&sched_domains_mutex);
  6347. /* always unregister in case we don't destroy any domains */
  6348. unregister_sched_domain_sysctl();
  6349. /* Let architecture update cpu core mappings. */
  6350. new_topology = arch_update_cpu_topology();
  6351. n = doms_new ? ndoms_new : 0;
  6352. /* Destroy deleted domains */
  6353. for (i = 0; i < ndoms_cur; i++) {
  6354. for (j = 0; j < n && !new_topology; j++) {
  6355. if (cpumask_equal(doms_cur[i], doms_new[j])
  6356. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6357. goto match1;
  6358. }
  6359. /* no match - a current sched domain not in new doms_new[] */
  6360. detach_destroy_domains(doms_cur[i]);
  6361. match1:
  6362. ;
  6363. }
  6364. if (doms_new == NULL) {
  6365. ndoms_cur = 0;
  6366. doms_new = &fallback_doms;
  6367. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6368. WARN_ON_ONCE(dattr_new);
  6369. }
  6370. /* Build new domains */
  6371. for (i = 0; i < ndoms_new; i++) {
  6372. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6373. if (cpumask_equal(doms_new[i], doms_cur[j])
  6374. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6375. goto match2;
  6376. }
  6377. /* no match - add a new doms_new */
  6378. __build_sched_domains(doms_new[i],
  6379. dattr_new ? dattr_new + i : NULL);
  6380. match2:
  6381. ;
  6382. }
  6383. /* Remember the new sched domains */
  6384. if (doms_cur != &fallback_doms)
  6385. free_sched_domains(doms_cur, ndoms_cur);
  6386. kfree(dattr_cur); /* kfree(NULL) is safe */
  6387. doms_cur = doms_new;
  6388. dattr_cur = dattr_new;
  6389. ndoms_cur = ndoms_new;
  6390. register_sched_domain_sysctl();
  6391. mutex_unlock(&sched_domains_mutex);
  6392. }
  6393. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6394. static void arch_reinit_sched_domains(void)
  6395. {
  6396. get_online_cpus();
  6397. /* Destroy domains first to force the rebuild */
  6398. partition_sched_domains(0, NULL, NULL);
  6399. rebuild_sched_domains();
  6400. put_online_cpus();
  6401. }
  6402. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6403. {
  6404. unsigned int level = 0;
  6405. if (sscanf(buf, "%u", &level) != 1)
  6406. return -EINVAL;
  6407. /*
  6408. * level is always be positive so don't check for
  6409. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6410. * What happens on 0 or 1 byte write,
  6411. * need to check for count as well?
  6412. */
  6413. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6414. return -EINVAL;
  6415. if (smt)
  6416. sched_smt_power_savings = level;
  6417. else
  6418. sched_mc_power_savings = level;
  6419. arch_reinit_sched_domains();
  6420. return count;
  6421. }
  6422. #ifdef CONFIG_SCHED_MC
  6423. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6424. struct sysdev_class_attribute *attr,
  6425. char *page)
  6426. {
  6427. return sprintf(page, "%u\n", sched_mc_power_savings);
  6428. }
  6429. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6430. struct sysdev_class_attribute *attr,
  6431. const char *buf, size_t count)
  6432. {
  6433. return sched_power_savings_store(buf, count, 0);
  6434. }
  6435. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6436. sched_mc_power_savings_show,
  6437. sched_mc_power_savings_store);
  6438. #endif
  6439. #ifdef CONFIG_SCHED_SMT
  6440. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6441. struct sysdev_class_attribute *attr,
  6442. char *page)
  6443. {
  6444. return sprintf(page, "%u\n", sched_smt_power_savings);
  6445. }
  6446. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6447. struct sysdev_class_attribute *attr,
  6448. const char *buf, size_t count)
  6449. {
  6450. return sched_power_savings_store(buf, count, 1);
  6451. }
  6452. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6453. sched_smt_power_savings_show,
  6454. sched_smt_power_savings_store);
  6455. #endif
  6456. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6457. {
  6458. int err = 0;
  6459. #ifdef CONFIG_SCHED_SMT
  6460. if (smt_capable())
  6461. err = sysfs_create_file(&cls->kset.kobj,
  6462. &attr_sched_smt_power_savings.attr);
  6463. #endif
  6464. #ifdef CONFIG_SCHED_MC
  6465. if (!err && mc_capable())
  6466. err = sysfs_create_file(&cls->kset.kobj,
  6467. &attr_sched_mc_power_savings.attr);
  6468. #endif
  6469. return err;
  6470. }
  6471. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6472. /*
  6473. * Update cpusets according to cpu_active mask. If cpusets are
  6474. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6475. * around partition_sched_domains().
  6476. */
  6477. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6478. void *hcpu)
  6479. {
  6480. switch (action & ~CPU_TASKS_FROZEN) {
  6481. case CPU_ONLINE:
  6482. case CPU_DOWN_FAILED:
  6483. cpuset_update_active_cpus();
  6484. return NOTIFY_OK;
  6485. default:
  6486. return NOTIFY_DONE;
  6487. }
  6488. }
  6489. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6490. void *hcpu)
  6491. {
  6492. switch (action & ~CPU_TASKS_FROZEN) {
  6493. case CPU_DOWN_PREPARE:
  6494. cpuset_update_active_cpus();
  6495. return NOTIFY_OK;
  6496. default:
  6497. return NOTIFY_DONE;
  6498. }
  6499. }
  6500. static int update_runtime(struct notifier_block *nfb,
  6501. unsigned long action, void *hcpu)
  6502. {
  6503. int cpu = (int)(long)hcpu;
  6504. switch (action) {
  6505. case CPU_DOWN_PREPARE:
  6506. case CPU_DOWN_PREPARE_FROZEN:
  6507. disable_runtime(cpu_rq(cpu));
  6508. return NOTIFY_OK;
  6509. case CPU_DOWN_FAILED:
  6510. case CPU_DOWN_FAILED_FROZEN:
  6511. case CPU_ONLINE:
  6512. case CPU_ONLINE_FROZEN:
  6513. enable_runtime(cpu_rq(cpu));
  6514. return NOTIFY_OK;
  6515. default:
  6516. return NOTIFY_DONE;
  6517. }
  6518. }
  6519. void __init sched_init_smp(void)
  6520. {
  6521. cpumask_var_t non_isolated_cpus;
  6522. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6523. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6524. #if defined(CONFIG_NUMA)
  6525. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6526. GFP_KERNEL);
  6527. BUG_ON(sched_group_nodes_bycpu == NULL);
  6528. #endif
  6529. get_online_cpus();
  6530. mutex_lock(&sched_domains_mutex);
  6531. arch_init_sched_domains(cpu_active_mask);
  6532. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6533. if (cpumask_empty(non_isolated_cpus))
  6534. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6535. mutex_unlock(&sched_domains_mutex);
  6536. put_online_cpus();
  6537. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6538. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6539. /* RT runtime code needs to handle some hotplug events */
  6540. hotcpu_notifier(update_runtime, 0);
  6541. init_hrtick();
  6542. /* Move init over to a non-isolated CPU */
  6543. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6544. BUG();
  6545. sched_init_granularity();
  6546. free_cpumask_var(non_isolated_cpus);
  6547. init_sched_rt_class();
  6548. }
  6549. #else
  6550. void __init sched_init_smp(void)
  6551. {
  6552. sched_init_granularity();
  6553. }
  6554. #endif /* CONFIG_SMP */
  6555. const_debug unsigned int sysctl_timer_migration = 1;
  6556. int in_sched_functions(unsigned long addr)
  6557. {
  6558. return in_lock_functions(addr) ||
  6559. (addr >= (unsigned long)__sched_text_start
  6560. && addr < (unsigned long)__sched_text_end);
  6561. }
  6562. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6563. {
  6564. cfs_rq->tasks_timeline = RB_ROOT;
  6565. INIT_LIST_HEAD(&cfs_rq->tasks);
  6566. #ifdef CONFIG_FAIR_GROUP_SCHED
  6567. cfs_rq->rq = rq;
  6568. #endif
  6569. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6570. }
  6571. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6572. {
  6573. struct rt_prio_array *array;
  6574. int i;
  6575. array = &rt_rq->active;
  6576. for (i = 0; i < MAX_RT_PRIO; i++) {
  6577. INIT_LIST_HEAD(array->queue + i);
  6578. __clear_bit(i, array->bitmap);
  6579. }
  6580. /* delimiter for bitsearch: */
  6581. __set_bit(MAX_RT_PRIO, array->bitmap);
  6582. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6583. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6584. #ifdef CONFIG_SMP
  6585. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6586. #endif
  6587. #endif
  6588. #ifdef CONFIG_SMP
  6589. rt_rq->rt_nr_migratory = 0;
  6590. rt_rq->overloaded = 0;
  6591. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6592. #endif
  6593. rt_rq->rt_time = 0;
  6594. rt_rq->rt_throttled = 0;
  6595. rt_rq->rt_runtime = 0;
  6596. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6597. #ifdef CONFIG_RT_GROUP_SCHED
  6598. rt_rq->rt_nr_boosted = 0;
  6599. rt_rq->rq = rq;
  6600. #endif
  6601. }
  6602. #ifdef CONFIG_FAIR_GROUP_SCHED
  6603. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6604. struct sched_entity *se, int cpu, int add,
  6605. struct sched_entity *parent)
  6606. {
  6607. struct rq *rq = cpu_rq(cpu);
  6608. tg->cfs_rq[cpu] = cfs_rq;
  6609. init_cfs_rq(cfs_rq, rq);
  6610. cfs_rq->tg = tg;
  6611. if (add)
  6612. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6613. tg->se[cpu] = se;
  6614. /* se could be NULL for init_task_group */
  6615. if (!se)
  6616. return;
  6617. if (!parent)
  6618. se->cfs_rq = &rq->cfs;
  6619. else
  6620. se->cfs_rq = parent->my_q;
  6621. se->my_q = cfs_rq;
  6622. se->load.weight = tg->shares;
  6623. se->load.inv_weight = 0;
  6624. se->parent = parent;
  6625. }
  6626. #endif
  6627. #ifdef CONFIG_RT_GROUP_SCHED
  6628. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6629. struct sched_rt_entity *rt_se, int cpu, int add,
  6630. struct sched_rt_entity *parent)
  6631. {
  6632. struct rq *rq = cpu_rq(cpu);
  6633. tg->rt_rq[cpu] = rt_rq;
  6634. init_rt_rq(rt_rq, rq);
  6635. rt_rq->tg = tg;
  6636. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6637. if (add)
  6638. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6639. tg->rt_se[cpu] = rt_se;
  6640. if (!rt_se)
  6641. return;
  6642. if (!parent)
  6643. rt_se->rt_rq = &rq->rt;
  6644. else
  6645. rt_se->rt_rq = parent->my_q;
  6646. rt_se->my_q = rt_rq;
  6647. rt_se->parent = parent;
  6648. INIT_LIST_HEAD(&rt_se->run_list);
  6649. }
  6650. #endif
  6651. void __init sched_init(void)
  6652. {
  6653. int i, j;
  6654. unsigned long alloc_size = 0, ptr;
  6655. #ifdef CONFIG_FAIR_GROUP_SCHED
  6656. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6657. #endif
  6658. #ifdef CONFIG_RT_GROUP_SCHED
  6659. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6660. #endif
  6661. #ifdef CONFIG_CPUMASK_OFFSTACK
  6662. alloc_size += num_possible_cpus() * cpumask_size();
  6663. #endif
  6664. if (alloc_size) {
  6665. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6666. #ifdef CONFIG_FAIR_GROUP_SCHED
  6667. init_task_group.se = (struct sched_entity **)ptr;
  6668. ptr += nr_cpu_ids * sizeof(void **);
  6669. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6670. ptr += nr_cpu_ids * sizeof(void **);
  6671. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6672. #ifdef CONFIG_RT_GROUP_SCHED
  6673. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6674. ptr += nr_cpu_ids * sizeof(void **);
  6675. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6676. ptr += nr_cpu_ids * sizeof(void **);
  6677. #endif /* CONFIG_RT_GROUP_SCHED */
  6678. #ifdef CONFIG_CPUMASK_OFFSTACK
  6679. for_each_possible_cpu(i) {
  6680. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6681. ptr += cpumask_size();
  6682. }
  6683. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6684. }
  6685. #ifdef CONFIG_SMP
  6686. init_defrootdomain();
  6687. #endif
  6688. init_rt_bandwidth(&def_rt_bandwidth,
  6689. global_rt_period(), global_rt_runtime());
  6690. #ifdef CONFIG_RT_GROUP_SCHED
  6691. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6692. global_rt_period(), global_rt_runtime());
  6693. #endif /* CONFIG_RT_GROUP_SCHED */
  6694. #ifdef CONFIG_CGROUP_SCHED
  6695. list_add(&init_task_group.list, &task_groups);
  6696. INIT_LIST_HEAD(&init_task_group.children);
  6697. #endif /* CONFIG_CGROUP_SCHED */
  6698. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6699. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6700. __alignof__(unsigned long));
  6701. #endif
  6702. for_each_possible_cpu(i) {
  6703. struct rq *rq;
  6704. rq = cpu_rq(i);
  6705. raw_spin_lock_init(&rq->lock);
  6706. rq->nr_running = 0;
  6707. rq->calc_load_active = 0;
  6708. rq->calc_load_update = jiffies + LOAD_FREQ;
  6709. init_cfs_rq(&rq->cfs, rq);
  6710. init_rt_rq(&rq->rt, rq);
  6711. #ifdef CONFIG_FAIR_GROUP_SCHED
  6712. init_task_group.shares = init_task_group_load;
  6713. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6714. #ifdef CONFIG_CGROUP_SCHED
  6715. /*
  6716. * How much cpu bandwidth does init_task_group get?
  6717. *
  6718. * In case of task-groups formed thr' the cgroup filesystem, it
  6719. * gets 100% of the cpu resources in the system. This overall
  6720. * system cpu resource is divided among the tasks of
  6721. * init_task_group and its child task-groups in a fair manner,
  6722. * based on each entity's (task or task-group's) weight
  6723. * (se->load.weight).
  6724. *
  6725. * In other words, if init_task_group has 10 tasks of weight
  6726. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6727. * then A0's share of the cpu resource is:
  6728. *
  6729. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6730. *
  6731. * We achieve this by letting init_task_group's tasks sit
  6732. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6733. */
  6734. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6735. #endif
  6736. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6737. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6738. #ifdef CONFIG_RT_GROUP_SCHED
  6739. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6740. #ifdef CONFIG_CGROUP_SCHED
  6741. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6742. #endif
  6743. #endif
  6744. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6745. rq->cpu_load[j] = 0;
  6746. rq->last_load_update_tick = jiffies;
  6747. #ifdef CONFIG_SMP
  6748. rq->sd = NULL;
  6749. rq->rd = NULL;
  6750. rq->cpu_power = SCHED_LOAD_SCALE;
  6751. rq->post_schedule = 0;
  6752. rq->active_balance = 0;
  6753. rq->next_balance = jiffies;
  6754. rq->push_cpu = 0;
  6755. rq->cpu = i;
  6756. rq->online = 0;
  6757. rq->idle_stamp = 0;
  6758. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6759. rq_attach_root(rq, &def_root_domain);
  6760. #ifdef CONFIG_NO_HZ
  6761. rq->nohz_balance_kick = 0;
  6762. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6763. #endif
  6764. #endif
  6765. init_rq_hrtick(rq);
  6766. atomic_set(&rq->nr_iowait, 0);
  6767. }
  6768. set_load_weight(&init_task);
  6769. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6770. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6771. #endif
  6772. #ifdef CONFIG_SMP
  6773. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6774. #endif
  6775. #ifdef CONFIG_RT_MUTEXES
  6776. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6777. #endif
  6778. /*
  6779. * The boot idle thread does lazy MMU switching as well:
  6780. */
  6781. atomic_inc(&init_mm.mm_count);
  6782. enter_lazy_tlb(&init_mm, current);
  6783. /*
  6784. * Make us the idle thread. Technically, schedule() should not be
  6785. * called from this thread, however somewhere below it might be,
  6786. * but because we are the idle thread, we just pick up running again
  6787. * when this runqueue becomes "idle".
  6788. */
  6789. init_idle(current, smp_processor_id());
  6790. calc_load_update = jiffies + LOAD_FREQ;
  6791. /*
  6792. * During early bootup we pretend to be a normal task:
  6793. */
  6794. current->sched_class = &fair_sched_class;
  6795. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6796. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6797. #ifdef CONFIG_SMP
  6798. #ifdef CONFIG_NO_HZ
  6799. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6800. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6801. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6802. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6803. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6804. #endif
  6805. /* May be allocated at isolcpus cmdline parse time */
  6806. if (cpu_isolated_map == NULL)
  6807. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6808. #endif /* SMP */
  6809. perf_event_init();
  6810. scheduler_running = 1;
  6811. }
  6812. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6813. static inline int preempt_count_equals(int preempt_offset)
  6814. {
  6815. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6816. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6817. }
  6818. void __might_sleep(const char *file, int line, int preempt_offset)
  6819. {
  6820. #ifdef in_atomic
  6821. static unsigned long prev_jiffy; /* ratelimiting */
  6822. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6823. system_state != SYSTEM_RUNNING || oops_in_progress)
  6824. return;
  6825. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6826. return;
  6827. prev_jiffy = jiffies;
  6828. printk(KERN_ERR
  6829. "BUG: sleeping function called from invalid context at %s:%d\n",
  6830. file, line);
  6831. printk(KERN_ERR
  6832. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6833. in_atomic(), irqs_disabled(),
  6834. current->pid, current->comm);
  6835. debug_show_held_locks(current);
  6836. if (irqs_disabled())
  6837. print_irqtrace_events(current);
  6838. dump_stack();
  6839. #endif
  6840. }
  6841. EXPORT_SYMBOL(__might_sleep);
  6842. #endif
  6843. #ifdef CONFIG_MAGIC_SYSRQ
  6844. static void normalize_task(struct rq *rq, struct task_struct *p)
  6845. {
  6846. int on_rq;
  6847. on_rq = p->se.on_rq;
  6848. if (on_rq)
  6849. deactivate_task(rq, p, 0);
  6850. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6851. if (on_rq) {
  6852. activate_task(rq, p, 0);
  6853. resched_task(rq->curr);
  6854. }
  6855. }
  6856. void normalize_rt_tasks(void)
  6857. {
  6858. struct task_struct *g, *p;
  6859. unsigned long flags;
  6860. struct rq *rq;
  6861. read_lock_irqsave(&tasklist_lock, flags);
  6862. do_each_thread(g, p) {
  6863. /*
  6864. * Only normalize user tasks:
  6865. */
  6866. if (!p->mm)
  6867. continue;
  6868. p->se.exec_start = 0;
  6869. #ifdef CONFIG_SCHEDSTATS
  6870. p->se.statistics.wait_start = 0;
  6871. p->se.statistics.sleep_start = 0;
  6872. p->se.statistics.block_start = 0;
  6873. #endif
  6874. if (!rt_task(p)) {
  6875. /*
  6876. * Renice negative nice level userspace
  6877. * tasks back to 0:
  6878. */
  6879. if (TASK_NICE(p) < 0 && p->mm)
  6880. set_user_nice(p, 0);
  6881. continue;
  6882. }
  6883. raw_spin_lock(&p->pi_lock);
  6884. rq = __task_rq_lock(p);
  6885. normalize_task(rq, p);
  6886. __task_rq_unlock(rq);
  6887. raw_spin_unlock(&p->pi_lock);
  6888. } while_each_thread(g, p);
  6889. read_unlock_irqrestore(&tasklist_lock, flags);
  6890. }
  6891. #endif /* CONFIG_MAGIC_SYSRQ */
  6892. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6893. /*
  6894. * These functions are only useful for the IA64 MCA handling, or kdb.
  6895. *
  6896. * They can only be called when the whole system has been
  6897. * stopped - every CPU needs to be quiescent, and no scheduling
  6898. * activity can take place. Using them for anything else would
  6899. * be a serious bug, and as a result, they aren't even visible
  6900. * under any other configuration.
  6901. */
  6902. /**
  6903. * curr_task - return the current task for a given cpu.
  6904. * @cpu: the processor in question.
  6905. *
  6906. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6907. */
  6908. struct task_struct *curr_task(int cpu)
  6909. {
  6910. return cpu_curr(cpu);
  6911. }
  6912. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6913. #ifdef CONFIG_IA64
  6914. /**
  6915. * set_curr_task - set the current task for a given cpu.
  6916. * @cpu: the processor in question.
  6917. * @p: the task pointer to set.
  6918. *
  6919. * Description: This function must only be used when non-maskable interrupts
  6920. * are serviced on a separate stack. It allows the architecture to switch the
  6921. * notion of the current task on a cpu in a non-blocking manner. This function
  6922. * must be called with all CPU's synchronized, and interrupts disabled, the
  6923. * and caller must save the original value of the current task (see
  6924. * curr_task() above) and restore that value before reenabling interrupts and
  6925. * re-starting the system.
  6926. *
  6927. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6928. */
  6929. void set_curr_task(int cpu, struct task_struct *p)
  6930. {
  6931. cpu_curr(cpu) = p;
  6932. }
  6933. #endif
  6934. #ifdef CONFIG_FAIR_GROUP_SCHED
  6935. static void free_fair_sched_group(struct task_group *tg)
  6936. {
  6937. int i;
  6938. for_each_possible_cpu(i) {
  6939. if (tg->cfs_rq)
  6940. kfree(tg->cfs_rq[i]);
  6941. if (tg->se)
  6942. kfree(tg->se[i]);
  6943. }
  6944. kfree(tg->cfs_rq);
  6945. kfree(tg->se);
  6946. }
  6947. static
  6948. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6949. {
  6950. struct cfs_rq *cfs_rq;
  6951. struct sched_entity *se;
  6952. struct rq *rq;
  6953. int i;
  6954. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6955. if (!tg->cfs_rq)
  6956. goto err;
  6957. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6958. if (!tg->se)
  6959. goto err;
  6960. tg->shares = NICE_0_LOAD;
  6961. for_each_possible_cpu(i) {
  6962. rq = cpu_rq(i);
  6963. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6964. GFP_KERNEL, cpu_to_node(i));
  6965. if (!cfs_rq)
  6966. goto err;
  6967. se = kzalloc_node(sizeof(struct sched_entity),
  6968. GFP_KERNEL, cpu_to_node(i));
  6969. if (!se)
  6970. goto err_free_rq;
  6971. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6972. }
  6973. return 1;
  6974. err_free_rq:
  6975. kfree(cfs_rq);
  6976. err:
  6977. return 0;
  6978. }
  6979. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6980. {
  6981. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6982. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6983. }
  6984. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6985. {
  6986. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6987. }
  6988. #else /* !CONFG_FAIR_GROUP_SCHED */
  6989. static inline void free_fair_sched_group(struct task_group *tg)
  6990. {
  6991. }
  6992. static inline
  6993. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6994. {
  6995. return 1;
  6996. }
  6997. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6998. {
  6999. }
  7000. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7001. {
  7002. }
  7003. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7004. #ifdef CONFIG_RT_GROUP_SCHED
  7005. static void free_rt_sched_group(struct task_group *tg)
  7006. {
  7007. int i;
  7008. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7009. for_each_possible_cpu(i) {
  7010. if (tg->rt_rq)
  7011. kfree(tg->rt_rq[i]);
  7012. if (tg->rt_se)
  7013. kfree(tg->rt_se[i]);
  7014. }
  7015. kfree(tg->rt_rq);
  7016. kfree(tg->rt_se);
  7017. }
  7018. static
  7019. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7020. {
  7021. struct rt_rq *rt_rq;
  7022. struct sched_rt_entity *rt_se;
  7023. struct rq *rq;
  7024. int i;
  7025. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7026. if (!tg->rt_rq)
  7027. goto err;
  7028. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7029. if (!tg->rt_se)
  7030. goto err;
  7031. init_rt_bandwidth(&tg->rt_bandwidth,
  7032. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7033. for_each_possible_cpu(i) {
  7034. rq = cpu_rq(i);
  7035. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7036. GFP_KERNEL, cpu_to_node(i));
  7037. if (!rt_rq)
  7038. goto err;
  7039. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7040. GFP_KERNEL, cpu_to_node(i));
  7041. if (!rt_se)
  7042. goto err_free_rq;
  7043. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7044. }
  7045. return 1;
  7046. err_free_rq:
  7047. kfree(rt_rq);
  7048. err:
  7049. return 0;
  7050. }
  7051. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7052. {
  7053. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7054. &cpu_rq(cpu)->leaf_rt_rq_list);
  7055. }
  7056. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7057. {
  7058. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7059. }
  7060. #else /* !CONFIG_RT_GROUP_SCHED */
  7061. static inline void free_rt_sched_group(struct task_group *tg)
  7062. {
  7063. }
  7064. static inline
  7065. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7066. {
  7067. return 1;
  7068. }
  7069. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7070. {
  7071. }
  7072. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7073. {
  7074. }
  7075. #endif /* CONFIG_RT_GROUP_SCHED */
  7076. #ifdef CONFIG_CGROUP_SCHED
  7077. static void free_sched_group(struct task_group *tg)
  7078. {
  7079. free_fair_sched_group(tg);
  7080. free_rt_sched_group(tg);
  7081. kfree(tg);
  7082. }
  7083. /* allocate runqueue etc for a new task group */
  7084. struct task_group *sched_create_group(struct task_group *parent)
  7085. {
  7086. struct task_group *tg;
  7087. unsigned long flags;
  7088. int i;
  7089. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7090. if (!tg)
  7091. return ERR_PTR(-ENOMEM);
  7092. if (!alloc_fair_sched_group(tg, parent))
  7093. goto err;
  7094. if (!alloc_rt_sched_group(tg, parent))
  7095. goto err;
  7096. spin_lock_irqsave(&task_group_lock, flags);
  7097. for_each_possible_cpu(i) {
  7098. register_fair_sched_group(tg, i);
  7099. register_rt_sched_group(tg, i);
  7100. }
  7101. list_add_rcu(&tg->list, &task_groups);
  7102. WARN_ON(!parent); /* root should already exist */
  7103. tg->parent = parent;
  7104. INIT_LIST_HEAD(&tg->children);
  7105. list_add_rcu(&tg->siblings, &parent->children);
  7106. spin_unlock_irqrestore(&task_group_lock, flags);
  7107. return tg;
  7108. err:
  7109. free_sched_group(tg);
  7110. return ERR_PTR(-ENOMEM);
  7111. }
  7112. /* rcu callback to free various structures associated with a task group */
  7113. static void free_sched_group_rcu(struct rcu_head *rhp)
  7114. {
  7115. /* now it should be safe to free those cfs_rqs */
  7116. free_sched_group(container_of(rhp, struct task_group, rcu));
  7117. }
  7118. /* Destroy runqueue etc associated with a task group */
  7119. void sched_destroy_group(struct task_group *tg)
  7120. {
  7121. unsigned long flags;
  7122. int i;
  7123. spin_lock_irqsave(&task_group_lock, flags);
  7124. for_each_possible_cpu(i) {
  7125. unregister_fair_sched_group(tg, i);
  7126. unregister_rt_sched_group(tg, i);
  7127. }
  7128. list_del_rcu(&tg->list);
  7129. list_del_rcu(&tg->siblings);
  7130. spin_unlock_irqrestore(&task_group_lock, flags);
  7131. /* wait for possible concurrent references to cfs_rqs complete */
  7132. call_rcu(&tg->rcu, free_sched_group_rcu);
  7133. }
  7134. /* change task's runqueue when it moves between groups.
  7135. * The caller of this function should have put the task in its new group
  7136. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7137. * reflect its new group.
  7138. */
  7139. void sched_move_task(struct task_struct *tsk)
  7140. {
  7141. int on_rq, running;
  7142. unsigned long flags;
  7143. struct rq *rq;
  7144. rq = task_rq_lock(tsk, &flags);
  7145. running = task_current(rq, tsk);
  7146. on_rq = tsk->se.on_rq;
  7147. if (on_rq)
  7148. dequeue_task(rq, tsk, 0);
  7149. if (unlikely(running))
  7150. tsk->sched_class->put_prev_task(rq, tsk);
  7151. set_task_rq(tsk, task_cpu(tsk));
  7152. #ifdef CONFIG_FAIR_GROUP_SCHED
  7153. if (tsk->sched_class->moved_group)
  7154. tsk->sched_class->moved_group(tsk, on_rq);
  7155. #endif
  7156. if (unlikely(running))
  7157. tsk->sched_class->set_curr_task(rq);
  7158. if (on_rq)
  7159. enqueue_task(rq, tsk, 0);
  7160. task_rq_unlock(rq, &flags);
  7161. }
  7162. #endif /* CONFIG_CGROUP_SCHED */
  7163. #ifdef CONFIG_FAIR_GROUP_SCHED
  7164. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7165. {
  7166. struct cfs_rq *cfs_rq = se->cfs_rq;
  7167. int on_rq;
  7168. on_rq = se->on_rq;
  7169. if (on_rq)
  7170. dequeue_entity(cfs_rq, se, 0);
  7171. se->load.weight = shares;
  7172. se->load.inv_weight = 0;
  7173. if (on_rq)
  7174. enqueue_entity(cfs_rq, se, 0);
  7175. }
  7176. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7177. {
  7178. struct cfs_rq *cfs_rq = se->cfs_rq;
  7179. struct rq *rq = cfs_rq->rq;
  7180. unsigned long flags;
  7181. raw_spin_lock_irqsave(&rq->lock, flags);
  7182. __set_se_shares(se, shares);
  7183. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7184. }
  7185. static DEFINE_MUTEX(shares_mutex);
  7186. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7187. {
  7188. int i;
  7189. unsigned long flags;
  7190. /*
  7191. * We can't change the weight of the root cgroup.
  7192. */
  7193. if (!tg->se[0])
  7194. return -EINVAL;
  7195. if (shares < MIN_SHARES)
  7196. shares = MIN_SHARES;
  7197. else if (shares > MAX_SHARES)
  7198. shares = MAX_SHARES;
  7199. mutex_lock(&shares_mutex);
  7200. if (tg->shares == shares)
  7201. goto done;
  7202. spin_lock_irqsave(&task_group_lock, flags);
  7203. for_each_possible_cpu(i)
  7204. unregister_fair_sched_group(tg, i);
  7205. list_del_rcu(&tg->siblings);
  7206. spin_unlock_irqrestore(&task_group_lock, flags);
  7207. /* wait for any ongoing reference to this group to finish */
  7208. synchronize_sched();
  7209. /*
  7210. * Now we are free to modify the group's share on each cpu
  7211. * w/o tripping rebalance_share or load_balance_fair.
  7212. */
  7213. tg->shares = shares;
  7214. for_each_possible_cpu(i) {
  7215. /*
  7216. * force a rebalance
  7217. */
  7218. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7219. set_se_shares(tg->se[i], shares);
  7220. }
  7221. /*
  7222. * Enable load balance activity on this group, by inserting it back on
  7223. * each cpu's rq->leaf_cfs_rq_list.
  7224. */
  7225. spin_lock_irqsave(&task_group_lock, flags);
  7226. for_each_possible_cpu(i)
  7227. register_fair_sched_group(tg, i);
  7228. list_add_rcu(&tg->siblings, &tg->parent->children);
  7229. spin_unlock_irqrestore(&task_group_lock, flags);
  7230. done:
  7231. mutex_unlock(&shares_mutex);
  7232. return 0;
  7233. }
  7234. unsigned long sched_group_shares(struct task_group *tg)
  7235. {
  7236. return tg->shares;
  7237. }
  7238. #endif
  7239. #ifdef CONFIG_RT_GROUP_SCHED
  7240. /*
  7241. * Ensure that the real time constraints are schedulable.
  7242. */
  7243. static DEFINE_MUTEX(rt_constraints_mutex);
  7244. static unsigned long to_ratio(u64 period, u64 runtime)
  7245. {
  7246. if (runtime == RUNTIME_INF)
  7247. return 1ULL << 20;
  7248. return div64_u64(runtime << 20, period);
  7249. }
  7250. /* Must be called with tasklist_lock held */
  7251. static inline int tg_has_rt_tasks(struct task_group *tg)
  7252. {
  7253. struct task_struct *g, *p;
  7254. do_each_thread(g, p) {
  7255. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7256. return 1;
  7257. } while_each_thread(g, p);
  7258. return 0;
  7259. }
  7260. struct rt_schedulable_data {
  7261. struct task_group *tg;
  7262. u64 rt_period;
  7263. u64 rt_runtime;
  7264. };
  7265. static int tg_schedulable(struct task_group *tg, void *data)
  7266. {
  7267. struct rt_schedulable_data *d = data;
  7268. struct task_group *child;
  7269. unsigned long total, sum = 0;
  7270. u64 period, runtime;
  7271. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7272. runtime = tg->rt_bandwidth.rt_runtime;
  7273. if (tg == d->tg) {
  7274. period = d->rt_period;
  7275. runtime = d->rt_runtime;
  7276. }
  7277. /*
  7278. * Cannot have more runtime than the period.
  7279. */
  7280. if (runtime > period && runtime != RUNTIME_INF)
  7281. return -EINVAL;
  7282. /*
  7283. * Ensure we don't starve existing RT tasks.
  7284. */
  7285. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7286. return -EBUSY;
  7287. total = to_ratio(period, runtime);
  7288. /*
  7289. * Nobody can have more than the global setting allows.
  7290. */
  7291. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7292. return -EINVAL;
  7293. /*
  7294. * The sum of our children's runtime should not exceed our own.
  7295. */
  7296. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7297. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7298. runtime = child->rt_bandwidth.rt_runtime;
  7299. if (child == d->tg) {
  7300. period = d->rt_period;
  7301. runtime = d->rt_runtime;
  7302. }
  7303. sum += to_ratio(period, runtime);
  7304. }
  7305. if (sum > total)
  7306. return -EINVAL;
  7307. return 0;
  7308. }
  7309. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7310. {
  7311. struct rt_schedulable_data data = {
  7312. .tg = tg,
  7313. .rt_period = period,
  7314. .rt_runtime = runtime,
  7315. };
  7316. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7317. }
  7318. static int tg_set_bandwidth(struct task_group *tg,
  7319. u64 rt_period, u64 rt_runtime)
  7320. {
  7321. int i, err = 0;
  7322. mutex_lock(&rt_constraints_mutex);
  7323. read_lock(&tasklist_lock);
  7324. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7325. if (err)
  7326. goto unlock;
  7327. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7328. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7329. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7330. for_each_possible_cpu(i) {
  7331. struct rt_rq *rt_rq = tg->rt_rq[i];
  7332. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7333. rt_rq->rt_runtime = rt_runtime;
  7334. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7335. }
  7336. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7337. unlock:
  7338. read_unlock(&tasklist_lock);
  7339. mutex_unlock(&rt_constraints_mutex);
  7340. return err;
  7341. }
  7342. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7343. {
  7344. u64 rt_runtime, rt_period;
  7345. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7346. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7347. if (rt_runtime_us < 0)
  7348. rt_runtime = RUNTIME_INF;
  7349. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7350. }
  7351. long sched_group_rt_runtime(struct task_group *tg)
  7352. {
  7353. u64 rt_runtime_us;
  7354. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7355. return -1;
  7356. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7357. do_div(rt_runtime_us, NSEC_PER_USEC);
  7358. return rt_runtime_us;
  7359. }
  7360. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7361. {
  7362. u64 rt_runtime, rt_period;
  7363. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7364. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7365. if (rt_period == 0)
  7366. return -EINVAL;
  7367. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7368. }
  7369. long sched_group_rt_period(struct task_group *tg)
  7370. {
  7371. u64 rt_period_us;
  7372. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7373. do_div(rt_period_us, NSEC_PER_USEC);
  7374. return rt_period_us;
  7375. }
  7376. static int sched_rt_global_constraints(void)
  7377. {
  7378. u64 runtime, period;
  7379. int ret = 0;
  7380. if (sysctl_sched_rt_period <= 0)
  7381. return -EINVAL;
  7382. runtime = global_rt_runtime();
  7383. period = global_rt_period();
  7384. /*
  7385. * Sanity check on the sysctl variables.
  7386. */
  7387. if (runtime > period && runtime != RUNTIME_INF)
  7388. return -EINVAL;
  7389. mutex_lock(&rt_constraints_mutex);
  7390. read_lock(&tasklist_lock);
  7391. ret = __rt_schedulable(NULL, 0, 0);
  7392. read_unlock(&tasklist_lock);
  7393. mutex_unlock(&rt_constraints_mutex);
  7394. return ret;
  7395. }
  7396. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7397. {
  7398. /* Don't accept realtime tasks when there is no way for them to run */
  7399. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7400. return 0;
  7401. return 1;
  7402. }
  7403. #else /* !CONFIG_RT_GROUP_SCHED */
  7404. static int sched_rt_global_constraints(void)
  7405. {
  7406. unsigned long flags;
  7407. int i;
  7408. if (sysctl_sched_rt_period <= 0)
  7409. return -EINVAL;
  7410. /*
  7411. * There's always some RT tasks in the root group
  7412. * -- migration, kstopmachine etc..
  7413. */
  7414. if (sysctl_sched_rt_runtime == 0)
  7415. return -EBUSY;
  7416. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7417. for_each_possible_cpu(i) {
  7418. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7419. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7420. rt_rq->rt_runtime = global_rt_runtime();
  7421. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7422. }
  7423. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7424. return 0;
  7425. }
  7426. #endif /* CONFIG_RT_GROUP_SCHED */
  7427. int sched_rt_handler(struct ctl_table *table, int write,
  7428. void __user *buffer, size_t *lenp,
  7429. loff_t *ppos)
  7430. {
  7431. int ret;
  7432. int old_period, old_runtime;
  7433. static DEFINE_MUTEX(mutex);
  7434. mutex_lock(&mutex);
  7435. old_period = sysctl_sched_rt_period;
  7436. old_runtime = sysctl_sched_rt_runtime;
  7437. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7438. if (!ret && write) {
  7439. ret = sched_rt_global_constraints();
  7440. if (ret) {
  7441. sysctl_sched_rt_period = old_period;
  7442. sysctl_sched_rt_runtime = old_runtime;
  7443. } else {
  7444. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7445. def_rt_bandwidth.rt_period =
  7446. ns_to_ktime(global_rt_period());
  7447. }
  7448. }
  7449. mutex_unlock(&mutex);
  7450. return ret;
  7451. }
  7452. #ifdef CONFIG_CGROUP_SCHED
  7453. /* return corresponding task_group object of a cgroup */
  7454. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7455. {
  7456. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7457. struct task_group, css);
  7458. }
  7459. static struct cgroup_subsys_state *
  7460. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7461. {
  7462. struct task_group *tg, *parent;
  7463. if (!cgrp->parent) {
  7464. /* This is early initialization for the top cgroup */
  7465. return &init_task_group.css;
  7466. }
  7467. parent = cgroup_tg(cgrp->parent);
  7468. tg = sched_create_group(parent);
  7469. if (IS_ERR(tg))
  7470. return ERR_PTR(-ENOMEM);
  7471. return &tg->css;
  7472. }
  7473. static void
  7474. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7475. {
  7476. struct task_group *tg = cgroup_tg(cgrp);
  7477. sched_destroy_group(tg);
  7478. }
  7479. static int
  7480. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7481. {
  7482. #ifdef CONFIG_RT_GROUP_SCHED
  7483. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7484. return -EINVAL;
  7485. #else
  7486. /* We don't support RT-tasks being in separate groups */
  7487. if (tsk->sched_class != &fair_sched_class)
  7488. return -EINVAL;
  7489. #endif
  7490. return 0;
  7491. }
  7492. static int
  7493. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7494. struct task_struct *tsk, bool threadgroup)
  7495. {
  7496. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7497. if (retval)
  7498. return retval;
  7499. if (threadgroup) {
  7500. struct task_struct *c;
  7501. rcu_read_lock();
  7502. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7503. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7504. if (retval) {
  7505. rcu_read_unlock();
  7506. return retval;
  7507. }
  7508. }
  7509. rcu_read_unlock();
  7510. }
  7511. return 0;
  7512. }
  7513. static void
  7514. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7515. struct cgroup *old_cont, struct task_struct *tsk,
  7516. bool threadgroup)
  7517. {
  7518. sched_move_task(tsk);
  7519. if (threadgroup) {
  7520. struct task_struct *c;
  7521. rcu_read_lock();
  7522. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7523. sched_move_task(c);
  7524. }
  7525. rcu_read_unlock();
  7526. }
  7527. }
  7528. #ifdef CONFIG_FAIR_GROUP_SCHED
  7529. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7530. u64 shareval)
  7531. {
  7532. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7533. }
  7534. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7535. {
  7536. struct task_group *tg = cgroup_tg(cgrp);
  7537. return (u64) tg->shares;
  7538. }
  7539. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7540. #ifdef CONFIG_RT_GROUP_SCHED
  7541. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7542. s64 val)
  7543. {
  7544. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7545. }
  7546. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7547. {
  7548. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7549. }
  7550. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7551. u64 rt_period_us)
  7552. {
  7553. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7554. }
  7555. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7556. {
  7557. return sched_group_rt_period(cgroup_tg(cgrp));
  7558. }
  7559. #endif /* CONFIG_RT_GROUP_SCHED */
  7560. static struct cftype cpu_files[] = {
  7561. #ifdef CONFIG_FAIR_GROUP_SCHED
  7562. {
  7563. .name = "shares",
  7564. .read_u64 = cpu_shares_read_u64,
  7565. .write_u64 = cpu_shares_write_u64,
  7566. },
  7567. #endif
  7568. #ifdef CONFIG_RT_GROUP_SCHED
  7569. {
  7570. .name = "rt_runtime_us",
  7571. .read_s64 = cpu_rt_runtime_read,
  7572. .write_s64 = cpu_rt_runtime_write,
  7573. },
  7574. {
  7575. .name = "rt_period_us",
  7576. .read_u64 = cpu_rt_period_read_uint,
  7577. .write_u64 = cpu_rt_period_write_uint,
  7578. },
  7579. #endif
  7580. };
  7581. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7582. {
  7583. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7584. }
  7585. struct cgroup_subsys cpu_cgroup_subsys = {
  7586. .name = "cpu",
  7587. .create = cpu_cgroup_create,
  7588. .destroy = cpu_cgroup_destroy,
  7589. .can_attach = cpu_cgroup_can_attach,
  7590. .attach = cpu_cgroup_attach,
  7591. .populate = cpu_cgroup_populate,
  7592. .subsys_id = cpu_cgroup_subsys_id,
  7593. .early_init = 1,
  7594. };
  7595. #endif /* CONFIG_CGROUP_SCHED */
  7596. #ifdef CONFIG_CGROUP_CPUACCT
  7597. /*
  7598. * CPU accounting code for task groups.
  7599. *
  7600. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7601. * (balbir@in.ibm.com).
  7602. */
  7603. /* track cpu usage of a group of tasks and its child groups */
  7604. struct cpuacct {
  7605. struct cgroup_subsys_state css;
  7606. /* cpuusage holds pointer to a u64-type object on every cpu */
  7607. u64 __percpu *cpuusage;
  7608. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7609. struct cpuacct *parent;
  7610. };
  7611. struct cgroup_subsys cpuacct_subsys;
  7612. /* return cpu accounting group corresponding to this container */
  7613. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7614. {
  7615. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7616. struct cpuacct, css);
  7617. }
  7618. /* return cpu accounting group to which this task belongs */
  7619. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7620. {
  7621. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7622. struct cpuacct, css);
  7623. }
  7624. /* create a new cpu accounting group */
  7625. static struct cgroup_subsys_state *cpuacct_create(
  7626. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7627. {
  7628. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7629. int i;
  7630. if (!ca)
  7631. goto out;
  7632. ca->cpuusage = alloc_percpu(u64);
  7633. if (!ca->cpuusage)
  7634. goto out_free_ca;
  7635. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7636. if (percpu_counter_init(&ca->cpustat[i], 0))
  7637. goto out_free_counters;
  7638. if (cgrp->parent)
  7639. ca->parent = cgroup_ca(cgrp->parent);
  7640. return &ca->css;
  7641. out_free_counters:
  7642. while (--i >= 0)
  7643. percpu_counter_destroy(&ca->cpustat[i]);
  7644. free_percpu(ca->cpuusage);
  7645. out_free_ca:
  7646. kfree(ca);
  7647. out:
  7648. return ERR_PTR(-ENOMEM);
  7649. }
  7650. /* destroy an existing cpu accounting group */
  7651. static void
  7652. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7653. {
  7654. struct cpuacct *ca = cgroup_ca(cgrp);
  7655. int i;
  7656. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7657. percpu_counter_destroy(&ca->cpustat[i]);
  7658. free_percpu(ca->cpuusage);
  7659. kfree(ca);
  7660. }
  7661. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7662. {
  7663. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7664. u64 data;
  7665. #ifndef CONFIG_64BIT
  7666. /*
  7667. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7668. */
  7669. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7670. data = *cpuusage;
  7671. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7672. #else
  7673. data = *cpuusage;
  7674. #endif
  7675. return data;
  7676. }
  7677. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7678. {
  7679. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7680. #ifndef CONFIG_64BIT
  7681. /*
  7682. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7683. */
  7684. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7685. *cpuusage = val;
  7686. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7687. #else
  7688. *cpuusage = val;
  7689. #endif
  7690. }
  7691. /* return total cpu usage (in nanoseconds) of a group */
  7692. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7693. {
  7694. struct cpuacct *ca = cgroup_ca(cgrp);
  7695. u64 totalcpuusage = 0;
  7696. int i;
  7697. for_each_present_cpu(i)
  7698. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7699. return totalcpuusage;
  7700. }
  7701. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7702. u64 reset)
  7703. {
  7704. struct cpuacct *ca = cgroup_ca(cgrp);
  7705. int err = 0;
  7706. int i;
  7707. if (reset) {
  7708. err = -EINVAL;
  7709. goto out;
  7710. }
  7711. for_each_present_cpu(i)
  7712. cpuacct_cpuusage_write(ca, i, 0);
  7713. out:
  7714. return err;
  7715. }
  7716. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7717. struct seq_file *m)
  7718. {
  7719. struct cpuacct *ca = cgroup_ca(cgroup);
  7720. u64 percpu;
  7721. int i;
  7722. for_each_present_cpu(i) {
  7723. percpu = cpuacct_cpuusage_read(ca, i);
  7724. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7725. }
  7726. seq_printf(m, "\n");
  7727. return 0;
  7728. }
  7729. static const char *cpuacct_stat_desc[] = {
  7730. [CPUACCT_STAT_USER] = "user",
  7731. [CPUACCT_STAT_SYSTEM] = "system",
  7732. };
  7733. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7734. struct cgroup_map_cb *cb)
  7735. {
  7736. struct cpuacct *ca = cgroup_ca(cgrp);
  7737. int i;
  7738. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7739. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7740. val = cputime64_to_clock_t(val);
  7741. cb->fill(cb, cpuacct_stat_desc[i], val);
  7742. }
  7743. return 0;
  7744. }
  7745. static struct cftype files[] = {
  7746. {
  7747. .name = "usage",
  7748. .read_u64 = cpuusage_read,
  7749. .write_u64 = cpuusage_write,
  7750. },
  7751. {
  7752. .name = "usage_percpu",
  7753. .read_seq_string = cpuacct_percpu_seq_read,
  7754. },
  7755. {
  7756. .name = "stat",
  7757. .read_map = cpuacct_stats_show,
  7758. },
  7759. };
  7760. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7761. {
  7762. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7763. }
  7764. /*
  7765. * charge this task's execution time to its accounting group.
  7766. *
  7767. * called with rq->lock held.
  7768. */
  7769. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7770. {
  7771. struct cpuacct *ca;
  7772. int cpu;
  7773. if (unlikely(!cpuacct_subsys.active))
  7774. return;
  7775. cpu = task_cpu(tsk);
  7776. rcu_read_lock();
  7777. ca = task_ca(tsk);
  7778. for (; ca; ca = ca->parent) {
  7779. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7780. *cpuusage += cputime;
  7781. }
  7782. rcu_read_unlock();
  7783. }
  7784. /*
  7785. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7786. * in cputime_t units. As a result, cpuacct_update_stats calls
  7787. * percpu_counter_add with values large enough to always overflow the
  7788. * per cpu batch limit causing bad SMP scalability.
  7789. *
  7790. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7791. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7792. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7793. */
  7794. #ifdef CONFIG_SMP
  7795. #define CPUACCT_BATCH \
  7796. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7797. #else
  7798. #define CPUACCT_BATCH 0
  7799. #endif
  7800. /*
  7801. * Charge the system/user time to the task's accounting group.
  7802. */
  7803. static void cpuacct_update_stats(struct task_struct *tsk,
  7804. enum cpuacct_stat_index idx, cputime_t val)
  7805. {
  7806. struct cpuacct *ca;
  7807. int batch = CPUACCT_BATCH;
  7808. if (unlikely(!cpuacct_subsys.active))
  7809. return;
  7810. rcu_read_lock();
  7811. ca = task_ca(tsk);
  7812. do {
  7813. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7814. ca = ca->parent;
  7815. } while (ca);
  7816. rcu_read_unlock();
  7817. }
  7818. struct cgroup_subsys cpuacct_subsys = {
  7819. .name = "cpuacct",
  7820. .create = cpuacct_create,
  7821. .destroy = cpuacct_destroy,
  7822. .populate = cpuacct_populate,
  7823. .subsys_id = cpuacct_subsys_id,
  7824. };
  7825. #endif /* CONFIG_CGROUP_CPUACCT */
  7826. #ifndef CONFIG_SMP
  7827. void synchronize_sched_expedited(void)
  7828. {
  7829. barrier();
  7830. }
  7831. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7832. #else /* #ifndef CONFIG_SMP */
  7833. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7834. static int synchronize_sched_expedited_cpu_stop(void *data)
  7835. {
  7836. /*
  7837. * There must be a full memory barrier on each affected CPU
  7838. * between the time that try_stop_cpus() is called and the
  7839. * time that it returns.
  7840. *
  7841. * In the current initial implementation of cpu_stop, the
  7842. * above condition is already met when the control reaches
  7843. * this point and the following smp_mb() is not strictly
  7844. * necessary. Do smp_mb() anyway for documentation and
  7845. * robustness against future implementation changes.
  7846. */
  7847. smp_mb(); /* See above comment block. */
  7848. return 0;
  7849. }
  7850. /*
  7851. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7852. * approach to force grace period to end quickly. This consumes
  7853. * significant time on all CPUs, and is thus not recommended for
  7854. * any sort of common-case code.
  7855. *
  7856. * Note that it is illegal to call this function while holding any
  7857. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7858. * observe this restriction will result in deadlock.
  7859. */
  7860. void synchronize_sched_expedited(void)
  7861. {
  7862. int snap, trycount = 0;
  7863. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7864. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7865. get_online_cpus();
  7866. while (try_stop_cpus(cpu_online_mask,
  7867. synchronize_sched_expedited_cpu_stop,
  7868. NULL) == -EAGAIN) {
  7869. put_online_cpus();
  7870. if (trycount++ < 10)
  7871. udelay(trycount * num_online_cpus());
  7872. else {
  7873. synchronize_sched();
  7874. return;
  7875. }
  7876. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7877. smp_mb(); /* ensure test happens before caller kfree */
  7878. return;
  7879. }
  7880. get_online_cpus();
  7881. }
  7882. atomic_inc(&synchronize_sched_expedited_count);
  7883. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7884. put_online_cpus();
  7885. }
  7886. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7887. #endif /* #else #ifndef CONFIG_SMP */