kvm_main.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include "coalesced_mmio.h"
  53. #include "async_pf.h"
  54. #define CREATE_TRACE_POINTS
  55. #include <trace/events/kvm.h>
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. /*
  59. * Ordering of locks:
  60. *
  61. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  62. */
  63. DEFINE_RAW_SPINLOCK(kvm_lock);
  64. LIST_HEAD(vm_list);
  65. static cpumask_var_t cpus_hardware_enabled;
  66. static int kvm_usage_count = 0;
  67. static atomic_t hardware_enable_failed;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. #ifdef CONFIG_COMPAT
  75. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  76. unsigned long arg);
  77. #endif
  78. static int hardware_enable_all(void);
  79. static void hardware_disable_all(void);
  80. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  81. bool kvm_rebooting;
  82. EXPORT_SYMBOL_GPL(kvm_rebooting);
  83. static bool largepages_enabled = true;
  84. static struct page *hwpoison_page;
  85. static pfn_t hwpoison_pfn;
  86. struct page *fault_page;
  87. pfn_t fault_pfn;
  88. inline int kvm_is_mmio_pfn(pfn_t pfn)
  89. {
  90. if (pfn_valid(pfn)) {
  91. int reserved;
  92. struct page *tail = pfn_to_page(pfn);
  93. struct page *head = compound_trans_head(tail);
  94. reserved = PageReserved(head);
  95. if (head != tail) {
  96. /*
  97. * "head" is not a dangling pointer
  98. * (compound_trans_head takes care of that)
  99. * but the hugepage may have been splitted
  100. * from under us (and we may not hold a
  101. * reference count on the head page so it can
  102. * be reused before we run PageReferenced), so
  103. * we've to check PageTail before returning
  104. * what we just read.
  105. */
  106. smp_rmb();
  107. if (PageTail(tail))
  108. return reserved;
  109. }
  110. return PageReserved(tail);
  111. }
  112. return true;
  113. }
  114. /*
  115. * Switches to specified vcpu, until a matching vcpu_put()
  116. */
  117. void vcpu_load(struct kvm_vcpu *vcpu)
  118. {
  119. int cpu;
  120. mutex_lock(&vcpu->mutex);
  121. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  122. /* The thread running this VCPU changed. */
  123. struct pid *oldpid = vcpu->pid;
  124. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  125. rcu_assign_pointer(vcpu->pid, newpid);
  126. synchronize_rcu();
  127. put_pid(oldpid);
  128. }
  129. cpu = get_cpu();
  130. preempt_notifier_register(&vcpu->preempt_notifier);
  131. kvm_arch_vcpu_load(vcpu, cpu);
  132. put_cpu();
  133. }
  134. void vcpu_put(struct kvm_vcpu *vcpu)
  135. {
  136. preempt_disable();
  137. kvm_arch_vcpu_put(vcpu);
  138. preempt_notifier_unregister(&vcpu->preempt_notifier);
  139. preempt_enable();
  140. mutex_unlock(&vcpu->mutex);
  141. }
  142. static void ack_flush(void *_completed)
  143. {
  144. }
  145. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  146. {
  147. int i, cpu, me;
  148. cpumask_var_t cpus;
  149. bool called = true;
  150. struct kvm_vcpu *vcpu;
  151. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  152. me = get_cpu();
  153. kvm_for_each_vcpu(i, vcpu, kvm) {
  154. kvm_make_request(req, vcpu);
  155. cpu = vcpu->cpu;
  156. /* Set ->requests bit before we read ->mode */
  157. smp_mb();
  158. if (cpus != NULL && cpu != -1 && cpu != me &&
  159. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  160. cpumask_set_cpu(cpu, cpus);
  161. }
  162. if (unlikely(cpus == NULL))
  163. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  164. else if (!cpumask_empty(cpus))
  165. smp_call_function_many(cpus, ack_flush, NULL, 1);
  166. else
  167. called = false;
  168. put_cpu();
  169. free_cpumask_var(cpus);
  170. return called;
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. int dirty_count = kvm->tlbs_dirty;
  175. smp_mb();
  176. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  177. ++kvm->stat.remote_tlb_flush;
  178. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  179. }
  180. void kvm_reload_remote_mmus(struct kvm *kvm)
  181. {
  182. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  183. }
  184. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  185. {
  186. struct page *page;
  187. int r;
  188. mutex_init(&vcpu->mutex);
  189. vcpu->cpu = -1;
  190. vcpu->kvm = kvm;
  191. vcpu->vcpu_id = id;
  192. vcpu->pid = NULL;
  193. init_waitqueue_head(&vcpu->wq);
  194. kvm_async_pf_vcpu_init(vcpu);
  195. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  196. if (!page) {
  197. r = -ENOMEM;
  198. goto fail;
  199. }
  200. vcpu->run = page_address(page);
  201. r = kvm_arch_vcpu_init(vcpu);
  202. if (r < 0)
  203. goto fail_free_run;
  204. return 0;
  205. fail_free_run:
  206. free_page((unsigned long)vcpu->run);
  207. fail:
  208. return r;
  209. }
  210. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  211. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  212. {
  213. put_pid(vcpu->pid);
  214. kvm_arch_vcpu_uninit(vcpu);
  215. free_page((unsigned long)vcpu->run);
  216. }
  217. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  218. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  219. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  220. {
  221. return container_of(mn, struct kvm, mmu_notifier);
  222. }
  223. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  224. struct mm_struct *mm,
  225. unsigned long address)
  226. {
  227. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  228. int need_tlb_flush, idx;
  229. /*
  230. * When ->invalidate_page runs, the linux pte has been zapped
  231. * already but the page is still allocated until
  232. * ->invalidate_page returns. So if we increase the sequence
  233. * here the kvm page fault will notice if the spte can't be
  234. * established because the page is going to be freed. If
  235. * instead the kvm page fault establishes the spte before
  236. * ->invalidate_page runs, kvm_unmap_hva will release it
  237. * before returning.
  238. *
  239. * The sequence increase only need to be seen at spin_unlock
  240. * time, and not at spin_lock time.
  241. *
  242. * Increasing the sequence after the spin_unlock would be
  243. * unsafe because the kvm page fault could then establish the
  244. * pte after kvm_unmap_hva returned, without noticing the page
  245. * is going to be freed.
  246. */
  247. idx = srcu_read_lock(&kvm->srcu);
  248. spin_lock(&kvm->mmu_lock);
  249. kvm->mmu_notifier_seq++;
  250. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  251. spin_unlock(&kvm->mmu_lock);
  252. srcu_read_unlock(&kvm->srcu, idx);
  253. /* we've to flush the tlb before the pages can be freed */
  254. if (need_tlb_flush)
  255. kvm_flush_remote_tlbs(kvm);
  256. }
  257. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  258. struct mm_struct *mm,
  259. unsigned long address,
  260. pte_t pte)
  261. {
  262. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  263. int idx;
  264. idx = srcu_read_lock(&kvm->srcu);
  265. spin_lock(&kvm->mmu_lock);
  266. kvm->mmu_notifier_seq++;
  267. kvm_set_spte_hva(kvm, address, pte);
  268. spin_unlock(&kvm->mmu_lock);
  269. srcu_read_unlock(&kvm->srcu, idx);
  270. }
  271. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  272. struct mm_struct *mm,
  273. unsigned long start,
  274. unsigned long end)
  275. {
  276. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  277. int need_tlb_flush = 0, idx;
  278. idx = srcu_read_lock(&kvm->srcu);
  279. spin_lock(&kvm->mmu_lock);
  280. /*
  281. * The count increase must become visible at unlock time as no
  282. * spte can be established without taking the mmu_lock and
  283. * count is also read inside the mmu_lock critical section.
  284. */
  285. kvm->mmu_notifier_count++;
  286. for (; start < end; start += PAGE_SIZE)
  287. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  288. need_tlb_flush |= kvm->tlbs_dirty;
  289. spin_unlock(&kvm->mmu_lock);
  290. srcu_read_unlock(&kvm->srcu, idx);
  291. /* we've to flush the tlb before the pages can be freed */
  292. if (need_tlb_flush)
  293. kvm_flush_remote_tlbs(kvm);
  294. }
  295. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  296. struct mm_struct *mm,
  297. unsigned long start,
  298. unsigned long end)
  299. {
  300. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  301. spin_lock(&kvm->mmu_lock);
  302. /*
  303. * This sequence increase will notify the kvm page fault that
  304. * the page that is going to be mapped in the spte could have
  305. * been freed.
  306. */
  307. kvm->mmu_notifier_seq++;
  308. /*
  309. * The above sequence increase must be visible before the
  310. * below count decrease but both values are read by the kvm
  311. * page fault under mmu_lock spinlock so we don't need to add
  312. * a smb_wmb() here in between the two.
  313. */
  314. kvm->mmu_notifier_count--;
  315. spin_unlock(&kvm->mmu_lock);
  316. BUG_ON(kvm->mmu_notifier_count < 0);
  317. }
  318. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  319. struct mm_struct *mm,
  320. unsigned long address)
  321. {
  322. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  323. int young, idx;
  324. idx = srcu_read_lock(&kvm->srcu);
  325. spin_lock(&kvm->mmu_lock);
  326. young = kvm_age_hva(kvm, address);
  327. spin_unlock(&kvm->mmu_lock);
  328. srcu_read_unlock(&kvm->srcu, idx);
  329. if (young)
  330. kvm_flush_remote_tlbs(kvm);
  331. return young;
  332. }
  333. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  334. struct mm_struct *mm,
  335. unsigned long address)
  336. {
  337. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  338. int young, idx;
  339. idx = srcu_read_lock(&kvm->srcu);
  340. spin_lock(&kvm->mmu_lock);
  341. young = kvm_test_age_hva(kvm, address);
  342. spin_unlock(&kvm->mmu_lock);
  343. srcu_read_unlock(&kvm->srcu, idx);
  344. return young;
  345. }
  346. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  347. struct mm_struct *mm)
  348. {
  349. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  350. int idx;
  351. idx = srcu_read_lock(&kvm->srcu);
  352. kvm_arch_flush_shadow(kvm);
  353. srcu_read_unlock(&kvm->srcu, idx);
  354. }
  355. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  356. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  357. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  358. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  359. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  360. .test_young = kvm_mmu_notifier_test_young,
  361. .change_pte = kvm_mmu_notifier_change_pte,
  362. .release = kvm_mmu_notifier_release,
  363. };
  364. static int kvm_init_mmu_notifier(struct kvm *kvm)
  365. {
  366. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  367. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  368. }
  369. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  370. static int kvm_init_mmu_notifier(struct kvm *kvm)
  371. {
  372. return 0;
  373. }
  374. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  375. static struct kvm *kvm_create_vm(void)
  376. {
  377. int r, i;
  378. struct kvm *kvm = kvm_arch_alloc_vm();
  379. if (!kvm)
  380. return ERR_PTR(-ENOMEM);
  381. r = kvm_arch_init_vm(kvm);
  382. if (r)
  383. goto out_err_nodisable;
  384. r = hardware_enable_all();
  385. if (r)
  386. goto out_err_nodisable;
  387. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  388. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  389. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  390. #endif
  391. r = -ENOMEM;
  392. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  393. if (!kvm->memslots)
  394. goto out_err_nosrcu;
  395. if (init_srcu_struct(&kvm->srcu))
  396. goto out_err_nosrcu;
  397. for (i = 0; i < KVM_NR_BUSES; i++) {
  398. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  399. GFP_KERNEL);
  400. if (!kvm->buses[i])
  401. goto out_err;
  402. }
  403. spin_lock_init(&kvm->mmu_lock);
  404. kvm->mm = current->mm;
  405. atomic_inc(&kvm->mm->mm_count);
  406. kvm_eventfd_init(kvm);
  407. mutex_init(&kvm->lock);
  408. mutex_init(&kvm->irq_lock);
  409. mutex_init(&kvm->slots_lock);
  410. atomic_set(&kvm->users_count, 1);
  411. r = kvm_init_mmu_notifier(kvm);
  412. if (r)
  413. goto out_err;
  414. raw_spin_lock(&kvm_lock);
  415. list_add(&kvm->vm_list, &vm_list);
  416. raw_spin_unlock(&kvm_lock);
  417. return kvm;
  418. out_err:
  419. cleanup_srcu_struct(&kvm->srcu);
  420. out_err_nosrcu:
  421. hardware_disable_all();
  422. out_err_nodisable:
  423. for (i = 0; i < KVM_NR_BUSES; i++)
  424. kfree(kvm->buses[i]);
  425. kfree(kvm->memslots);
  426. kvm_arch_free_vm(kvm);
  427. return ERR_PTR(r);
  428. }
  429. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  430. {
  431. if (!memslot->dirty_bitmap)
  432. return;
  433. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  434. vfree(memslot->dirty_bitmap_head);
  435. else
  436. kfree(memslot->dirty_bitmap_head);
  437. memslot->dirty_bitmap = NULL;
  438. memslot->dirty_bitmap_head = NULL;
  439. }
  440. /*
  441. * Free any memory in @free but not in @dont.
  442. */
  443. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  444. struct kvm_memory_slot *dont)
  445. {
  446. int i;
  447. if (!dont || free->rmap != dont->rmap)
  448. vfree(free->rmap);
  449. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  450. kvm_destroy_dirty_bitmap(free);
  451. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  452. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  453. vfree(free->lpage_info[i]);
  454. free->lpage_info[i] = NULL;
  455. }
  456. }
  457. free->npages = 0;
  458. free->rmap = NULL;
  459. }
  460. void kvm_free_physmem(struct kvm *kvm)
  461. {
  462. int i;
  463. struct kvm_memslots *slots = kvm->memslots;
  464. for (i = 0; i < slots->nmemslots; ++i)
  465. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  466. kfree(kvm->memslots);
  467. }
  468. static void kvm_destroy_vm(struct kvm *kvm)
  469. {
  470. int i;
  471. struct mm_struct *mm = kvm->mm;
  472. kvm_arch_sync_events(kvm);
  473. raw_spin_lock(&kvm_lock);
  474. list_del(&kvm->vm_list);
  475. raw_spin_unlock(&kvm_lock);
  476. kvm_free_irq_routing(kvm);
  477. for (i = 0; i < KVM_NR_BUSES; i++)
  478. kvm_io_bus_destroy(kvm->buses[i]);
  479. kvm_coalesced_mmio_free(kvm);
  480. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  481. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  482. #else
  483. kvm_arch_flush_shadow(kvm);
  484. #endif
  485. kvm_arch_destroy_vm(kvm);
  486. kvm_free_physmem(kvm);
  487. cleanup_srcu_struct(&kvm->srcu);
  488. kvm_arch_free_vm(kvm);
  489. hardware_disable_all();
  490. mmdrop(mm);
  491. }
  492. void kvm_get_kvm(struct kvm *kvm)
  493. {
  494. atomic_inc(&kvm->users_count);
  495. }
  496. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  497. void kvm_put_kvm(struct kvm *kvm)
  498. {
  499. if (atomic_dec_and_test(&kvm->users_count))
  500. kvm_destroy_vm(kvm);
  501. }
  502. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  503. static int kvm_vm_release(struct inode *inode, struct file *filp)
  504. {
  505. struct kvm *kvm = filp->private_data;
  506. kvm_irqfd_release(kvm);
  507. kvm_put_kvm(kvm);
  508. return 0;
  509. }
  510. #ifndef CONFIG_S390
  511. /*
  512. * Allocation size is twice as large as the actual dirty bitmap size.
  513. * This makes it possible to do double buffering: see x86's
  514. * kvm_vm_ioctl_get_dirty_log().
  515. */
  516. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  517. {
  518. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  519. if (dirty_bytes > PAGE_SIZE)
  520. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  521. else
  522. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  523. if (!memslot->dirty_bitmap)
  524. return -ENOMEM;
  525. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  526. return 0;
  527. }
  528. #endif /* !CONFIG_S390 */
  529. /*
  530. * Allocate some memory and give it an address in the guest physical address
  531. * space.
  532. *
  533. * Discontiguous memory is allowed, mostly for framebuffers.
  534. *
  535. * Must be called holding mmap_sem for write.
  536. */
  537. int __kvm_set_memory_region(struct kvm *kvm,
  538. struct kvm_userspace_memory_region *mem,
  539. int user_alloc)
  540. {
  541. int r;
  542. gfn_t base_gfn;
  543. unsigned long npages;
  544. unsigned long i;
  545. struct kvm_memory_slot *memslot;
  546. struct kvm_memory_slot old, new;
  547. struct kvm_memslots *slots, *old_memslots;
  548. r = -EINVAL;
  549. /* General sanity checks */
  550. if (mem->memory_size & (PAGE_SIZE - 1))
  551. goto out;
  552. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  553. goto out;
  554. /* We can read the guest memory with __xxx_user() later on. */
  555. if (user_alloc &&
  556. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  557. !access_ok(VERIFY_WRITE,
  558. (void __user *)(unsigned long)mem->userspace_addr,
  559. mem->memory_size)))
  560. goto out;
  561. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  562. goto out;
  563. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  564. goto out;
  565. memslot = &kvm->memslots->memslots[mem->slot];
  566. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  567. npages = mem->memory_size >> PAGE_SHIFT;
  568. r = -EINVAL;
  569. if (npages > KVM_MEM_MAX_NR_PAGES)
  570. goto out;
  571. if (!npages)
  572. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  573. new = old = *memslot;
  574. new.id = mem->slot;
  575. new.base_gfn = base_gfn;
  576. new.npages = npages;
  577. new.flags = mem->flags;
  578. /* Disallow changing a memory slot's size. */
  579. r = -EINVAL;
  580. if (npages && old.npages && npages != old.npages)
  581. goto out_free;
  582. /* Check for overlaps */
  583. r = -EEXIST;
  584. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  585. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  586. if (s == memslot || !s->npages)
  587. continue;
  588. if (!((base_gfn + npages <= s->base_gfn) ||
  589. (base_gfn >= s->base_gfn + s->npages)))
  590. goto out_free;
  591. }
  592. /* Free page dirty bitmap if unneeded */
  593. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  594. new.dirty_bitmap = NULL;
  595. r = -ENOMEM;
  596. /* Allocate if a slot is being created */
  597. #ifndef CONFIG_S390
  598. if (npages && !new.rmap) {
  599. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  600. if (!new.rmap)
  601. goto out_free;
  602. new.user_alloc = user_alloc;
  603. new.userspace_addr = mem->userspace_addr;
  604. }
  605. if (!npages)
  606. goto skip_lpage;
  607. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  608. unsigned long ugfn;
  609. unsigned long j;
  610. int lpages;
  611. int level = i + 2;
  612. /* Avoid unused variable warning if no large pages */
  613. (void)level;
  614. if (new.lpage_info[i])
  615. continue;
  616. lpages = 1 + ((base_gfn + npages - 1)
  617. >> KVM_HPAGE_GFN_SHIFT(level));
  618. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  619. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  620. if (!new.lpage_info[i])
  621. goto out_free;
  622. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  623. new.lpage_info[i][0].write_count = 1;
  624. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  625. new.lpage_info[i][lpages - 1].write_count = 1;
  626. ugfn = new.userspace_addr >> PAGE_SHIFT;
  627. /*
  628. * If the gfn and userspace address are not aligned wrt each
  629. * other, or if explicitly asked to, disable large page
  630. * support for this slot
  631. */
  632. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  633. !largepages_enabled)
  634. for (j = 0; j < lpages; ++j)
  635. new.lpage_info[i][j].write_count = 1;
  636. }
  637. skip_lpage:
  638. /* Allocate page dirty bitmap if needed */
  639. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  640. if (kvm_create_dirty_bitmap(&new) < 0)
  641. goto out_free;
  642. /* destroy any largepage mappings for dirty tracking */
  643. }
  644. #else /* not defined CONFIG_S390 */
  645. new.user_alloc = user_alloc;
  646. if (user_alloc)
  647. new.userspace_addr = mem->userspace_addr;
  648. #endif /* not defined CONFIG_S390 */
  649. if (!npages) {
  650. r = -ENOMEM;
  651. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  652. if (!slots)
  653. goto out_free;
  654. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  655. if (mem->slot >= slots->nmemslots)
  656. slots->nmemslots = mem->slot + 1;
  657. slots->generation++;
  658. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  659. old_memslots = kvm->memslots;
  660. rcu_assign_pointer(kvm->memslots, slots);
  661. synchronize_srcu_expedited(&kvm->srcu);
  662. /* From this point no new shadow pages pointing to a deleted
  663. * memslot will be created.
  664. *
  665. * validation of sp->gfn happens in:
  666. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  667. * - kvm_is_visible_gfn (mmu_check_roots)
  668. */
  669. kvm_arch_flush_shadow(kvm);
  670. kfree(old_memslots);
  671. }
  672. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  673. if (r)
  674. goto out_free;
  675. /* map the pages in iommu page table */
  676. if (npages) {
  677. r = kvm_iommu_map_pages(kvm, &new);
  678. if (r)
  679. goto out_free;
  680. }
  681. r = -ENOMEM;
  682. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  683. if (!slots)
  684. goto out_free;
  685. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  686. if (mem->slot >= slots->nmemslots)
  687. slots->nmemslots = mem->slot + 1;
  688. slots->generation++;
  689. /* actual memory is freed via old in kvm_free_physmem_slot below */
  690. if (!npages) {
  691. new.rmap = NULL;
  692. new.dirty_bitmap = NULL;
  693. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  694. new.lpage_info[i] = NULL;
  695. }
  696. slots->memslots[mem->slot] = new;
  697. old_memslots = kvm->memslots;
  698. rcu_assign_pointer(kvm->memslots, slots);
  699. synchronize_srcu_expedited(&kvm->srcu);
  700. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  701. /*
  702. * If the new memory slot is created, we need to clear all
  703. * mmio sptes.
  704. */
  705. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  706. kvm_arch_flush_shadow(kvm);
  707. kvm_free_physmem_slot(&old, &new);
  708. kfree(old_memslots);
  709. return 0;
  710. out_free:
  711. kvm_free_physmem_slot(&new, &old);
  712. out:
  713. return r;
  714. }
  715. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  716. int kvm_set_memory_region(struct kvm *kvm,
  717. struct kvm_userspace_memory_region *mem,
  718. int user_alloc)
  719. {
  720. int r;
  721. mutex_lock(&kvm->slots_lock);
  722. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  723. mutex_unlock(&kvm->slots_lock);
  724. return r;
  725. }
  726. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  727. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  728. struct
  729. kvm_userspace_memory_region *mem,
  730. int user_alloc)
  731. {
  732. if (mem->slot >= KVM_MEMORY_SLOTS)
  733. return -EINVAL;
  734. return kvm_set_memory_region(kvm, mem, user_alloc);
  735. }
  736. int kvm_get_dirty_log(struct kvm *kvm,
  737. struct kvm_dirty_log *log, int *is_dirty)
  738. {
  739. struct kvm_memory_slot *memslot;
  740. int r, i;
  741. unsigned long n;
  742. unsigned long any = 0;
  743. r = -EINVAL;
  744. if (log->slot >= KVM_MEMORY_SLOTS)
  745. goto out;
  746. memslot = &kvm->memslots->memslots[log->slot];
  747. r = -ENOENT;
  748. if (!memslot->dirty_bitmap)
  749. goto out;
  750. n = kvm_dirty_bitmap_bytes(memslot);
  751. for (i = 0; !any && i < n/sizeof(long); ++i)
  752. any = memslot->dirty_bitmap[i];
  753. r = -EFAULT;
  754. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  755. goto out;
  756. if (any)
  757. *is_dirty = 1;
  758. r = 0;
  759. out:
  760. return r;
  761. }
  762. void kvm_disable_largepages(void)
  763. {
  764. largepages_enabled = false;
  765. }
  766. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  767. int is_error_page(struct page *page)
  768. {
  769. return page == bad_page || page == hwpoison_page || page == fault_page;
  770. }
  771. EXPORT_SYMBOL_GPL(is_error_page);
  772. int is_error_pfn(pfn_t pfn)
  773. {
  774. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  775. }
  776. EXPORT_SYMBOL_GPL(is_error_pfn);
  777. int is_hwpoison_pfn(pfn_t pfn)
  778. {
  779. return pfn == hwpoison_pfn;
  780. }
  781. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  782. int is_fault_pfn(pfn_t pfn)
  783. {
  784. return pfn == fault_pfn;
  785. }
  786. EXPORT_SYMBOL_GPL(is_fault_pfn);
  787. int is_noslot_pfn(pfn_t pfn)
  788. {
  789. return pfn == bad_pfn;
  790. }
  791. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  792. int is_invalid_pfn(pfn_t pfn)
  793. {
  794. return pfn == hwpoison_pfn || pfn == fault_pfn;
  795. }
  796. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  797. static inline unsigned long bad_hva(void)
  798. {
  799. return PAGE_OFFSET;
  800. }
  801. int kvm_is_error_hva(unsigned long addr)
  802. {
  803. return addr == bad_hva();
  804. }
  805. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  806. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  807. gfn_t gfn)
  808. {
  809. int i;
  810. for (i = 0; i < slots->nmemslots; ++i) {
  811. struct kvm_memory_slot *memslot = &slots->memslots[i];
  812. if (gfn >= memslot->base_gfn
  813. && gfn < memslot->base_gfn + memslot->npages)
  814. return memslot;
  815. }
  816. return NULL;
  817. }
  818. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  819. {
  820. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  821. }
  822. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  823. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  824. {
  825. int i;
  826. struct kvm_memslots *slots = kvm_memslots(kvm);
  827. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  828. struct kvm_memory_slot *memslot = &slots->memslots[i];
  829. if (memslot->flags & KVM_MEMSLOT_INVALID)
  830. continue;
  831. if (gfn >= memslot->base_gfn
  832. && gfn < memslot->base_gfn + memslot->npages)
  833. return 1;
  834. }
  835. return 0;
  836. }
  837. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  838. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  839. {
  840. struct vm_area_struct *vma;
  841. unsigned long addr, size;
  842. size = PAGE_SIZE;
  843. addr = gfn_to_hva(kvm, gfn);
  844. if (kvm_is_error_hva(addr))
  845. return PAGE_SIZE;
  846. down_read(&current->mm->mmap_sem);
  847. vma = find_vma(current->mm, addr);
  848. if (!vma)
  849. goto out;
  850. size = vma_kernel_pagesize(vma);
  851. out:
  852. up_read(&current->mm->mmap_sem);
  853. return size;
  854. }
  855. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  856. gfn_t *nr_pages)
  857. {
  858. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  859. return bad_hva();
  860. if (nr_pages)
  861. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  862. return gfn_to_hva_memslot(slot, gfn);
  863. }
  864. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  865. {
  866. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  867. }
  868. EXPORT_SYMBOL_GPL(gfn_to_hva);
  869. static pfn_t get_fault_pfn(void)
  870. {
  871. get_page(fault_page);
  872. return fault_pfn;
  873. }
  874. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  875. unsigned long start, int write, struct page **page)
  876. {
  877. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  878. if (write)
  879. flags |= FOLL_WRITE;
  880. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  881. }
  882. static inline int check_user_page_hwpoison(unsigned long addr)
  883. {
  884. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  885. rc = __get_user_pages(current, current->mm, addr, 1,
  886. flags, NULL, NULL, NULL);
  887. return rc == -EHWPOISON;
  888. }
  889. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  890. bool *async, bool write_fault, bool *writable)
  891. {
  892. struct page *page[1];
  893. int npages = 0;
  894. pfn_t pfn;
  895. /* we can do it either atomically or asynchronously, not both */
  896. BUG_ON(atomic && async);
  897. BUG_ON(!write_fault && !writable);
  898. if (writable)
  899. *writable = true;
  900. if (atomic || async)
  901. npages = __get_user_pages_fast(addr, 1, 1, page);
  902. if (unlikely(npages != 1) && !atomic) {
  903. might_sleep();
  904. if (writable)
  905. *writable = write_fault;
  906. if (async) {
  907. down_read(&current->mm->mmap_sem);
  908. npages = get_user_page_nowait(current, current->mm,
  909. addr, write_fault, page);
  910. up_read(&current->mm->mmap_sem);
  911. } else
  912. npages = get_user_pages_fast(addr, 1, write_fault,
  913. page);
  914. /* map read fault as writable if possible */
  915. if (unlikely(!write_fault) && npages == 1) {
  916. struct page *wpage[1];
  917. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  918. if (npages == 1) {
  919. *writable = true;
  920. put_page(page[0]);
  921. page[0] = wpage[0];
  922. }
  923. npages = 1;
  924. }
  925. }
  926. if (unlikely(npages != 1)) {
  927. struct vm_area_struct *vma;
  928. if (atomic)
  929. return get_fault_pfn();
  930. down_read(&current->mm->mmap_sem);
  931. if (npages == -EHWPOISON ||
  932. (!async && check_user_page_hwpoison(addr))) {
  933. up_read(&current->mm->mmap_sem);
  934. get_page(hwpoison_page);
  935. return page_to_pfn(hwpoison_page);
  936. }
  937. vma = find_vma_intersection(current->mm, addr, addr+1);
  938. if (vma == NULL)
  939. pfn = get_fault_pfn();
  940. else if ((vma->vm_flags & VM_PFNMAP)) {
  941. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  942. vma->vm_pgoff;
  943. BUG_ON(!kvm_is_mmio_pfn(pfn));
  944. } else {
  945. if (async && (vma->vm_flags & VM_WRITE))
  946. *async = true;
  947. pfn = get_fault_pfn();
  948. }
  949. up_read(&current->mm->mmap_sem);
  950. } else
  951. pfn = page_to_pfn(page[0]);
  952. return pfn;
  953. }
  954. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  955. {
  956. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  957. }
  958. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  959. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  960. bool write_fault, bool *writable)
  961. {
  962. unsigned long addr;
  963. if (async)
  964. *async = false;
  965. addr = gfn_to_hva(kvm, gfn);
  966. if (kvm_is_error_hva(addr)) {
  967. get_page(bad_page);
  968. return page_to_pfn(bad_page);
  969. }
  970. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  971. }
  972. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  973. {
  974. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  975. }
  976. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  977. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  978. bool write_fault, bool *writable)
  979. {
  980. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  981. }
  982. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  983. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  984. {
  985. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  986. }
  987. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  988. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  989. bool *writable)
  990. {
  991. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  992. }
  993. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  994. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  995. struct kvm_memory_slot *slot, gfn_t gfn)
  996. {
  997. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  998. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  999. }
  1000. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  1001. int nr_pages)
  1002. {
  1003. unsigned long addr;
  1004. gfn_t entry;
  1005. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  1006. if (kvm_is_error_hva(addr))
  1007. return -1;
  1008. if (entry < nr_pages)
  1009. return 0;
  1010. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1011. }
  1012. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1013. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1014. {
  1015. pfn_t pfn;
  1016. pfn = gfn_to_pfn(kvm, gfn);
  1017. if (!kvm_is_mmio_pfn(pfn))
  1018. return pfn_to_page(pfn);
  1019. WARN_ON(kvm_is_mmio_pfn(pfn));
  1020. get_page(bad_page);
  1021. return bad_page;
  1022. }
  1023. EXPORT_SYMBOL_GPL(gfn_to_page);
  1024. void kvm_release_page_clean(struct page *page)
  1025. {
  1026. kvm_release_pfn_clean(page_to_pfn(page));
  1027. }
  1028. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1029. void kvm_release_pfn_clean(pfn_t pfn)
  1030. {
  1031. if (!kvm_is_mmio_pfn(pfn))
  1032. put_page(pfn_to_page(pfn));
  1033. }
  1034. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1035. void kvm_release_page_dirty(struct page *page)
  1036. {
  1037. kvm_release_pfn_dirty(page_to_pfn(page));
  1038. }
  1039. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1040. void kvm_release_pfn_dirty(pfn_t pfn)
  1041. {
  1042. kvm_set_pfn_dirty(pfn);
  1043. kvm_release_pfn_clean(pfn);
  1044. }
  1045. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1046. void kvm_set_page_dirty(struct page *page)
  1047. {
  1048. kvm_set_pfn_dirty(page_to_pfn(page));
  1049. }
  1050. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1051. void kvm_set_pfn_dirty(pfn_t pfn)
  1052. {
  1053. if (!kvm_is_mmio_pfn(pfn)) {
  1054. struct page *page = pfn_to_page(pfn);
  1055. if (!PageReserved(page))
  1056. SetPageDirty(page);
  1057. }
  1058. }
  1059. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1060. void kvm_set_pfn_accessed(pfn_t pfn)
  1061. {
  1062. if (!kvm_is_mmio_pfn(pfn))
  1063. mark_page_accessed(pfn_to_page(pfn));
  1064. }
  1065. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1066. void kvm_get_pfn(pfn_t pfn)
  1067. {
  1068. if (!kvm_is_mmio_pfn(pfn))
  1069. get_page(pfn_to_page(pfn));
  1070. }
  1071. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1072. static int next_segment(unsigned long len, int offset)
  1073. {
  1074. if (len > PAGE_SIZE - offset)
  1075. return PAGE_SIZE - offset;
  1076. else
  1077. return len;
  1078. }
  1079. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1080. int len)
  1081. {
  1082. int r;
  1083. unsigned long addr;
  1084. addr = gfn_to_hva(kvm, gfn);
  1085. if (kvm_is_error_hva(addr))
  1086. return -EFAULT;
  1087. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1088. if (r)
  1089. return -EFAULT;
  1090. return 0;
  1091. }
  1092. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1093. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1094. {
  1095. gfn_t gfn = gpa >> PAGE_SHIFT;
  1096. int seg;
  1097. int offset = offset_in_page(gpa);
  1098. int ret;
  1099. while ((seg = next_segment(len, offset)) != 0) {
  1100. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1101. if (ret < 0)
  1102. return ret;
  1103. offset = 0;
  1104. len -= seg;
  1105. data += seg;
  1106. ++gfn;
  1107. }
  1108. return 0;
  1109. }
  1110. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1111. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1112. unsigned long len)
  1113. {
  1114. int r;
  1115. unsigned long addr;
  1116. gfn_t gfn = gpa >> PAGE_SHIFT;
  1117. int offset = offset_in_page(gpa);
  1118. addr = gfn_to_hva(kvm, gfn);
  1119. if (kvm_is_error_hva(addr))
  1120. return -EFAULT;
  1121. pagefault_disable();
  1122. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1123. pagefault_enable();
  1124. if (r)
  1125. return -EFAULT;
  1126. return 0;
  1127. }
  1128. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1129. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1130. int offset, int len)
  1131. {
  1132. int r;
  1133. unsigned long addr;
  1134. addr = gfn_to_hva(kvm, gfn);
  1135. if (kvm_is_error_hva(addr))
  1136. return -EFAULT;
  1137. r = __copy_to_user((void __user *)addr + offset, data, len);
  1138. if (r)
  1139. return -EFAULT;
  1140. mark_page_dirty(kvm, gfn);
  1141. return 0;
  1142. }
  1143. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1144. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1145. unsigned long len)
  1146. {
  1147. gfn_t gfn = gpa >> PAGE_SHIFT;
  1148. int seg;
  1149. int offset = offset_in_page(gpa);
  1150. int ret;
  1151. while ((seg = next_segment(len, offset)) != 0) {
  1152. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1153. if (ret < 0)
  1154. return ret;
  1155. offset = 0;
  1156. len -= seg;
  1157. data += seg;
  1158. ++gfn;
  1159. }
  1160. return 0;
  1161. }
  1162. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1163. gpa_t gpa)
  1164. {
  1165. struct kvm_memslots *slots = kvm_memslots(kvm);
  1166. int offset = offset_in_page(gpa);
  1167. gfn_t gfn = gpa >> PAGE_SHIFT;
  1168. ghc->gpa = gpa;
  1169. ghc->generation = slots->generation;
  1170. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1171. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1172. if (!kvm_is_error_hva(ghc->hva))
  1173. ghc->hva += offset;
  1174. else
  1175. return -EFAULT;
  1176. return 0;
  1177. }
  1178. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1179. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1180. void *data, unsigned long len)
  1181. {
  1182. struct kvm_memslots *slots = kvm_memslots(kvm);
  1183. int r;
  1184. if (slots->generation != ghc->generation)
  1185. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1186. if (kvm_is_error_hva(ghc->hva))
  1187. return -EFAULT;
  1188. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1189. if (r)
  1190. return -EFAULT;
  1191. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1192. return 0;
  1193. }
  1194. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1195. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1196. void *data, unsigned long len)
  1197. {
  1198. struct kvm_memslots *slots = kvm_memslots(kvm);
  1199. int r;
  1200. if (slots->generation != ghc->generation)
  1201. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1202. if (kvm_is_error_hva(ghc->hva))
  1203. return -EFAULT;
  1204. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1205. if (r)
  1206. return -EFAULT;
  1207. return 0;
  1208. }
  1209. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1210. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1211. {
  1212. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1213. offset, len);
  1214. }
  1215. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1216. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1217. {
  1218. gfn_t gfn = gpa >> PAGE_SHIFT;
  1219. int seg;
  1220. int offset = offset_in_page(gpa);
  1221. int ret;
  1222. while ((seg = next_segment(len, offset)) != 0) {
  1223. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1224. if (ret < 0)
  1225. return ret;
  1226. offset = 0;
  1227. len -= seg;
  1228. ++gfn;
  1229. }
  1230. return 0;
  1231. }
  1232. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1233. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1234. gfn_t gfn)
  1235. {
  1236. if (memslot && memslot->dirty_bitmap) {
  1237. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1238. __set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1239. }
  1240. }
  1241. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1242. {
  1243. struct kvm_memory_slot *memslot;
  1244. memslot = gfn_to_memslot(kvm, gfn);
  1245. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1246. }
  1247. /*
  1248. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1249. */
  1250. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1251. {
  1252. DEFINE_WAIT(wait);
  1253. for (;;) {
  1254. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1255. if (kvm_arch_vcpu_runnable(vcpu)) {
  1256. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1257. break;
  1258. }
  1259. if (kvm_cpu_has_pending_timer(vcpu))
  1260. break;
  1261. if (signal_pending(current))
  1262. break;
  1263. schedule();
  1264. }
  1265. finish_wait(&vcpu->wq, &wait);
  1266. }
  1267. void kvm_resched(struct kvm_vcpu *vcpu)
  1268. {
  1269. if (!need_resched())
  1270. return;
  1271. cond_resched();
  1272. }
  1273. EXPORT_SYMBOL_GPL(kvm_resched);
  1274. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1275. {
  1276. struct kvm *kvm = me->kvm;
  1277. struct kvm_vcpu *vcpu;
  1278. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1279. int yielded = 0;
  1280. int pass;
  1281. int i;
  1282. /*
  1283. * We boost the priority of a VCPU that is runnable but not
  1284. * currently running, because it got preempted by something
  1285. * else and called schedule in __vcpu_run. Hopefully that
  1286. * VCPU is holding the lock that we need and will release it.
  1287. * We approximate round-robin by starting at the last boosted VCPU.
  1288. */
  1289. for (pass = 0; pass < 2 && !yielded; pass++) {
  1290. kvm_for_each_vcpu(i, vcpu, kvm) {
  1291. struct task_struct *task = NULL;
  1292. struct pid *pid;
  1293. if (!pass && i < last_boosted_vcpu) {
  1294. i = last_boosted_vcpu;
  1295. continue;
  1296. } else if (pass && i > last_boosted_vcpu)
  1297. break;
  1298. if (vcpu == me)
  1299. continue;
  1300. if (waitqueue_active(&vcpu->wq))
  1301. continue;
  1302. rcu_read_lock();
  1303. pid = rcu_dereference(vcpu->pid);
  1304. if (pid)
  1305. task = get_pid_task(vcpu->pid, PIDTYPE_PID);
  1306. rcu_read_unlock();
  1307. if (!task)
  1308. continue;
  1309. if (task->flags & PF_VCPU) {
  1310. put_task_struct(task);
  1311. continue;
  1312. }
  1313. if (yield_to(task, 1)) {
  1314. put_task_struct(task);
  1315. kvm->last_boosted_vcpu = i;
  1316. yielded = 1;
  1317. break;
  1318. }
  1319. put_task_struct(task);
  1320. }
  1321. }
  1322. }
  1323. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1324. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1325. {
  1326. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1327. struct page *page;
  1328. if (vmf->pgoff == 0)
  1329. page = virt_to_page(vcpu->run);
  1330. #ifdef CONFIG_X86
  1331. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1332. page = virt_to_page(vcpu->arch.pio_data);
  1333. #endif
  1334. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1335. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1336. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1337. #endif
  1338. else
  1339. return VM_FAULT_SIGBUS;
  1340. get_page(page);
  1341. vmf->page = page;
  1342. return 0;
  1343. }
  1344. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1345. .fault = kvm_vcpu_fault,
  1346. };
  1347. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1348. {
  1349. vma->vm_ops = &kvm_vcpu_vm_ops;
  1350. return 0;
  1351. }
  1352. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1353. {
  1354. struct kvm_vcpu *vcpu = filp->private_data;
  1355. kvm_put_kvm(vcpu->kvm);
  1356. return 0;
  1357. }
  1358. static struct file_operations kvm_vcpu_fops = {
  1359. .release = kvm_vcpu_release,
  1360. .unlocked_ioctl = kvm_vcpu_ioctl,
  1361. #ifdef CONFIG_COMPAT
  1362. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1363. #endif
  1364. .mmap = kvm_vcpu_mmap,
  1365. .llseek = noop_llseek,
  1366. };
  1367. /*
  1368. * Allocates an inode for the vcpu.
  1369. */
  1370. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1371. {
  1372. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1373. }
  1374. /*
  1375. * Creates some virtual cpus. Good luck creating more than one.
  1376. */
  1377. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1378. {
  1379. int r;
  1380. struct kvm_vcpu *vcpu, *v;
  1381. vcpu = kvm_arch_vcpu_create(kvm, id);
  1382. if (IS_ERR(vcpu))
  1383. return PTR_ERR(vcpu);
  1384. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1385. r = kvm_arch_vcpu_setup(vcpu);
  1386. if (r)
  1387. goto vcpu_destroy;
  1388. mutex_lock(&kvm->lock);
  1389. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1390. r = -EINVAL;
  1391. goto unlock_vcpu_destroy;
  1392. }
  1393. kvm_for_each_vcpu(r, v, kvm)
  1394. if (v->vcpu_id == id) {
  1395. r = -EEXIST;
  1396. goto unlock_vcpu_destroy;
  1397. }
  1398. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1399. /* Now it's all set up, let userspace reach it */
  1400. kvm_get_kvm(kvm);
  1401. r = create_vcpu_fd(vcpu);
  1402. if (r < 0) {
  1403. kvm_put_kvm(kvm);
  1404. goto unlock_vcpu_destroy;
  1405. }
  1406. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1407. smp_wmb();
  1408. atomic_inc(&kvm->online_vcpus);
  1409. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1410. if (kvm->bsp_vcpu_id == id)
  1411. kvm->bsp_vcpu = vcpu;
  1412. #endif
  1413. mutex_unlock(&kvm->lock);
  1414. return r;
  1415. unlock_vcpu_destroy:
  1416. mutex_unlock(&kvm->lock);
  1417. vcpu_destroy:
  1418. kvm_arch_vcpu_destroy(vcpu);
  1419. return r;
  1420. }
  1421. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1422. {
  1423. if (sigset) {
  1424. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1425. vcpu->sigset_active = 1;
  1426. vcpu->sigset = *sigset;
  1427. } else
  1428. vcpu->sigset_active = 0;
  1429. return 0;
  1430. }
  1431. static long kvm_vcpu_ioctl(struct file *filp,
  1432. unsigned int ioctl, unsigned long arg)
  1433. {
  1434. struct kvm_vcpu *vcpu = filp->private_data;
  1435. void __user *argp = (void __user *)arg;
  1436. int r;
  1437. struct kvm_fpu *fpu = NULL;
  1438. struct kvm_sregs *kvm_sregs = NULL;
  1439. if (vcpu->kvm->mm != current->mm)
  1440. return -EIO;
  1441. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1442. /*
  1443. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1444. * so vcpu_load() would break it.
  1445. */
  1446. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1447. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1448. #endif
  1449. vcpu_load(vcpu);
  1450. switch (ioctl) {
  1451. case KVM_RUN:
  1452. r = -EINVAL;
  1453. if (arg)
  1454. goto out;
  1455. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1456. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1457. break;
  1458. case KVM_GET_REGS: {
  1459. struct kvm_regs *kvm_regs;
  1460. r = -ENOMEM;
  1461. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1462. if (!kvm_regs)
  1463. goto out;
  1464. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1465. if (r)
  1466. goto out_free1;
  1467. r = -EFAULT;
  1468. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1469. goto out_free1;
  1470. r = 0;
  1471. out_free1:
  1472. kfree(kvm_regs);
  1473. break;
  1474. }
  1475. case KVM_SET_REGS: {
  1476. struct kvm_regs *kvm_regs;
  1477. r = -ENOMEM;
  1478. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1479. if (!kvm_regs)
  1480. goto out;
  1481. r = -EFAULT;
  1482. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1483. goto out_free2;
  1484. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1485. if (r)
  1486. goto out_free2;
  1487. r = 0;
  1488. out_free2:
  1489. kfree(kvm_regs);
  1490. break;
  1491. }
  1492. case KVM_GET_SREGS: {
  1493. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1494. r = -ENOMEM;
  1495. if (!kvm_sregs)
  1496. goto out;
  1497. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1498. if (r)
  1499. goto out;
  1500. r = -EFAULT;
  1501. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1502. goto out;
  1503. r = 0;
  1504. break;
  1505. }
  1506. case KVM_SET_SREGS: {
  1507. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1508. r = -ENOMEM;
  1509. if (!kvm_sregs)
  1510. goto out;
  1511. r = -EFAULT;
  1512. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1513. goto out;
  1514. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1515. if (r)
  1516. goto out;
  1517. r = 0;
  1518. break;
  1519. }
  1520. case KVM_GET_MP_STATE: {
  1521. struct kvm_mp_state mp_state;
  1522. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1523. if (r)
  1524. goto out;
  1525. r = -EFAULT;
  1526. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1527. goto out;
  1528. r = 0;
  1529. break;
  1530. }
  1531. case KVM_SET_MP_STATE: {
  1532. struct kvm_mp_state mp_state;
  1533. r = -EFAULT;
  1534. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1535. goto out;
  1536. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1537. if (r)
  1538. goto out;
  1539. r = 0;
  1540. break;
  1541. }
  1542. case KVM_TRANSLATE: {
  1543. struct kvm_translation tr;
  1544. r = -EFAULT;
  1545. if (copy_from_user(&tr, argp, sizeof tr))
  1546. goto out;
  1547. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1548. if (r)
  1549. goto out;
  1550. r = -EFAULT;
  1551. if (copy_to_user(argp, &tr, sizeof tr))
  1552. goto out;
  1553. r = 0;
  1554. break;
  1555. }
  1556. case KVM_SET_GUEST_DEBUG: {
  1557. struct kvm_guest_debug dbg;
  1558. r = -EFAULT;
  1559. if (copy_from_user(&dbg, argp, sizeof dbg))
  1560. goto out;
  1561. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1562. if (r)
  1563. goto out;
  1564. r = 0;
  1565. break;
  1566. }
  1567. case KVM_SET_SIGNAL_MASK: {
  1568. struct kvm_signal_mask __user *sigmask_arg = argp;
  1569. struct kvm_signal_mask kvm_sigmask;
  1570. sigset_t sigset, *p;
  1571. p = NULL;
  1572. if (argp) {
  1573. r = -EFAULT;
  1574. if (copy_from_user(&kvm_sigmask, argp,
  1575. sizeof kvm_sigmask))
  1576. goto out;
  1577. r = -EINVAL;
  1578. if (kvm_sigmask.len != sizeof sigset)
  1579. goto out;
  1580. r = -EFAULT;
  1581. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1582. sizeof sigset))
  1583. goto out;
  1584. p = &sigset;
  1585. }
  1586. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1587. break;
  1588. }
  1589. case KVM_GET_FPU: {
  1590. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1591. r = -ENOMEM;
  1592. if (!fpu)
  1593. goto out;
  1594. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1595. if (r)
  1596. goto out;
  1597. r = -EFAULT;
  1598. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1599. goto out;
  1600. r = 0;
  1601. break;
  1602. }
  1603. case KVM_SET_FPU: {
  1604. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1605. r = -ENOMEM;
  1606. if (!fpu)
  1607. goto out;
  1608. r = -EFAULT;
  1609. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1610. goto out;
  1611. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1612. if (r)
  1613. goto out;
  1614. r = 0;
  1615. break;
  1616. }
  1617. default:
  1618. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1619. }
  1620. out:
  1621. vcpu_put(vcpu);
  1622. kfree(fpu);
  1623. kfree(kvm_sregs);
  1624. return r;
  1625. }
  1626. #ifdef CONFIG_COMPAT
  1627. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1628. unsigned int ioctl, unsigned long arg)
  1629. {
  1630. struct kvm_vcpu *vcpu = filp->private_data;
  1631. void __user *argp = compat_ptr(arg);
  1632. int r;
  1633. if (vcpu->kvm->mm != current->mm)
  1634. return -EIO;
  1635. switch (ioctl) {
  1636. case KVM_SET_SIGNAL_MASK: {
  1637. struct kvm_signal_mask __user *sigmask_arg = argp;
  1638. struct kvm_signal_mask kvm_sigmask;
  1639. compat_sigset_t csigset;
  1640. sigset_t sigset;
  1641. if (argp) {
  1642. r = -EFAULT;
  1643. if (copy_from_user(&kvm_sigmask, argp,
  1644. sizeof kvm_sigmask))
  1645. goto out;
  1646. r = -EINVAL;
  1647. if (kvm_sigmask.len != sizeof csigset)
  1648. goto out;
  1649. r = -EFAULT;
  1650. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1651. sizeof csigset))
  1652. goto out;
  1653. }
  1654. sigset_from_compat(&sigset, &csigset);
  1655. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1656. break;
  1657. }
  1658. default:
  1659. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1660. }
  1661. out:
  1662. return r;
  1663. }
  1664. #endif
  1665. static long kvm_vm_ioctl(struct file *filp,
  1666. unsigned int ioctl, unsigned long arg)
  1667. {
  1668. struct kvm *kvm = filp->private_data;
  1669. void __user *argp = (void __user *)arg;
  1670. int r;
  1671. if (kvm->mm != current->mm)
  1672. return -EIO;
  1673. switch (ioctl) {
  1674. case KVM_CREATE_VCPU:
  1675. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1676. if (r < 0)
  1677. goto out;
  1678. break;
  1679. case KVM_SET_USER_MEMORY_REGION: {
  1680. struct kvm_userspace_memory_region kvm_userspace_mem;
  1681. r = -EFAULT;
  1682. if (copy_from_user(&kvm_userspace_mem, argp,
  1683. sizeof kvm_userspace_mem))
  1684. goto out;
  1685. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1686. if (r)
  1687. goto out;
  1688. break;
  1689. }
  1690. case KVM_GET_DIRTY_LOG: {
  1691. struct kvm_dirty_log log;
  1692. r = -EFAULT;
  1693. if (copy_from_user(&log, argp, sizeof log))
  1694. goto out;
  1695. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1696. if (r)
  1697. goto out;
  1698. break;
  1699. }
  1700. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1701. case KVM_REGISTER_COALESCED_MMIO: {
  1702. struct kvm_coalesced_mmio_zone zone;
  1703. r = -EFAULT;
  1704. if (copy_from_user(&zone, argp, sizeof zone))
  1705. goto out;
  1706. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1707. if (r)
  1708. goto out;
  1709. r = 0;
  1710. break;
  1711. }
  1712. case KVM_UNREGISTER_COALESCED_MMIO: {
  1713. struct kvm_coalesced_mmio_zone zone;
  1714. r = -EFAULT;
  1715. if (copy_from_user(&zone, argp, sizeof zone))
  1716. goto out;
  1717. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1718. if (r)
  1719. goto out;
  1720. r = 0;
  1721. break;
  1722. }
  1723. #endif
  1724. case KVM_IRQFD: {
  1725. struct kvm_irqfd data;
  1726. r = -EFAULT;
  1727. if (copy_from_user(&data, argp, sizeof data))
  1728. goto out;
  1729. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1730. break;
  1731. }
  1732. case KVM_IOEVENTFD: {
  1733. struct kvm_ioeventfd data;
  1734. r = -EFAULT;
  1735. if (copy_from_user(&data, argp, sizeof data))
  1736. goto out;
  1737. r = kvm_ioeventfd(kvm, &data);
  1738. break;
  1739. }
  1740. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1741. case KVM_SET_BOOT_CPU_ID:
  1742. r = 0;
  1743. mutex_lock(&kvm->lock);
  1744. if (atomic_read(&kvm->online_vcpus) != 0)
  1745. r = -EBUSY;
  1746. else
  1747. kvm->bsp_vcpu_id = arg;
  1748. mutex_unlock(&kvm->lock);
  1749. break;
  1750. #endif
  1751. default:
  1752. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1753. if (r == -ENOTTY)
  1754. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1755. }
  1756. out:
  1757. return r;
  1758. }
  1759. #ifdef CONFIG_COMPAT
  1760. struct compat_kvm_dirty_log {
  1761. __u32 slot;
  1762. __u32 padding1;
  1763. union {
  1764. compat_uptr_t dirty_bitmap; /* one bit per page */
  1765. __u64 padding2;
  1766. };
  1767. };
  1768. static long kvm_vm_compat_ioctl(struct file *filp,
  1769. unsigned int ioctl, unsigned long arg)
  1770. {
  1771. struct kvm *kvm = filp->private_data;
  1772. int r;
  1773. if (kvm->mm != current->mm)
  1774. return -EIO;
  1775. switch (ioctl) {
  1776. case KVM_GET_DIRTY_LOG: {
  1777. struct compat_kvm_dirty_log compat_log;
  1778. struct kvm_dirty_log log;
  1779. r = -EFAULT;
  1780. if (copy_from_user(&compat_log, (void __user *)arg,
  1781. sizeof(compat_log)))
  1782. goto out;
  1783. log.slot = compat_log.slot;
  1784. log.padding1 = compat_log.padding1;
  1785. log.padding2 = compat_log.padding2;
  1786. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1787. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1788. if (r)
  1789. goto out;
  1790. break;
  1791. }
  1792. default:
  1793. r = kvm_vm_ioctl(filp, ioctl, arg);
  1794. }
  1795. out:
  1796. return r;
  1797. }
  1798. #endif
  1799. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1800. {
  1801. struct page *page[1];
  1802. unsigned long addr;
  1803. int npages;
  1804. gfn_t gfn = vmf->pgoff;
  1805. struct kvm *kvm = vma->vm_file->private_data;
  1806. addr = gfn_to_hva(kvm, gfn);
  1807. if (kvm_is_error_hva(addr))
  1808. return VM_FAULT_SIGBUS;
  1809. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1810. NULL);
  1811. if (unlikely(npages != 1))
  1812. return VM_FAULT_SIGBUS;
  1813. vmf->page = page[0];
  1814. return 0;
  1815. }
  1816. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1817. .fault = kvm_vm_fault,
  1818. };
  1819. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1820. {
  1821. vma->vm_ops = &kvm_vm_vm_ops;
  1822. return 0;
  1823. }
  1824. static struct file_operations kvm_vm_fops = {
  1825. .release = kvm_vm_release,
  1826. .unlocked_ioctl = kvm_vm_ioctl,
  1827. #ifdef CONFIG_COMPAT
  1828. .compat_ioctl = kvm_vm_compat_ioctl,
  1829. #endif
  1830. .mmap = kvm_vm_mmap,
  1831. .llseek = noop_llseek,
  1832. };
  1833. static int kvm_dev_ioctl_create_vm(void)
  1834. {
  1835. int r;
  1836. struct kvm *kvm;
  1837. kvm = kvm_create_vm();
  1838. if (IS_ERR(kvm))
  1839. return PTR_ERR(kvm);
  1840. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1841. r = kvm_coalesced_mmio_init(kvm);
  1842. if (r < 0) {
  1843. kvm_put_kvm(kvm);
  1844. return r;
  1845. }
  1846. #endif
  1847. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1848. if (r < 0)
  1849. kvm_put_kvm(kvm);
  1850. return r;
  1851. }
  1852. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1853. {
  1854. switch (arg) {
  1855. case KVM_CAP_USER_MEMORY:
  1856. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1857. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1858. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1859. case KVM_CAP_SET_BOOT_CPU_ID:
  1860. #endif
  1861. case KVM_CAP_INTERNAL_ERROR_DATA:
  1862. return 1;
  1863. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1864. case KVM_CAP_IRQ_ROUTING:
  1865. return KVM_MAX_IRQ_ROUTES;
  1866. #endif
  1867. default:
  1868. break;
  1869. }
  1870. return kvm_dev_ioctl_check_extension(arg);
  1871. }
  1872. static long kvm_dev_ioctl(struct file *filp,
  1873. unsigned int ioctl, unsigned long arg)
  1874. {
  1875. long r = -EINVAL;
  1876. switch (ioctl) {
  1877. case KVM_GET_API_VERSION:
  1878. r = -EINVAL;
  1879. if (arg)
  1880. goto out;
  1881. r = KVM_API_VERSION;
  1882. break;
  1883. case KVM_CREATE_VM:
  1884. r = -EINVAL;
  1885. if (arg)
  1886. goto out;
  1887. r = kvm_dev_ioctl_create_vm();
  1888. break;
  1889. case KVM_CHECK_EXTENSION:
  1890. r = kvm_dev_ioctl_check_extension_generic(arg);
  1891. break;
  1892. case KVM_GET_VCPU_MMAP_SIZE:
  1893. r = -EINVAL;
  1894. if (arg)
  1895. goto out;
  1896. r = PAGE_SIZE; /* struct kvm_run */
  1897. #ifdef CONFIG_X86
  1898. r += PAGE_SIZE; /* pio data page */
  1899. #endif
  1900. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1901. r += PAGE_SIZE; /* coalesced mmio ring page */
  1902. #endif
  1903. break;
  1904. case KVM_TRACE_ENABLE:
  1905. case KVM_TRACE_PAUSE:
  1906. case KVM_TRACE_DISABLE:
  1907. r = -EOPNOTSUPP;
  1908. break;
  1909. default:
  1910. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1911. }
  1912. out:
  1913. return r;
  1914. }
  1915. static struct file_operations kvm_chardev_ops = {
  1916. .unlocked_ioctl = kvm_dev_ioctl,
  1917. .compat_ioctl = kvm_dev_ioctl,
  1918. .llseek = noop_llseek,
  1919. };
  1920. static struct miscdevice kvm_dev = {
  1921. KVM_MINOR,
  1922. "kvm",
  1923. &kvm_chardev_ops,
  1924. };
  1925. static void hardware_enable_nolock(void *junk)
  1926. {
  1927. int cpu = raw_smp_processor_id();
  1928. int r;
  1929. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1930. return;
  1931. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1932. r = kvm_arch_hardware_enable(NULL);
  1933. if (r) {
  1934. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1935. atomic_inc(&hardware_enable_failed);
  1936. printk(KERN_INFO "kvm: enabling virtualization on "
  1937. "CPU%d failed\n", cpu);
  1938. }
  1939. }
  1940. static void hardware_enable(void *junk)
  1941. {
  1942. raw_spin_lock(&kvm_lock);
  1943. hardware_enable_nolock(junk);
  1944. raw_spin_unlock(&kvm_lock);
  1945. }
  1946. static void hardware_disable_nolock(void *junk)
  1947. {
  1948. int cpu = raw_smp_processor_id();
  1949. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1950. return;
  1951. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1952. kvm_arch_hardware_disable(NULL);
  1953. }
  1954. static void hardware_disable(void *junk)
  1955. {
  1956. raw_spin_lock(&kvm_lock);
  1957. hardware_disable_nolock(junk);
  1958. raw_spin_unlock(&kvm_lock);
  1959. }
  1960. static void hardware_disable_all_nolock(void)
  1961. {
  1962. BUG_ON(!kvm_usage_count);
  1963. kvm_usage_count--;
  1964. if (!kvm_usage_count)
  1965. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1966. }
  1967. static void hardware_disable_all(void)
  1968. {
  1969. raw_spin_lock(&kvm_lock);
  1970. hardware_disable_all_nolock();
  1971. raw_spin_unlock(&kvm_lock);
  1972. }
  1973. static int hardware_enable_all(void)
  1974. {
  1975. int r = 0;
  1976. raw_spin_lock(&kvm_lock);
  1977. kvm_usage_count++;
  1978. if (kvm_usage_count == 1) {
  1979. atomic_set(&hardware_enable_failed, 0);
  1980. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1981. if (atomic_read(&hardware_enable_failed)) {
  1982. hardware_disable_all_nolock();
  1983. r = -EBUSY;
  1984. }
  1985. }
  1986. raw_spin_unlock(&kvm_lock);
  1987. return r;
  1988. }
  1989. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1990. void *v)
  1991. {
  1992. int cpu = (long)v;
  1993. if (!kvm_usage_count)
  1994. return NOTIFY_OK;
  1995. val &= ~CPU_TASKS_FROZEN;
  1996. switch (val) {
  1997. case CPU_DYING:
  1998. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1999. cpu);
  2000. hardware_disable(NULL);
  2001. break;
  2002. case CPU_STARTING:
  2003. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2004. cpu);
  2005. hardware_enable(NULL);
  2006. break;
  2007. }
  2008. return NOTIFY_OK;
  2009. }
  2010. asmlinkage void kvm_spurious_fault(void)
  2011. {
  2012. /* Fault while not rebooting. We want the trace. */
  2013. BUG();
  2014. }
  2015. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2016. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2017. void *v)
  2018. {
  2019. /*
  2020. * Some (well, at least mine) BIOSes hang on reboot if
  2021. * in vmx root mode.
  2022. *
  2023. * And Intel TXT required VMX off for all cpu when system shutdown.
  2024. */
  2025. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2026. kvm_rebooting = true;
  2027. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2028. return NOTIFY_OK;
  2029. }
  2030. static struct notifier_block kvm_reboot_notifier = {
  2031. .notifier_call = kvm_reboot,
  2032. .priority = 0,
  2033. };
  2034. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2035. {
  2036. int i;
  2037. for (i = 0; i < bus->dev_count; i++) {
  2038. struct kvm_io_device *pos = bus->devs[i];
  2039. kvm_iodevice_destructor(pos);
  2040. }
  2041. kfree(bus);
  2042. }
  2043. /* kvm_io_bus_write - called under kvm->slots_lock */
  2044. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2045. int len, const void *val)
  2046. {
  2047. int i;
  2048. struct kvm_io_bus *bus;
  2049. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2050. for (i = 0; i < bus->dev_count; i++)
  2051. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  2052. return 0;
  2053. return -EOPNOTSUPP;
  2054. }
  2055. /* kvm_io_bus_read - called under kvm->slots_lock */
  2056. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2057. int len, void *val)
  2058. {
  2059. int i;
  2060. struct kvm_io_bus *bus;
  2061. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2062. for (i = 0; i < bus->dev_count; i++)
  2063. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  2064. return 0;
  2065. return -EOPNOTSUPP;
  2066. }
  2067. /* Caller must hold slots_lock. */
  2068. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2069. struct kvm_io_device *dev)
  2070. {
  2071. struct kvm_io_bus *new_bus, *bus;
  2072. bus = kvm->buses[bus_idx];
  2073. if (bus->dev_count > NR_IOBUS_DEVS-1)
  2074. return -ENOSPC;
  2075. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  2076. if (!new_bus)
  2077. return -ENOMEM;
  2078. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2079. new_bus->devs[new_bus->dev_count++] = dev;
  2080. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2081. synchronize_srcu_expedited(&kvm->srcu);
  2082. kfree(bus);
  2083. return 0;
  2084. }
  2085. /* Caller must hold slots_lock. */
  2086. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2087. struct kvm_io_device *dev)
  2088. {
  2089. int i, r;
  2090. struct kvm_io_bus *new_bus, *bus;
  2091. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  2092. if (!new_bus)
  2093. return -ENOMEM;
  2094. bus = kvm->buses[bus_idx];
  2095. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2096. r = -ENOENT;
  2097. for (i = 0; i < new_bus->dev_count; i++)
  2098. if (new_bus->devs[i] == dev) {
  2099. r = 0;
  2100. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  2101. break;
  2102. }
  2103. if (r) {
  2104. kfree(new_bus);
  2105. return r;
  2106. }
  2107. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2108. synchronize_srcu_expedited(&kvm->srcu);
  2109. kfree(bus);
  2110. return r;
  2111. }
  2112. static struct notifier_block kvm_cpu_notifier = {
  2113. .notifier_call = kvm_cpu_hotplug,
  2114. };
  2115. static int vm_stat_get(void *_offset, u64 *val)
  2116. {
  2117. unsigned offset = (long)_offset;
  2118. struct kvm *kvm;
  2119. *val = 0;
  2120. raw_spin_lock(&kvm_lock);
  2121. list_for_each_entry(kvm, &vm_list, vm_list)
  2122. *val += *(u32 *)((void *)kvm + offset);
  2123. raw_spin_unlock(&kvm_lock);
  2124. return 0;
  2125. }
  2126. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2127. static int vcpu_stat_get(void *_offset, u64 *val)
  2128. {
  2129. unsigned offset = (long)_offset;
  2130. struct kvm *kvm;
  2131. struct kvm_vcpu *vcpu;
  2132. int i;
  2133. *val = 0;
  2134. raw_spin_lock(&kvm_lock);
  2135. list_for_each_entry(kvm, &vm_list, vm_list)
  2136. kvm_for_each_vcpu(i, vcpu, kvm)
  2137. *val += *(u32 *)((void *)vcpu + offset);
  2138. raw_spin_unlock(&kvm_lock);
  2139. return 0;
  2140. }
  2141. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2142. static const struct file_operations *stat_fops[] = {
  2143. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2144. [KVM_STAT_VM] = &vm_stat_fops,
  2145. };
  2146. static void kvm_init_debug(void)
  2147. {
  2148. struct kvm_stats_debugfs_item *p;
  2149. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2150. for (p = debugfs_entries; p->name; ++p)
  2151. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2152. (void *)(long)p->offset,
  2153. stat_fops[p->kind]);
  2154. }
  2155. static void kvm_exit_debug(void)
  2156. {
  2157. struct kvm_stats_debugfs_item *p;
  2158. for (p = debugfs_entries; p->name; ++p)
  2159. debugfs_remove(p->dentry);
  2160. debugfs_remove(kvm_debugfs_dir);
  2161. }
  2162. static int kvm_suspend(void)
  2163. {
  2164. if (kvm_usage_count)
  2165. hardware_disable_nolock(NULL);
  2166. return 0;
  2167. }
  2168. static void kvm_resume(void)
  2169. {
  2170. if (kvm_usage_count) {
  2171. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2172. hardware_enable_nolock(NULL);
  2173. }
  2174. }
  2175. static struct syscore_ops kvm_syscore_ops = {
  2176. .suspend = kvm_suspend,
  2177. .resume = kvm_resume,
  2178. };
  2179. struct page *bad_page;
  2180. pfn_t bad_pfn;
  2181. static inline
  2182. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2183. {
  2184. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2185. }
  2186. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2187. {
  2188. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2189. kvm_arch_vcpu_load(vcpu, cpu);
  2190. }
  2191. static void kvm_sched_out(struct preempt_notifier *pn,
  2192. struct task_struct *next)
  2193. {
  2194. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2195. kvm_arch_vcpu_put(vcpu);
  2196. }
  2197. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2198. struct module *module)
  2199. {
  2200. int r;
  2201. int cpu;
  2202. r = kvm_arch_init(opaque);
  2203. if (r)
  2204. goto out_fail;
  2205. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2206. if (bad_page == NULL) {
  2207. r = -ENOMEM;
  2208. goto out;
  2209. }
  2210. bad_pfn = page_to_pfn(bad_page);
  2211. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2212. if (hwpoison_page == NULL) {
  2213. r = -ENOMEM;
  2214. goto out_free_0;
  2215. }
  2216. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2217. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2218. if (fault_page == NULL) {
  2219. r = -ENOMEM;
  2220. goto out_free_0;
  2221. }
  2222. fault_pfn = page_to_pfn(fault_page);
  2223. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2224. r = -ENOMEM;
  2225. goto out_free_0;
  2226. }
  2227. r = kvm_arch_hardware_setup();
  2228. if (r < 0)
  2229. goto out_free_0a;
  2230. for_each_online_cpu(cpu) {
  2231. smp_call_function_single(cpu,
  2232. kvm_arch_check_processor_compat,
  2233. &r, 1);
  2234. if (r < 0)
  2235. goto out_free_1;
  2236. }
  2237. r = register_cpu_notifier(&kvm_cpu_notifier);
  2238. if (r)
  2239. goto out_free_2;
  2240. register_reboot_notifier(&kvm_reboot_notifier);
  2241. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2242. if (!vcpu_align)
  2243. vcpu_align = __alignof__(struct kvm_vcpu);
  2244. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2245. 0, NULL);
  2246. if (!kvm_vcpu_cache) {
  2247. r = -ENOMEM;
  2248. goto out_free_3;
  2249. }
  2250. r = kvm_async_pf_init();
  2251. if (r)
  2252. goto out_free;
  2253. kvm_chardev_ops.owner = module;
  2254. kvm_vm_fops.owner = module;
  2255. kvm_vcpu_fops.owner = module;
  2256. r = misc_register(&kvm_dev);
  2257. if (r) {
  2258. printk(KERN_ERR "kvm: misc device register failed\n");
  2259. goto out_unreg;
  2260. }
  2261. register_syscore_ops(&kvm_syscore_ops);
  2262. kvm_preempt_ops.sched_in = kvm_sched_in;
  2263. kvm_preempt_ops.sched_out = kvm_sched_out;
  2264. kvm_init_debug();
  2265. return 0;
  2266. out_unreg:
  2267. kvm_async_pf_deinit();
  2268. out_free:
  2269. kmem_cache_destroy(kvm_vcpu_cache);
  2270. out_free_3:
  2271. unregister_reboot_notifier(&kvm_reboot_notifier);
  2272. unregister_cpu_notifier(&kvm_cpu_notifier);
  2273. out_free_2:
  2274. out_free_1:
  2275. kvm_arch_hardware_unsetup();
  2276. out_free_0a:
  2277. free_cpumask_var(cpus_hardware_enabled);
  2278. out_free_0:
  2279. if (fault_page)
  2280. __free_page(fault_page);
  2281. if (hwpoison_page)
  2282. __free_page(hwpoison_page);
  2283. __free_page(bad_page);
  2284. out:
  2285. kvm_arch_exit();
  2286. out_fail:
  2287. return r;
  2288. }
  2289. EXPORT_SYMBOL_GPL(kvm_init);
  2290. void kvm_exit(void)
  2291. {
  2292. kvm_exit_debug();
  2293. misc_deregister(&kvm_dev);
  2294. kmem_cache_destroy(kvm_vcpu_cache);
  2295. kvm_async_pf_deinit();
  2296. unregister_syscore_ops(&kvm_syscore_ops);
  2297. unregister_reboot_notifier(&kvm_reboot_notifier);
  2298. unregister_cpu_notifier(&kvm_cpu_notifier);
  2299. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2300. kvm_arch_hardware_unsetup();
  2301. kvm_arch_exit();
  2302. free_cpumask_var(cpus_hardware_enabled);
  2303. __free_page(hwpoison_page);
  2304. __free_page(bad_page);
  2305. }
  2306. EXPORT_SYMBOL_GPL(kvm_exit);