fsi.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. /* PortA/PortB register */
  21. #define REG_DO_FMT 0x0000
  22. #define REG_DOFF_CTL 0x0004
  23. #define REG_DOFF_ST 0x0008
  24. #define REG_DI_FMT 0x000C
  25. #define REG_DIFF_CTL 0x0010
  26. #define REG_DIFF_ST 0x0014
  27. #define REG_CKG1 0x0018
  28. #define REG_CKG2 0x001C
  29. #define REG_DIDT 0x0020
  30. #define REG_DODT 0x0024
  31. #define REG_MUTE_ST 0x0028
  32. #define REG_OUT_SEL 0x0030
  33. /* master register */
  34. #define MST_CLK_RST 0x0210
  35. #define MST_SOFT_RST 0x0214
  36. #define MST_FIFO_SZ 0x0218
  37. /* core register (depend on FSI version) */
  38. #define A_MST_CTLR 0x0180
  39. #define B_MST_CTLR 0x01A0
  40. #define CPU_INT_ST 0x01F4
  41. #define CPU_IEMSK 0x01F8
  42. #define CPU_IMSK 0x01FC
  43. #define INT_ST 0x0200
  44. #define IEMSK 0x0204
  45. #define IMSK 0x0208
  46. /* DO_FMT */
  47. /* DI_FMT */
  48. #define CR_BWS_24 (0x0 << 20) /* FSI2 */
  49. #define CR_BWS_16 (0x1 << 20) /* FSI2 */
  50. #define CR_BWS_20 (0x2 << 20) /* FSI2 */
  51. #define CR_DTMD_PCM (0x0 << 8) /* FSI2 */
  52. #define CR_DTMD_SPDIF_PCM (0x1 << 8) /* FSI2 */
  53. #define CR_DTMD_SPDIF_STREAM (0x2 << 8) /* FSI2 */
  54. #define CR_MONO (0x0 << 4)
  55. #define CR_MONO_D (0x1 << 4)
  56. #define CR_PCM (0x2 << 4)
  57. #define CR_I2S (0x3 << 4)
  58. #define CR_TDM (0x4 << 4)
  59. #define CR_TDM_D (0x5 << 4)
  60. /* DOFF_CTL */
  61. /* DIFF_CTL */
  62. #define IRQ_HALF 0x00100000
  63. #define FIFO_CLR 0x00000001
  64. /* DOFF_ST */
  65. #define ERR_OVER 0x00000010
  66. #define ERR_UNDER 0x00000001
  67. #define ST_ERR (ERR_OVER | ERR_UNDER)
  68. /* CKG1 */
  69. #define ACKMD_MASK 0x00007000
  70. #define BPFMD_MASK 0x00000700
  71. #define DIMD (1 << 4)
  72. #define DOMD (1 << 0)
  73. /* A/B MST_CTLR */
  74. #define BP (1 << 4) /* Fix the signal of Biphase output */
  75. #define SE (1 << 0) /* Fix the master clock */
  76. /* CLK_RST */
  77. #define CRB (1 << 4)
  78. #define CRA (1 << 0)
  79. /* IO SHIFT / MACRO */
  80. #define BI_SHIFT 12
  81. #define BO_SHIFT 8
  82. #define AI_SHIFT 4
  83. #define AO_SHIFT 0
  84. #define AB_IO(param, shift) (param << shift)
  85. /* SOFT_RST */
  86. #define PBSR (1 << 12) /* Port B Software Reset */
  87. #define PASR (1 << 8) /* Port A Software Reset */
  88. #define IR (1 << 4) /* Interrupt Reset */
  89. #define FSISR (1 << 0) /* Software Reset */
  90. /* OUT_SEL (FSI2) */
  91. #define DMMD (1 << 4) /* SPDIF output timing 0: Biphase only */
  92. /* 1: Biphase and serial */
  93. /* FIFO_SZ */
  94. #define FIFO_SZ_MASK 0x7
  95. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  96. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  97. typedef int (*set_rate_func)(struct device *dev, int is_porta, int rate, int enable);
  98. /*
  99. * FSI driver use below type name for variable
  100. *
  101. * xxx_num : number of data
  102. * xxx_pos : position of data
  103. * xxx_capa : capacity of data
  104. */
  105. /*
  106. * period/frame/sample image
  107. *
  108. * ex) PCM (2ch)
  109. *
  110. * period pos period pos
  111. * [n] [n + 1]
  112. * |<-------------------- period--------------------->|
  113. * ==|============================================ ... =|==
  114. * | |
  115. * ||<----- frame ----->|<------ frame ----->| ... |
  116. * |+--------------------+--------------------+- ... |
  117. * ||[ sample ][ sample ]|[ sample ][ sample ]| ... |
  118. * |+--------------------+--------------------+- ... |
  119. * ==|============================================ ... =|==
  120. */
  121. /*
  122. * FSI FIFO image
  123. *
  124. * | |
  125. * | |
  126. * | [ sample ] |
  127. * | [ sample ] |
  128. * | [ sample ] |
  129. * | [ sample ] |
  130. * --> go to codecs
  131. */
  132. /*
  133. * struct
  134. */
  135. struct fsi_stream {
  136. struct snd_pcm_substream *substream;
  137. int fifo_sample_capa; /* sample capacity of FSI FIFO */
  138. int buff_sample_capa; /* sample capacity of ALSA buffer */
  139. int buff_sample_pos; /* sample position of ALSA buffer */
  140. int period_samples; /* sample number / 1 period */
  141. int period_pos; /* current period position */
  142. int uerr_num;
  143. int oerr_num;
  144. };
  145. struct fsi_priv {
  146. void __iomem *base;
  147. struct fsi_master *master;
  148. struct fsi_stream playback;
  149. struct fsi_stream capture;
  150. u32 do_fmt;
  151. u32 di_fmt;
  152. int chan_num:16;
  153. int clk_master:1;
  154. int spdif:1;
  155. long rate;
  156. };
  157. struct fsi_core {
  158. int ver;
  159. u32 int_st;
  160. u32 iemsk;
  161. u32 imsk;
  162. u32 a_mclk;
  163. u32 b_mclk;
  164. };
  165. struct fsi_master {
  166. void __iomem *base;
  167. int irq;
  168. struct fsi_priv fsia;
  169. struct fsi_priv fsib;
  170. struct fsi_core *core;
  171. struct sh_fsi_platform_info *info;
  172. spinlock_t lock;
  173. };
  174. /*
  175. * basic read write function
  176. */
  177. static void __fsi_reg_write(u32 reg, u32 data)
  178. {
  179. /* valid data area is 24bit */
  180. data &= 0x00ffffff;
  181. __raw_writel(data, reg);
  182. }
  183. static u32 __fsi_reg_read(u32 reg)
  184. {
  185. return __raw_readl(reg);
  186. }
  187. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  188. {
  189. u32 val = __fsi_reg_read(reg);
  190. val &= ~mask;
  191. val |= data & mask;
  192. __fsi_reg_write(reg, val);
  193. }
  194. #define fsi_reg_write(p, r, d)\
  195. __fsi_reg_write((u32)(p->base + REG_##r), d)
  196. #define fsi_reg_read(p, r)\
  197. __fsi_reg_read((u32)(p->base + REG_##r))
  198. #define fsi_reg_mask_set(p, r, m, d)\
  199. __fsi_reg_mask_set((u32)(p->base + REG_##r), m, d)
  200. #define fsi_master_read(p, r) _fsi_master_read(p, MST_##r)
  201. #define fsi_core_read(p, r) _fsi_master_read(p, p->core->r)
  202. static u32 _fsi_master_read(struct fsi_master *master, u32 reg)
  203. {
  204. u32 ret;
  205. unsigned long flags;
  206. spin_lock_irqsave(&master->lock, flags);
  207. ret = __fsi_reg_read((u32)(master->base + reg));
  208. spin_unlock_irqrestore(&master->lock, flags);
  209. return ret;
  210. }
  211. #define fsi_master_mask_set(p, r, m, d) _fsi_master_mask_set(p, MST_##r, m, d)
  212. #define fsi_core_mask_set(p, r, m, d) _fsi_master_mask_set(p, p->core->r, m, d)
  213. static void _fsi_master_mask_set(struct fsi_master *master,
  214. u32 reg, u32 mask, u32 data)
  215. {
  216. unsigned long flags;
  217. spin_lock_irqsave(&master->lock, flags);
  218. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  219. spin_unlock_irqrestore(&master->lock, flags);
  220. }
  221. /*
  222. * basic function
  223. */
  224. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  225. {
  226. return fsi->master;
  227. }
  228. static int fsi_is_clk_master(struct fsi_priv *fsi)
  229. {
  230. return fsi->clk_master;
  231. }
  232. static int fsi_is_port_a(struct fsi_priv *fsi)
  233. {
  234. return fsi->master->base == fsi->base;
  235. }
  236. static int fsi_is_spdif(struct fsi_priv *fsi)
  237. {
  238. return fsi->spdif;
  239. }
  240. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  241. {
  242. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  243. return rtd->cpu_dai;
  244. }
  245. static struct fsi_priv *fsi_get_priv_frm_dai(struct snd_soc_dai *dai)
  246. {
  247. struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
  248. if (dai->id == 0)
  249. return &master->fsia;
  250. else
  251. return &master->fsib;
  252. }
  253. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  254. {
  255. return fsi_get_priv_frm_dai(fsi_get_dai(substream));
  256. }
  257. static set_rate_func fsi_get_info_set_rate(struct fsi_master *master)
  258. {
  259. if (!master->info)
  260. return NULL;
  261. return master->info->set_rate;
  262. }
  263. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  264. {
  265. int is_porta = fsi_is_port_a(fsi);
  266. struct fsi_master *master = fsi_get_master(fsi);
  267. if (!master->info)
  268. return 0;
  269. return is_porta ? master->info->porta_flags :
  270. master->info->portb_flags;
  271. }
  272. static inline int fsi_stream_is_play(int stream)
  273. {
  274. return stream == SNDRV_PCM_STREAM_PLAYBACK;
  275. }
  276. static inline int fsi_is_play(struct snd_pcm_substream *substream)
  277. {
  278. return fsi_stream_is_play(substream->stream);
  279. }
  280. static inline struct fsi_stream *fsi_get_stream(struct fsi_priv *fsi,
  281. int is_play)
  282. {
  283. return is_play ? &fsi->playback : &fsi->capture;
  284. }
  285. static u32 fsi_get_port_shift(struct fsi_priv *fsi, int is_play)
  286. {
  287. int is_porta = fsi_is_port_a(fsi);
  288. u32 shift;
  289. if (is_porta)
  290. shift = is_play ? AO_SHIFT : AI_SHIFT;
  291. else
  292. shift = is_play ? BO_SHIFT : BI_SHIFT;
  293. return shift;
  294. }
  295. static int fsi_frame2sample(struct fsi_priv *fsi, int frames)
  296. {
  297. return frames * fsi->chan_num;
  298. }
  299. static int fsi_sample2frame(struct fsi_priv *fsi, int samples)
  300. {
  301. return samples / fsi->chan_num;
  302. }
  303. static int fsi_stream_is_working(struct fsi_priv *fsi,
  304. int is_play)
  305. {
  306. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  307. struct fsi_master *master = fsi_get_master(fsi);
  308. unsigned long flags;
  309. int ret;
  310. spin_lock_irqsave(&master->lock, flags);
  311. ret = !!io->substream;
  312. spin_unlock_irqrestore(&master->lock, flags);
  313. return ret;
  314. }
  315. static void fsi_stream_push(struct fsi_priv *fsi,
  316. int is_play,
  317. struct snd_pcm_substream *substream)
  318. {
  319. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  320. struct snd_pcm_runtime *runtime = substream->runtime;
  321. struct fsi_master *master = fsi_get_master(fsi);
  322. unsigned long flags;
  323. spin_lock_irqsave(&master->lock, flags);
  324. io->substream = substream;
  325. io->buff_sample_capa = fsi_frame2sample(fsi, runtime->buffer_size);
  326. io->buff_sample_pos = 0;
  327. io->period_samples = fsi_frame2sample(fsi, runtime->period_size);
  328. io->period_pos = 0;
  329. io->oerr_num = -1; /* ignore 1st err */
  330. io->uerr_num = -1; /* ignore 1st err */
  331. spin_unlock_irqrestore(&master->lock, flags);
  332. }
  333. static void fsi_stream_pop(struct fsi_priv *fsi, int is_play)
  334. {
  335. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  336. struct snd_soc_dai *dai = fsi_get_dai(io->substream);
  337. struct fsi_master *master = fsi_get_master(fsi);
  338. unsigned long flags;
  339. spin_lock_irqsave(&master->lock, flags);
  340. if (io->oerr_num > 0)
  341. dev_err(dai->dev, "over_run = %d\n", io->oerr_num);
  342. if (io->uerr_num > 0)
  343. dev_err(dai->dev, "under_run = %d\n", io->uerr_num);
  344. io->substream = NULL;
  345. io->buff_sample_capa = 0;
  346. io->buff_sample_pos = 0;
  347. io->period_samples = 0;
  348. io->period_pos = 0;
  349. io->oerr_num = 0;
  350. io->uerr_num = 0;
  351. spin_unlock_irqrestore(&master->lock, flags);
  352. }
  353. static int fsi_get_current_fifo_samples(struct fsi_priv *fsi, int is_play)
  354. {
  355. u32 status;
  356. int frames;
  357. status = is_play ?
  358. fsi_reg_read(fsi, DOFF_ST) :
  359. fsi_reg_read(fsi, DIFF_ST);
  360. frames = 0x1ff & (status >> 8);
  361. return fsi_frame2sample(fsi, frames);
  362. }
  363. static void fsi_count_fifo_err(struct fsi_priv *fsi)
  364. {
  365. u32 ostatus = fsi_reg_read(fsi, DOFF_ST);
  366. u32 istatus = fsi_reg_read(fsi, DIFF_ST);
  367. if (ostatus & ERR_OVER)
  368. fsi->playback.oerr_num++;
  369. if (ostatus & ERR_UNDER)
  370. fsi->playback.uerr_num++;
  371. if (istatus & ERR_OVER)
  372. fsi->capture.oerr_num++;
  373. if (istatus & ERR_UNDER)
  374. fsi->capture.uerr_num++;
  375. fsi_reg_write(fsi, DOFF_ST, 0);
  376. fsi_reg_write(fsi, DIFF_ST, 0);
  377. }
  378. /*
  379. * dma function
  380. */
  381. static u8 *fsi_dma_get_area(struct fsi_priv *fsi, int stream)
  382. {
  383. int is_play = fsi_stream_is_play(stream);
  384. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  385. struct snd_pcm_runtime *runtime = io->substream->runtime;
  386. return runtime->dma_area +
  387. samples_to_bytes(runtime, io->buff_sample_pos);
  388. }
  389. static void fsi_dma_soft_push16(struct fsi_priv *fsi, int num)
  390. {
  391. u16 *start;
  392. int i;
  393. start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  394. for (i = 0; i < num; i++)
  395. fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8));
  396. }
  397. static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int num)
  398. {
  399. u16 *start;
  400. int i;
  401. start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
  402. for (i = 0; i < num; i++)
  403. *(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  404. }
  405. static void fsi_dma_soft_push32(struct fsi_priv *fsi, int num)
  406. {
  407. u32 *start;
  408. int i;
  409. start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  410. for (i = 0; i < num; i++)
  411. fsi_reg_write(fsi, DODT, *(start + i));
  412. }
  413. static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int num)
  414. {
  415. u32 *start;
  416. int i;
  417. start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
  418. for (i = 0; i < num; i++)
  419. *(start + i) = fsi_reg_read(fsi, DIDT);
  420. }
  421. /*
  422. * irq function
  423. */
  424. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  425. {
  426. u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
  427. struct fsi_master *master = fsi_get_master(fsi);
  428. fsi_core_mask_set(master, imsk, data, data);
  429. fsi_core_mask_set(master, iemsk, data, data);
  430. }
  431. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  432. {
  433. u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
  434. struct fsi_master *master = fsi_get_master(fsi);
  435. fsi_core_mask_set(master, imsk, data, 0);
  436. fsi_core_mask_set(master, iemsk, data, 0);
  437. }
  438. static u32 fsi_irq_get_status(struct fsi_master *master)
  439. {
  440. return fsi_core_read(master, int_st);
  441. }
  442. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  443. {
  444. u32 data = 0;
  445. struct fsi_master *master = fsi_get_master(fsi);
  446. data |= AB_IO(1, fsi_get_port_shift(fsi, 0));
  447. data |= AB_IO(1, fsi_get_port_shift(fsi, 1));
  448. /* clear interrupt factor */
  449. fsi_core_mask_set(master, int_st, data, 0);
  450. }
  451. /*
  452. * SPDIF master clock function
  453. *
  454. * These functions are used later FSI2
  455. */
  456. static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
  457. {
  458. struct fsi_master *master = fsi_get_master(fsi);
  459. u32 mask, val;
  460. if (master->core->ver < 2) {
  461. pr_err("fsi: register access err (%s)\n", __func__);
  462. return;
  463. }
  464. mask = BP | SE;
  465. val = enable ? mask : 0;
  466. fsi_is_port_a(fsi) ?
  467. fsi_core_mask_set(master, a_mclk, mask, val) :
  468. fsi_core_mask_set(master, b_mclk, mask, val);
  469. }
  470. /*
  471. * clock function
  472. */
  473. static int fsi_set_master_clk(struct device *dev, struct fsi_priv *fsi,
  474. long rate, int enable)
  475. {
  476. struct fsi_master *master = fsi_get_master(fsi);
  477. set_rate_func set_rate = fsi_get_info_set_rate(master);
  478. int fsi_ver = master->core->ver;
  479. int ret;
  480. ret = set_rate(dev, fsi_is_port_a(fsi), rate, enable);
  481. if (ret < 0) /* error */
  482. return ret;
  483. if (!enable)
  484. return 0;
  485. if (ret > 0) {
  486. u32 data = 0;
  487. switch (ret & SH_FSI_ACKMD_MASK) {
  488. default:
  489. /* FALL THROUGH */
  490. case SH_FSI_ACKMD_512:
  491. data |= (0x0 << 12);
  492. break;
  493. case SH_FSI_ACKMD_256:
  494. data |= (0x1 << 12);
  495. break;
  496. case SH_FSI_ACKMD_128:
  497. data |= (0x2 << 12);
  498. break;
  499. case SH_FSI_ACKMD_64:
  500. data |= (0x3 << 12);
  501. break;
  502. case SH_FSI_ACKMD_32:
  503. if (fsi_ver < 2)
  504. dev_err(dev, "unsupported ACKMD\n");
  505. else
  506. data |= (0x4 << 12);
  507. break;
  508. }
  509. switch (ret & SH_FSI_BPFMD_MASK) {
  510. default:
  511. /* FALL THROUGH */
  512. case SH_FSI_BPFMD_32:
  513. data |= (0x0 << 8);
  514. break;
  515. case SH_FSI_BPFMD_64:
  516. data |= (0x1 << 8);
  517. break;
  518. case SH_FSI_BPFMD_128:
  519. data |= (0x2 << 8);
  520. break;
  521. case SH_FSI_BPFMD_256:
  522. data |= (0x3 << 8);
  523. break;
  524. case SH_FSI_BPFMD_512:
  525. data |= (0x4 << 8);
  526. break;
  527. case SH_FSI_BPFMD_16:
  528. if (fsi_ver < 2)
  529. dev_err(dev, "unsupported ACKMD\n");
  530. else
  531. data |= (0x7 << 8);
  532. break;
  533. }
  534. fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
  535. udelay(10);
  536. ret = 0;
  537. }
  538. return ret;
  539. }
  540. #define fsi_port_start(f, i) __fsi_port_clk_ctrl(f, i, 1)
  541. #define fsi_port_stop(f, i) __fsi_port_clk_ctrl(f, i, 0)
  542. static void __fsi_port_clk_ctrl(struct fsi_priv *fsi, int is_play, int enable)
  543. {
  544. struct fsi_master *master = fsi_get_master(fsi);
  545. u32 clk = fsi_is_port_a(fsi) ? CRA : CRB;
  546. if (enable)
  547. fsi_irq_enable(fsi, is_play);
  548. else
  549. fsi_irq_disable(fsi, is_play);
  550. if (fsi_is_clk_master(fsi))
  551. fsi_master_mask_set(master, CLK_RST, clk, (enable) ? clk : 0);
  552. }
  553. /*
  554. * ctrl function
  555. */
  556. static void fsi_fifo_init(struct fsi_priv *fsi,
  557. int is_play,
  558. struct device *dev)
  559. {
  560. struct fsi_master *master = fsi_get_master(fsi);
  561. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  562. u32 shift, i;
  563. int frame_capa;
  564. /* get on-chip RAM capacity */
  565. shift = fsi_master_read(master, FIFO_SZ);
  566. shift >>= fsi_get_port_shift(fsi, is_play);
  567. shift &= FIFO_SZ_MASK;
  568. frame_capa = 256 << shift;
  569. dev_dbg(dev, "fifo = %d words\n", frame_capa);
  570. /*
  571. * The maximum number of sample data varies depending
  572. * on the number of channels selected for the format.
  573. *
  574. * FIFOs are used in 4-channel units in 3-channel mode
  575. * and in 8-channel units in 5- to 7-channel mode
  576. * meaning that more FIFOs than the required size of DPRAM
  577. * are used.
  578. *
  579. * ex) if 256 words of DP-RAM is connected
  580. * 1 channel: 256 (256 x 1 = 256)
  581. * 2 channels: 128 (128 x 2 = 256)
  582. * 3 channels: 64 ( 64 x 3 = 192)
  583. * 4 channels: 64 ( 64 x 4 = 256)
  584. * 5 channels: 32 ( 32 x 5 = 160)
  585. * 6 channels: 32 ( 32 x 6 = 192)
  586. * 7 channels: 32 ( 32 x 7 = 224)
  587. * 8 channels: 32 ( 32 x 8 = 256)
  588. */
  589. for (i = 1; i < fsi->chan_num; i <<= 1)
  590. frame_capa >>= 1;
  591. dev_dbg(dev, "%d channel %d store\n",
  592. fsi->chan_num, frame_capa);
  593. io->fifo_sample_capa = fsi_frame2sample(fsi, frame_capa);
  594. /*
  595. * set interrupt generation factor
  596. * clear FIFO
  597. */
  598. if (is_play) {
  599. fsi_reg_write(fsi, DOFF_CTL, IRQ_HALF);
  600. fsi_reg_mask_set(fsi, DOFF_CTL, FIFO_CLR, FIFO_CLR);
  601. } else {
  602. fsi_reg_write(fsi, DIFF_CTL, IRQ_HALF);
  603. fsi_reg_mask_set(fsi, DIFF_CTL, FIFO_CLR, FIFO_CLR);
  604. }
  605. }
  606. static int fsi_fifo_data_ctrl(struct fsi_priv *fsi, int stream)
  607. {
  608. struct snd_pcm_runtime *runtime;
  609. struct snd_pcm_substream *substream = NULL;
  610. int is_play = fsi_stream_is_play(stream);
  611. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  612. int sample_residues;
  613. int sample_width;
  614. int samples;
  615. int samples_max;
  616. int over_period;
  617. void (*fn)(struct fsi_priv *fsi, int size);
  618. if (!fsi ||
  619. !io->substream ||
  620. !io->substream->runtime)
  621. return -EINVAL;
  622. over_period = 0;
  623. substream = io->substream;
  624. runtime = substream->runtime;
  625. /* FSI FIFO has limit.
  626. * So, this driver can not send periods data at a time
  627. */
  628. if (io->buff_sample_pos >=
  629. io->period_samples * (io->period_pos + 1)) {
  630. over_period = 1;
  631. io->period_pos = (io->period_pos + 1) % runtime->periods;
  632. if (0 == io->period_pos)
  633. io->buff_sample_pos = 0;
  634. }
  635. /* get 1 sample data width */
  636. sample_width = samples_to_bytes(runtime, 1);
  637. /* get number of residue samples */
  638. sample_residues = io->buff_sample_capa - io->buff_sample_pos;
  639. if (is_play) {
  640. /*
  641. * for play-back
  642. *
  643. * samples_max : number of FSI fifo free samples space
  644. * samples : number of ALSA residue samples
  645. */
  646. samples_max = io->fifo_sample_capa;
  647. samples_max -= fsi_get_current_fifo_samples(fsi, is_play);
  648. samples = sample_residues;
  649. switch (sample_width) {
  650. case 2:
  651. fn = fsi_dma_soft_push16;
  652. break;
  653. case 4:
  654. fn = fsi_dma_soft_push32;
  655. break;
  656. default:
  657. return -EINVAL;
  658. }
  659. } else {
  660. /*
  661. * for capture
  662. *
  663. * samples_max : number of ALSA free samples space
  664. * samples : number of samples in FSI fifo
  665. */
  666. samples_max = sample_residues;
  667. samples = fsi_get_current_fifo_samples(fsi, is_play);
  668. switch (sample_width) {
  669. case 2:
  670. fn = fsi_dma_soft_pop16;
  671. break;
  672. case 4:
  673. fn = fsi_dma_soft_pop32;
  674. break;
  675. default:
  676. return -EINVAL;
  677. }
  678. }
  679. samples = min(samples, samples_max);
  680. fn(fsi, samples);
  681. /* update buff_sample_pos */
  682. io->buff_sample_pos += samples;
  683. if (over_period)
  684. snd_pcm_period_elapsed(substream);
  685. return 0;
  686. }
  687. static int fsi_data_pop(struct fsi_priv *fsi)
  688. {
  689. return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_CAPTURE);
  690. }
  691. static int fsi_data_push(struct fsi_priv *fsi)
  692. {
  693. return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  694. }
  695. static irqreturn_t fsi_interrupt(int irq, void *data)
  696. {
  697. struct fsi_master *master = data;
  698. u32 int_st = fsi_irq_get_status(master);
  699. /* clear irq status */
  700. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  701. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  702. if (int_st & AB_IO(1, AO_SHIFT))
  703. fsi_data_push(&master->fsia);
  704. if (int_st & AB_IO(1, BO_SHIFT))
  705. fsi_data_push(&master->fsib);
  706. if (int_st & AB_IO(1, AI_SHIFT))
  707. fsi_data_pop(&master->fsia);
  708. if (int_st & AB_IO(1, BI_SHIFT))
  709. fsi_data_pop(&master->fsib);
  710. fsi_count_fifo_err(&master->fsia);
  711. fsi_count_fifo_err(&master->fsib);
  712. fsi_irq_clear_status(&master->fsia);
  713. fsi_irq_clear_status(&master->fsib);
  714. return IRQ_HANDLED;
  715. }
  716. /*
  717. * dai ops
  718. */
  719. static int fsi_hw_startup(struct fsi_priv *fsi,
  720. int is_play,
  721. struct device *dev)
  722. {
  723. u32 flags = fsi_get_info_flags(fsi);
  724. u32 data = 0;
  725. pm_runtime_get_sync(dev);
  726. /* clock setting */
  727. if (fsi_is_clk_master(fsi))
  728. data = DIMD | DOMD;
  729. fsi_reg_mask_set(fsi, CKG1, (DIMD | DOMD), data);
  730. /* clock inversion (CKG2) */
  731. data = 0;
  732. if (SH_FSI_LRM_INV & flags)
  733. data |= 1 << 12;
  734. if (SH_FSI_BRM_INV & flags)
  735. data |= 1 << 8;
  736. if (SH_FSI_LRS_INV & flags)
  737. data |= 1 << 4;
  738. if (SH_FSI_BRS_INV & flags)
  739. data |= 1 << 0;
  740. fsi_reg_write(fsi, CKG2, data);
  741. /* set format */
  742. fsi_reg_write(fsi, DO_FMT, fsi->do_fmt);
  743. fsi_reg_write(fsi, DI_FMT, fsi->di_fmt);
  744. /* spdif ? */
  745. if (fsi_is_spdif(fsi)) {
  746. fsi_spdif_clk_ctrl(fsi, 1);
  747. fsi_reg_mask_set(fsi, OUT_SEL, DMMD, DMMD);
  748. }
  749. /* irq clear */
  750. fsi_irq_disable(fsi, is_play);
  751. fsi_irq_clear_status(fsi);
  752. /* fifo init */
  753. fsi_fifo_init(fsi, is_play, dev);
  754. return 0;
  755. }
  756. static void fsi_hw_shutdown(struct fsi_priv *fsi,
  757. int is_play,
  758. struct device *dev)
  759. {
  760. if (fsi_is_clk_master(fsi))
  761. fsi_set_master_clk(dev, fsi, fsi->rate, 0);
  762. pm_runtime_put_sync(dev);
  763. }
  764. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  765. struct snd_soc_dai *dai)
  766. {
  767. struct fsi_priv *fsi = fsi_get_priv(substream);
  768. int is_play = fsi_is_play(substream);
  769. return fsi_hw_startup(fsi, is_play, dai->dev);
  770. }
  771. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  772. struct snd_soc_dai *dai)
  773. {
  774. struct fsi_priv *fsi = fsi_get_priv(substream);
  775. int is_play = fsi_is_play(substream);
  776. fsi_hw_shutdown(fsi, is_play, dai->dev);
  777. fsi->rate = 0;
  778. }
  779. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  780. struct snd_soc_dai *dai)
  781. {
  782. struct fsi_priv *fsi = fsi_get_priv(substream);
  783. int is_play = fsi_is_play(substream);
  784. int ret = 0;
  785. switch (cmd) {
  786. case SNDRV_PCM_TRIGGER_START:
  787. fsi_stream_push(fsi, is_play, substream);
  788. ret = is_play ? fsi_data_push(fsi) : fsi_data_pop(fsi);
  789. fsi_port_start(fsi, is_play);
  790. break;
  791. case SNDRV_PCM_TRIGGER_STOP:
  792. fsi_port_stop(fsi, is_play);
  793. fsi_stream_pop(fsi, is_play);
  794. break;
  795. }
  796. return ret;
  797. }
  798. static int fsi_set_fmt_dai(struct fsi_priv *fsi, unsigned int fmt)
  799. {
  800. u32 data = 0;
  801. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  802. case SND_SOC_DAIFMT_I2S:
  803. data = CR_I2S;
  804. fsi->chan_num = 2;
  805. break;
  806. case SND_SOC_DAIFMT_LEFT_J:
  807. data = CR_PCM;
  808. fsi->chan_num = 2;
  809. break;
  810. default:
  811. return -EINVAL;
  812. }
  813. fsi->do_fmt = data;
  814. fsi->di_fmt = data;
  815. return 0;
  816. }
  817. static int fsi_set_fmt_spdif(struct fsi_priv *fsi)
  818. {
  819. struct fsi_master *master = fsi_get_master(fsi);
  820. u32 data = 0;
  821. if (master->core->ver < 2)
  822. return -EINVAL;
  823. data = CR_BWS_16 | CR_DTMD_SPDIF_PCM | CR_PCM;
  824. fsi->chan_num = 2;
  825. fsi->spdif = 1;
  826. fsi->do_fmt = data;
  827. fsi->di_fmt = data;
  828. return 0;
  829. }
  830. static int fsi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
  831. {
  832. struct fsi_priv *fsi = fsi_get_priv_frm_dai(dai);
  833. struct fsi_master *master = fsi_get_master(fsi);
  834. set_rate_func set_rate = fsi_get_info_set_rate(master);
  835. u32 flags = fsi_get_info_flags(fsi);
  836. int ret;
  837. /* set master/slave audio interface */
  838. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  839. case SND_SOC_DAIFMT_CBM_CFM:
  840. fsi->clk_master = 1;
  841. break;
  842. case SND_SOC_DAIFMT_CBS_CFS:
  843. break;
  844. default:
  845. return -EINVAL;
  846. }
  847. if (fsi_is_clk_master(fsi) && !set_rate) {
  848. dev_err(dai->dev, "platform doesn't have set_rate\n");
  849. return -EINVAL;
  850. }
  851. /* set format */
  852. switch (flags & SH_FSI_FMT_MASK) {
  853. case SH_FSI_FMT_DAI:
  854. ret = fsi_set_fmt_dai(fsi, fmt & SND_SOC_DAIFMT_FORMAT_MASK);
  855. break;
  856. case SH_FSI_FMT_SPDIF:
  857. ret = fsi_set_fmt_spdif(fsi);
  858. break;
  859. default:
  860. ret = -EINVAL;
  861. }
  862. return ret;
  863. }
  864. static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
  865. struct snd_pcm_hw_params *params,
  866. struct snd_soc_dai *dai)
  867. {
  868. struct fsi_priv *fsi = fsi_get_priv(substream);
  869. long rate = params_rate(params);
  870. int ret;
  871. if (!fsi_is_clk_master(fsi))
  872. return 0;
  873. ret = fsi_set_master_clk(dai->dev, fsi, rate, 1);
  874. if (ret < 0)
  875. return ret;
  876. fsi->rate = rate;
  877. return ret;
  878. }
  879. static struct snd_soc_dai_ops fsi_dai_ops = {
  880. .startup = fsi_dai_startup,
  881. .shutdown = fsi_dai_shutdown,
  882. .trigger = fsi_dai_trigger,
  883. .set_fmt = fsi_dai_set_fmt,
  884. .hw_params = fsi_dai_hw_params,
  885. };
  886. /*
  887. * pcm ops
  888. */
  889. static struct snd_pcm_hardware fsi_pcm_hardware = {
  890. .info = SNDRV_PCM_INFO_INTERLEAVED |
  891. SNDRV_PCM_INFO_MMAP |
  892. SNDRV_PCM_INFO_MMAP_VALID |
  893. SNDRV_PCM_INFO_PAUSE,
  894. .formats = FSI_FMTS,
  895. .rates = FSI_RATES,
  896. .rate_min = 8000,
  897. .rate_max = 192000,
  898. .channels_min = 1,
  899. .channels_max = 2,
  900. .buffer_bytes_max = 64 * 1024,
  901. .period_bytes_min = 32,
  902. .period_bytes_max = 8192,
  903. .periods_min = 1,
  904. .periods_max = 32,
  905. .fifo_size = 256,
  906. };
  907. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  908. {
  909. struct snd_pcm_runtime *runtime = substream->runtime;
  910. int ret = 0;
  911. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  912. ret = snd_pcm_hw_constraint_integer(runtime,
  913. SNDRV_PCM_HW_PARAM_PERIODS);
  914. return ret;
  915. }
  916. static int fsi_hw_params(struct snd_pcm_substream *substream,
  917. struct snd_pcm_hw_params *hw_params)
  918. {
  919. return snd_pcm_lib_malloc_pages(substream,
  920. params_buffer_bytes(hw_params));
  921. }
  922. static int fsi_hw_free(struct snd_pcm_substream *substream)
  923. {
  924. return snd_pcm_lib_free_pages(substream);
  925. }
  926. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  927. {
  928. struct fsi_priv *fsi = fsi_get_priv(substream);
  929. struct fsi_stream *io = fsi_get_stream(fsi, fsi_is_play(substream));
  930. int samples_pos = io->buff_sample_pos - 1;
  931. if (samples_pos < 0)
  932. samples_pos = 0;
  933. return fsi_sample2frame(fsi, samples_pos);
  934. }
  935. static struct snd_pcm_ops fsi_pcm_ops = {
  936. .open = fsi_pcm_open,
  937. .ioctl = snd_pcm_lib_ioctl,
  938. .hw_params = fsi_hw_params,
  939. .hw_free = fsi_hw_free,
  940. .pointer = fsi_pointer,
  941. };
  942. /*
  943. * snd_soc_platform
  944. */
  945. #define PREALLOC_BUFFER (32 * 1024)
  946. #define PREALLOC_BUFFER_MAX (32 * 1024)
  947. static void fsi_pcm_free(struct snd_pcm *pcm)
  948. {
  949. snd_pcm_lib_preallocate_free_for_all(pcm);
  950. }
  951. static int fsi_pcm_new(struct snd_soc_pcm_runtime *rtd)
  952. {
  953. struct snd_pcm *pcm = rtd->pcm;
  954. /*
  955. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  956. * in MMAP mode (i.e. aplay -M)
  957. */
  958. return snd_pcm_lib_preallocate_pages_for_all(
  959. pcm,
  960. SNDRV_DMA_TYPE_CONTINUOUS,
  961. snd_dma_continuous_data(GFP_KERNEL),
  962. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  963. }
  964. /*
  965. * alsa struct
  966. */
  967. static struct snd_soc_dai_driver fsi_soc_dai[] = {
  968. {
  969. .name = "fsia-dai",
  970. .playback = {
  971. .rates = FSI_RATES,
  972. .formats = FSI_FMTS,
  973. .channels_min = 1,
  974. .channels_max = 8,
  975. },
  976. .capture = {
  977. .rates = FSI_RATES,
  978. .formats = FSI_FMTS,
  979. .channels_min = 1,
  980. .channels_max = 8,
  981. },
  982. .ops = &fsi_dai_ops,
  983. },
  984. {
  985. .name = "fsib-dai",
  986. .playback = {
  987. .rates = FSI_RATES,
  988. .formats = FSI_FMTS,
  989. .channels_min = 1,
  990. .channels_max = 8,
  991. },
  992. .capture = {
  993. .rates = FSI_RATES,
  994. .formats = FSI_FMTS,
  995. .channels_min = 1,
  996. .channels_max = 8,
  997. },
  998. .ops = &fsi_dai_ops,
  999. },
  1000. };
  1001. static struct snd_soc_platform_driver fsi_soc_platform = {
  1002. .ops = &fsi_pcm_ops,
  1003. .pcm_new = fsi_pcm_new,
  1004. .pcm_free = fsi_pcm_free,
  1005. };
  1006. /*
  1007. * platform function
  1008. */
  1009. static int fsi_probe(struct platform_device *pdev)
  1010. {
  1011. struct fsi_master *master;
  1012. const struct platform_device_id *id_entry;
  1013. struct resource *res;
  1014. unsigned int irq;
  1015. int ret;
  1016. id_entry = pdev->id_entry;
  1017. if (!id_entry) {
  1018. dev_err(&pdev->dev, "unknown fsi device\n");
  1019. return -ENODEV;
  1020. }
  1021. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1022. irq = platform_get_irq(pdev, 0);
  1023. if (!res || (int)irq <= 0) {
  1024. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  1025. ret = -ENODEV;
  1026. goto exit;
  1027. }
  1028. master = kzalloc(sizeof(*master), GFP_KERNEL);
  1029. if (!master) {
  1030. dev_err(&pdev->dev, "Could not allocate master\n");
  1031. ret = -ENOMEM;
  1032. goto exit;
  1033. }
  1034. master->base = ioremap_nocache(res->start, resource_size(res));
  1035. if (!master->base) {
  1036. ret = -ENXIO;
  1037. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  1038. goto exit_kfree;
  1039. }
  1040. /* master setting */
  1041. master->irq = irq;
  1042. master->info = pdev->dev.platform_data;
  1043. master->core = (struct fsi_core *)id_entry->driver_data;
  1044. spin_lock_init(&master->lock);
  1045. /* FSI A setting */
  1046. master->fsia.base = master->base;
  1047. master->fsia.master = master;
  1048. /* FSI B setting */
  1049. master->fsib.base = master->base + 0x40;
  1050. master->fsib.master = master;
  1051. pm_runtime_enable(&pdev->dev);
  1052. dev_set_drvdata(&pdev->dev, master);
  1053. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  1054. id_entry->name, master);
  1055. if (ret) {
  1056. dev_err(&pdev->dev, "irq request err\n");
  1057. goto exit_iounmap;
  1058. }
  1059. ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
  1060. if (ret < 0) {
  1061. dev_err(&pdev->dev, "cannot snd soc register\n");
  1062. goto exit_free_irq;
  1063. }
  1064. ret = snd_soc_register_dais(&pdev->dev, fsi_soc_dai,
  1065. ARRAY_SIZE(fsi_soc_dai));
  1066. if (ret < 0) {
  1067. dev_err(&pdev->dev, "cannot snd dai register\n");
  1068. goto exit_snd_soc;
  1069. }
  1070. return ret;
  1071. exit_snd_soc:
  1072. snd_soc_unregister_platform(&pdev->dev);
  1073. exit_free_irq:
  1074. free_irq(irq, master);
  1075. exit_iounmap:
  1076. iounmap(master->base);
  1077. pm_runtime_disable(&pdev->dev);
  1078. exit_kfree:
  1079. kfree(master);
  1080. master = NULL;
  1081. exit:
  1082. return ret;
  1083. }
  1084. static int fsi_remove(struct platform_device *pdev)
  1085. {
  1086. struct fsi_master *master;
  1087. master = dev_get_drvdata(&pdev->dev);
  1088. free_irq(master->irq, master);
  1089. pm_runtime_disable(&pdev->dev);
  1090. snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
  1091. snd_soc_unregister_platform(&pdev->dev);
  1092. iounmap(master->base);
  1093. kfree(master);
  1094. return 0;
  1095. }
  1096. static void __fsi_suspend(struct fsi_priv *fsi,
  1097. int is_play,
  1098. struct device *dev)
  1099. {
  1100. if (!fsi_stream_is_working(fsi, is_play))
  1101. return;
  1102. fsi_port_stop(fsi, is_play);
  1103. fsi_hw_shutdown(fsi, is_play, dev);
  1104. }
  1105. static void __fsi_resume(struct fsi_priv *fsi,
  1106. int is_play,
  1107. struct device *dev)
  1108. {
  1109. if (!fsi_stream_is_working(fsi, is_play))
  1110. return;
  1111. fsi_hw_startup(fsi, is_play, dev);
  1112. if (fsi_is_clk_master(fsi) && fsi->rate)
  1113. fsi_set_master_clk(dev, fsi, fsi->rate, 1);
  1114. fsi_port_start(fsi, is_play);
  1115. }
  1116. static int fsi_suspend(struct device *dev)
  1117. {
  1118. struct fsi_master *master = dev_get_drvdata(dev);
  1119. struct fsi_priv *fsia = &master->fsia;
  1120. struct fsi_priv *fsib = &master->fsib;
  1121. __fsi_suspend(fsia, 1, dev);
  1122. __fsi_suspend(fsia, 0, dev);
  1123. __fsi_suspend(fsib, 1, dev);
  1124. __fsi_suspend(fsib, 0, dev);
  1125. return 0;
  1126. }
  1127. static int fsi_resume(struct device *dev)
  1128. {
  1129. struct fsi_master *master = dev_get_drvdata(dev);
  1130. struct fsi_priv *fsia = &master->fsia;
  1131. struct fsi_priv *fsib = &master->fsib;
  1132. __fsi_resume(fsia, 1, dev);
  1133. __fsi_resume(fsia, 0, dev);
  1134. __fsi_resume(fsib, 1, dev);
  1135. __fsi_resume(fsib, 0, dev);
  1136. return 0;
  1137. }
  1138. static int fsi_runtime_nop(struct device *dev)
  1139. {
  1140. /* Runtime PM callback shared between ->runtime_suspend()
  1141. * and ->runtime_resume(). Simply returns success.
  1142. *
  1143. * This driver re-initializes all registers after
  1144. * pm_runtime_get_sync() anyway so there is no need
  1145. * to save and restore registers here.
  1146. */
  1147. return 0;
  1148. }
  1149. static struct dev_pm_ops fsi_pm_ops = {
  1150. .suspend = fsi_suspend,
  1151. .resume = fsi_resume,
  1152. .runtime_suspend = fsi_runtime_nop,
  1153. .runtime_resume = fsi_runtime_nop,
  1154. };
  1155. static struct fsi_core fsi1_core = {
  1156. .ver = 1,
  1157. /* Interrupt */
  1158. .int_st = INT_ST,
  1159. .iemsk = IEMSK,
  1160. .imsk = IMSK,
  1161. };
  1162. static struct fsi_core fsi2_core = {
  1163. .ver = 2,
  1164. /* Interrupt */
  1165. .int_st = CPU_INT_ST,
  1166. .iemsk = CPU_IEMSK,
  1167. .imsk = CPU_IMSK,
  1168. .a_mclk = A_MST_CTLR,
  1169. .b_mclk = B_MST_CTLR,
  1170. };
  1171. static struct platform_device_id fsi_id_table[] = {
  1172. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  1173. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  1174. {},
  1175. };
  1176. MODULE_DEVICE_TABLE(platform, fsi_id_table);
  1177. static struct platform_driver fsi_driver = {
  1178. .driver = {
  1179. .name = "fsi-pcm-audio",
  1180. .pm = &fsi_pm_ops,
  1181. },
  1182. .probe = fsi_probe,
  1183. .remove = fsi_remove,
  1184. .id_table = fsi_id_table,
  1185. };
  1186. static int __init fsi_mobile_init(void)
  1187. {
  1188. return platform_driver_register(&fsi_driver);
  1189. }
  1190. static void __exit fsi_mobile_exit(void)
  1191. {
  1192. platform_driver_unregister(&fsi_driver);
  1193. }
  1194. module_init(fsi_mobile_init);
  1195. module_exit(fsi_mobile_exit);
  1196. MODULE_LICENSE("GPL");
  1197. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  1198. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
  1199. MODULE_ALIAS("platform:fsi-pcm-audio");