sched.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. /*
  2. * linux/net/sunrpc/sched.c
  3. *
  4. * Scheduling for synchronous and asynchronous RPC requests.
  5. *
  6. * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
  7. *
  8. * TCP NFS related read + write fixes
  9. * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10. */
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/slab.h>
  15. #include <linux/mempool.h>
  16. #include <linux/smp.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/mutex.h>
  19. #include <linux/sunrpc/clnt.h>
  20. #include "sunrpc.h"
  21. #ifdef RPC_DEBUG
  22. #define RPCDBG_FACILITY RPCDBG_SCHED
  23. #endif
  24. /*
  25. * RPC slabs and memory pools
  26. */
  27. #define RPC_BUFFER_MAXSIZE (2048)
  28. #define RPC_BUFFER_POOLSIZE (8)
  29. #define RPC_TASK_POOLSIZE (8)
  30. static struct kmem_cache *rpc_task_slabp __read_mostly;
  31. static struct kmem_cache *rpc_buffer_slabp __read_mostly;
  32. static mempool_t *rpc_task_mempool __read_mostly;
  33. static mempool_t *rpc_buffer_mempool __read_mostly;
  34. static void rpc_async_schedule(struct work_struct *);
  35. static void rpc_release_task(struct rpc_task *task);
  36. static void __rpc_queue_timer_fn(unsigned long ptr);
  37. /*
  38. * RPC tasks sit here while waiting for conditions to improve.
  39. */
  40. static struct rpc_wait_queue delay_queue;
  41. /*
  42. * rpciod-related stuff
  43. */
  44. struct workqueue_struct *rpciod_workqueue;
  45. /*
  46. * Disable the timer for a given RPC task. Should be called with
  47. * queue->lock and bh_disabled in order to avoid races within
  48. * rpc_run_timer().
  49. */
  50. static void
  51. __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  52. {
  53. if (task->tk_timeout == 0)
  54. return;
  55. dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  56. task->tk_timeout = 0;
  57. list_del(&task->u.tk_wait.timer_list);
  58. if (list_empty(&queue->timer_list.list))
  59. del_timer(&queue->timer_list.timer);
  60. }
  61. static void
  62. rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  63. {
  64. queue->timer_list.expires = expires;
  65. mod_timer(&queue->timer_list.timer, expires);
  66. }
  67. /*
  68. * Set up a timer for the current task.
  69. */
  70. static void
  71. __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  72. {
  73. if (!task->tk_timeout)
  74. return;
  75. dprintk("RPC: %5u setting alarm for %lu ms\n",
  76. task->tk_pid, task->tk_timeout * 1000 / HZ);
  77. task->u.tk_wait.expires = jiffies + task->tk_timeout;
  78. if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  79. rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  80. list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  81. }
  82. /*
  83. * Add new request to a priority queue.
  84. */
  85. static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
  86. struct rpc_task *task,
  87. unsigned char queue_priority)
  88. {
  89. struct list_head *q;
  90. struct rpc_task *t;
  91. INIT_LIST_HEAD(&task->u.tk_wait.links);
  92. q = &queue->tasks[queue_priority];
  93. if (unlikely(queue_priority > queue->maxpriority))
  94. q = &queue->tasks[queue->maxpriority];
  95. list_for_each_entry(t, q, u.tk_wait.list) {
  96. if (t->tk_owner == task->tk_owner) {
  97. list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
  98. return;
  99. }
  100. }
  101. list_add_tail(&task->u.tk_wait.list, q);
  102. }
  103. /*
  104. * Add new request to wait queue.
  105. *
  106. * Swapper tasks always get inserted at the head of the queue.
  107. * This should avoid many nasty memory deadlocks and hopefully
  108. * improve overall performance.
  109. * Everyone else gets appended to the queue to ensure proper FIFO behavior.
  110. */
  111. static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
  112. struct rpc_task *task,
  113. unsigned char queue_priority)
  114. {
  115. BUG_ON (RPC_IS_QUEUED(task));
  116. if (RPC_IS_PRIORITY(queue))
  117. __rpc_add_wait_queue_priority(queue, task, queue_priority);
  118. else if (RPC_IS_SWAPPER(task))
  119. list_add(&task->u.tk_wait.list, &queue->tasks[0]);
  120. else
  121. list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
  122. task->tk_waitqueue = queue;
  123. queue->qlen++;
  124. rpc_set_queued(task);
  125. dprintk("RPC: %5u added to queue %p \"%s\"\n",
  126. task->tk_pid, queue, rpc_qname(queue));
  127. }
  128. /*
  129. * Remove request from a priority queue.
  130. */
  131. static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
  132. {
  133. struct rpc_task *t;
  134. if (!list_empty(&task->u.tk_wait.links)) {
  135. t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
  136. list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
  137. list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
  138. }
  139. }
  140. /*
  141. * Remove request from queue.
  142. * Note: must be called with spin lock held.
  143. */
  144. static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  145. {
  146. __rpc_disable_timer(queue, task);
  147. if (RPC_IS_PRIORITY(queue))
  148. __rpc_remove_wait_queue_priority(task);
  149. list_del(&task->u.tk_wait.list);
  150. queue->qlen--;
  151. dprintk("RPC: %5u removed from queue %p \"%s\"\n",
  152. task->tk_pid, queue, rpc_qname(queue));
  153. }
  154. static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
  155. {
  156. queue->priority = priority;
  157. queue->count = 1 << (priority * 2);
  158. }
  159. static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
  160. {
  161. queue->owner = pid;
  162. queue->nr = RPC_BATCH_COUNT;
  163. }
  164. static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
  165. {
  166. rpc_set_waitqueue_priority(queue, queue->maxpriority);
  167. rpc_set_waitqueue_owner(queue, 0);
  168. }
  169. static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
  170. {
  171. int i;
  172. spin_lock_init(&queue->lock);
  173. for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
  174. INIT_LIST_HEAD(&queue->tasks[i]);
  175. queue->maxpriority = nr_queues - 1;
  176. rpc_reset_waitqueue_priority(queue);
  177. queue->qlen = 0;
  178. setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
  179. INIT_LIST_HEAD(&queue->timer_list.list);
  180. #ifdef RPC_DEBUG
  181. queue->name = qname;
  182. #endif
  183. }
  184. void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  185. {
  186. __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
  187. }
  188. EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
  189. void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  190. {
  191. __rpc_init_priority_wait_queue(queue, qname, 1);
  192. }
  193. EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
  194. void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
  195. {
  196. del_timer_sync(&queue->timer_list.timer);
  197. }
  198. EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
  199. static int rpc_wait_bit_killable(void *word)
  200. {
  201. if (fatal_signal_pending(current))
  202. return -ERESTARTSYS;
  203. schedule();
  204. return 0;
  205. }
  206. #ifdef RPC_DEBUG
  207. static void rpc_task_set_debuginfo(struct rpc_task *task)
  208. {
  209. static atomic_t rpc_pid;
  210. task->tk_pid = atomic_inc_return(&rpc_pid);
  211. }
  212. #else
  213. static inline void rpc_task_set_debuginfo(struct rpc_task *task)
  214. {
  215. }
  216. #endif
  217. static void rpc_set_active(struct rpc_task *task)
  218. {
  219. rpc_task_set_debuginfo(task);
  220. set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  221. }
  222. /*
  223. * Mark an RPC call as having completed by clearing the 'active' bit
  224. * and then waking up all tasks that were sleeping.
  225. */
  226. static int rpc_complete_task(struct rpc_task *task)
  227. {
  228. void *m = &task->tk_runstate;
  229. wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
  230. struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
  231. unsigned long flags;
  232. int ret;
  233. spin_lock_irqsave(&wq->lock, flags);
  234. clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  235. ret = atomic_dec_and_test(&task->tk_count);
  236. if (waitqueue_active(wq))
  237. __wake_up_locked_key(wq, TASK_NORMAL, &k);
  238. spin_unlock_irqrestore(&wq->lock, flags);
  239. return ret;
  240. }
  241. /*
  242. * Allow callers to wait for completion of an RPC call
  243. *
  244. * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
  245. * to enforce taking of the wq->lock and hence avoid races with
  246. * rpc_complete_task().
  247. */
  248. int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
  249. {
  250. if (action == NULL)
  251. action = rpc_wait_bit_killable;
  252. return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
  253. action, TASK_KILLABLE);
  254. }
  255. EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
  256. /*
  257. * Make an RPC task runnable.
  258. *
  259. * Note: If the task is ASYNC, this must be called with
  260. * the spinlock held to protect the wait queue operation.
  261. */
  262. static void rpc_make_runnable(struct rpc_task *task)
  263. {
  264. rpc_clear_queued(task);
  265. if (rpc_test_and_set_running(task))
  266. return;
  267. if (RPC_IS_ASYNC(task)) {
  268. INIT_WORK(&task->u.tk_work, rpc_async_schedule);
  269. queue_work(rpciod_workqueue, &task->u.tk_work);
  270. } else
  271. wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
  272. }
  273. /*
  274. * Prepare for sleeping on a wait queue.
  275. * By always appending tasks to the list we ensure FIFO behavior.
  276. * NB: An RPC task will only receive interrupt-driven events as long
  277. * as it's on a wait queue.
  278. */
  279. static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
  280. struct rpc_task *task,
  281. rpc_action action,
  282. unsigned char queue_priority)
  283. {
  284. dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
  285. task->tk_pid, rpc_qname(q), jiffies);
  286. __rpc_add_wait_queue(q, task, queue_priority);
  287. BUG_ON(task->tk_callback != NULL);
  288. task->tk_callback = action;
  289. __rpc_add_timer(q, task);
  290. }
  291. void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  292. rpc_action action)
  293. {
  294. /* We shouldn't ever put an inactive task to sleep */
  295. BUG_ON(!RPC_IS_ACTIVATED(task));
  296. /*
  297. * Protect the queue operations.
  298. */
  299. spin_lock_bh(&q->lock);
  300. __rpc_sleep_on_priority(q, task, action, task->tk_priority);
  301. spin_unlock_bh(&q->lock);
  302. }
  303. EXPORT_SYMBOL_GPL(rpc_sleep_on);
  304. void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
  305. rpc_action action, int priority)
  306. {
  307. /* We shouldn't ever put an inactive task to sleep */
  308. BUG_ON(!RPC_IS_ACTIVATED(task));
  309. /*
  310. * Protect the queue operations.
  311. */
  312. spin_lock_bh(&q->lock);
  313. __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
  314. spin_unlock_bh(&q->lock);
  315. }
  316. /**
  317. * __rpc_do_wake_up_task - wake up a single rpc_task
  318. * @queue: wait queue
  319. * @task: task to be woken up
  320. *
  321. * Caller must hold queue->lock, and have cleared the task queued flag.
  322. */
  323. static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  324. {
  325. dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
  326. task->tk_pid, jiffies);
  327. /* Has the task been executed yet? If not, we cannot wake it up! */
  328. if (!RPC_IS_ACTIVATED(task)) {
  329. printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
  330. return;
  331. }
  332. __rpc_remove_wait_queue(queue, task);
  333. rpc_make_runnable(task);
  334. dprintk("RPC: __rpc_wake_up_task done\n");
  335. }
  336. /*
  337. * Wake up a queued task while the queue lock is being held
  338. */
  339. static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
  340. {
  341. if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
  342. __rpc_do_wake_up_task(queue, task);
  343. }
  344. /*
  345. * Tests whether rpc queue is empty
  346. */
  347. int rpc_queue_empty(struct rpc_wait_queue *queue)
  348. {
  349. int res;
  350. spin_lock_bh(&queue->lock);
  351. res = queue->qlen;
  352. spin_unlock_bh(&queue->lock);
  353. return res == 0;
  354. }
  355. EXPORT_SYMBOL_GPL(rpc_queue_empty);
  356. /*
  357. * Wake up a task on a specific queue
  358. */
  359. void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  360. {
  361. spin_lock_bh(&queue->lock);
  362. rpc_wake_up_task_queue_locked(queue, task);
  363. spin_unlock_bh(&queue->lock);
  364. }
  365. EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
  366. /*
  367. * Wake up the next task on a priority queue.
  368. */
  369. static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
  370. {
  371. struct list_head *q;
  372. struct rpc_task *task;
  373. /*
  374. * Service a batch of tasks from a single owner.
  375. */
  376. q = &queue->tasks[queue->priority];
  377. if (!list_empty(q)) {
  378. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  379. if (queue->owner == task->tk_owner) {
  380. if (--queue->nr)
  381. goto out;
  382. list_move_tail(&task->u.tk_wait.list, q);
  383. }
  384. /*
  385. * Check if we need to switch queues.
  386. */
  387. if (--queue->count)
  388. goto new_owner;
  389. }
  390. /*
  391. * Service the next queue.
  392. */
  393. do {
  394. if (q == &queue->tasks[0])
  395. q = &queue->tasks[queue->maxpriority];
  396. else
  397. q = q - 1;
  398. if (!list_empty(q)) {
  399. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  400. goto new_queue;
  401. }
  402. } while (q != &queue->tasks[queue->priority]);
  403. rpc_reset_waitqueue_priority(queue);
  404. return NULL;
  405. new_queue:
  406. rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
  407. new_owner:
  408. rpc_set_waitqueue_owner(queue, task->tk_owner);
  409. out:
  410. rpc_wake_up_task_queue_locked(queue, task);
  411. return task;
  412. }
  413. /*
  414. * Wake up the next task on the wait queue.
  415. */
  416. struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
  417. {
  418. struct rpc_task *task = NULL;
  419. dprintk("RPC: wake_up_next(%p \"%s\")\n",
  420. queue, rpc_qname(queue));
  421. spin_lock_bh(&queue->lock);
  422. if (RPC_IS_PRIORITY(queue))
  423. task = __rpc_wake_up_next_priority(queue);
  424. else {
  425. task_for_first(task, &queue->tasks[0])
  426. rpc_wake_up_task_queue_locked(queue, task);
  427. }
  428. spin_unlock_bh(&queue->lock);
  429. return task;
  430. }
  431. EXPORT_SYMBOL_GPL(rpc_wake_up_next);
  432. /**
  433. * rpc_wake_up - wake up all rpc_tasks
  434. * @queue: rpc_wait_queue on which the tasks are sleeping
  435. *
  436. * Grabs queue->lock
  437. */
  438. void rpc_wake_up(struct rpc_wait_queue *queue)
  439. {
  440. struct rpc_task *task, *next;
  441. struct list_head *head;
  442. spin_lock_bh(&queue->lock);
  443. head = &queue->tasks[queue->maxpriority];
  444. for (;;) {
  445. list_for_each_entry_safe(task, next, head, u.tk_wait.list)
  446. rpc_wake_up_task_queue_locked(queue, task);
  447. if (head == &queue->tasks[0])
  448. break;
  449. head--;
  450. }
  451. spin_unlock_bh(&queue->lock);
  452. }
  453. EXPORT_SYMBOL_GPL(rpc_wake_up);
  454. /**
  455. * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
  456. * @queue: rpc_wait_queue on which the tasks are sleeping
  457. * @status: status value to set
  458. *
  459. * Grabs queue->lock
  460. */
  461. void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
  462. {
  463. struct rpc_task *task, *next;
  464. struct list_head *head;
  465. spin_lock_bh(&queue->lock);
  466. head = &queue->tasks[queue->maxpriority];
  467. for (;;) {
  468. list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
  469. task->tk_status = status;
  470. rpc_wake_up_task_queue_locked(queue, task);
  471. }
  472. if (head == &queue->tasks[0])
  473. break;
  474. head--;
  475. }
  476. spin_unlock_bh(&queue->lock);
  477. }
  478. EXPORT_SYMBOL_GPL(rpc_wake_up_status);
  479. static void __rpc_queue_timer_fn(unsigned long ptr)
  480. {
  481. struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
  482. struct rpc_task *task, *n;
  483. unsigned long expires, now, timeo;
  484. spin_lock(&queue->lock);
  485. expires = now = jiffies;
  486. list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
  487. timeo = task->u.tk_wait.expires;
  488. if (time_after_eq(now, timeo)) {
  489. dprintk("RPC: %5u timeout\n", task->tk_pid);
  490. task->tk_status = -ETIMEDOUT;
  491. rpc_wake_up_task_queue_locked(queue, task);
  492. continue;
  493. }
  494. if (expires == now || time_after(expires, timeo))
  495. expires = timeo;
  496. }
  497. if (!list_empty(&queue->timer_list.list))
  498. rpc_set_queue_timer(queue, expires);
  499. spin_unlock(&queue->lock);
  500. }
  501. static void __rpc_atrun(struct rpc_task *task)
  502. {
  503. task->tk_status = 0;
  504. }
  505. /*
  506. * Run a task at a later time
  507. */
  508. void rpc_delay(struct rpc_task *task, unsigned long delay)
  509. {
  510. task->tk_timeout = delay;
  511. rpc_sleep_on(&delay_queue, task, __rpc_atrun);
  512. }
  513. EXPORT_SYMBOL_GPL(rpc_delay);
  514. /*
  515. * Helper to call task->tk_ops->rpc_call_prepare
  516. */
  517. void rpc_prepare_task(struct rpc_task *task)
  518. {
  519. task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
  520. }
  521. /*
  522. * Helper that calls task->tk_ops->rpc_call_done if it exists
  523. */
  524. void rpc_exit_task(struct rpc_task *task)
  525. {
  526. task->tk_action = NULL;
  527. if (task->tk_ops->rpc_call_done != NULL) {
  528. task->tk_ops->rpc_call_done(task, task->tk_calldata);
  529. if (task->tk_action != NULL) {
  530. WARN_ON(RPC_ASSASSINATED(task));
  531. /* Always release the RPC slot and buffer memory */
  532. xprt_release(task);
  533. }
  534. }
  535. }
  536. void rpc_exit(struct rpc_task *task, int status)
  537. {
  538. task->tk_status = status;
  539. task->tk_action = rpc_exit_task;
  540. if (RPC_IS_QUEUED(task))
  541. rpc_wake_up_queued_task(task->tk_waitqueue, task);
  542. }
  543. EXPORT_SYMBOL_GPL(rpc_exit);
  544. void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
  545. {
  546. if (ops->rpc_release != NULL)
  547. ops->rpc_release(calldata);
  548. }
  549. /*
  550. * This is the RPC `scheduler' (or rather, the finite state machine).
  551. */
  552. static void __rpc_execute(struct rpc_task *task)
  553. {
  554. struct rpc_wait_queue *queue;
  555. int task_is_async = RPC_IS_ASYNC(task);
  556. int status = 0;
  557. dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
  558. task->tk_pid, task->tk_flags);
  559. BUG_ON(RPC_IS_QUEUED(task));
  560. for (;;) {
  561. void (*do_action)(struct rpc_task *);
  562. /*
  563. * Execute any pending callback first.
  564. */
  565. do_action = task->tk_callback;
  566. task->tk_callback = NULL;
  567. if (do_action == NULL) {
  568. /*
  569. * Perform the next FSM step.
  570. * tk_action may be NULL if the task has been killed.
  571. * In particular, note that rpc_killall_tasks may
  572. * do this at any time, so beware when dereferencing.
  573. */
  574. do_action = task->tk_action;
  575. if (do_action == NULL)
  576. break;
  577. }
  578. do_action(task);
  579. /*
  580. * Lockless check for whether task is sleeping or not.
  581. */
  582. if (!RPC_IS_QUEUED(task))
  583. continue;
  584. /*
  585. * The queue->lock protects against races with
  586. * rpc_make_runnable().
  587. *
  588. * Note that once we clear RPC_TASK_RUNNING on an asynchronous
  589. * rpc_task, rpc_make_runnable() can assign it to a
  590. * different workqueue. We therefore cannot assume that the
  591. * rpc_task pointer may still be dereferenced.
  592. */
  593. queue = task->tk_waitqueue;
  594. spin_lock_bh(&queue->lock);
  595. if (!RPC_IS_QUEUED(task)) {
  596. spin_unlock_bh(&queue->lock);
  597. continue;
  598. }
  599. rpc_clear_running(task);
  600. spin_unlock_bh(&queue->lock);
  601. if (task_is_async)
  602. return;
  603. /* sync task: sleep here */
  604. dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
  605. status = out_of_line_wait_on_bit(&task->tk_runstate,
  606. RPC_TASK_QUEUED, rpc_wait_bit_killable,
  607. TASK_KILLABLE);
  608. if (status == -ERESTARTSYS) {
  609. /*
  610. * When a sync task receives a signal, it exits with
  611. * -ERESTARTSYS. In order to catch any callbacks that
  612. * clean up after sleeping on some queue, we don't
  613. * break the loop here, but go around once more.
  614. */
  615. dprintk("RPC: %5u got signal\n", task->tk_pid);
  616. task->tk_flags |= RPC_TASK_KILLED;
  617. rpc_exit(task, -ERESTARTSYS);
  618. }
  619. rpc_set_running(task);
  620. dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
  621. }
  622. dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
  623. task->tk_status);
  624. /* Release all resources associated with the task */
  625. rpc_release_task(task);
  626. }
  627. /*
  628. * User-visible entry point to the scheduler.
  629. *
  630. * This may be called recursively if e.g. an async NFS task updates
  631. * the attributes and finds that dirty pages must be flushed.
  632. * NOTE: Upon exit of this function the task is guaranteed to be
  633. * released. In particular note that tk_release() will have
  634. * been called, so your task memory may have been freed.
  635. */
  636. void rpc_execute(struct rpc_task *task)
  637. {
  638. rpc_set_active(task);
  639. rpc_make_runnable(task);
  640. if (!RPC_IS_ASYNC(task))
  641. __rpc_execute(task);
  642. }
  643. static void rpc_async_schedule(struct work_struct *work)
  644. {
  645. __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
  646. }
  647. /**
  648. * rpc_malloc - allocate an RPC buffer
  649. * @task: RPC task that will use this buffer
  650. * @size: requested byte size
  651. *
  652. * To prevent rpciod from hanging, this allocator never sleeps,
  653. * returning NULL if the request cannot be serviced immediately.
  654. * The caller can arrange to sleep in a way that is safe for rpciod.
  655. *
  656. * Most requests are 'small' (under 2KiB) and can be serviced from a
  657. * mempool, ensuring that NFS reads and writes can always proceed,
  658. * and that there is good locality of reference for these buffers.
  659. *
  660. * In order to avoid memory starvation triggering more writebacks of
  661. * NFS requests, we avoid using GFP_KERNEL.
  662. */
  663. void *rpc_malloc(struct rpc_task *task, size_t size)
  664. {
  665. struct rpc_buffer *buf;
  666. gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
  667. size += sizeof(struct rpc_buffer);
  668. if (size <= RPC_BUFFER_MAXSIZE)
  669. buf = mempool_alloc(rpc_buffer_mempool, gfp);
  670. else
  671. buf = kmalloc(size, gfp);
  672. if (!buf)
  673. return NULL;
  674. buf->len = size;
  675. dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
  676. task->tk_pid, size, buf);
  677. return &buf->data;
  678. }
  679. EXPORT_SYMBOL_GPL(rpc_malloc);
  680. /**
  681. * rpc_free - free buffer allocated via rpc_malloc
  682. * @buffer: buffer to free
  683. *
  684. */
  685. void rpc_free(void *buffer)
  686. {
  687. size_t size;
  688. struct rpc_buffer *buf;
  689. if (!buffer)
  690. return;
  691. buf = container_of(buffer, struct rpc_buffer, data);
  692. size = buf->len;
  693. dprintk("RPC: freeing buffer of size %zu at %p\n",
  694. size, buf);
  695. if (size <= RPC_BUFFER_MAXSIZE)
  696. mempool_free(buf, rpc_buffer_mempool);
  697. else
  698. kfree(buf);
  699. }
  700. EXPORT_SYMBOL_GPL(rpc_free);
  701. /*
  702. * Creation and deletion of RPC task structures
  703. */
  704. static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
  705. {
  706. memset(task, 0, sizeof(*task));
  707. atomic_set(&task->tk_count, 1);
  708. task->tk_flags = task_setup_data->flags;
  709. task->tk_ops = task_setup_data->callback_ops;
  710. task->tk_calldata = task_setup_data->callback_data;
  711. INIT_LIST_HEAD(&task->tk_task);
  712. /* Initialize retry counters */
  713. task->tk_garb_retry = 2;
  714. task->tk_cred_retry = 2;
  715. task->tk_rebind_retry = 2;
  716. task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
  717. task->tk_owner = current->tgid;
  718. /* Initialize workqueue for async tasks */
  719. task->tk_workqueue = task_setup_data->workqueue;
  720. if (task->tk_ops->rpc_call_prepare != NULL)
  721. task->tk_action = rpc_prepare_task;
  722. /* starting timestamp */
  723. task->tk_start = ktime_get();
  724. dprintk("RPC: new task initialized, procpid %u\n",
  725. task_pid_nr(current));
  726. }
  727. static struct rpc_task *
  728. rpc_alloc_task(void)
  729. {
  730. return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
  731. }
  732. /*
  733. * Create a new task for the specified client.
  734. */
  735. struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
  736. {
  737. struct rpc_task *task = setup_data->task;
  738. unsigned short flags = 0;
  739. if (task == NULL) {
  740. task = rpc_alloc_task();
  741. if (task == NULL) {
  742. rpc_release_calldata(setup_data->callback_ops,
  743. setup_data->callback_data);
  744. return ERR_PTR(-ENOMEM);
  745. }
  746. flags = RPC_TASK_DYNAMIC;
  747. }
  748. rpc_init_task(task, setup_data);
  749. task->tk_flags |= flags;
  750. dprintk("RPC: allocated task %p\n", task);
  751. return task;
  752. }
  753. static void rpc_free_task(struct rpc_task *task)
  754. {
  755. const struct rpc_call_ops *tk_ops = task->tk_ops;
  756. void *calldata = task->tk_calldata;
  757. if (task->tk_flags & RPC_TASK_DYNAMIC) {
  758. dprintk("RPC: %5u freeing task\n", task->tk_pid);
  759. mempool_free(task, rpc_task_mempool);
  760. }
  761. rpc_release_calldata(tk_ops, calldata);
  762. }
  763. static void rpc_async_release(struct work_struct *work)
  764. {
  765. rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
  766. }
  767. static void rpc_release_resources_task(struct rpc_task *task)
  768. {
  769. if (task->tk_rqstp)
  770. xprt_release(task);
  771. if (task->tk_msg.rpc_cred) {
  772. put_rpccred(task->tk_msg.rpc_cred);
  773. task->tk_msg.rpc_cred = NULL;
  774. }
  775. rpc_task_release_client(task);
  776. }
  777. static void rpc_final_put_task(struct rpc_task *task,
  778. struct workqueue_struct *q)
  779. {
  780. if (q != NULL) {
  781. INIT_WORK(&task->u.tk_work, rpc_async_release);
  782. queue_work(q, &task->u.tk_work);
  783. } else
  784. rpc_free_task(task);
  785. }
  786. static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
  787. {
  788. if (atomic_dec_and_test(&task->tk_count)) {
  789. rpc_release_resources_task(task);
  790. rpc_final_put_task(task, q);
  791. }
  792. }
  793. void rpc_put_task(struct rpc_task *task)
  794. {
  795. rpc_do_put_task(task, NULL);
  796. }
  797. EXPORT_SYMBOL_GPL(rpc_put_task);
  798. void rpc_put_task_async(struct rpc_task *task)
  799. {
  800. rpc_do_put_task(task, task->tk_workqueue);
  801. }
  802. EXPORT_SYMBOL_GPL(rpc_put_task_async);
  803. static void rpc_release_task(struct rpc_task *task)
  804. {
  805. dprintk("RPC: %5u release task\n", task->tk_pid);
  806. BUG_ON (RPC_IS_QUEUED(task));
  807. rpc_release_resources_task(task);
  808. /*
  809. * Note: at this point we have been removed from rpc_clnt->cl_tasks,
  810. * so it should be safe to use task->tk_count as a test for whether
  811. * or not any other processes still hold references to our rpc_task.
  812. */
  813. if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
  814. /* Wake up anyone who may be waiting for task completion */
  815. if (!rpc_complete_task(task))
  816. return;
  817. } else {
  818. if (!atomic_dec_and_test(&task->tk_count))
  819. return;
  820. }
  821. rpc_final_put_task(task, task->tk_workqueue);
  822. }
  823. int rpciod_up(void)
  824. {
  825. return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
  826. }
  827. void rpciod_down(void)
  828. {
  829. module_put(THIS_MODULE);
  830. }
  831. /*
  832. * Start up the rpciod workqueue.
  833. */
  834. static int rpciod_start(void)
  835. {
  836. struct workqueue_struct *wq;
  837. /*
  838. * Create the rpciod thread and wait for it to start.
  839. */
  840. dprintk("RPC: creating workqueue rpciod\n");
  841. wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
  842. rpciod_workqueue = wq;
  843. return rpciod_workqueue != NULL;
  844. }
  845. static void rpciod_stop(void)
  846. {
  847. struct workqueue_struct *wq = NULL;
  848. if (rpciod_workqueue == NULL)
  849. return;
  850. dprintk("RPC: destroying workqueue rpciod\n");
  851. wq = rpciod_workqueue;
  852. rpciod_workqueue = NULL;
  853. destroy_workqueue(wq);
  854. }
  855. void
  856. rpc_destroy_mempool(void)
  857. {
  858. rpciod_stop();
  859. if (rpc_buffer_mempool)
  860. mempool_destroy(rpc_buffer_mempool);
  861. if (rpc_task_mempool)
  862. mempool_destroy(rpc_task_mempool);
  863. if (rpc_task_slabp)
  864. kmem_cache_destroy(rpc_task_slabp);
  865. if (rpc_buffer_slabp)
  866. kmem_cache_destroy(rpc_buffer_slabp);
  867. rpc_destroy_wait_queue(&delay_queue);
  868. }
  869. int
  870. rpc_init_mempool(void)
  871. {
  872. /*
  873. * The following is not strictly a mempool initialisation,
  874. * but there is no harm in doing it here
  875. */
  876. rpc_init_wait_queue(&delay_queue, "delayq");
  877. if (!rpciod_start())
  878. goto err_nomem;
  879. rpc_task_slabp = kmem_cache_create("rpc_tasks",
  880. sizeof(struct rpc_task),
  881. 0, SLAB_HWCACHE_ALIGN,
  882. NULL);
  883. if (!rpc_task_slabp)
  884. goto err_nomem;
  885. rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
  886. RPC_BUFFER_MAXSIZE,
  887. 0, SLAB_HWCACHE_ALIGN,
  888. NULL);
  889. if (!rpc_buffer_slabp)
  890. goto err_nomem;
  891. rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
  892. rpc_task_slabp);
  893. if (!rpc_task_mempool)
  894. goto err_nomem;
  895. rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
  896. rpc_buffer_slabp);
  897. if (!rpc_buffer_mempool)
  898. goto err_nomem;
  899. return 0;
  900. err_nomem:
  901. rpc_destroy_mempool();
  902. return -ENOMEM;
  903. }