tkip.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /*
  2. * Copyright 2002-2004, Instant802 Networks, Inc.
  3. * Copyright 2005, Devicescape Software, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/netdevice.h>
  13. #include <asm/unaligned.h>
  14. #include <net/mac80211.h>
  15. #include "driver-ops.h"
  16. #include "key.h"
  17. #include "tkip.h"
  18. #include "wep.h"
  19. #define PHASE1_LOOP_COUNT 8
  20. /*
  21. * 2-byte by 2-byte subset of the full AES S-box table; second part of this
  22. * table is identical to first part but byte-swapped
  23. */
  24. static const u16 tkip_sbox[256] =
  25. {
  26. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  27. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  28. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  29. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  30. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  31. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  32. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  33. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  34. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  35. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  36. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  37. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  38. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  39. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  40. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  41. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  42. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  43. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  44. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  45. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  46. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  47. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  48. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  49. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  50. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  51. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  52. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  53. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  54. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  55. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  56. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  57. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  58. };
  59. static u16 tkipS(u16 val)
  60. {
  61. return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
  62. }
  63. static u8 *write_tkip_iv(u8 *pos, u16 iv16)
  64. {
  65. *pos++ = iv16 >> 8;
  66. *pos++ = ((iv16 >> 8) | 0x20) & 0x7f;
  67. *pos++ = iv16 & 0xFF;
  68. return pos;
  69. }
  70. /*
  71. * P1K := Phase1(TA, TK, TSC)
  72. * TA = transmitter address (48 bits)
  73. * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
  74. * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
  75. * P1K: 80 bits
  76. */
  77. static void tkip_mixing_phase1(const u8 *tk, struct tkip_ctx *ctx,
  78. const u8 *ta, u32 tsc_IV32)
  79. {
  80. int i, j;
  81. u16 *p1k = ctx->p1k;
  82. p1k[0] = tsc_IV32 & 0xFFFF;
  83. p1k[1] = tsc_IV32 >> 16;
  84. p1k[2] = get_unaligned_le16(ta + 0);
  85. p1k[3] = get_unaligned_le16(ta + 2);
  86. p1k[4] = get_unaligned_le16(ta + 4);
  87. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  88. j = 2 * (i & 1);
  89. p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
  90. p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
  91. p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
  92. p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
  93. p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
  94. }
  95. ctx->state = TKIP_STATE_PHASE1_DONE;
  96. ctx->p1k_iv32 = tsc_IV32;
  97. }
  98. static void tkip_mixing_phase2(const u8 *tk, struct tkip_ctx *ctx,
  99. u16 tsc_IV16, u8 *rc4key)
  100. {
  101. u16 ppk[6];
  102. const u16 *p1k = ctx->p1k;
  103. int i;
  104. ppk[0] = p1k[0];
  105. ppk[1] = p1k[1];
  106. ppk[2] = p1k[2];
  107. ppk[3] = p1k[3];
  108. ppk[4] = p1k[4];
  109. ppk[5] = p1k[4] + tsc_IV16;
  110. ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
  111. ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
  112. ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
  113. ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
  114. ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
  115. ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
  116. ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
  117. ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
  118. ppk[2] += ror16(ppk[1], 1);
  119. ppk[3] += ror16(ppk[2], 1);
  120. ppk[4] += ror16(ppk[3], 1);
  121. ppk[5] += ror16(ppk[4], 1);
  122. rc4key = write_tkip_iv(rc4key, tsc_IV16);
  123. *rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;
  124. for (i = 0; i < 6; i++)
  125. put_unaligned_le16(ppk[i], rc4key + 2 * i);
  126. }
  127. /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
  128. * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
  129. * the packet payload). */
  130. u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key)
  131. {
  132. lockdep_assert_held(&key->u.tkip.txlock);
  133. pos = write_tkip_iv(pos, key->u.tkip.tx.iv16);
  134. *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
  135. put_unaligned_le32(key->u.tkip.tx.iv32, pos);
  136. return pos + 4;
  137. }
  138. static void ieee80211_compute_tkip_p1k(struct ieee80211_key *key, u32 iv32)
  139. {
  140. struct ieee80211_sub_if_data *sdata = key->sdata;
  141. struct tkip_ctx *ctx = &key->u.tkip.tx;
  142. const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  143. lockdep_assert_held(&key->u.tkip.txlock);
  144. /*
  145. * Update the P1K when the IV32 is different from the value it
  146. * had when we last computed it (or when not initialised yet).
  147. * This might flip-flop back and forth if packets are processed
  148. * out-of-order due to the different ACs, but then we have to
  149. * just compute the P1K more often.
  150. */
  151. if (ctx->p1k_iv32 != iv32 || ctx->state == TKIP_STATE_NOT_INIT)
  152. tkip_mixing_phase1(tk, ctx, sdata->vif.addr, iv32);
  153. }
  154. void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf,
  155. u32 iv32, u16 *p1k)
  156. {
  157. struct ieee80211_key *key = (struct ieee80211_key *)
  158. container_of(keyconf, struct ieee80211_key, conf);
  159. struct tkip_ctx *ctx = &key->u.tkip.tx;
  160. unsigned long flags;
  161. spin_lock_irqsave(&key->u.tkip.txlock, flags);
  162. ieee80211_compute_tkip_p1k(key, iv32);
  163. memcpy(p1k, ctx->p1k, sizeof(ctx->p1k));
  164. spin_unlock_irqrestore(&key->u.tkip.txlock, flags);
  165. }
  166. EXPORT_SYMBOL(ieee80211_get_tkip_p1k_iv);
  167. void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf,
  168. const u8 *ta, u32 iv32, u16 *p1k)
  169. {
  170. const u8 *tk = &keyconf->key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  171. struct tkip_ctx ctx;
  172. tkip_mixing_phase1(tk, &ctx, ta, iv32);
  173. memcpy(p1k, ctx.p1k, sizeof(ctx.p1k));
  174. }
  175. EXPORT_SYMBOL(ieee80211_get_tkip_rx_p1k);
  176. void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf,
  177. struct sk_buff *skb, u8 *p2k)
  178. {
  179. struct ieee80211_key *key = (struct ieee80211_key *)
  180. container_of(keyconf, struct ieee80211_key, conf);
  181. const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  182. struct tkip_ctx *ctx = &key->u.tkip.tx;
  183. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  184. const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
  185. u32 iv32 = get_unaligned_le32(&data[4]);
  186. u16 iv16 = data[2] | (data[0] << 8);
  187. unsigned long flags;
  188. spin_lock_irqsave(&key->u.tkip.txlock, flags);
  189. ieee80211_compute_tkip_p1k(key, iv32);
  190. tkip_mixing_phase2(tk, ctx, iv16, p2k);
  191. spin_unlock_irqrestore(&key->u.tkip.txlock, flags);
  192. }
  193. EXPORT_SYMBOL(ieee80211_get_tkip_p2k);
  194. /*
  195. * Encrypt packet payload with TKIP using @key. @pos is a pointer to the
  196. * beginning of the buffer containing payload. This payload must include
  197. * the IV/Ext.IV and space for (taildroom) four octets for ICV.
  198. * @payload_len is the length of payload (_not_ including IV/ICV length).
  199. * @ta is the transmitter addresses.
  200. */
  201. int ieee80211_tkip_encrypt_data(struct crypto_cipher *tfm,
  202. struct ieee80211_key *key,
  203. struct sk_buff *skb,
  204. u8 *payload, size_t payload_len)
  205. {
  206. u8 rc4key[16];
  207. ieee80211_get_tkip_p2k(&key->conf, skb, rc4key);
  208. return ieee80211_wep_encrypt_data(tfm, rc4key, 16,
  209. payload, payload_len);
  210. }
  211. /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
  212. * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
  213. * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
  214. * length of payload, including IV, Ext. IV, MIC, ICV. */
  215. int ieee80211_tkip_decrypt_data(struct crypto_cipher *tfm,
  216. struct ieee80211_key *key,
  217. u8 *payload, size_t payload_len, u8 *ta,
  218. u8 *ra, int only_iv, int queue,
  219. u32 *out_iv32, u16 *out_iv16)
  220. {
  221. u32 iv32;
  222. u32 iv16;
  223. u8 rc4key[16], keyid, *pos = payload;
  224. int res;
  225. const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  226. if (payload_len < 12)
  227. return -1;
  228. iv16 = (pos[0] << 8) | pos[2];
  229. keyid = pos[3];
  230. iv32 = get_unaligned_le32(pos + 4);
  231. pos += 8;
  232. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  233. {
  234. int i;
  235. printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
  236. for (i = 0; i < payload_len; i++)
  237. printk(" %02x", payload[i]);
  238. printk("\n");
  239. printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
  240. iv16, iv32);
  241. }
  242. #endif
  243. if (!(keyid & (1 << 5)))
  244. return TKIP_DECRYPT_NO_EXT_IV;
  245. if ((keyid >> 6) != key->conf.keyidx)
  246. return TKIP_DECRYPT_INVALID_KEYIDX;
  247. if (key->u.tkip.rx[queue].state != TKIP_STATE_NOT_INIT &&
  248. (iv32 < key->u.tkip.rx[queue].iv32 ||
  249. (iv32 == key->u.tkip.rx[queue].iv32 &&
  250. iv16 <= key->u.tkip.rx[queue].iv16))) {
  251. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  252. printk(KERN_DEBUG "TKIP replay detected for RX frame from "
  253. "%pM (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
  254. ta,
  255. iv32, iv16, key->u.tkip.rx[queue].iv32,
  256. key->u.tkip.rx[queue].iv16);
  257. #endif
  258. return TKIP_DECRYPT_REPLAY;
  259. }
  260. if (only_iv) {
  261. res = TKIP_DECRYPT_OK;
  262. key->u.tkip.rx[queue].state = TKIP_STATE_PHASE1_HW_UPLOADED;
  263. goto done;
  264. }
  265. if (key->u.tkip.rx[queue].state == TKIP_STATE_NOT_INIT ||
  266. key->u.tkip.rx[queue].iv32 != iv32) {
  267. /* IV16 wrapped around - perform TKIP phase 1 */
  268. tkip_mixing_phase1(tk, &key->u.tkip.rx[queue], ta, iv32);
  269. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  270. {
  271. int i;
  272. u8 key_offset = NL80211_TKIP_DATA_OFFSET_ENCR_KEY;
  273. printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%pM"
  274. " TK=", ta);
  275. for (i = 0; i < 16; i++)
  276. printk("%02x ",
  277. key->conf.key[key_offset + i]);
  278. printk("\n");
  279. printk(KERN_DEBUG "TKIP decrypt: P1K=");
  280. for (i = 0; i < 5; i++)
  281. printk("%04x ", key->u.tkip.rx[queue].p1k[i]);
  282. printk("\n");
  283. }
  284. #endif
  285. }
  286. if (key->local->ops->update_tkip_key &&
  287. key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
  288. key->u.tkip.rx[queue].state != TKIP_STATE_PHASE1_HW_UPLOADED) {
  289. struct ieee80211_sub_if_data *sdata = key->sdata;
  290. if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
  291. sdata = container_of(key->sdata->bss,
  292. struct ieee80211_sub_if_data, u.ap);
  293. drv_update_tkip_key(key->local, sdata, &key->conf, key->sta,
  294. iv32, key->u.tkip.rx[queue].p1k);
  295. key->u.tkip.rx[queue].state = TKIP_STATE_PHASE1_HW_UPLOADED;
  296. }
  297. tkip_mixing_phase2(tk, &key->u.tkip.rx[queue], iv16, rc4key);
  298. #ifdef CONFIG_MAC80211_TKIP_DEBUG
  299. {
  300. int i;
  301. printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
  302. for (i = 0; i < 16; i++)
  303. printk("%02x ", rc4key[i]);
  304. printk("\n");
  305. }
  306. #endif
  307. res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
  308. done:
  309. if (res == TKIP_DECRYPT_OK) {
  310. /*
  311. * Record previously received IV, will be copied into the
  312. * key information after MIC verification. It is possible
  313. * that we don't catch replays of fragments but that's ok
  314. * because the Michael MIC verication will then fail.
  315. */
  316. *out_iv32 = iv32;
  317. *out_iv16 = iv16;
  318. }
  319. return res;
  320. }