irttp.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915
  1. /*********************************************************************
  2. *
  3. * Filename: irttp.c
  4. * Version: 1.2
  5. * Description: Tiny Transport Protocol (TTP) implementation
  6. * Status: Stable
  7. * Author: Dag Brattli <dagb@cs.uit.no>
  8. * Created at: Sun Aug 31 20:14:31 1997
  9. * Modified at: Wed Jan 5 11:31:27 2000
  10. * Modified by: Dag Brattli <dagb@cs.uit.no>
  11. *
  12. * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
  13. * All Rights Reserved.
  14. * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
  15. *
  16. * This program is free software; you can redistribute it and/or
  17. * modify it under the terms of the GNU General Public License as
  18. * published by the Free Software Foundation; either version 2 of
  19. * the License, or (at your option) any later version.
  20. *
  21. * Neither Dag Brattli nor University of Tromsø admit liability nor
  22. * provide warranty for any of this software. This material is
  23. * provided "AS-IS" and at no charge.
  24. *
  25. ********************************************************************/
  26. #include <linux/skbuff.h>
  27. #include <linux/init.h>
  28. #include <linux/fs.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/slab.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/unaligned.h>
  33. #include <net/irda/irda.h>
  34. #include <net/irda/irlap.h>
  35. #include <net/irda/irlmp.h>
  36. #include <net/irda/parameters.h>
  37. #include <net/irda/irttp.h>
  38. static struct irttp_cb *irttp;
  39. static void __irttp_close_tsap(struct tsap_cb *self);
  40. static int irttp_data_indication(void *instance, void *sap,
  41. struct sk_buff *skb);
  42. static int irttp_udata_indication(void *instance, void *sap,
  43. struct sk_buff *skb);
  44. static void irttp_disconnect_indication(void *instance, void *sap,
  45. LM_REASON reason, struct sk_buff *);
  46. static void irttp_connect_indication(void *instance, void *sap,
  47. struct qos_info *qos, __u32 max_sdu_size,
  48. __u8 header_size, struct sk_buff *skb);
  49. static void irttp_connect_confirm(void *instance, void *sap,
  50. struct qos_info *qos, __u32 max_sdu_size,
  51. __u8 header_size, struct sk_buff *skb);
  52. static void irttp_run_tx_queue(struct tsap_cb *self);
  53. static void irttp_run_rx_queue(struct tsap_cb *self);
  54. static void irttp_flush_queues(struct tsap_cb *self);
  55. static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
  56. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
  57. static void irttp_todo_expired(unsigned long data);
  58. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  59. int get);
  60. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
  61. static void irttp_status_indication(void *instance,
  62. LINK_STATUS link, LOCK_STATUS lock);
  63. /* Information for parsing parameters in IrTTP */
  64. static pi_minor_info_t pi_minor_call_table[] = {
  65. { NULL, 0 }, /* 0x00 */
  66. { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
  67. };
  68. static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
  69. static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
  70. /************************ GLOBAL PROCEDURES ************************/
  71. /*
  72. * Function irttp_init (void)
  73. *
  74. * Initialize the IrTTP layer. Called by module initialization code
  75. *
  76. */
  77. int __init irttp_init(void)
  78. {
  79. irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
  80. if (irttp == NULL)
  81. return -ENOMEM;
  82. irttp->magic = TTP_MAGIC;
  83. irttp->tsaps = hashbin_new(HB_LOCK);
  84. if (!irttp->tsaps) {
  85. IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
  86. __func__);
  87. kfree(irttp);
  88. return -ENOMEM;
  89. }
  90. return 0;
  91. }
  92. /*
  93. * Function irttp_cleanup (void)
  94. *
  95. * Called by module destruction/cleanup code
  96. *
  97. */
  98. void irttp_cleanup(void)
  99. {
  100. /* Check for main structure */
  101. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
  102. /*
  103. * Delete hashbin and close all TSAP instances in it
  104. */
  105. hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
  106. irttp->magic = 0;
  107. /* De-allocate main structure */
  108. kfree(irttp);
  109. irttp = NULL;
  110. }
  111. /*************************** SUBROUTINES ***************************/
  112. /*
  113. * Function irttp_start_todo_timer (self, timeout)
  114. *
  115. * Start todo timer.
  116. *
  117. * Made it more effient and unsensitive to race conditions - Jean II
  118. */
  119. static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
  120. {
  121. /* Set new value for timer */
  122. mod_timer(&self->todo_timer, jiffies + timeout);
  123. }
  124. /*
  125. * Function irttp_todo_expired (data)
  126. *
  127. * Todo timer has expired!
  128. *
  129. * One of the restriction of the timer is that it is run only on the timer
  130. * interrupt which run every 10ms. This mean that even if you set the timer
  131. * with a delay of 0, it may take up to 10ms before it's run.
  132. * So, to minimise latency and keep cache fresh, we try to avoid using
  133. * it as much as possible.
  134. * Note : we can't use tasklets, because they can't be asynchronously
  135. * killed (need user context), and we can't guarantee that here...
  136. * Jean II
  137. */
  138. static void irttp_todo_expired(unsigned long data)
  139. {
  140. struct tsap_cb *self = (struct tsap_cb *) data;
  141. /* Check that we still exist */
  142. if (!self || self->magic != TTP_TSAP_MAGIC)
  143. return;
  144. IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
  145. /* Try to make some progress, especially on Tx side - Jean II */
  146. irttp_run_rx_queue(self);
  147. irttp_run_tx_queue(self);
  148. /* Check if time for disconnect */
  149. if (test_bit(0, &self->disconnect_pend)) {
  150. /* Check if it's possible to disconnect yet */
  151. if (skb_queue_empty(&self->tx_queue)) {
  152. /* Make sure disconnect is not pending anymore */
  153. clear_bit(0, &self->disconnect_pend); /* FALSE */
  154. /* Note : self->disconnect_skb may be NULL */
  155. irttp_disconnect_request(self, self->disconnect_skb,
  156. P_NORMAL);
  157. self->disconnect_skb = NULL;
  158. } else {
  159. /* Try again later */
  160. irttp_start_todo_timer(self, HZ/10);
  161. /* No reason to try and close now */
  162. return;
  163. }
  164. }
  165. /* Check if it's closing time */
  166. if (self->close_pend)
  167. /* Finish cleanup */
  168. irttp_close_tsap(self);
  169. }
  170. /*
  171. * Function irttp_flush_queues (self)
  172. *
  173. * Flushes (removes all frames) in transitt-buffer (tx_list)
  174. */
  175. static void irttp_flush_queues(struct tsap_cb *self)
  176. {
  177. struct sk_buff* skb;
  178. IRDA_DEBUG(4, "%s()\n", __func__);
  179. IRDA_ASSERT(self != NULL, return;);
  180. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  181. /* Deallocate frames waiting to be sent */
  182. while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
  183. dev_kfree_skb(skb);
  184. /* Deallocate received frames */
  185. while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
  186. dev_kfree_skb(skb);
  187. /* Deallocate received fragments */
  188. while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
  189. dev_kfree_skb(skb);
  190. }
  191. /*
  192. * Function irttp_reassemble (self)
  193. *
  194. * Makes a new (continuous) skb of all the fragments in the fragment
  195. * queue
  196. *
  197. */
  198. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
  199. {
  200. struct sk_buff *skb, *frag;
  201. int n = 0; /* Fragment index */
  202. IRDA_ASSERT(self != NULL, return NULL;);
  203. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
  204. IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
  205. self->rx_sdu_size);
  206. skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
  207. if (!skb)
  208. return NULL;
  209. /*
  210. * Need to reserve space for TTP header in case this skb needs to
  211. * be requeued in case delivery failes
  212. */
  213. skb_reserve(skb, TTP_HEADER);
  214. skb_put(skb, self->rx_sdu_size);
  215. /*
  216. * Copy all fragments to a new buffer
  217. */
  218. while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
  219. skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
  220. n += frag->len;
  221. dev_kfree_skb(frag);
  222. }
  223. IRDA_DEBUG(2,
  224. "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
  225. __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
  226. /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
  227. * by summing the size of all fragments, so we should always
  228. * have n == self->rx_sdu_size, except in cases where we
  229. * droped the last fragment (when self->rx_sdu_size exceed
  230. * self->rx_max_sdu_size), where n < self->rx_sdu_size.
  231. * Jean II */
  232. IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
  233. /* Set the new length */
  234. skb_trim(skb, n);
  235. self->rx_sdu_size = 0;
  236. return skb;
  237. }
  238. /*
  239. * Function irttp_fragment_skb (skb)
  240. *
  241. * Fragments a frame and queues all the fragments for transmission
  242. *
  243. */
  244. static inline void irttp_fragment_skb(struct tsap_cb *self,
  245. struct sk_buff *skb)
  246. {
  247. struct sk_buff *frag;
  248. __u8 *frame;
  249. IRDA_DEBUG(2, "%s()\n", __func__);
  250. IRDA_ASSERT(self != NULL, return;);
  251. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  252. IRDA_ASSERT(skb != NULL, return;);
  253. /*
  254. * Split frame into a number of segments
  255. */
  256. while (skb->len > self->max_seg_size) {
  257. IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
  258. /* Make new segment */
  259. frag = alloc_skb(self->max_seg_size+self->max_header_size,
  260. GFP_ATOMIC);
  261. if (!frag)
  262. return;
  263. skb_reserve(frag, self->max_header_size);
  264. /* Copy data from the original skb into this fragment. */
  265. skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
  266. self->max_seg_size);
  267. /* Insert TTP header, with the more bit set */
  268. frame = skb_push(frag, TTP_HEADER);
  269. frame[0] = TTP_MORE;
  270. /* Hide the copied data from the original skb */
  271. skb_pull(skb, self->max_seg_size);
  272. /* Queue fragment */
  273. skb_queue_tail(&self->tx_queue, frag);
  274. }
  275. /* Queue what is left of the original skb */
  276. IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
  277. frame = skb_push(skb, TTP_HEADER);
  278. frame[0] = 0x00; /* Clear more bit */
  279. /* Queue fragment */
  280. skb_queue_tail(&self->tx_queue, skb);
  281. }
  282. /*
  283. * Function irttp_param_max_sdu_size (self, param)
  284. *
  285. * Handle the MaxSduSize parameter in the connect frames, this function
  286. * will be called both when this parameter needs to be inserted into, and
  287. * extracted from the connect frames
  288. */
  289. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  290. int get)
  291. {
  292. struct tsap_cb *self;
  293. self = instance;
  294. IRDA_ASSERT(self != NULL, return -1;);
  295. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  296. if (get)
  297. param->pv.i = self->tx_max_sdu_size;
  298. else
  299. self->tx_max_sdu_size = param->pv.i;
  300. IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
  301. return 0;
  302. }
  303. /*************************** CLIENT CALLS ***************************/
  304. /************************** LMP CALLBACKS **************************/
  305. /* Everything is happily mixed up. Waiting for next clean up - Jean II */
  306. /*
  307. * Initialization, that has to be done on new tsap
  308. * instance allocation and on duplication
  309. */
  310. static void irttp_init_tsap(struct tsap_cb *tsap)
  311. {
  312. spin_lock_init(&tsap->lock);
  313. init_timer(&tsap->todo_timer);
  314. skb_queue_head_init(&tsap->rx_queue);
  315. skb_queue_head_init(&tsap->tx_queue);
  316. skb_queue_head_init(&tsap->rx_fragments);
  317. }
  318. /*
  319. * Function irttp_open_tsap (stsap, notify)
  320. *
  321. * Create TSAP connection endpoint,
  322. */
  323. struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
  324. {
  325. struct tsap_cb *self;
  326. struct lsap_cb *lsap;
  327. notify_t ttp_notify;
  328. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
  329. /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
  330. * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
  331. * JeanII */
  332. if((stsap_sel != LSAP_ANY) &&
  333. ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
  334. IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
  335. return NULL;
  336. }
  337. self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
  338. if (self == NULL) {
  339. IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
  340. return NULL;
  341. }
  342. /* Initialize internal objects */
  343. irttp_init_tsap(self);
  344. /* Initialise todo timer */
  345. self->todo_timer.data = (unsigned long) self;
  346. self->todo_timer.function = &irttp_todo_expired;
  347. /* Initialize callbacks for IrLMP to use */
  348. irda_notify_init(&ttp_notify);
  349. ttp_notify.connect_confirm = irttp_connect_confirm;
  350. ttp_notify.connect_indication = irttp_connect_indication;
  351. ttp_notify.disconnect_indication = irttp_disconnect_indication;
  352. ttp_notify.data_indication = irttp_data_indication;
  353. ttp_notify.udata_indication = irttp_udata_indication;
  354. ttp_notify.flow_indication = irttp_flow_indication;
  355. if(notify->status_indication != NULL)
  356. ttp_notify.status_indication = irttp_status_indication;
  357. ttp_notify.instance = self;
  358. strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
  359. self->magic = TTP_TSAP_MAGIC;
  360. self->connected = FALSE;
  361. /*
  362. * Create LSAP at IrLMP layer
  363. */
  364. lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
  365. if (lsap == NULL) {
  366. IRDA_WARNING("%s: unable to allocate LSAP!!\n", __func__);
  367. return NULL;
  368. }
  369. /*
  370. * If user specified LSAP_ANY as source TSAP selector, then IrLMP
  371. * will replace it with whatever source selector which is free, so
  372. * the stsap_sel we have might not be valid anymore
  373. */
  374. self->stsap_sel = lsap->slsap_sel;
  375. IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
  376. self->notify = *notify;
  377. self->lsap = lsap;
  378. hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
  379. if (credit > TTP_RX_MAX_CREDIT)
  380. self->initial_credit = TTP_RX_MAX_CREDIT;
  381. else
  382. self->initial_credit = credit;
  383. return self;
  384. }
  385. EXPORT_SYMBOL(irttp_open_tsap);
  386. /*
  387. * Function irttp_close (handle)
  388. *
  389. * Remove an instance of a TSAP. This function should only deal with the
  390. * deallocation of the TSAP, and resetting of the TSAPs values;
  391. *
  392. */
  393. static void __irttp_close_tsap(struct tsap_cb *self)
  394. {
  395. /* First make sure we're connected. */
  396. IRDA_ASSERT(self != NULL, return;);
  397. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  398. irttp_flush_queues(self);
  399. del_timer(&self->todo_timer);
  400. /* This one won't be cleaned up if we are disconnect_pend + close_pend
  401. * and we receive a disconnect_indication */
  402. if (self->disconnect_skb)
  403. dev_kfree_skb(self->disconnect_skb);
  404. self->connected = FALSE;
  405. self->magic = ~TTP_TSAP_MAGIC;
  406. kfree(self);
  407. }
  408. /*
  409. * Function irttp_close (self)
  410. *
  411. * Remove TSAP from list of all TSAPs and then deallocate all resources
  412. * associated with this TSAP
  413. *
  414. * Note : because we *free* the tsap structure, it is the responsibility
  415. * of the caller to make sure we are called only once and to deal with
  416. * possible race conditions. - Jean II
  417. */
  418. int irttp_close_tsap(struct tsap_cb *self)
  419. {
  420. struct tsap_cb *tsap;
  421. IRDA_DEBUG(4, "%s()\n", __func__);
  422. IRDA_ASSERT(self != NULL, return -1;);
  423. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  424. /* Make sure tsap has been disconnected */
  425. if (self->connected) {
  426. /* Check if disconnect is not pending */
  427. if (!test_bit(0, &self->disconnect_pend)) {
  428. IRDA_WARNING("%s: TSAP still connected!\n",
  429. __func__);
  430. irttp_disconnect_request(self, NULL, P_NORMAL);
  431. }
  432. self->close_pend = TRUE;
  433. irttp_start_todo_timer(self, HZ/10);
  434. return 0; /* Will be back! */
  435. }
  436. tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
  437. IRDA_ASSERT(tsap == self, return -1;);
  438. /* Close corresponding LSAP */
  439. if (self->lsap) {
  440. irlmp_close_lsap(self->lsap);
  441. self->lsap = NULL;
  442. }
  443. __irttp_close_tsap(self);
  444. return 0;
  445. }
  446. EXPORT_SYMBOL(irttp_close_tsap);
  447. /*
  448. * Function irttp_udata_request (self, skb)
  449. *
  450. * Send unreliable data on this TSAP
  451. *
  452. */
  453. int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
  454. {
  455. int ret;
  456. IRDA_ASSERT(self != NULL, return -1;);
  457. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  458. IRDA_ASSERT(skb != NULL, return -1;);
  459. IRDA_DEBUG(4, "%s()\n", __func__);
  460. /* Take shortcut on zero byte packets */
  461. if (skb->len == 0) {
  462. ret = 0;
  463. goto err;
  464. }
  465. /* Check that nothing bad happens */
  466. if (!self->connected) {
  467. IRDA_WARNING("%s(), Not connected\n", __func__);
  468. ret = -ENOTCONN;
  469. goto err;
  470. }
  471. if (skb->len > self->max_seg_size) {
  472. IRDA_ERROR("%s(), UData is too large for IrLAP!\n", __func__);
  473. ret = -EMSGSIZE;
  474. goto err;
  475. }
  476. irlmp_udata_request(self->lsap, skb);
  477. self->stats.tx_packets++;
  478. return 0;
  479. err:
  480. dev_kfree_skb(skb);
  481. return ret;
  482. }
  483. EXPORT_SYMBOL(irttp_udata_request);
  484. /*
  485. * Function irttp_data_request (handle, skb)
  486. *
  487. * Queue frame for transmission. If SAR is enabled, fragement the frame
  488. * and queue the fragments for transmission
  489. */
  490. int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
  491. {
  492. __u8 *frame;
  493. int ret;
  494. IRDA_ASSERT(self != NULL, return -1;);
  495. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  496. IRDA_ASSERT(skb != NULL, return -1;);
  497. IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
  498. skb_queue_len(&self->tx_queue));
  499. /* Take shortcut on zero byte packets */
  500. if (skb->len == 0) {
  501. ret = 0;
  502. goto err;
  503. }
  504. /* Check that nothing bad happens */
  505. if (!self->connected) {
  506. IRDA_WARNING("%s: Not connected\n", __func__);
  507. ret = -ENOTCONN;
  508. goto err;
  509. }
  510. /*
  511. * Check if SAR is disabled, and the frame is larger than what fits
  512. * inside an IrLAP frame
  513. */
  514. if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
  515. IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
  516. __func__);
  517. ret = -EMSGSIZE;
  518. goto err;
  519. }
  520. /*
  521. * Check if SAR is enabled, and the frame is larger than the
  522. * TxMaxSduSize
  523. */
  524. if ((self->tx_max_sdu_size != 0) &&
  525. (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
  526. (skb->len > self->tx_max_sdu_size))
  527. {
  528. IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
  529. __func__);
  530. ret = -EMSGSIZE;
  531. goto err;
  532. }
  533. /*
  534. * Check if transmit queue is full
  535. */
  536. if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
  537. /*
  538. * Give it a chance to empty itself
  539. */
  540. irttp_run_tx_queue(self);
  541. /* Drop packet. This error code should trigger the caller
  542. * to resend the data in the client code - Jean II */
  543. ret = -ENOBUFS;
  544. goto err;
  545. }
  546. /* Queue frame, or queue frame segments */
  547. if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
  548. /* Queue frame */
  549. IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
  550. frame = skb_push(skb, TTP_HEADER);
  551. frame[0] = 0x00; /* Clear more bit */
  552. skb_queue_tail(&self->tx_queue, skb);
  553. } else {
  554. /*
  555. * Fragment the frame, this function will also queue the
  556. * fragments, we don't care about the fact the transmit
  557. * queue may be overfilled by all the segments for a little
  558. * while
  559. */
  560. irttp_fragment_skb(self, skb);
  561. }
  562. /* Check if we can accept more data from client */
  563. if ((!self->tx_sdu_busy) &&
  564. (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
  565. /* Tx queue filling up, so stop client. */
  566. if (self->notify.flow_indication) {
  567. self->notify.flow_indication(self->notify.instance,
  568. self, FLOW_STOP);
  569. }
  570. /* self->tx_sdu_busy is the state of the client.
  571. * Update state after notifying client to avoid
  572. * race condition with irttp_flow_indication().
  573. * If the queue empty itself after our test but before
  574. * we set the flag, we will fix ourselves below in
  575. * irttp_run_tx_queue().
  576. * Jean II */
  577. self->tx_sdu_busy = TRUE;
  578. }
  579. /* Try to make some progress */
  580. irttp_run_tx_queue(self);
  581. return 0;
  582. err:
  583. dev_kfree_skb(skb);
  584. return ret;
  585. }
  586. EXPORT_SYMBOL(irttp_data_request);
  587. /*
  588. * Function irttp_run_tx_queue (self)
  589. *
  590. * Transmit packets queued for transmission (if possible)
  591. *
  592. */
  593. static void irttp_run_tx_queue(struct tsap_cb *self)
  594. {
  595. struct sk_buff *skb;
  596. unsigned long flags;
  597. int n;
  598. IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
  599. __func__,
  600. self->send_credit, skb_queue_len(&self->tx_queue));
  601. /* Get exclusive access to the tx queue, otherwise don't touch it */
  602. if (irda_lock(&self->tx_queue_lock) == FALSE)
  603. return;
  604. /* Try to send out frames as long as we have credits
  605. * and as long as LAP is not full. If LAP is full, it will
  606. * poll us through irttp_flow_indication() - Jean II */
  607. while ((self->send_credit > 0) &&
  608. (!irlmp_lap_tx_queue_full(self->lsap)) &&
  609. (skb = skb_dequeue(&self->tx_queue)))
  610. {
  611. /*
  612. * Since we can transmit and receive frames concurrently,
  613. * the code below is a critical region and we must assure that
  614. * nobody messes with the credits while we update them.
  615. */
  616. spin_lock_irqsave(&self->lock, flags);
  617. n = self->avail_credit;
  618. self->avail_credit = 0;
  619. /* Only room for 127 credits in frame */
  620. if (n > 127) {
  621. self->avail_credit = n-127;
  622. n = 127;
  623. }
  624. self->remote_credit += n;
  625. self->send_credit--;
  626. spin_unlock_irqrestore(&self->lock, flags);
  627. /*
  628. * More bit must be set by the data_request() or fragment()
  629. * functions
  630. */
  631. skb->data[0] |= (n & 0x7f);
  632. /* Detach from socket.
  633. * The current skb has a reference to the socket that sent
  634. * it (skb->sk). When we pass it to IrLMP, the skb will be
  635. * stored in in IrLAP (self->wx_list). When we are within
  636. * IrLAP, we lose the notion of socket, so we should not
  637. * have a reference to a socket. So, we drop it here.
  638. *
  639. * Why does it matter ?
  640. * When the skb is freed (kfree_skb), if it is associated
  641. * with a socket, it release buffer space on the socket
  642. * (through sock_wfree() and sock_def_write_space()).
  643. * If the socket no longer exist, we may crash. Hard.
  644. * When we close a socket, we make sure that associated packets
  645. * in IrTTP are freed. However, we have no way to cancel
  646. * the packet that we have passed to IrLAP. So, if a packet
  647. * remains in IrLAP (retry on the link or else) after we
  648. * close the socket, we are dead !
  649. * Jean II */
  650. if (skb->sk != NULL) {
  651. /* IrSOCK application, IrOBEX, ... */
  652. skb_orphan(skb);
  653. }
  654. /* IrCOMM over IrTTP, IrLAN, ... */
  655. /* Pass the skb to IrLMP - done */
  656. irlmp_data_request(self->lsap, skb);
  657. self->stats.tx_packets++;
  658. }
  659. /* Check if we can accept more frames from client.
  660. * We don't want to wait until the todo timer to do that, and we
  661. * can't use tasklets (grr...), so we are obliged to give control
  662. * to client. That's ok, this test will be true not too often
  663. * (max once per LAP window) and we are called from places
  664. * where we can spend a bit of time doing stuff. - Jean II */
  665. if ((self->tx_sdu_busy) &&
  666. (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
  667. (!self->close_pend))
  668. {
  669. if (self->notify.flow_indication)
  670. self->notify.flow_indication(self->notify.instance,
  671. self, FLOW_START);
  672. /* self->tx_sdu_busy is the state of the client.
  673. * We don't really have a race here, but it's always safer
  674. * to update our state after the client - Jean II */
  675. self->tx_sdu_busy = FALSE;
  676. }
  677. /* Reset lock */
  678. self->tx_queue_lock = 0;
  679. }
  680. /*
  681. * Function irttp_give_credit (self)
  682. *
  683. * Send a dataless flowdata TTP-PDU and give available credit to peer
  684. * TSAP
  685. */
  686. static inline void irttp_give_credit(struct tsap_cb *self)
  687. {
  688. struct sk_buff *tx_skb = NULL;
  689. unsigned long flags;
  690. int n;
  691. IRDA_ASSERT(self != NULL, return;);
  692. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  693. IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
  694. __func__,
  695. self->send_credit, self->avail_credit, self->remote_credit);
  696. /* Give credit to peer */
  697. tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
  698. if (!tx_skb)
  699. return;
  700. /* Reserve space for LMP, and LAP header */
  701. skb_reserve(tx_skb, LMP_MAX_HEADER);
  702. /*
  703. * Since we can transmit and receive frames concurrently,
  704. * the code below is a critical region and we must assure that
  705. * nobody messes with the credits while we update them.
  706. */
  707. spin_lock_irqsave(&self->lock, flags);
  708. n = self->avail_credit;
  709. self->avail_credit = 0;
  710. /* Only space for 127 credits in frame */
  711. if (n > 127) {
  712. self->avail_credit = n - 127;
  713. n = 127;
  714. }
  715. self->remote_credit += n;
  716. spin_unlock_irqrestore(&self->lock, flags);
  717. skb_put(tx_skb, 1);
  718. tx_skb->data[0] = (__u8) (n & 0x7f);
  719. irlmp_data_request(self->lsap, tx_skb);
  720. self->stats.tx_packets++;
  721. }
  722. /*
  723. * Function irttp_udata_indication (instance, sap, skb)
  724. *
  725. * Received some unit-data (unreliable)
  726. *
  727. */
  728. static int irttp_udata_indication(void *instance, void *sap,
  729. struct sk_buff *skb)
  730. {
  731. struct tsap_cb *self;
  732. int err;
  733. IRDA_DEBUG(4, "%s()\n", __func__);
  734. self = instance;
  735. IRDA_ASSERT(self != NULL, return -1;);
  736. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  737. IRDA_ASSERT(skb != NULL, return -1;);
  738. self->stats.rx_packets++;
  739. /* Just pass data to layer above */
  740. if (self->notify.udata_indication) {
  741. err = self->notify.udata_indication(self->notify.instance,
  742. self,skb);
  743. /* Same comment as in irttp_do_data_indication() */
  744. if (!err)
  745. return 0;
  746. }
  747. /* Either no handler, or handler returns an error */
  748. dev_kfree_skb(skb);
  749. return 0;
  750. }
  751. /*
  752. * Function irttp_data_indication (instance, sap, skb)
  753. *
  754. * Receive segment from IrLMP.
  755. *
  756. */
  757. static int irttp_data_indication(void *instance, void *sap,
  758. struct sk_buff *skb)
  759. {
  760. struct tsap_cb *self;
  761. unsigned long flags;
  762. int n;
  763. self = instance;
  764. n = skb->data[0] & 0x7f; /* Extract the credits */
  765. self->stats.rx_packets++;
  766. /* Deal with inbound credit
  767. * Since we can transmit and receive frames concurrently,
  768. * the code below is a critical region and we must assure that
  769. * nobody messes with the credits while we update them.
  770. */
  771. spin_lock_irqsave(&self->lock, flags);
  772. self->send_credit += n;
  773. if (skb->len > 1)
  774. self->remote_credit--;
  775. spin_unlock_irqrestore(&self->lock, flags);
  776. /*
  777. * Data or dataless packet? Dataless frames contains only the
  778. * TTP_HEADER.
  779. */
  780. if (skb->len > 1) {
  781. /*
  782. * We don't remove the TTP header, since we must preserve the
  783. * more bit, so the defragment routing knows what to do
  784. */
  785. skb_queue_tail(&self->rx_queue, skb);
  786. } else {
  787. /* Dataless flowdata TTP-PDU */
  788. dev_kfree_skb(skb);
  789. }
  790. /* Push data to the higher layer.
  791. * We do it synchronously because running the todo timer for each
  792. * receive packet would be too much overhead and latency.
  793. * By passing control to the higher layer, we run the risk that
  794. * it may take time or grab a lock. Most often, the higher layer
  795. * will only put packet in a queue.
  796. * Anyway, packets are only dripping through the IrDA, so we can
  797. * have time before the next packet.
  798. * Further, we are run from NET_BH, so the worse that can happen is
  799. * us missing the optimal time to send back the PF bit in LAP.
  800. * Jean II */
  801. irttp_run_rx_queue(self);
  802. /* We now give credits to peer in irttp_run_rx_queue().
  803. * We need to send credit *NOW*, otherwise we are going
  804. * to miss the next Tx window. The todo timer may take
  805. * a while before it's run... - Jean II */
  806. /*
  807. * If the peer device has given us some credits and we didn't have
  808. * anyone from before, then we need to shedule the tx queue.
  809. * We need to do that because our Tx have stopped (so we may not
  810. * get any LAP flow indication) and the user may be stopped as
  811. * well. - Jean II
  812. */
  813. if (self->send_credit == n) {
  814. /* Restart pushing stuff to LAP */
  815. irttp_run_tx_queue(self);
  816. /* Note : we don't want to schedule the todo timer
  817. * because it has horrible latency. No tasklets
  818. * because the tasklet API is broken. - Jean II */
  819. }
  820. return 0;
  821. }
  822. /*
  823. * Function irttp_status_indication (self, reason)
  824. *
  825. * Status_indication, just pass to the higher layer...
  826. *
  827. */
  828. static void irttp_status_indication(void *instance,
  829. LINK_STATUS link, LOCK_STATUS lock)
  830. {
  831. struct tsap_cb *self;
  832. IRDA_DEBUG(4, "%s()\n", __func__);
  833. self = instance;
  834. IRDA_ASSERT(self != NULL, return;);
  835. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  836. /* Check if client has already closed the TSAP and gone away */
  837. if (self->close_pend)
  838. return;
  839. /*
  840. * Inform service user if he has requested it
  841. */
  842. if (self->notify.status_indication != NULL)
  843. self->notify.status_indication(self->notify.instance,
  844. link, lock);
  845. else
  846. IRDA_DEBUG(2, "%s(), no handler\n", __func__);
  847. }
  848. /*
  849. * Function irttp_flow_indication (self, reason)
  850. *
  851. * Flow_indication : IrLAP tells us to send more data.
  852. *
  853. */
  854. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
  855. {
  856. struct tsap_cb *self;
  857. self = instance;
  858. IRDA_ASSERT(self != NULL, return;);
  859. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  860. IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
  861. /* We are "polled" directly from LAP, and the LAP want to fill
  862. * its Tx window. We want to do our best to send it data, so that
  863. * we maximise the window. On the other hand, we want to limit the
  864. * amount of work here so that LAP doesn't hang forever waiting
  865. * for packets. - Jean II */
  866. /* Try to send some packets. Currently, LAP calls us every time
  867. * there is one free slot, so we will send only one packet.
  868. * This allow the scheduler to do its round robin - Jean II */
  869. irttp_run_tx_queue(self);
  870. /* Note regarding the interraction with higher layer.
  871. * irttp_run_tx_queue() may call the client when its queue
  872. * start to empty, via notify.flow_indication(). Initially.
  873. * I wanted this to happen in a tasklet, to avoid client
  874. * grabbing the CPU, but we can't use tasklets safely. And timer
  875. * is definitely too slow.
  876. * This will happen only once per LAP window, and usually at
  877. * the third packet (unless window is smaller). LAP is still
  878. * doing mtt and sending first packet so it's sort of OK
  879. * to do that. Jean II */
  880. /* If we need to send disconnect. try to do it now */
  881. if(self->disconnect_pend)
  882. irttp_start_todo_timer(self, 0);
  883. }
  884. /*
  885. * Function irttp_flow_request (self, command)
  886. *
  887. * This function could be used by the upper layers to tell IrTTP to stop
  888. * delivering frames if the receive queues are starting to get full, or
  889. * to tell IrTTP to start delivering frames again.
  890. */
  891. void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
  892. {
  893. IRDA_DEBUG(1, "%s()\n", __func__);
  894. IRDA_ASSERT(self != NULL, return;);
  895. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  896. switch (flow) {
  897. case FLOW_STOP:
  898. IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
  899. self->rx_sdu_busy = TRUE;
  900. break;
  901. case FLOW_START:
  902. IRDA_DEBUG(1, "%s(), flow start\n", __func__);
  903. self->rx_sdu_busy = FALSE;
  904. /* Client say he can accept more data, try to free our
  905. * queues ASAP - Jean II */
  906. irttp_run_rx_queue(self);
  907. break;
  908. default:
  909. IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
  910. }
  911. }
  912. EXPORT_SYMBOL(irttp_flow_request);
  913. /*
  914. * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
  915. *
  916. * Try to connect to remote destination TSAP selector
  917. *
  918. */
  919. int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
  920. __u32 saddr, __u32 daddr,
  921. struct qos_info *qos, __u32 max_sdu_size,
  922. struct sk_buff *userdata)
  923. {
  924. struct sk_buff *tx_skb;
  925. __u8 *frame;
  926. __u8 n;
  927. IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
  928. IRDA_ASSERT(self != NULL, return -EBADR;);
  929. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
  930. if (self->connected) {
  931. if(userdata)
  932. dev_kfree_skb(userdata);
  933. return -EISCONN;
  934. }
  935. /* Any userdata supplied? */
  936. if (userdata == NULL) {
  937. tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
  938. GFP_ATOMIC);
  939. if (!tx_skb)
  940. return -ENOMEM;
  941. /* Reserve space for MUX_CONTROL and LAP header */
  942. skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
  943. } else {
  944. tx_skb = userdata;
  945. /*
  946. * Check that the client has reserved enough space for
  947. * headers
  948. */
  949. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  950. { dev_kfree_skb(userdata); return -1; } );
  951. }
  952. /* Initialize connection parameters */
  953. self->connected = FALSE;
  954. self->avail_credit = 0;
  955. self->rx_max_sdu_size = max_sdu_size;
  956. self->rx_sdu_size = 0;
  957. self->rx_sdu_busy = FALSE;
  958. self->dtsap_sel = dtsap_sel;
  959. n = self->initial_credit;
  960. self->remote_credit = 0;
  961. self->send_credit = 0;
  962. /*
  963. * Give away max 127 credits for now
  964. */
  965. if (n > 127) {
  966. self->avail_credit=n-127;
  967. n = 127;
  968. }
  969. self->remote_credit = n;
  970. /* SAR enabled? */
  971. if (max_sdu_size > 0) {
  972. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  973. { dev_kfree_skb(tx_skb); return -1; } );
  974. /* Insert SAR parameters */
  975. frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
  976. frame[0] = TTP_PARAMETERS | n;
  977. frame[1] = 0x04; /* Length */
  978. frame[2] = 0x01; /* MaxSduSize */
  979. frame[3] = 0x02; /* Value length */
  980. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  981. (__be16 *)(frame+4));
  982. } else {
  983. /* Insert plain TTP header */
  984. frame = skb_push(tx_skb, TTP_HEADER);
  985. /* Insert initial credit in frame */
  986. frame[0] = n & 0x7f;
  987. }
  988. /* Connect with IrLMP. No QoS parameters for now */
  989. return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
  990. tx_skb);
  991. }
  992. EXPORT_SYMBOL(irttp_connect_request);
  993. /*
  994. * Function irttp_connect_confirm (handle, qos, skb)
  995. *
  996. * Service user confirms TSAP connection with peer.
  997. *
  998. */
  999. static void irttp_connect_confirm(void *instance, void *sap,
  1000. struct qos_info *qos, __u32 max_seg_size,
  1001. __u8 max_header_size, struct sk_buff *skb)
  1002. {
  1003. struct tsap_cb *self;
  1004. int parameters;
  1005. int ret;
  1006. __u8 plen;
  1007. __u8 n;
  1008. IRDA_DEBUG(4, "%s()\n", __func__);
  1009. self = instance;
  1010. IRDA_ASSERT(self != NULL, return;);
  1011. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1012. IRDA_ASSERT(skb != NULL, return;);
  1013. self->max_seg_size = max_seg_size - TTP_HEADER;
  1014. self->max_header_size = max_header_size + TTP_HEADER;
  1015. /*
  1016. * Check if we have got some QoS parameters back! This should be the
  1017. * negotiated QoS for the link.
  1018. */
  1019. if (qos) {
  1020. IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
  1021. qos->baud_rate.bits);
  1022. IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
  1023. qos->baud_rate.value);
  1024. }
  1025. n = skb->data[0] & 0x7f;
  1026. IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
  1027. self->send_credit = n;
  1028. self->tx_max_sdu_size = 0;
  1029. self->connected = TRUE;
  1030. parameters = skb->data[0] & 0x80;
  1031. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1032. skb_pull(skb, TTP_HEADER);
  1033. if (parameters) {
  1034. plen = skb->data[0];
  1035. ret = irda_param_extract_all(self, skb->data+1,
  1036. IRDA_MIN(skb->len-1, plen),
  1037. &param_info);
  1038. /* Any errors in the parameter list? */
  1039. if (ret < 0) {
  1040. IRDA_WARNING("%s: error extracting parameters\n",
  1041. __func__);
  1042. dev_kfree_skb(skb);
  1043. /* Do not accept this connection attempt */
  1044. return;
  1045. }
  1046. /* Remove parameters */
  1047. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1048. }
  1049. IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
  1050. self->send_credit, self->avail_credit, self->remote_credit);
  1051. IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
  1052. self->tx_max_sdu_size);
  1053. if (self->notify.connect_confirm) {
  1054. self->notify.connect_confirm(self->notify.instance, self, qos,
  1055. self->tx_max_sdu_size,
  1056. self->max_header_size, skb);
  1057. } else
  1058. dev_kfree_skb(skb);
  1059. }
  1060. /*
  1061. * Function irttp_connect_indication (handle, skb)
  1062. *
  1063. * Some other device is connecting to this TSAP
  1064. *
  1065. */
  1066. static void irttp_connect_indication(void *instance, void *sap,
  1067. struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
  1068. struct sk_buff *skb)
  1069. {
  1070. struct tsap_cb *self;
  1071. struct lsap_cb *lsap;
  1072. int parameters;
  1073. int ret;
  1074. __u8 plen;
  1075. __u8 n;
  1076. self = instance;
  1077. IRDA_ASSERT(self != NULL, return;);
  1078. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1079. IRDA_ASSERT(skb != NULL, return;);
  1080. lsap = sap;
  1081. self->max_seg_size = max_seg_size - TTP_HEADER;
  1082. self->max_header_size = max_header_size+TTP_HEADER;
  1083. IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
  1084. /* Need to update dtsap_sel if its equal to LSAP_ANY */
  1085. self->dtsap_sel = lsap->dlsap_sel;
  1086. n = skb->data[0] & 0x7f;
  1087. self->send_credit = n;
  1088. self->tx_max_sdu_size = 0;
  1089. parameters = skb->data[0] & 0x80;
  1090. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1091. skb_pull(skb, TTP_HEADER);
  1092. if (parameters) {
  1093. plen = skb->data[0];
  1094. ret = irda_param_extract_all(self, skb->data+1,
  1095. IRDA_MIN(skb->len-1, plen),
  1096. &param_info);
  1097. /* Any errors in the parameter list? */
  1098. if (ret < 0) {
  1099. IRDA_WARNING("%s: error extracting parameters\n",
  1100. __func__);
  1101. dev_kfree_skb(skb);
  1102. /* Do not accept this connection attempt */
  1103. return;
  1104. }
  1105. /* Remove parameters */
  1106. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1107. }
  1108. if (self->notify.connect_indication) {
  1109. self->notify.connect_indication(self->notify.instance, self,
  1110. qos, self->tx_max_sdu_size,
  1111. self->max_header_size, skb);
  1112. } else
  1113. dev_kfree_skb(skb);
  1114. }
  1115. /*
  1116. * Function irttp_connect_response (handle, userdata)
  1117. *
  1118. * Service user is accepting the connection, just pass it down to
  1119. * IrLMP!
  1120. *
  1121. */
  1122. int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
  1123. struct sk_buff *userdata)
  1124. {
  1125. struct sk_buff *tx_skb;
  1126. __u8 *frame;
  1127. int ret;
  1128. __u8 n;
  1129. IRDA_ASSERT(self != NULL, return -1;);
  1130. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1131. IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
  1132. self->stsap_sel);
  1133. /* Any userdata supplied? */
  1134. if (userdata == NULL) {
  1135. tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
  1136. GFP_ATOMIC);
  1137. if (!tx_skb)
  1138. return -ENOMEM;
  1139. /* Reserve space for MUX_CONTROL and LAP header */
  1140. skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
  1141. } else {
  1142. tx_skb = userdata;
  1143. /*
  1144. * Check that the client has reserved enough space for
  1145. * headers
  1146. */
  1147. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  1148. { dev_kfree_skb(userdata); return -1; } );
  1149. }
  1150. self->avail_credit = 0;
  1151. self->remote_credit = 0;
  1152. self->rx_max_sdu_size = max_sdu_size;
  1153. self->rx_sdu_size = 0;
  1154. self->rx_sdu_busy = FALSE;
  1155. n = self->initial_credit;
  1156. /* Frame has only space for max 127 credits (7 bits) */
  1157. if (n > 127) {
  1158. self->avail_credit = n - 127;
  1159. n = 127;
  1160. }
  1161. self->remote_credit = n;
  1162. self->connected = TRUE;
  1163. /* SAR enabled? */
  1164. if (max_sdu_size > 0) {
  1165. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  1166. { dev_kfree_skb(tx_skb); return -1; } );
  1167. /* Insert TTP header with SAR parameters */
  1168. frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
  1169. frame[0] = TTP_PARAMETERS | n;
  1170. frame[1] = 0x04; /* Length */
  1171. /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
  1172. /* TTP_SAR_HEADER, &param_info) */
  1173. frame[2] = 0x01; /* MaxSduSize */
  1174. frame[3] = 0x02; /* Value length */
  1175. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  1176. (__be16 *)(frame+4));
  1177. } else {
  1178. /* Insert TTP header */
  1179. frame = skb_push(tx_skb, TTP_HEADER);
  1180. frame[0] = n & 0x7f;
  1181. }
  1182. ret = irlmp_connect_response(self->lsap, tx_skb);
  1183. return ret;
  1184. }
  1185. EXPORT_SYMBOL(irttp_connect_response);
  1186. /*
  1187. * Function irttp_dup (self, instance)
  1188. *
  1189. * Duplicate TSAP, can be used by servers to confirm a connection on a
  1190. * new TSAP so it can keep listening on the old one.
  1191. */
  1192. struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
  1193. {
  1194. struct tsap_cb *new;
  1195. unsigned long flags;
  1196. IRDA_DEBUG(1, "%s()\n", __func__);
  1197. /* Protect our access to the old tsap instance */
  1198. spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
  1199. /* Find the old instance */
  1200. if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
  1201. IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
  1202. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1203. return NULL;
  1204. }
  1205. /* Allocate a new instance */
  1206. new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
  1207. if (!new) {
  1208. IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
  1209. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1210. return NULL;
  1211. }
  1212. /* Dup */
  1213. memcpy(new, orig, sizeof(struct tsap_cb));
  1214. spin_lock_init(&new->lock);
  1215. /* We don't need the old instance any more */
  1216. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1217. /* Try to dup the LSAP (may fail if we were too slow) */
  1218. new->lsap = irlmp_dup(orig->lsap, new);
  1219. if (!new->lsap) {
  1220. IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
  1221. kfree(new);
  1222. return NULL;
  1223. }
  1224. /* Not everything should be copied */
  1225. new->notify.instance = instance;
  1226. /* Initialize internal objects */
  1227. irttp_init_tsap(new);
  1228. /* This is locked */
  1229. hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
  1230. return new;
  1231. }
  1232. EXPORT_SYMBOL(irttp_dup);
  1233. /*
  1234. * Function irttp_disconnect_request (self)
  1235. *
  1236. * Close this connection please! If priority is high, the queued data
  1237. * segments, if any, will be deallocated first
  1238. *
  1239. */
  1240. int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
  1241. int priority)
  1242. {
  1243. int ret;
  1244. IRDA_ASSERT(self != NULL, return -1;);
  1245. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1246. /* Already disconnected? */
  1247. if (!self->connected) {
  1248. IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
  1249. if (userdata)
  1250. dev_kfree_skb(userdata);
  1251. return -1;
  1252. }
  1253. /* Disconnect already pending ?
  1254. * We need to use an atomic operation to prevent reentry. This
  1255. * function may be called from various context, like user, timer
  1256. * for following a disconnect_indication() (i.e. net_bh).
  1257. * Jean II */
  1258. if(test_and_set_bit(0, &self->disconnect_pend)) {
  1259. IRDA_DEBUG(0, "%s(), disconnect already pending\n",
  1260. __func__);
  1261. if (userdata)
  1262. dev_kfree_skb(userdata);
  1263. /* Try to make some progress */
  1264. irttp_run_tx_queue(self);
  1265. return -1;
  1266. }
  1267. /*
  1268. * Check if there is still data segments in the transmit queue
  1269. */
  1270. if (!skb_queue_empty(&self->tx_queue)) {
  1271. if (priority == P_HIGH) {
  1272. /*
  1273. * No need to send the queued data, if we are
  1274. * disconnecting right now since the data will
  1275. * not have any usable connection to be sent on
  1276. */
  1277. IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
  1278. irttp_flush_queues(self);
  1279. } else if (priority == P_NORMAL) {
  1280. /*
  1281. * Must delay disconnect until after all data segments
  1282. * have been sent and the tx_queue is empty
  1283. */
  1284. /* We'll reuse this one later for the disconnect */
  1285. self->disconnect_skb = userdata; /* May be NULL */
  1286. irttp_run_tx_queue(self);
  1287. irttp_start_todo_timer(self, HZ/10);
  1288. return -1;
  1289. }
  1290. }
  1291. /* Note : we don't need to check if self->rx_queue is full and the
  1292. * state of self->rx_sdu_busy because the disconnect response will
  1293. * be sent at the LMP level (so even if the peer has its Tx queue
  1294. * full of data). - Jean II */
  1295. IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
  1296. self->connected = FALSE;
  1297. if (!userdata) {
  1298. struct sk_buff *tx_skb;
  1299. tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
  1300. if (!tx_skb)
  1301. return -ENOMEM;
  1302. /*
  1303. * Reserve space for MUX and LAP header
  1304. */
  1305. skb_reserve(tx_skb, LMP_MAX_HEADER);
  1306. userdata = tx_skb;
  1307. }
  1308. ret = irlmp_disconnect_request(self->lsap, userdata);
  1309. /* The disconnect is no longer pending */
  1310. clear_bit(0, &self->disconnect_pend); /* FALSE */
  1311. return ret;
  1312. }
  1313. EXPORT_SYMBOL(irttp_disconnect_request);
  1314. /*
  1315. * Function irttp_disconnect_indication (self, reason)
  1316. *
  1317. * Disconnect indication, TSAP disconnected by peer?
  1318. *
  1319. */
  1320. static void irttp_disconnect_indication(void *instance, void *sap,
  1321. LM_REASON reason, struct sk_buff *skb)
  1322. {
  1323. struct tsap_cb *self;
  1324. IRDA_DEBUG(4, "%s()\n", __func__);
  1325. self = instance;
  1326. IRDA_ASSERT(self != NULL, return;);
  1327. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1328. /* Prevent higher layer to send more data */
  1329. self->connected = FALSE;
  1330. /* Check if client has already tried to close the TSAP */
  1331. if (self->close_pend) {
  1332. /* In this case, the higher layer is probably gone. Don't
  1333. * bother it and clean up the remains - Jean II */
  1334. if (skb)
  1335. dev_kfree_skb(skb);
  1336. irttp_close_tsap(self);
  1337. return;
  1338. }
  1339. /* If we are here, we assume that is the higher layer is still
  1340. * waiting for the disconnect notification and able to process it,
  1341. * even if he tried to disconnect. Otherwise, it would have already
  1342. * attempted to close the tsap and self->close_pend would be TRUE.
  1343. * Jean II */
  1344. /* No need to notify the client if has already tried to disconnect */
  1345. if(self->notify.disconnect_indication)
  1346. self->notify.disconnect_indication(self->notify.instance, self,
  1347. reason, skb);
  1348. else
  1349. if (skb)
  1350. dev_kfree_skb(skb);
  1351. }
  1352. /*
  1353. * Function irttp_do_data_indication (self, skb)
  1354. *
  1355. * Try to deliver reassembled skb to layer above, and requeue it if that
  1356. * for some reason should fail. We mark rx sdu as busy to apply back
  1357. * pressure is necessary.
  1358. */
  1359. static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
  1360. {
  1361. int err;
  1362. /* Check if client has already closed the TSAP and gone away */
  1363. if (self->close_pend) {
  1364. dev_kfree_skb(skb);
  1365. return;
  1366. }
  1367. err = self->notify.data_indication(self->notify.instance, self, skb);
  1368. /* Usually the layer above will notify that it's input queue is
  1369. * starting to get filled by using the flow request, but this may
  1370. * be difficult, so it can instead just refuse to eat it and just
  1371. * give an error back
  1372. */
  1373. if (err) {
  1374. IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
  1375. /* Make sure we take a break */
  1376. self->rx_sdu_busy = TRUE;
  1377. /* Need to push the header in again */
  1378. skb_push(skb, TTP_HEADER);
  1379. skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
  1380. /* Put skb back on queue */
  1381. skb_queue_head(&self->rx_queue, skb);
  1382. }
  1383. }
  1384. /*
  1385. * Function irttp_run_rx_queue (self)
  1386. *
  1387. * Check if we have any frames to be transmitted, or if we have any
  1388. * available credit to give away.
  1389. */
  1390. static void irttp_run_rx_queue(struct tsap_cb *self)
  1391. {
  1392. struct sk_buff *skb;
  1393. int more = 0;
  1394. IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
  1395. self->send_credit, self->avail_credit, self->remote_credit);
  1396. /* Get exclusive access to the rx queue, otherwise don't touch it */
  1397. if (irda_lock(&self->rx_queue_lock) == FALSE)
  1398. return;
  1399. /*
  1400. * Reassemble all frames in receive queue and deliver them
  1401. */
  1402. while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
  1403. /* This bit will tell us if it's the last fragment or not */
  1404. more = skb->data[0] & 0x80;
  1405. /* Remove TTP header */
  1406. skb_pull(skb, TTP_HEADER);
  1407. /* Add the length of the remaining data */
  1408. self->rx_sdu_size += skb->len;
  1409. /*
  1410. * If SAR is disabled, or user has requested no reassembly
  1411. * of received fragments then we just deliver them
  1412. * immediately. This can be requested by clients that
  1413. * implements byte streams without any message boundaries
  1414. */
  1415. if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
  1416. irttp_do_data_indication(self, skb);
  1417. self->rx_sdu_size = 0;
  1418. continue;
  1419. }
  1420. /* Check if this is a fragment, and not the last fragment */
  1421. if (more) {
  1422. /*
  1423. * Queue the fragment if we still are within the
  1424. * limits of the maximum size of the rx_sdu
  1425. */
  1426. if (self->rx_sdu_size <= self->rx_max_sdu_size) {
  1427. IRDA_DEBUG(4, "%s(), queueing frag\n",
  1428. __func__);
  1429. skb_queue_tail(&self->rx_fragments, skb);
  1430. } else {
  1431. /* Free the part of the SDU that is too big */
  1432. dev_kfree_skb(skb);
  1433. }
  1434. continue;
  1435. }
  1436. /*
  1437. * This is the last fragment, so time to reassemble!
  1438. */
  1439. if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
  1440. (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
  1441. {
  1442. /*
  1443. * A little optimizing. Only queue the fragment if
  1444. * there are other fragments. Since if this is the
  1445. * last and only fragment, there is no need to
  1446. * reassemble :-)
  1447. */
  1448. if (!skb_queue_empty(&self->rx_fragments)) {
  1449. skb_queue_tail(&self->rx_fragments,
  1450. skb);
  1451. skb = irttp_reassemble_skb(self);
  1452. }
  1453. /* Now we can deliver the reassembled skb */
  1454. irttp_do_data_indication(self, skb);
  1455. } else {
  1456. IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
  1457. /* Free the part of the SDU that is too big */
  1458. dev_kfree_skb(skb);
  1459. /* Deliver only the valid but truncated part of SDU */
  1460. skb = irttp_reassemble_skb(self);
  1461. irttp_do_data_indication(self, skb);
  1462. }
  1463. self->rx_sdu_size = 0;
  1464. }
  1465. /*
  1466. * It's not trivial to keep track of how many credits are available
  1467. * by incrementing at each packet, because delivery may fail
  1468. * (irttp_do_data_indication() may requeue the frame) and because
  1469. * we need to take care of fragmentation.
  1470. * We want the other side to send up to initial_credit packets.
  1471. * We have some frames in our queues, and we have already allowed it
  1472. * to send remote_credit.
  1473. * No need to spinlock, write is atomic and self correcting...
  1474. * Jean II
  1475. */
  1476. self->avail_credit = (self->initial_credit -
  1477. (self->remote_credit +
  1478. skb_queue_len(&self->rx_queue) +
  1479. skb_queue_len(&self->rx_fragments)));
  1480. /* Do we have too much credits to send to peer ? */
  1481. if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
  1482. (self->avail_credit > 0)) {
  1483. /* Send explicit credit frame */
  1484. irttp_give_credit(self);
  1485. /* Note : do *NOT* check if tx_queue is non-empty, that
  1486. * will produce deadlocks. I repeat : send a credit frame
  1487. * even if we have something to send in our Tx queue.
  1488. * If we have credits, it means that our Tx queue is blocked.
  1489. *
  1490. * Let's suppose the peer can't keep up with our Tx. He will
  1491. * flow control us by not sending us any credits, and we
  1492. * will stop Tx and start accumulating credits here.
  1493. * Up to the point where the peer will stop its Tx queue,
  1494. * for lack of credits.
  1495. * Let's assume the peer application is single threaded.
  1496. * It will block on Tx and never consume any Rx buffer.
  1497. * Deadlock. Guaranteed. - Jean II
  1498. */
  1499. }
  1500. /* Reset lock */
  1501. self->rx_queue_lock = 0;
  1502. }
  1503. #ifdef CONFIG_PROC_FS
  1504. struct irttp_iter_state {
  1505. int id;
  1506. };
  1507. static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
  1508. {
  1509. struct irttp_iter_state *iter = seq->private;
  1510. struct tsap_cb *self;
  1511. /* Protect our access to the tsap list */
  1512. spin_lock_irq(&irttp->tsaps->hb_spinlock);
  1513. iter->id = 0;
  1514. for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
  1515. self != NULL;
  1516. self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
  1517. if (iter->id == *pos)
  1518. break;
  1519. ++iter->id;
  1520. }
  1521. return self;
  1522. }
  1523. static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1524. {
  1525. struct irttp_iter_state *iter = seq->private;
  1526. ++*pos;
  1527. ++iter->id;
  1528. return (void *) hashbin_get_next(irttp->tsaps);
  1529. }
  1530. static void irttp_seq_stop(struct seq_file *seq, void *v)
  1531. {
  1532. spin_unlock_irq(&irttp->tsaps->hb_spinlock);
  1533. }
  1534. static int irttp_seq_show(struct seq_file *seq, void *v)
  1535. {
  1536. const struct irttp_iter_state *iter = seq->private;
  1537. const struct tsap_cb *self = v;
  1538. seq_printf(seq, "TSAP %d, ", iter->id);
  1539. seq_printf(seq, "stsap_sel: %02x, ",
  1540. self->stsap_sel);
  1541. seq_printf(seq, "dtsap_sel: %02x\n",
  1542. self->dtsap_sel);
  1543. seq_printf(seq, " connected: %s, ",
  1544. self->connected? "TRUE":"FALSE");
  1545. seq_printf(seq, "avail credit: %d, ",
  1546. self->avail_credit);
  1547. seq_printf(seq, "remote credit: %d, ",
  1548. self->remote_credit);
  1549. seq_printf(seq, "send credit: %d\n",
  1550. self->send_credit);
  1551. seq_printf(seq, " tx packets: %lu, ",
  1552. self->stats.tx_packets);
  1553. seq_printf(seq, "rx packets: %lu, ",
  1554. self->stats.rx_packets);
  1555. seq_printf(seq, "tx_queue len: %u ",
  1556. skb_queue_len(&self->tx_queue));
  1557. seq_printf(seq, "rx_queue len: %u\n",
  1558. skb_queue_len(&self->rx_queue));
  1559. seq_printf(seq, " tx_sdu_busy: %s, ",
  1560. self->tx_sdu_busy? "TRUE":"FALSE");
  1561. seq_printf(seq, "rx_sdu_busy: %s\n",
  1562. self->rx_sdu_busy? "TRUE":"FALSE");
  1563. seq_printf(seq, " max_seg_size: %u, ",
  1564. self->max_seg_size);
  1565. seq_printf(seq, "tx_max_sdu_size: %u, ",
  1566. self->tx_max_sdu_size);
  1567. seq_printf(seq, "rx_max_sdu_size: %u\n",
  1568. self->rx_max_sdu_size);
  1569. seq_printf(seq, " Used by (%s)\n\n",
  1570. self->notify.name);
  1571. return 0;
  1572. }
  1573. static const struct seq_operations irttp_seq_ops = {
  1574. .start = irttp_seq_start,
  1575. .next = irttp_seq_next,
  1576. .stop = irttp_seq_stop,
  1577. .show = irttp_seq_show,
  1578. };
  1579. static int irttp_seq_open(struct inode *inode, struct file *file)
  1580. {
  1581. return seq_open_private(file, &irttp_seq_ops,
  1582. sizeof(struct irttp_iter_state));
  1583. }
  1584. const struct file_operations irttp_seq_fops = {
  1585. .owner = THIS_MODULE,
  1586. .open = irttp_seq_open,
  1587. .read = seq_read,
  1588. .llseek = seq_lseek,
  1589. .release = seq_release_private,
  1590. };
  1591. #endif /* PROC_FS */