dn_neigh.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Neighbour Functions (Adjacency Database and
  7. * On-Ethernet Cache)
  8. *
  9. * Author: Steve Whitehouse <SteveW@ACM.org>
  10. *
  11. *
  12. * Changes:
  13. * Steve Whitehouse : Fixed router listing routine
  14. * Steve Whitehouse : Added error_report functions
  15. * Steve Whitehouse : Added default router detection
  16. * Steve Whitehouse : Hop counts in outgoing messages
  17. * Steve Whitehouse : Fixed src/dst in outgoing messages so
  18. * forwarding now stands a good chance of
  19. * working.
  20. * Steve Whitehouse : Fixed neighbour states (for now anyway).
  21. * Steve Whitehouse : Made error_report functions dummies. This
  22. * is not the right place to return skbs.
  23. * Steve Whitehouse : Convert to seq_file
  24. *
  25. */
  26. #include <linux/net.h>
  27. #include <linux/module.h>
  28. #include <linux/socket.h>
  29. #include <linux/if_arp.h>
  30. #include <linux/slab.h>
  31. #include <linux/if_ether.h>
  32. #include <linux/init.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/string.h>
  35. #include <linux/netfilter_decnet.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/rcupdate.h>
  39. #include <linux/jhash.h>
  40. #include <linux/atomic.h>
  41. #include <net/net_namespace.h>
  42. #include <net/neighbour.h>
  43. #include <net/dst.h>
  44. #include <net/flow.h>
  45. #include <net/dn.h>
  46. #include <net/dn_dev.h>
  47. #include <net/dn_neigh.h>
  48. #include <net/dn_route.h>
  49. static int dn_neigh_construct(struct neighbour *);
  50. static void dn_long_error_report(struct neighbour *, struct sk_buff *);
  51. static void dn_short_error_report(struct neighbour *, struct sk_buff *);
  52. static int dn_long_output(struct neighbour *, struct sk_buff *);
  53. static int dn_short_output(struct neighbour *, struct sk_buff *);
  54. static int dn_phase3_output(struct neighbour *, struct sk_buff *);
  55. /*
  56. * For talking to broadcast devices: Ethernet & PPP
  57. */
  58. static const struct neigh_ops dn_long_ops = {
  59. .family = AF_DECnet,
  60. .error_report = dn_long_error_report,
  61. .output = dn_long_output,
  62. .connected_output = dn_long_output,
  63. };
  64. /*
  65. * For talking to pointopoint and multidrop devices: DDCMP and X.25
  66. */
  67. static const struct neigh_ops dn_short_ops = {
  68. .family = AF_DECnet,
  69. .error_report = dn_short_error_report,
  70. .output = dn_short_output,
  71. .connected_output = dn_short_output,
  72. };
  73. /*
  74. * For talking to DECnet phase III nodes
  75. */
  76. static const struct neigh_ops dn_phase3_ops = {
  77. .family = AF_DECnet,
  78. .error_report = dn_short_error_report, /* Can use short version here */
  79. .output = dn_phase3_output,
  80. .connected_output = dn_phase3_output,
  81. };
  82. static u32 dn_neigh_hash(const void *pkey,
  83. const struct net_device *dev,
  84. __u32 hash_rnd)
  85. {
  86. return jhash_2words(*(__u16 *)pkey, 0, hash_rnd);
  87. }
  88. struct neigh_table dn_neigh_table = {
  89. .family = PF_DECnet,
  90. .entry_size = sizeof(struct dn_neigh),
  91. .key_len = sizeof(__le16),
  92. .hash = dn_neigh_hash,
  93. .constructor = dn_neigh_construct,
  94. .id = "dn_neigh_cache",
  95. .parms ={
  96. .tbl = &dn_neigh_table,
  97. .base_reachable_time = 30 * HZ,
  98. .retrans_time = 1 * HZ,
  99. .gc_staletime = 60 * HZ,
  100. .reachable_time = 30 * HZ,
  101. .delay_probe_time = 5 * HZ,
  102. .queue_len = 3,
  103. .ucast_probes = 0,
  104. .app_probes = 0,
  105. .mcast_probes = 0,
  106. .anycast_delay = 0,
  107. .proxy_delay = 0,
  108. .proxy_qlen = 0,
  109. .locktime = 1 * HZ,
  110. },
  111. .gc_interval = 30 * HZ,
  112. .gc_thresh1 = 128,
  113. .gc_thresh2 = 512,
  114. .gc_thresh3 = 1024,
  115. };
  116. static int dn_neigh_construct(struct neighbour *neigh)
  117. {
  118. struct net_device *dev = neigh->dev;
  119. struct dn_neigh *dn = (struct dn_neigh *)neigh;
  120. struct dn_dev *dn_db;
  121. struct neigh_parms *parms;
  122. rcu_read_lock();
  123. dn_db = rcu_dereference(dev->dn_ptr);
  124. if (dn_db == NULL) {
  125. rcu_read_unlock();
  126. return -EINVAL;
  127. }
  128. parms = dn_db->neigh_parms;
  129. if (!parms) {
  130. rcu_read_unlock();
  131. return -EINVAL;
  132. }
  133. __neigh_parms_put(neigh->parms);
  134. neigh->parms = neigh_parms_clone(parms);
  135. if (dn_db->use_long)
  136. neigh->ops = &dn_long_ops;
  137. else
  138. neigh->ops = &dn_short_ops;
  139. rcu_read_unlock();
  140. if (dn->flags & DN_NDFLAG_P3)
  141. neigh->ops = &dn_phase3_ops;
  142. neigh->nud_state = NUD_NOARP;
  143. neigh->output = neigh->ops->connected_output;
  144. if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
  145. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  146. else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
  147. dn_dn2eth(neigh->ha, dn->addr);
  148. else {
  149. if (net_ratelimit())
  150. printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
  151. return -EINVAL;
  152. }
  153. /*
  154. * Make an estimate of the remote block size by assuming that its
  155. * two less then the device mtu, which it true for ethernet (and
  156. * other things which support long format headers) since there is
  157. * an extra length field (of 16 bits) which isn't part of the
  158. * ethernet headers and which the DECnet specs won't admit is part
  159. * of the DECnet routing headers either.
  160. *
  161. * If we over estimate here its no big deal, the NSP negotiations
  162. * will prevent us from sending packets which are too large for the
  163. * remote node to handle. In any case this figure is normally updated
  164. * by a hello message in most cases.
  165. */
  166. dn->blksize = dev->mtu - 2;
  167. return 0;
  168. }
  169. static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
  170. {
  171. printk(KERN_DEBUG "dn_long_error_report: called\n");
  172. kfree_skb(skb);
  173. }
  174. static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
  175. {
  176. printk(KERN_DEBUG "dn_short_error_report: called\n");
  177. kfree_skb(skb);
  178. }
  179. static int dn_neigh_output_packet(struct sk_buff *skb)
  180. {
  181. struct dst_entry *dst = skb_dst(skb);
  182. struct dn_route *rt = (struct dn_route *)dst;
  183. struct neighbour *neigh = dst_get_neighbour(dst);
  184. struct net_device *dev = neigh->dev;
  185. char mac_addr[ETH_ALEN];
  186. dn_dn2eth(mac_addr, rt->rt_local_src);
  187. if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
  188. mac_addr, skb->len) >= 0)
  189. return dev_queue_xmit(skb);
  190. if (net_ratelimit())
  191. printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
  192. kfree_skb(skb);
  193. return -EINVAL;
  194. }
  195. static int dn_long_output(struct neighbour *neigh, struct sk_buff *skb)
  196. {
  197. struct net_device *dev = neigh->dev;
  198. int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
  199. unsigned char *data;
  200. struct dn_long_packet *lp;
  201. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  202. if (skb_headroom(skb) < headroom) {
  203. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  204. if (skb2 == NULL) {
  205. if (net_ratelimit())
  206. printk(KERN_CRIT "dn_long_output: no memory\n");
  207. kfree_skb(skb);
  208. return -ENOBUFS;
  209. }
  210. kfree_skb(skb);
  211. skb = skb2;
  212. if (net_ratelimit())
  213. printk(KERN_INFO "dn_long_output: Increasing headroom\n");
  214. }
  215. data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
  216. lp = (struct dn_long_packet *)(data+3);
  217. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  218. *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
  219. lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
  220. lp->d_area = lp->d_subarea = 0;
  221. dn_dn2eth(lp->d_id, cb->dst);
  222. lp->s_area = lp->s_subarea = 0;
  223. dn_dn2eth(lp->s_id, cb->src);
  224. lp->nl2 = 0;
  225. lp->visit_ct = cb->hops & 0x3f;
  226. lp->s_class = 0;
  227. lp->pt = 0;
  228. skb_reset_network_header(skb);
  229. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  230. neigh->dev, dn_neigh_output_packet);
  231. }
  232. static int dn_short_output(struct neighbour *neigh, struct sk_buff *skb)
  233. {
  234. struct net_device *dev = neigh->dev;
  235. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  236. struct dn_short_packet *sp;
  237. unsigned char *data;
  238. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  239. if (skb_headroom(skb) < headroom) {
  240. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  241. if (skb2 == NULL) {
  242. if (net_ratelimit())
  243. printk(KERN_CRIT "dn_short_output: no memory\n");
  244. kfree_skb(skb);
  245. return -ENOBUFS;
  246. }
  247. kfree_skb(skb);
  248. skb = skb2;
  249. if (net_ratelimit())
  250. printk(KERN_INFO "dn_short_output: Increasing headroom\n");
  251. }
  252. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  253. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  254. sp = (struct dn_short_packet *)(data+2);
  255. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  256. sp->dstnode = cb->dst;
  257. sp->srcnode = cb->src;
  258. sp->forward = cb->hops & 0x3f;
  259. skb_reset_network_header(skb);
  260. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  261. neigh->dev, dn_neigh_output_packet);
  262. }
  263. /*
  264. * Phase 3 output is the same is short output, execpt that
  265. * it clears the area bits before transmission.
  266. */
  267. static int dn_phase3_output(struct neighbour *neigh, struct sk_buff *skb)
  268. {
  269. struct net_device *dev = neigh->dev;
  270. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  271. struct dn_short_packet *sp;
  272. unsigned char *data;
  273. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  274. if (skb_headroom(skb) < headroom) {
  275. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  276. if (skb2 == NULL) {
  277. if (net_ratelimit())
  278. printk(KERN_CRIT "dn_phase3_output: no memory\n");
  279. kfree_skb(skb);
  280. return -ENOBUFS;
  281. }
  282. kfree_skb(skb);
  283. skb = skb2;
  284. if (net_ratelimit())
  285. printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
  286. }
  287. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  288. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  289. sp = (struct dn_short_packet *)(data + 2);
  290. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  291. sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
  292. sp->srcnode = cb->src & cpu_to_le16(0x03ff);
  293. sp->forward = cb->hops & 0x3f;
  294. skb_reset_network_header(skb);
  295. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  296. neigh->dev, dn_neigh_output_packet);
  297. }
  298. /*
  299. * Unfortunately, the neighbour code uses the device in its hash
  300. * function, so we don't get any advantage from it. This function
  301. * basically does a neigh_lookup(), but without comparing the device
  302. * field. This is required for the On-Ethernet cache
  303. */
  304. /*
  305. * Pointopoint link receives a hello message
  306. */
  307. void dn_neigh_pointopoint_hello(struct sk_buff *skb)
  308. {
  309. kfree_skb(skb);
  310. }
  311. /*
  312. * Ethernet router hello message received
  313. */
  314. int dn_neigh_router_hello(struct sk_buff *skb)
  315. {
  316. struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
  317. struct neighbour *neigh;
  318. struct dn_neigh *dn;
  319. struct dn_dev *dn_db;
  320. __le16 src;
  321. src = dn_eth2dn(msg->id);
  322. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  323. dn = (struct dn_neigh *)neigh;
  324. if (neigh) {
  325. write_lock(&neigh->lock);
  326. neigh->used = jiffies;
  327. dn_db = rcu_dereference(neigh->dev->dn_ptr);
  328. if (!(neigh->nud_state & NUD_PERMANENT)) {
  329. neigh->updated = jiffies;
  330. if (neigh->dev->type == ARPHRD_ETHER)
  331. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  332. dn->blksize = le16_to_cpu(msg->blksize);
  333. dn->priority = msg->priority;
  334. dn->flags &= ~DN_NDFLAG_P3;
  335. switch (msg->iinfo & DN_RT_INFO_TYPE) {
  336. case DN_RT_INFO_L1RT:
  337. dn->flags &=~DN_NDFLAG_R2;
  338. dn->flags |= DN_NDFLAG_R1;
  339. break;
  340. case DN_RT_INFO_L2RT:
  341. dn->flags |= DN_NDFLAG_R2;
  342. }
  343. }
  344. /* Only use routers in our area */
  345. if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
  346. if (!dn_db->router) {
  347. dn_db->router = neigh_clone(neigh);
  348. } else {
  349. if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
  350. neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
  351. }
  352. }
  353. write_unlock(&neigh->lock);
  354. neigh_release(neigh);
  355. }
  356. kfree_skb(skb);
  357. return 0;
  358. }
  359. /*
  360. * Endnode hello message received
  361. */
  362. int dn_neigh_endnode_hello(struct sk_buff *skb)
  363. {
  364. struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
  365. struct neighbour *neigh;
  366. struct dn_neigh *dn;
  367. __le16 src;
  368. src = dn_eth2dn(msg->id);
  369. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  370. dn = (struct dn_neigh *)neigh;
  371. if (neigh) {
  372. write_lock(&neigh->lock);
  373. neigh->used = jiffies;
  374. if (!(neigh->nud_state & NUD_PERMANENT)) {
  375. neigh->updated = jiffies;
  376. if (neigh->dev->type == ARPHRD_ETHER)
  377. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  378. dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
  379. dn->blksize = le16_to_cpu(msg->blksize);
  380. dn->priority = 0;
  381. }
  382. write_unlock(&neigh->lock);
  383. neigh_release(neigh);
  384. }
  385. kfree_skb(skb);
  386. return 0;
  387. }
  388. static char *dn_find_slot(char *base, int max, int priority)
  389. {
  390. int i;
  391. unsigned char *min = NULL;
  392. base += 6; /* skip first id */
  393. for(i = 0; i < max; i++) {
  394. if (!min || (*base < *min))
  395. min = base;
  396. base += 7; /* find next priority */
  397. }
  398. if (!min)
  399. return NULL;
  400. return (*min < priority) ? (min - 6) : NULL;
  401. }
  402. struct elist_cb_state {
  403. struct net_device *dev;
  404. unsigned char *ptr;
  405. unsigned char *rs;
  406. int t, n;
  407. };
  408. static void neigh_elist_cb(struct neighbour *neigh, void *_info)
  409. {
  410. struct elist_cb_state *s = _info;
  411. struct dn_neigh *dn;
  412. if (neigh->dev != s->dev)
  413. return;
  414. dn = (struct dn_neigh *) neigh;
  415. if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
  416. return;
  417. if (s->t == s->n)
  418. s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
  419. else
  420. s->t++;
  421. if (s->rs == NULL)
  422. return;
  423. dn_dn2eth(s->rs, dn->addr);
  424. s->rs += 6;
  425. *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
  426. *(s->rs) |= dn->priority;
  427. s->rs++;
  428. }
  429. int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
  430. {
  431. struct elist_cb_state state;
  432. state.dev = dev;
  433. state.t = 0;
  434. state.n = n;
  435. state.ptr = ptr;
  436. state.rs = ptr;
  437. neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
  438. return state.t;
  439. }
  440. #ifdef CONFIG_PROC_FS
  441. static inline void dn_neigh_format_entry(struct seq_file *seq,
  442. struct neighbour *n)
  443. {
  444. struct dn_neigh *dn = (struct dn_neigh *) n;
  445. char buf[DN_ASCBUF_LEN];
  446. read_lock(&n->lock);
  447. seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
  448. dn_addr2asc(le16_to_cpu(dn->addr), buf),
  449. (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
  450. (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
  451. (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
  452. dn->n.nud_state,
  453. atomic_read(&dn->n.refcnt),
  454. dn->blksize,
  455. (dn->n.dev) ? dn->n.dev->name : "?");
  456. read_unlock(&n->lock);
  457. }
  458. static int dn_neigh_seq_show(struct seq_file *seq, void *v)
  459. {
  460. if (v == SEQ_START_TOKEN) {
  461. seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
  462. } else {
  463. dn_neigh_format_entry(seq, v);
  464. }
  465. return 0;
  466. }
  467. static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
  468. {
  469. return neigh_seq_start(seq, pos, &dn_neigh_table,
  470. NEIGH_SEQ_NEIGH_ONLY);
  471. }
  472. static const struct seq_operations dn_neigh_seq_ops = {
  473. .start = dn_neigh_seq_start,
  474. .next = neigh_seq_next,
  475. .stop = neigh_seq_stop,
  476. .show = dn_neigh_seq_show,
  477. };
  478. static int dn_neigh_seq_open(struct inode *inode, struct file *file)
  479. {
  480. return seq_open_net(inode, file, &dn_neigh_seq_ops,
  481. sizeof(struct neigh_seq_state));
  482. }
  483. static const struct file_operations dn_neigh_seq_fops = {
  484. .owner = THIS_MODULE,
  485. .open = dn_neigh_seq_open,
  486. .read = seq_read,
  487. .llseek = seq_lseek,
  488. .release = seq_release_net,
  489. };
  490. #endif
  491. void __init dn_neigh_init(void)
  492. {
  493. neigh_table_init(&dn_neigh_table);
  494. proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
  495. }
  496. void __exit dn_neigh_cleanup(void)
  497. {
  498. proc_net_remove(&init_net, "decnet_neigh");
  499. neigh_table_clear(&dn_neigh_table);
  500. }