swap.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. /*
  2. * linux/mm/swap.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * This file contains the default values for the operation of the
  8. * Linux VM subsystem. Fine-tuning documentation can be found in
  9. * Documentation/sysctl/vm.txt.
  10. * Started 18.12.91
  11. * Swap aging added 23.2.95, Stephen Tweedie.
  12. * Buffermem limits added 12.3.98, Rik van Riel.
  13. */
  14. #include <linux/mm.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/pagevec.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/mm_inline.h>
  24. #include <linux/buffer_head.h> /* for try_to_release_page() */
  25. #include <linux/percpu_counter.h>
  26. #include <linux/percpu.h>
  27. #include <linux/cpu.h>
  28. #include <linux/notifier.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/gfp.h>
  32. #include "internal.h"
  33. /* How many pages do we try to swap or page in/out together? */
  34. int page_cluster;
  35. static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
  36. static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  37. static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
  38. /*
  39. * This path almost never happens for VM activity - pages are normally
  40. * freed via pagevecs. But it gets used by networking.
  41. */
  42. static void __page_cache_release(struct page *page)
  43. {
  44. if (PageLRU(page)) {
  45. unsigned long flags;
  46. struct zone *zone = page_zone(page);
  47. spin_lock_irqsave(&zone->lru_lock, flags);
  48. VM_BUG_ON(!PageLRU(page));
  49. __ClearPageLRU(page);
  50. del_page_from_lru(zone, page);
  51. spin_unlock_irqrestore(&zone->lru_lock, flags);
  52. }
  53. }
  54. static void __put_single_page(struct page *page)
  55. {
  56. __page_cache_release(page);
  57. free_hot_cold_page(page, 0);
  58. }
  59. static void __put_compound_page(struct page *page)
  60. {
  61. compound_page_dtor *dtor;
  62. __page_cache_release(page);
  63. dtor = get_compound_page_dtor(page);
  64. (*dtor)(page);
  65. }
  66. static void put_compound_page(struct page *page)
  67. {
  68. if (unlikely(PageTail(page))) {
  69. /* __split_huge_page_refcount can run under us */
  70. struct page *page_head = page->first_page;
  71. smp_rmb();
  72. /*
  73. * If PageTail is still set after smp_rmb() we can be sure
  74. * that the page->first_page we read wasn't a dangling pointer.
  75. * See __split_huge_page_refcount() smp_wmb().
  76. */
  77. if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
  78. unsigned long flags;
  79. /*
  80. * Verify that our page_head wasn't converted
  81. * to a a regular page before we got a
  82. * reference on it.
  83. */
  84. if (unlikely(!PageHead(page_head))) {
  85. /* PageHead is cleared after PageTail */
  86. smp_rmb();
  87. VM_BUG_ON(PageTail(page));
  88. goto out_put_head;
  89. }
  90. /*
  91. * Only run compound_lock on a valid PageHead,
  92. * after having it pinned with
  93. * get_page_unless_zero() above.
  94. */
  95. smp_mb();
  96. /* page_head wasn't a dangling pointer */
  97. flags = compound_lock_irqsave(page_head);
  98. if (unlikely(!PageTail(page))) {
  99. /* __split_huge_page_refcount run before us */
  100. compound_unlock_irqrestore(page_head, flags);
  101. VM_BUG_ON(PageHead(page_head));
  102. out_put_head:
  103. if (put_page_testzero(page_head))
  104. __put_single_page(page_head);
  105. out_put_single:
  106. if (put_page_testzero(page))
  107. __put_single_page(page);
  108. return;
  109. }
  110. VM_BUG_ON(page_head != page->first_page);
  111. /*
  112. * We can release the refcount taken by
  113. * get_page_unless_zero now that
  114. * split_huge_page_refcount is blocked on the
  115. * compound_lock.
  116. */
  117. if (put_page_testzero(page_head))
  118. VM_BUG_ON(1);
  119. /* __split_huge_page_refcount will wait now */
  120. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  121. atomic_dec(&page->_count);
  122. VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
  123. compound_unlock_irqrestore(page_head, flags);
  124. if (put_page_testzero(page_head)) {
  125. if (PageHead(page_head))
  126. __put_compound_page(page_head);
  127. else
  128. __put_single_page(page_head);
  129. }
  130. } else {
  131. /* page_head is a dangling pointer */
  132. VM_BUG_ON(PageTail(page));
  133. goto out_put_single;
  134. }
  135. } else if (put_page_testzero(page)) {
  136. if (PageHead(page))
  137. __put_compound_page(page);
  138. else
  139. __put_single_page(page);
  140. }
  141. }
  142. void put_page(struct page *page)
  143. {
  144. if (unlikely(PageCompound(page)))
  145. put_compound_page(page);
  146. else if (put_page_testzero(page))
  147. __put_single_page(page);
  148. }
  149. EXPORT_SYMBOL(put_page);
  150. /**
  151. * put_pages_list() - release a list of pages
  152. * @pages: list of pages threaded on page->lru
  153. *
  154. * Release a list of pages which are strung together on page.lru. Currently
  155. * used by read_cache_pages() and related error recovery code.
  156. */
  157. void put_pages_list(struct list_head *pages)
  158. {
  159. while (!list_empty(pages)) {
  160. struct page *victim;
  161. victim = list_entry(pages->prev, struct page, lru);
  162. list_del(&victim->lru);
  163. page_cache_release(victim);
  164. }
  165. }
  166. EXPORT_SYMBOL(put_pages_list);
  167. static void pagevec_lru_move_fn(struct pagevec *pvec,
  168. void (*move_fn)(struct page *page, void *arg),
  169. void *arg)
  170. {
  171. int i;
  172. struct zone *zone = NULL;
  173. unsigned long flags = 0;
  174. for (i = 0; i < pagevec_count(pvec); i++) {
  175. struct page *page = pvec->pages[i];
  176. struct zone *pagezone = page_zone(page);
  177. if (pagezone != zone) {
  178. if (zone)
  179. spin_unlock_irqrestore(&zone->lru_lock, flags);
  180. zone = pagezone;
  181. spin_lock_irqsave(&zone->lru_lock, flags);
  182. }
  183. (*move_fn)(page, arg);
  184. }
  185. if (zone)
  186. spin_unlock_irqrestore(&zone->lru_lock, flags);
  187. release_pages(pvec->pages, pvec->nr, pvec->cold);
  188. pagevec_reinit(pvec);
  189. }
  190. static void pagevec_move_tail_fn(struct page *page, void *arg)
  191. {
  192. int *pgmoved = arg;
  193. struct zone *zone = page_zone(page);
  194. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  195. enum lru_list lru = page_lru_base_type(page);
  196. list_move_tail(&page->lru, &zone->lru[lru].list);
  197. mem_cgroup_rotate_reclaimable_page(page);
  198. (*pgmoved)++;
  199. }
  200. }
  201. /*
  202. * pagevec_move_tail() must be called with IRQ disabled.
  203. * Otherwise this may cause nasty races.
  204. */
  205. static void pagevec_move_tail(struct pagevec *pvec)
  206. {
  207. int pgmoved = 0;
  208. pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
  209. __count_vm_events(PGROTATED, pgmoved);
  210. }
  211. /*
  212. * Writeback is about to end against a page which has been marked for immediate
  213. * reclaim. If it still appears to be reclaimable, move it to the tail of the
  214. * inactive list.
  215. */
  216. void rotate_reclaimable_page(struct page *page)
  217. {
  218. if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
  219. !PageUnevictable(page) && PageLRU(page)) {
  220. struct pagevec *pvec;
  221. unsigned long flags;
  222. page_cache_get(page);
  223. local_irq_save(flags);
  224. pvec = &__get_cpu_var(lru_rotate_pvecs);
  225. if (!pagevec_add(pvec, page))
  226. pagevec_move_tail(pvec);
  227. local_irq_restore(flags);
  228. }
  229. }
  230. static void update_page_reclaim_stat(struct zone *zone, struct page *page,
  231. int file, int rotated)
  232. {
  233. struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
  234. struct zone_reclaim_stat *memcg_reclaim_stat;
  235. memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
  236. reclaim_stat->recent_scanned[file]++;
  237. if (rotated)
  238. reclaim_stat->recent_rotated[file]++;
  239. if (!memcg_reclaim_stat)
  240. return;
  241. memcg_reclaim_stat->recent_scanned[file]++;
  242. if (rotated)
  243. memcg_reclaim_stat->recent_rotated[file]++;
  244. }
  245. static void __activate_page(struct page *page, void *arg)
  246. {
  247. struct zone *zone = page_zone(page);
  248. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  249. int file = page_is_file_cache(page);
  250. int lru = page_lru_base_type(page);
  251. del_page_from_lru_list(zone, page, lru);
  252. SetPageActive(page);
  253. lru += LRU_ACTIVE;
  254. add_page_to_lru_list(zone, page, lru);
  255. __count_vm_event(PGACTIVATE);
  256. update_page_reclaim_stat(zone, page, file, 1);
  257. }
  258. }
  259. #ifdef CONFIG_SMP
  260. static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
  261. static void activate_page_drain(int cpu)
  262. {
  263. struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
  264. if (pagevec_count(pvec))
  265. pagevec_lru_move_fn(pvec, __activate_page, NULL);
  266. }
  267. void activate_page(struct page *page)
  268. {
  269. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  270. struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
  271. page_cache_get(page);
  272. if (!pagevec_add(pvec, page))
  273. pagevec_lru_move_fn(pvec, __activate_page, NULL);
  274. put_cpu_var(activate_page_pvecs);
  275. }
  276. }
  277. #else
  278. static inline void activate_page_drain(int cpu)
  279. {
  280. }
  281. void activate_page(struct page *page)
  282. {
  283. struct zone *zone = page_zone(page);
  284. spin_lock_irq(&zone->lru_lock);
  285. __activate_page(page, NULL);
  286. spin_unlock_irq(&zone->lru_lock);
  287. }
  288. #endif
  289. /*
  290. * Mark a page as having seen activity.
  291. *
  292. * inactive,unreferenced -> inactive,referenced
  293. * inactive,referenced -> active,unreferenced
  294. * active,unreferenced -> active,referenced
  295. */
  296. void mark_page_accessed(struct page *page)
  297. {
  298. if (!PageActive(page) && !PageUnevictable(page) &&
  299. PageReferenced(page) && PageLRU(page)) {
  300. activate_page(page);
  301. ClearPageReferenced(page);
  302. } else if (!PageReferenced(page)) {
  303. SetPageReferenced(page);
  304. }
  305. }
  306. EXPORT_SYMBOL(mark_page_accessed);
  307. void __lru_cache_add(struct page *page, enum lru_list lru)
  308. {
  309. struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
  310. page_cache_get(page);
  311. if (!pagevec_add(pvec, page))
  312. ____pagevec_lru_add(pvec, lru);
  313. put_cpu_var(lru_add_pvecs);
  314. }
  315. EXPORT_SYMBOL(__lru_cache_add);
  316. /**
  317. * lru_cache_add_lru - add a page to a page list
  318. * @page: the page to be added to the LRU.
  319. * @lru: the LRU list to which the page is added.
  320. */
  321. void lru_cache_add_lru(struct page *page, enum lru_list lru)
  322. {
  323. if (PageActive(page)) {
  324. VM_BUG_ON(PageUnevictable(page));
  325. ClearPageActive(page);
  326. } else if (PageUnevictable(page)) {
  327. VM_BUG_ON(PageActive(page));
  328. ClearPageUnevictable(page);
  329. }
  330. VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
  331. __lru_cache_add(page, lru);
  332. }
  333. /**
  334. * add_page_to_unevictable_list - add a page to the unevictable list
  335. * @page: the page to be added to the unevictable list
  336. *
  337. * Add page directly to its zone's unevictable list. To avoid races with
  338. * tasks that might be making the page evictable, through eg. munlock,
  339. * munmap or exit, while it's not on the lru, we want to add the page
  340. * while it's locked or otherwise "invisible" to other tasks. This is
  341. * difficult to do when using the pagevec cache, so bypass that.
  342. */
  343. void add_page_to_unevictable_list(struct page *page)
  344. {
  345. struct zone *zone = page_zone(page);
  346. spin_lock_irq(&zone->lru_lock);
  347. SetPageUnevictable(page);
  348. SetPageLRU(page);
  349. add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
  350. spin_unlock_irq(&zone->lru_lock);
  351. }
  352. /*
  353. * If the page can not be invalidated, it is moved to the
  354. * inactive list to speed up its reclaim. It is moved to the
  355. * head of the list, rather than the tail, to give the flusher
  356. * threads some time to write it out, as this is much more
  357. * effective than the single-page writeout from reclaim.
  358. *
  359. * If the page isn't page_mapped and dirty/writeback, the page
  360. * could reclaim asap using PG_reclaim.
  361. *
  362. * 1. active, mapped page -> none
  363. * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
  364. * 3. inactive, mapped page -> none
  365. * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
  366. * 5. inactive, clean -> inactive, tail
  367. * 6. Others -> none
  368. *
  369. * In 4, why it moves inactive's head, the VM expects the page would
  370. * be write it out by flusher threads as this is much more effective
  371. * than the single-page writeout from reclaim.
  372. */
  373. static void lru_deactivate_fn(struct page *page, void *arg)
  374. {
  375. int lru, file;
  376. bool active;
  377. struct zone *zone = page_zone(page);
  378. if (!PageLRU(page))
  379. return;
  380. if (PageUnevictable(page))
  381. return;
  382. /* Some processes are using the page */
  383. if (page_mapped(page))
  384. return;
  385. active = PageActive(page);
  386. file = page_is_file_cache(page);
  387. lru = page_lru_base_type(page);
  388. del_page_from_lru_list(zone, page, lru + active);
  389. ClearPageActive(page);
  390. ClearPageReferenced(page);
  391. add_page_to_lru_list(zone, page, lru);
  392. if (PageWriteback(page) || PageDirty(page)) {
  393. /*
  394. * PG_reclaim could be raced with end_page_writeback
  395. * It can make readahead confusing. But race window
  396. * is _really_ small and it's non-critical problem.
  397. */
  398. SetPageReclaim(page);
  399. } else {
  400. /*
  401. * The page's writeback ends up during pagevec
  402. * We moves tha page into tail of inactive.
  403. */
  404. list_move_tail(&page->lru, &zone->lru[lru].list);
  405. mem_cgroup_rotate_reclaimable_page(page);
  406. __count_vm_event(PGROTATED);
  407. }
  408. if (active)
  409. __count_vm_event(PGDEACTIVATE);
  410. update_page_reclaim_stat(zone, page, file, 0);
  411. }
  412. /*
  413. * Drain pages out of the cpu's pagevecs.
  414. * Either "cpu" is the current CPU, and preemption has already been
  415. * disabled; or "cpu" is being hot-unplugged, and is already dead.
  416. */
  417. static void drain_cpu_pagevecs(int cpu)
  418. {
  419. struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
  420. struct pagevec *pvec;
  421. int lru;
  422. for_each_lru(lru) {
  423. pvec = &pvecs[lru - LRU_BASE];
  424. if (pagevec_count(pvec))
  425. ____pagevec_lru_add(pvec, lru);
  426. }
  427. pvec = &per_cpu(lru_rotate_pvecs, cpu);
  428. if (pagevec_count(pvec)) {
  429. unsigned long flags;
  430. /* No harm done if a racing interrupt already did this */
  431. local_irq_save(flags);
  432. pagevec_move_tail(pvec);
  433. local_irq_restore(flags);
  434. }
  435. pvec = &per_cpu(lru_deactivate_pvecs, cpu);
  436. if (pagevec_count(pvec))
  437. pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
  438. activate_page_drain(cpu);
  439. }
  440. /**
  441. * deactivate_page - forcefully deactivate a page
  442. * @page: page to deactivate
  443. *
  444. * This function hints the VM that @page is a good reclaim candidate,
  445. * for example if its invalidation fails due to the page being dirty
  446. * or under writeback.
  447. */
  448. void deactivate_page(struct page *page)
  449. {
  450. /*
  451. * In a workload with many unevictable page such as mprotect, unevictable
  452. * page deactivation for accelerating reclaim is pointless.
  453. */
  454. if (PageUnevictable(page))
  455. return;
  456. if (likely(get_page_unless_zero(page))) {
  457. struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
  458. if (!pagevec_add(pvec, page))
  459. pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
  460. put_cpu_var(lru_deactivate_pvecs);
  461. }
  462. }
  463. void lru_add_drain(void)
  464. {
  465. drain_cpu_pagevecs(get_cpu());
  466. put_cpu();
  467. }
  468. static void lru_add_drain_per_cpu(struct work_struct *dummy)
  469. {
  470. lru_add_drain();
  471. }
  472. /*
  473. * Returns 0 for success
  474. */
  475. int lru_add_drain_all(void)
  476. {
  477. return schedule_on_each_cpu(lru_add_drain_per_cpu);
  478. }
  479. /*
  480. * Batched page_cache_release(). Decrement the reference count on all the
  481. * passed pages. If it fell to zero then remove the page from the LRU and
  482. * free it.
  483. *
  484. * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
  485. * for the remainder of the operation.
  486. *
  487. * The locking in this function is against shrink_inactive_list(): we recheck
  488. * the page count inside the lock to see whether shrink_inactive_list()
  489. * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
  490. * will free it.
  491. */
  492. void release_pages(struct page **pages, int nr, int cold)
  493. {
  494. int i;
  495. struct pagevec pages_to_free;
  496. struct zone *zone = NULL;
  497. unsigned long uninitialized_var(flags);
  498. pagevec_init(&pages_to_free, cold);
  499. for (i = 0; i < nr; i++) {
  500. struct page *page = pages[i];
  501. if (unlikely(PageCompound(page))) {
  502. if (zone) {
  503. spin_unlock_irqrestore(&zone->lru_lock, flags);
  504. zone = NULL;
  505. }
  506. put_compound_page(page);
  507. continue;
  508. }
  509. if (!put_page_testzero(page))
  510. continue;
  511. if (PageLRU(page)) {
  512. struct zone *pagezone = page_zone(page);
  513. if (pagezone != zone) {
  514. if (zone)
  515. spin_unlock_irqrestore(&zone->lru_lock,
  516. flags);
  517. zone = pagezone;
  518. spin_lock_irqsave(&zone->lru_lock, flags);
  519. }
  520. VM_BUG_ON(!PageLRU(page));
  521. __ClearPageLRU(page);
  522. del_page_from_lru(zone, page);
  523. }
  524. if (!pagevec_add(&pages_to_free, page)) {
  525. if (zone) {
  526. spin_unlock_irqrestore(&zone->lru_lock, flags);
  527. zone = NULL;
  528. }
  529. __pagevec_free(&pages_to_free);
  530. pagevec_reinit(&pages_to_free);
  531. }
  532. }
  533. if (zone)
  534. spin_unlock_irqrestore(&zone->lru_lock, flags);
  535. pagevec_free(&pages_to_free);
  536. }
  537. EXPORT_SYMBOL(release_pages);
  538. /*
  539. * The pages which we're about to release may be in the deferred lru-addition
  540. * queues. That would prevent them from really being freed right now. That's
  541. * OK from a correctness point of view but is inefficient - those pages may be
  542. * cache-warm and we want to give them back to the page allocator ASAP.
  543. *
  544. * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
  545. * and __pagevec_lru_add_active() call release_pages() directly to avoid
  546. * mutual recursion.
  547. */
  548. void __pagevec_release(struct pagevec *pvec)
  549. {
  550. lru_add_drain();
  551. release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
  552. pagevec_reinit(pvec);
  553. }
  554. EXPORT_SYMBOL(__pagevec_release);
  555. /* used by __split_huge_page_refcount() */
  556. void lru_add_page_tail(struct zone* zone,
  557. struct page *page, struct page *page_tail)
  558. {
  559. int active;
  560. enum lru_list lru;
  561. const int file = 0;
  562. struct list_head *head;
  563. VM_BUG_ON(!PageHead(page));
  564. VM_BUG_ON(PageCompound(page_tail));
  565. VM_BUG_ON(PageLRU(page_tail));
  566. VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
  567. SetPageLRU(page_tail);
  568. if (page_evictable(page_tail, NULL)) {
  569. if (PageActive(page)) {
  570. SetPageActive(page_tail);
  571. active = 1;
  572. lru = LRU_ACTIVE_ANON;
  573. } else {
  574. active = 0;
  575. lru = LRU_INACTIVE_ANON;
  576. }
  577. update_page_reclaim_stat(zone, page_tail, file, active);
  578. if (likely(PageLRU(page)))
  579. head = page->lru.prev;
  580. else
  581. head = &zone->lru[lru].list;
  582. __add_page_to_lru_list(zone, page_tail, lru, head);
  583. } else {
  584. SetPageUnevictable(page_tail);
  585. add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
  586. }
  587. }
  588. static void ____pagevec_lru_add_fn(struct page *page, void *arg)
  589. {
  590. enum lru_list lru = (enum lru_list)arg;
  591. struct zone *zone = page_zone(page);
  592. int file = is_file_lru(lru);
  593. int active = is_active_lru(lru);
  594. VM_BUG_ON(PageActive(page));
  595. VM_BUG_ON(PageUnevictable(page));
  596. VM_BUG_ON(PageLRU(page));
  597. SetPageLRU(page);
  598. if (active)
  599. SetPageActive(page);
  600. update_page_reclaim_stat(zone, page, file, active);
  601. add_page_to_lru_list(zone, page, lru);
  602. }
  603. /*
  604. * Add the passed pages to the LRU, then drop the caller's refcount
  605. * on them. Reinitialises the caller's pagevec.
  606. */
  607. void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
  608. {
  609. VM_BUG_ON(is_unevictable_lru(lru));
  610. pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
  611. }
  612. EXPORT_SYMBOL(____pagevec_lru_add);
  613. /*
  614. * Try to drop buffers from the pages in a pagevec
  615. */
  616. void pagevec_strip(struct pagevec *pvec)
  617. {
  618. int i;
  619. for (i = 0; i < pagevec_count(pvec); i++) {
  620. struct page *page = pvec->pages[i];
  621. if (page_has_private(page) && trylock_page(page)) {
  622. if (page_has_private(page))
  623. try_to_release_page(page, 0);
  624. unlock_page(page);
  625. }
  626. }
  627. }
  628. /**
  629. * pagevec_lookup - gang pagecache lookup
  630. * @pvec: Where the resulting pages are placed
  631. * @mapping: The address_space to search
  632. * @start: The starting page index
  633. * @nr_pages: The maximum number of pages
  634. *
  635. * pagevec_lookup() will search for and return a group of up to @nr_pages pages
  636. * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
  637. * reference against the pages in @pvec.
  638. *
  639. * The search returns a group of mapping-contiguous pages with ascending
  640. * indexes. There may be holes in the indices due to not-present pages.
  641. *
  642. * pagevec_lookup() returns the number of pages which were found.
  643. */
  644. unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
  645. pgoff_t start, unsigned nr_pages)
  646. {
  647. pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
  648. return pagevec_count(pvec);
  649. }
  650. EXPORT_SYMBOL(pagevec_lookup);
  651. unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
  652. pgoff_t *index, int tag, unsigned nr_pages)
  653. {
  654. pvec->nr = find_get_pages_tag(mapping, index, tag,
  655. nr_pages, pvec->pages);
  656. return pagevec_count(pvec);
  657. }
  658. EXPORT_SYMBOL(pagevec_lookup_tag);
  659. /*
  660. * Perform any setup for the swap system
  661. */
  662. void __init swap_setup(void)
  663. {
  664. unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
  665. #ifdef CONFIG_SWAP
  666. bdi_init(swapper_space.backing_dev_info);
  667. #endif
  668. /* Use a smaller cluster for small-memory machines */
  669. if (megs < 16)
  670. page_cluster = 2;
  671. else
  672. page_cluster = 3;
  673. /*
  674. * Right now other parts of the system means that we
  675. * _really_ don't want to cluster much more
  676. */
  677. }