rmap.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->mutex
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/module.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. struct anon_vma *anon_vma;
  64. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. if (anon_vma) {
  66. atomic_set(&anon_vma->refcount, 1);
  67. /*
  68. * Initialise the anon_vma root to point to itself. If called
  69. * from fork, the root will be reset to the parents anon_vma.
  70. */
  71. anon_vma->root = anon_vma;
  72. }
  73. return anon_vma;
  74. }
  75. static inline void anon_vma_free(struct anon_vma *anon_vma)
  76. {
  77. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  78. /*
  79. * Synchronize against page_lock_anon_vma() such that
  80. * we can safely hold the lock without the anon_vma getting
  81. * freed.
  82. *
  83. * Relies on the full mb implied by the atomic_dec_and_test() from
  84. * put_anon_vma() against the acquire barrier implied by
  85. * mutex_trylock() from page_lock_anon_vma(). This orders:
  86. *
  87. * page_lock_anon_vma() VS put_anon_vma()
  88. * mutex_trylock() atomic_dec_and_test()
  89. * LOCK MB
  90. * atomic_read() mutex_is_locked()
  91. *
  92. * LOCK should suffice since the actual taking of the lock must
  93. * happen _before_ what follows.
  94. */
  95. if (mutex_is_locked(&anon_vma->root->mutex)) {
  96. anon_vma_lock(anon_vma);
  97. anon_vma_unlock(anon_vma);
  98. }
  99. kmem_cache_free(anon_vma_cachep, anon_vma);
  100. }
  101. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  102. {
  103. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  104. }
  105. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  106. {
  107. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  108. }
  109. /**
  110. * anon_vma_prepare - attach an anon_vma to a memory region
  111. * @vma: the memory region in question
  112. *
  113. * This makes sure the memory mapping described by 'vma' has
  114. * an 'anon_vma' attached to it, so that we can associate the
  115. * anonymous pages mapped into it with that anon_vma.
  116. *
  117. * The common case will be that we already have one, but if
  118. * not we either need to find an adjacent mapping that we
  119. * can re-use the anon_vma from (very common when the only
  120. * reason for splitting a vma has been mprotect()), or we
  121. * allocate a new one.
  122. *
  123. * Anon-vma allocations are very subtle, because we may have
  124. * optimistically looked up an anon_vma in page_lock_anon_vma()
  125. * and that may actually touch the spinlock even in the newly
  126. * allocated vma (it depends on RCU to make sure that the
  127. * anon_vma isn't actually destroyed).
  128. *
  129. * As a result, we need to do proper anon_vma locking even
  130. * for the new allocation. At the same time, we do not want
  131. * to do any locking for the common case of already having
  132. * an anon_vma.
  133. *
  134. * This must be called with the mmap_sem held for reading.
  135. */
  136. int anon_vma_prepare(struct vm_area_struct *vma)
  137. {
  138. struct anon_vma *anon_vma = vma->anon_vma;
  139. struct anon_vma_chain *avc;
  140. might_sleep();
  141. if (unlikely(!anon_vma)) {
  142. struct mm_struct *mm = vma->vm_mm;
  143. struct anon_vma *allocated;
  144. avc = anon_vma_chain_alloc(GFP_KERNEL);
  145. if (!avc)
  146. goto out_enomem;
  147. anon_vma = find_mergeable_anon_vma(vma);
  148. allocated = NULL;
  149. if (!anon_vma) {
  150. anon_vma = anon_vma_alloc();
  151. if (unlikely(!anon_vma))
  152. goto out_enomem_free_avc;
  153. allocated = anon_vma;
  154. }
  155. anon_vma_lock(anon_vma);
  156. /* page_table_lock to protect against threads */
  157. spin_lock(&mm->page_table_lock);
  158. if (likely(!vma->anon_vma)) {
  159. vma->anon_vma = anon_vma;
  160. avc->anon_vma = anon_vma;
  161. avc->vma = vma;
  162. list_add(&avc->same_vma, &vma->anon_vma_chain);
  163. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  164. allocated = NULL;
  165. avc = NULL;
  166. }
  167. spin_unlock(&mm->page_table_lock);
  168. anon_vma_unlock(anon_vma);
  169. if (unlikely(allocated))
  170. put_anon_vma(allocated);
  171. if (unlikely(avc))
  172. anon_vma_chain_free(avc);
  173. }
  174. return 0;
  175. out_enomem_free_avc:
  176. anon_vma_chain_free(avc);
  177. out_enomem:
  178. return -ENOMEM;
  179. }
  180. /*
  181. * This is a useful helper function for locking the anon_vma root as
  182. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  183. * have the same vma.
  184. *
  185. * Such anon_vma's should have the same root, so you'd expect to see
  186. * just a single mutex_lock for the whole traversal.
  187. */
  188. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  189. {
  190. struct anon_vma *new_root = anon_vma->root;
  191. if (new_root != root) {
  192. if (WARN_ON_ONCE(root))
  193. mutex_unlock(&root->mutex);
  194. root = new_root;
  195. mutex_lock(&root->mutex);
  196. }
  197. return root;
  198. }
  199. static inline void unlock_anon_vma_root(struct anon_vma *root)
  200. {
  201. if (root)
  202. mutex_unlock(&root->mutex);
  203. }
  204. static void anon_vma_chain_link(struct vm_area_struct *vma,
  205. struct anon_vma_chain *avc,
  206. struct anon_vma *anon_vma)
  207. {
  208. avc->vma = vma;
  209. avc->anon_vma = anon_vma;
  210. list_add(&avc->same_vma, &vma->anon_vma_chain);
  211. /*
  212. * It's critical to add new vmas to the tail of the anon_vma,
  213. * see comment in huge_memory.c:__split_huge_page().
  214. */
  215. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  216. }
  217. /*
  218. * Attach the anon_vmas from src to dst.
  219. * Returns 0 on success, -ENOMEM on failure.
  220. */
  221. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  222. {
  223. struct anon_vma_chain *avc, *pavc;
  224. struct anon_vma *root = NULL;
  225. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  226. struct anon_vma *anon_vma;
  227. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  228. if (unlikely(!avc)) {
  229. unlock_anon_vma_root(root);
  230. root = NULL;
  231. avc = anon_vma_chain_alloc(GFP_KERNEL);
  232. if (!avc)
  233. goto enomem_failure;
  234. }
  235. anon_vma = pavc->anon_vma;
  236. root = lock_anon_vma_root(root, anon_vma);
  237. anon_vma_chain_link(dst, avc, anon_vma);
  238. }
  239. unlock_anon_vma_root(root);
  240. return 0;
  241. enomem_failure:
  242. unlink_anon_vmas(dst);
  243. return -ENOMEM;
  244. }
  245. /*
  246. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  247. * the corresponding VMA in the parent process is attached to.
  248. * Returns 0 on success, non-zero on failure.
  249. */
  250. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  251. {
  252. struct anon_vma_chain *avc;
  253. struct anon_vma *anon_vma;
  254. /* Don't bother if the parent process has no anon_vma here. */
  255. if (!pvma->anon_vma)
  256. return 0;
  257. /*
  258. * First, attach the new VMA to the parent VMA's anon_vmas,
  259. * so rmap can find non-COWed pages in child processes.
  260. */
  261. if (anon_vma_clone(vma, pvma))
  262. return -ENOMEM;
  263. /* Then add our own anon_vma. */
  264. anon_vma = anon_vma_alloc();
  265. if (!anon_vma)
  266. goto out_error;
  267. avc = anon_vma_chain_alloc(GFP_KERNEL);
  268. if (!avc)
  269. goto out_error_free_anon_vma;
  270. /*
  271. * The root anon_vma's spinlock is the lock actually used when we
  272. * lock any of the anon_vmas in this anon_vma tree.
  273. */
  274. anon_vma->root = pvma->anon_vma->root;
  275. /*
  276. * With refcounts, an anon_vma can stay around longer than the
  277. * process it belongs to. The root anon_vma needs to be pinned until
  278. * this anon_vma is freed, because the lock lives in the root.
  279. */
  280. get_anon_vma(anon_vma->root);
  281. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  282. vma->anon_vma = anon_vma;
  283. anon_vma_lock(anon_vma);
  284. anon_vma_chain_link(vma, avc, anon_vma);
  285. anon_vma_unlock(anon_vma);
  286. return 0;
  287. out_error_free_anon_vma:
  288. put_anon_vma(anon_vma);
  289. out_error:
  290. unlink_anon_vmas(vma);
  291. return -ENOMEM;
  292. }
  293. void unlink_anon_vmas(struct vm_area_struct *vma)
  294. {
  295. struct anon_vma_chain *avc, *next;
  296. struct anon_vma *root = NULL;
  297. /*
  298. * Unlink each anon_vma chained to the VMA. This list is ordered
  299. * from newest to oldest, ensuring the root anon_vma gets freed last.
  300. */
  301. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  302. struct anon_vma *anon_vma = avc->anon_vma;
  303. root = lock_anon_vma_root(root, anon_vma);
  304. list_del(&avc->same_anon_vma);
  305. /*
  306. * Leave empty anon_vmas on the list - we'll need
  307. * to free them outside the lock.
  308. */
  309. if (list_empty(&anon_vma->head))
  310. continue;
  311. list_del(&avc->same_vma);
  312. anon_vma_chain_free(avc);
  313. }
  314. unlock_anon_vma_root(root);
  315. /*
  316. * Iterate the list once more, it now only contains empty and unlinked
  317. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  318. * needing to acquire the anon_vma->root->mutex.
  319. */
  320. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  321. struct anon_vma *anon_vma = avc->anon_vma;
  322. put_anon_vma(anon_vma);
  323. list_del(&avc->same_vma);
  324. anon_vma_chain_free(avc);
  325. }
  326. }
  327. static void anon_vma_ctor(void *data)
  328. {
  329. struct anon_vma *anon_vma = data;
  330. mutex_init(&anon_vma->mutex);
  331. atomic_set(&anon_vma->refcount, 0);
  332. INIT_LIST_HEAD(&anon_vma->head);
  333. }
  334. void __init anon_vma_init(void)
  335. {
  336. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  337. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  338. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  339. }
  340. /*
  341. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  342. *
  343. * Since there is no serialization what so ever against page_remove_rmap()
  344. * the best this function can do is return a locked anon_vma that might
  345. * have been relevant to this page.
  346. *
  347. * The page might have been remapped to a different anon_vma or the anon_vma
  348. * returned may already be freed (and even reused).
  349. *
  350. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  351. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  352. * ensure that any anon_vma obtained from the page will still be valid for as
  353. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  354. *
  355. * All users of this function must be very careful when walking the anon_vma
  356. * chain and verify that the page in question is indeed mapped in it
  357. * [ something equivalent to page_mapped_in_vma() ].
  358. *
  359. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  360. * that the anon_vma pointer from page->mapping is valid if there is a
  361. * mapcount, we can dereference the anon_vma after observing those.
  362. */
  363. struct anon_vma *page_get_anon_vma(struct page *page)
  364. {
  365. struct anon_vma *anon_vma = NULL;
  366. unsigned long anon_mapping;
  367. rcu_read_lock();
  368. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  369. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  370. goto out;
  371. if (!page_mapped(page))
  372. goto out;
  373. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  374. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  375. anon_vma = NULL;
  376. goto out;
  377. }
  378. /*
  379. * If this page is still mapped, then its anon_vma cannot have been
  380. * freed. But if it has been unmapped, we have no security against the
  381. * anon_vma structure being freed and reused (for another anon_vma:
  382. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  383. * above cannot corrupt).
  384. */
  385. if (!page_mapped(page)) {
  386. put_anon_vma(anon_vma);
  387. anon_vma = NULL;
  388. }
  389. out:
  390. rcu_read_unlock();
  391. return anon_vma;
  392. }
  393. /*
  394. * Similar to page_get_anon_vma() except it locks the anon_vma.
  395. *
  396. * Its a little more complex as it tries to keep the fast path to a single
  397. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  398. * reference like with page_get_anon_vma() and then block on the mutex.
  399. */
  400. struct anon_vma *page_lock_anon_vma(struct page *page)
  401. {
  402. struct anon_vma *anon_vma = NULL;
  403. struct anon_vma *root_anon_vma;
  404. unsigned long anon_mapping;
  405. rcu_read_lock();
  406. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  407. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  408. goto out;
  409. if (!page_mapped(page))
  410. goto out;
  411. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  412. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  413. if (mutex_trylock(&root_anon_vma->mutex)) {
  414. /*
  415. * If the page is still mapped, then this anon_vma is still
  416. * its anon_vma, and holding the mutex ensures that it will
  417. * not go away, see anon_vma_free().
  418. */
  419. if (!page_mapped(page)) {
  420. mutex_unlock(&root_anon_vma->mutex);
  421. anon_vma = NULL;
  422. }
  423. goto out;
  424. }
  425. /* trylock failed, we got to sleep */
  426. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  427. anon_vma = NULL;
  428. goto out;
  429. }
  430. if (!page_mapped(page)) {
  431. put_anon_vma(anon_vma);
  432. anon_vma = NULL;
  433. goto out;
  434. }
  435. /* we pinned the anon_vma, its safe to sleep */
  436. rcu_read_unlock();
  437. anon_vma_lock(anon_vma);
  438. if (atomic_dec_and_test(&anon_vma->refcount)) {
  439. /*
  440. * Oops, we held the last refcount, release the lock
  441. * and bail -- can't simply use put_anon_vma() because
  442. * we'll deadlock on the anon_vma_lock() recursion.
  443. */
  444. anon_vma_unlock(anon_vma);
  445. __put_anon_vma(anon_vma);
  446. anon_vma = NULL;
  447. }
  448. return anon_vma;
  449. out:
  450. rcu_read_unlock();
  451. return anon_vma;
  452. }
  453. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  454. {
  455. anon_vma_unlock(anon_vma);
  456. }
  457. /*
  458. * At what user virtual address is page expected in @vma?
  459. * Returns virtual address or -EFAULT if page's index/offset is not
  460. * within the range mapped the @vma.
  461. */
  462. inline unsigned long
  463. vma_address(struct page *page, struct vm_area_struct *vma)
  464. {
  465. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  466. unsigned long address;
  467. if (unlikely(is_vm_hugetlb_page(vma)))
  468. pgoff = page->index << huge_page_order(page_hstate(page));
  469. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  470. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  471. /* page should be within @vma mapping range */
  472. return -EFAULT;
  473. }
  474. return address;
  475. }
  476. /*
  477. * At what user virtual address is page expected in vma?
  478. * Caller should check the page is actually part of the vma.
  479. */
  480. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  481. {
  482. if (PageAnon(page)) {
  483. struct anon_vma *page__anon_vma = page_anon_vma(page);
  484. /*
  485. * Note: swapoff's unuse_vma() is more efficient with this
  486. * check, and needs it to match anon_vma when KSM is active.
  487. */
  488. if (!vma->anon_vma || !page__anon_vma ||
  489. vma->anon_vma->root != page__anon_vma->root)
  490. return -EFAULT;
  491. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  492. if (!vma->vm_file ||
  493. vma->vm_file->f_mapping != page->mapping)
  494. return -EFAULT;
  495. } else
  496. return -EFAULT;
  497. return vma_address(page, vma);
  498. }
  499. /*
  500. * Check that @page is mapped at @address into @mm.
  501. *
  502. * If @sync is false, page_check_address may perform a racy check to avoid
  503. * the page table lock when the pte is not present (helpful when reclaiming
  504. * highly shared pages).
  505. *
  506. * On success returns with pte mapped and locked.
  507. */
  508. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  509. unsigned long address, spinlock_t **ptlp, int sync)
  510. {
  511. pgd_t *pgd;
  512. pud_t *pud;
  513. pmd_t *pmd;
  514. pte_t *pte;
  515. spinlock_t *ptl;
  516. if (unlikely(PageHuge(page))) {
  517. pte = huge_pte_offset(mm, address);
  518. ptl = &mm->page_table_lock;
  519. goto check;
  520. }
  521. pgd = pgd_offset(mm, address);
  522. if (!pgd_present(*pgd))
  523. return NULL;
  524. pud = pud_offset(pgd, address);
  525. if (!pud_present(*pud))
  526. return NULL;
  527. pmd = pmd_offset(pud, address);
  528. if (!pmd_present(*pmd))
  529. return NULL;
  530. if (pmd_trans_huge(*pmd))
  531. return NULL;
  532. pte = pte_offset_map(pmd, address);
  533. /* Make a quick check before getting the lock */
  534. if (!sync && !pte_present(*pte)) {
  535. pte_unmap(pte);
  536. return NULL;
  537. }
  538. ptl = pte_lockptr(mm, pmd);
  539. check:
  540. spin_lock(ptl);
  541. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  542. *ptlp = ptl;
  543. return pte;
  544. }
  545. pte_unmap_unlock(pte, ptl);
  546. return NULL;
  547. }
  548. /**
  549. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  550. * @page: the page to test
  551. * @vma: the VMA to test
  552. *
  553. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  554. * if the page is not mapped into the page tables of this VMA. Only
  555. * valid for normal file or anonymous VMAs.
  556. */
  557. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  558. {
  559. unsigned long address;
  560. pte_t *pte;
  561. spinlock_t *ptl;
  562. address = vma_address(page, vma);
  563. if (address == -EFAULT) /* out of vma range */
  564. return 0;
  565. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  566. if (!pte) /* the page is not in this mm */
  567. return 0;
  568. pte_unmap_unlock(pte, ptl);
  569. return 1;
  570. }
  571. /*
  572. * Subfunctions of page_referenced: page_referenced_one called
  573. * repeatedly from either page_referenced_anon or page_referenced_file.
  574. */
  575. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  576. unsigned long address, unsigned int *mapcount,
  577. unsigned long *vm_flags)
  578. {
  579. struct mm_struct *mm = vma->vm_mm;
  580. int referenced = 0;
  581. if (unlikely(PageTransHuge(page))) {
  582. pmd_t *pmd;
  583. spin_lock(&mm->page_table_lock);
  584. /*
  585. * rmap might return false positives; we must filter
  586. * these out using page_check_address_pmd().
  587. */
  588. pmd = page_check_address_pmd(page, mm, address,
  589. PAGE_CHECK_ADDRESS_PMD_FLAG);
  590. if (!pmd) {
  591. spin_unlock(&mm->page_table_lock);
  592. goto out;
  593. }
  594. if (vma->vm_flags & VM_LOCKED) {
  595. spin_unlock(&mm->page_table_lock);
  596. *mapcount = 0; /* break early from loop */
  597. *vm_flags |= VM_LOCKED;
  598. goto out;
  599. }
  600. /* go ahead even if the pmd is pmd_trans_splitting() */
  601. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  602. referenced++;
  603. spin_unlock(&mm->page_table_lock);
  604. } else {
  605. pte_t *pte;
  606. spinlock_t *ptl;
  607. /*
  608. * rmap might return false positives; we must filter
  609. * these out using page_check_address().
  610. */
  611. pte = page_check_address(page, mm, address, &ptl, 0);
  612. if (!pte)
  613. goto out;
  614. if (vma->vm_flags & VM_LOCKED) {
  615. pte_unmap_unlock(pte, ptl);
  616. *mapcount = 0; /* break early from loop */
  617. *vm_flags |= VM_LOCKED;
  618. goto out;
  619. }
  620. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  621. /*
  622. * Don't treat a reference through a sequentially read
  623. * mapping as such. If the page has been used in
  624. * another mapping, we will catch it; if this other
  625. * mapping is already gone, the unmap path will have
  626. * set PG_referenced or activated the page.
  627. */
  628. if (likely(!VM_SequentialReadHint(vma)))
  629. referenced++;
  630. }
  631. pte_unmap_unlock(pte, ptl);
  632. }
  633. /* Pretend the page is referenced if the task has the
  634. swap token and is in the middle of a page fault. */
  635. if (mm != current->mm && has_swap_token(mm) &&
  636. rwsem_is_locked(&mm->mmap_sem))
  637. referenced++;
  638. (*mapcount)--;
  639. if (referenced)
  640. *vm_flags |= vma->vm_flags;
  641. out:
  642. return referenced;
  643. }
  644. static int page_referenced_anon(struct page *page,
  645. struct mem_cgroup *mem_cont,
  646. unsigned long *vm_flags)
  647. {
  648. unsigned int mapcount;
  649. struct anon_vma *anon_vma;
  650. struct anon_vma_chain *avc;
  651. int referenced = 0;
  652. anon_vma = page_lock_anon_vma(page);
  653. if (!anon_vma)
  654. return referenced;
  655. mapcount = page_mapcount(page);
  656. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  657. struct vm_area_struct *vma = avc->vma;
  658. unsigned long address = vma_address(page, vma);
  659. if (address == -EFAULT)
  660. continue;
  661. /*
  662. * If we are reclaiming on behalf of a cgroup, skip
  663. * counting on behalf of references from different
  664. * cgroups
  665. */
  666. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  667. continue;
  668. referenced += page_referenced_one(page, vma, address,
  669. &mapcount, vm_flags);
  670. if (!mapcount)
  671. break;
  672. }
  673. page_unlock_anon_vma(anon_vma);
  674. return referenced;
  675. }
  676. /**
  677. * page_referenced_file - referenced check for object-based rmap
  678. * @page: the page we're checking references on.
  679. * @mem_cont: target memory controller
  680. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  681. *
  682. * For an object-based mapped page, find all the places it is mapped and
  683. * check/clear the referenced flag. This is done by following the page->mapping
  684. * pointer, then walking the chain of vmas it holds. It returns the number
  685. * of references it found.
  686. *
  687. * This function is only called from page_referenced for object-based pages.
  688. */
  689. static int page_referenced_file(struct page *page,
  690. struct mem_cgroup *mem_cont,
  691. unsigned long *vm_flags)
  692. {
  693. unsigned int mapcount;
  694. struct address_space *mapping = page->mapping;
  695. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  696. struct vm_area_struct *vma;
  697. struct prio_tree_iter iter;
  698. int referenced = 0;
  699. /*
  700. * The caller's checks on page->mapping and !PageAnon have made
  701. * sure that this is a file page: the check for page->mapping
  702. * excludes the case just before it gets set on an anon page.
  703. */
  704. BUG_ON(PageAnon(page));
  705. /*
  706. * The page lock not only makes sure that page->mapping cannot
  707. * suddenly be NULLified by truncation, it makes sure that the
  708. * structure at mapping cannot be freed and reused yet,
  709. * so we can safely take mapping->i_mmap_mutex.
  710. */
  711. BUG_ON(!PageLocked(page));
  712. mutex_lock(&mapping->i_mmap_mutex);
  713. /*
  714. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  715. * is more likely to be accurate if we note it after spinning.
  716. */
  717. mapcount = page_mapcount(page);
  718. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  719. unsigned long address = vma_address(page, vma);
  720. if (address == -EFAULT)
  721. continue;
  722. /*
  723. * If we are reclaiming on behalf of a cgroup, skip
  724. * counting on behalf of references from different
  725. * cgroups
  726. */
  727. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  728. continue;
  729. referenced += page_referenced_one(page, vma, address,
  730. &mapcount, vm_flags);
  731. if (!mapcount)
  732. break;
  733. }
  734. mutex_unlock(&mapping->i_mmap_mutex);
  735. return referenced;
  736. }
  737. /**
  738. * page_referenced - test if the page was referenced
  739. * @page: the page to test
  740. * @is_locked: caller holds lock on the page
  741. * @mem_cont: target memory controller
  742. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  743. *
  744. * Quick test_and_clear_referenced for all mappings to a page,
  745. * returns the number of ptes which referenced the page.
  746. */
  747. int page_referenced(struct page *page,
  748. int is_locked,
  749. struct mem_cgroup *mem_cont,
  750. unsigned long *vm_flags)
  751. {
  752. int referenced = 0;
  753. int we_locked = 0;
  754. *vm_flags = 0;
  755. if (page_mapped(page) && page_rmapping(page)) {
  756. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  757. we_locked = trylock_page(page);
  758. if (!we_locked) {
  759. referenced++;
  760. goto out;
  761. }
  762. }
  763. if (unlikely(PageKsm(page)))
  764. referenced += page_referenced_ksm(page, mem_cont,
  765. vm_flags);
  766. else if (PageAnon(page))
  767. referenced += page_referenced_anon(page, mem_cont,
  768. vm_flags);
  769. else if (page->mapping)
  770. referenced += page_referenced_file(page, mem_cont,
  771. vm_flags);
  772. if (we_locked)
  773. unlock_page(page);
  774. if (page_test_and_clear_young(page_to_pfn(page)))
  775. referenced++;
  776. }
  777. out:
  778. return referenced;
  779. }
  780. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  781. unsigned long address)
  782. {
  783. struct mm_struct *mm = vma->vm_mm;
  784. pte_t *pte;
  785. spinlock_t *ptl;
  786. int ret = 0;
  787. pte = page_check_address(page, mm, address, &ptl, 1);
  788. if (!pte)
  789. goto out;
  790. if (pte_dirty(*pte) || pte_write(*pte)) {
  791. pte_t entry;
  792. flush_cache_page(vma, address, pte_pfn(*pte));
  793. entry = ptep_clear_flush_notify(vma, address, pte);
  794. entry = pte_wrprotect(entry);
  795. entry = pte_mkclean(entry);
  796. set_pte_at(mm, address, pte, entry);
  797. ret = 1;
  798. }
  799. pte_unmap_unlock(pte, ptl);
  800. out:
  801. return ret;
  802. }
  803. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  804. {
  805. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  806. struct vm_area_struct *vma;
  807. struct prio_tree_iter iter;
  808. int ret = 0;
  809. BUG_ON(PageAnon(page));
  810. mutex_lock(&mapping->i_mmap_mutex);
  811. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  812. if (vma->vm_flags & VM_SHARED) {
  813. unsigned long address = vma_address(page, vma);
  814. if (address == -EFAULT)
  815. continue;
  816. ret += page_mkclean_one(page, vma, address);
  817. }
  818. }
  819. mutex_unlock(&mapping->i_mmap_mutex);
  820. return ret;
  821. }
  822. int page_mkclean(struct page *page)
  823. {
  824. int ret = 0;
  825. BUG_ON(!PageLocked(page));
  826. if (page_mapped(page)) {
  827. struct address_space *mapping = page_mapping(page);
  828. if (mapping) {
  829. ret = page_mkclean_file(mapping, page);
  830. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  831. ret = 1;
  832. }
  833. }
  834. return ret;
  835. }
  836. EXPORT_SYMBOL_GPL(page_mkclean);
  837. /**
  838. * page_move_anon_rmap - move a page to our anon_vma
  839. * @page: the page to move to our anon_vma
  840. * @vma: the vma the page belongs to
  841. * @address: the user virtual address mapped
  842. *
  843. * When a page belongs exclusively to one process after a COW event,
  844. * that page can be moved into the anon_vma that belongs to just that
  845. * process, so the rmap code will not search the parent or sibling
  846. * processes.
  847. */
  848. void page_move_anon_rmap(struct page *page,
  849. struct vm_area_struct *vma, unsigned long address)
  850. {
  851. struct anon_vma *anon_vma = vma->anon_vma;
  852. VM_BUG_ON(!PageLocked(page));
  853. VM_BUG_ON(!anon_vma);
  854. VM_BUG_ON(page->index != linear_page_index(vma, address));
  855. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  856. page->mapping = (struct address_space *) anon_vma;
  857. }
  858. /**
  859. * __page_set_anon_rmap - set up new anonymous rmap
  860. * @page: Page to add to rmap
  861. * @vma: VM area to add page to.
  862. * @address: User virtual address of the mapping
  863. * @exclusive: the page is exclusively owned by the current process
  864. */
  865. static void __page_set_anon_rmap(struct page *page,
  866. struct vm_area_struct *vma, unsigned long address, int exclusive)
  867. {
  868. struct anon_vma *anon_vma = vma->anon_vma;
  869. BUG_ON(!anon_vma);
  870. if (PageAnon(page))
  871. return;
  872. /*
  873. * If the page isn't exclusively mapped into this vma,
  874. * we must use the _oldest_ possible anon_vma for the
  875. * page mapping!
  876. */
  877. if (!exclusive)
  878. anon_vma = anon_vma->root;
  879. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  880. page->mapping = (struct address_space *) anon_vma;
  881. page->index = linear_page_index(vma, address);
  882. }
  883. /**
  884. * __page_check_anon_rmap - sanity check anonymous rmap addition
  885. * @page: the page to add the mapping to
  886. * @vma: the vm area in which the mapping is added
  887. * @address: the user virtual address mapped
  888. */
  889. static void __page_check_anon_rmap(struct page *page,
  890. struct vm_area_struct *vma, unsigned long address)
  891. {
  892. #ifdef CONFIG_DEBUG_VM
  893. /*
  894. * The page's anon-rmap details (mapping and index) are guaranteed to
  895. * be set up correctly at this point.
  896. *
  897. * We have exclusion against page_add_anon_rmap because the caller
  898. * always holds the page locked, except if called from page_dup_rmap,
  899. * in which case the page is already known to be setup.
  900. *
  901. * We have exclusion against page_add_new_anon_rmap because those pages
  902. * are initially only visible via the pagetables, and the pte is locked
  903. * over the call to page_add_new_anon_rmap.
  904. */
  905. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  906. BUG_ON(page->index != linear_page_index(vma, address));
  907. #endif
  908. }
  909. /**
  910. * page_add_anon_rmap - add pte mapping to an anonymous page
  911. * @page: the page to add the mapping to
  912. * @vma: the vm area in which the mapping is added
  913. * @address: the user virtual address mapped
  914. *
  915. * The caller needs to hold the pte lock, and the page must be locked in
  916. * the anon_vma case: to serialize mapping,index checking after setting,
  917. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  918. * (but PageKsm is never downgraded to PageAnon).
  919. */
  920. void page_add_anon_rmap(struct page *page,
  921. struct vm_area_struct *vma, unsigned long address)
  922. {
  923. do_page_add_anon_rmap(page, vma, address, 0);
  924. }
  925. /*
  926. * Special version of the above for do_swap_page, which often runs
  927. * into pages that are exclusively owned by the current process.
  928. * Everybody else should continue to use page_add_anon_rmap above.
  929. */
  930. void do_page_add_anon_rmap(struct page *page,
  931. struct vm_area_struct *vma, unsigned long address, int exclusive)
  932. {
  933. int first = atomic_inc_and_test(&page->_mapcount);
  934. if (first) {
  935. if (!PageTransHuge(page))
  936. __inc_zone_page_state(page, NR_ANON_PAGES);
  937. else
  938. __inc_zone_page_state(page,
  939. NR_ANON_TRANSPARENT_HUGEPAGES);
  940. }
  941. if (unlikely(PageKsm(page)))
  942. return;
  943. VM_BUG_ON(!PageLocked(page));
  944. /* address might be in next vma when migration races vma_adjust */
  945. if (first)
  946. __page_set_anon_rmap(page, vma, address, exclusive);
  947. else
  948. __page_check_anon_rmap(page, vma, address);
  949. }
  950. /**
  951. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  952. * @page: the page to add the mapping to
  953. * @vma: the vm area in which the mapping is added
  954. * @address: the user virtual address mapped
  955. *
  956. * Same as page_add_anon_rmap but must only be called on *new* pages.
  957. * This means the inc-and-test can be bypassed.
  958. * Page does not have to be locked.
  959. */
  960. void page_add_new_anon_rmap(struct page *page,
  961. struct vm_area_struct *vma, unsigned long address)
  962. {
  963. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  964. SetPageSwapBacked(page);
  965. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  966. if (!PageTransHuge(page))
  967. __inc_zone_page_state(page, NR_ANON_PAGES);
  968. else
  969. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  970. __page_set_anon_rmap(page, vma, address, 1);
  971. if (page_evictable(page, vma))
  972. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  973. else
  974. add_page_to_unevictable_list(page);
  975. }
  976. /**
  977. * page_add_file_rmap - add pte mapping to a file page
  978. * @page: the page to add the mapping to
  979. *
  980. * The caller needs to hold the pte lock.
  981. */
  982. void page_add_file_rmap(struct page *page)
  983. {
  984. if (atomic_inc_and_test(&page->_mapcount)) {
  985. __inc_zone_page_state(page, NR_FILE_MAPPED);
  986. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  987. }
  988. }
  989. /**
  990. * page_remove_rmap - take down pte mapping from a page
  991. * @page: page to remove mapping from
  992. *
  993. * The caller needs to hold the pte lock.
  994. */
  995. void page_remove_rmap(struct page *page)
  996. {
  997. /* page still mapped by someone else? */
  998. if (!atomic_add_negative(-1, &page->_mapcount))
  999. return;
  1000. /*
  1001. * Now that the last pte has gone, s390 must transfer dirty
  1002. * flag from storage key to struct page. We can usually skip
  1003. * this if the page is anon, so about to be freed; but perhaps
  1004. * not if it's in swapcache - there might be another pte slot
  1005. * containing the swap entry, but page not yet written to swap.
  1006. */
  1007. if ((!PageAnon(page) || PageSwapCache(page)) &&
  1008. page_test_and_clear_dirty(page_to_pfn(page), 1))
  1009. set_page_dirty(page);
  1010. /*
  1011. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  1012. * and not charged by memcg for now.
  1013. */
  1014. if (unlikely(PageHuge(page)))
  1015. return;
  1016. if (PageAnon(page)) {
  1017. mem_cgroup_uncharge_page(page);
  1018. if (!PageTransHuge(page))
  1019. __dec_zone_page_state(page, NR_ANON_PAGES);
  1020. else
  1021. __dec_zone_page_state(page,
  1022. NR_ANON_TRANSPARENT_HUGEPAGES);
  1023. } else {
  1024. __dec_zone_page_state(page, NR_FILE_MAPPED);
  1025. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1026. }
  1027. /*
  1028. * It would be tidy to reset the PageAnon mapping here,
  1029. * but that might overwrite a racing page_add_anon_rmap
  1030. * which increments mapcount after us but sets mapping
  1031. * before us: so leave the reset to free_hot_cold_page,
  1032. * and remember that it's only reliable while mapped.
  1033. * Leaving it set also helps swapoff to reinstate ptes
  1034. * faster for those pages still in swapcache.
  1035. */
  1036. }
  1037. /*
  1038. * Subfunctions of try_to_unmap: try_to_unmap_one called
  1039. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  1040. */
  1041. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1042. unsigned long address, enum ttu_flags flags)
  1043. {
  1044. struct mm_struct *mm = vma->vm_mm;
  1045. pte_t *pte;
  1046. pte_t pteval;
  1047. spinlock_t *ptl;
  1048. int ret = SWAP_AGAIN;
  1049. pte = page_check_address(page, mm, address, &ptl, 0);
  1050. if (!pte)
  1051. goto out;
  1052. /*
  1053. * If the page is mlock()d, we cannot swap it out.
  1054. * If it's recently referenced (perhaps page_referenced
  1055. * skipped over this mm) then we should reactivate it.
  1056. */
  1057. if (!(flags & TTU_IGNORE_MLOCK)) {
  1058. if (vma->vm_flags & VM_LOCKED)
  1059. goto out_mlock;
  1060. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1061. goto out_unmap;
  1062. }
  1063. if (!(flags & TTU_IGNORE_ACCESS)) {
  1064. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1065. ret = SWAP_FAIL;
  1066. goto out_unmap;
  1067. }
  1068. }
  1069. /* Nuke the page table entry. */
  1070. flush_cache_page(vma, address, page_to_pfn(page));
  1071. pteval = ptep_clear_flush_notify(vma, address, pte);
  1072. /* Move the dirty bit to the physical page now the pte is gone. */
  1073. if (pte_dirty(pteval))
  1074. set_page_dirty(page);
  1075. /* Update high watermark before we lower rss */
  1076. update_hiwater_rss(mm);
  1077. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1078. if (PageAnon(page))
  1079. dec_mm_counter(mm, MM_ANONPAGES);
  1080. else
  1081. dec_mm_counter(mm, MM_FILEPAGES);
  1082. set_pte_at(mm, address, pte,
  1083. swp_entry_to_pte(make_hwpoison_entry(page)));
  1084. } else if (PageAnon(page)) {
  1085. swp_entry_t entry = { .val = page_private(page) };
  1086. if (PageSwapCache(page)) {
  1087. /*
  1088. * Store the swap location in the pte.
  1089. * See handle_pte_fault() ...
  1090. */
  1091. if (swap_duplicate(entry) < 0) {
  1092. set_pte_at(mm, address, pte, pteval);
  1093. ret = SWAP_FAIL;
  1094. goto out_unmap;
  1095. }
  1096. if (list_empty(&mm->mmlist)) {
  1097. spin_lock(&mmlist_lock);
  1098. if (list_empty(&mm->mmlist))
  1099. list_add(&mm->mmlist, &init_mm.mmlist);
  1100. spin_unlock(&mmlist_lock);
  1101. }
  1102. dec_mm_counter(mm, MM_ANONPAGES);
  1103. inc_mm_counter(mm, MM_SWAPENTS);
  1104. } else if (PAGE_MIGRATION) {
  1105. /*
  1106. * Store the pfn of the page in a special migration
  1107. * pte. do_swap_page() will wait until the migration
  1108. * pte is removed and then restart fault handling.
  1109. */
  1110. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1111. entry = make_migration_entry(page, pte_write(pteval));
  1112. }
  1113. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1114. BUG_ON(pte_file(*pte));
  1115. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1116. /* Establish migration entry for a file page */
  1117. swp_entry_t entry;
  1118. entry = make_migration_entry(page, pte_write(pteval));
  1119. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1120. } else
  1121. dec_mm_counter(mm, MM_FILEPAGES);
  1122. page_remove_rmap(page);
  1123. page_cache_release(page);
  1124. out_unmap:
  1125. pte_unmap_unlock(pte, ptl);
  1126. out:
  1127. return ret;
  1128. out_mlock:
  1129. pte_unmap_unlock(pte, ptl);
  1130. /*
  1131. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1132. * unstable result and race. Plus, We can't wait here because
  1133. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1134. * if trylock failed, the page remain in evictable lru and later
  1135. * vmscan could retry to move the page to unevictable lru if the
  1136. * page is actually mlocked.
  1137. */
  1138. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1139. if (vma->vm_flags & VM_LOCKED) {
  1140. mlock_vma_page(page);
  1141. ret = SWAP_MLOCK;
  1142. }
  1143. up_read(&vma->vm_mm->mmap_sem);
  1144. }
  1145. return ret;
  1146. }
  1147. /*
  1148. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1149. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1150. * Consequently, given a particular page and its ->index, we cannot locate the
  1151. * ptes which are mapping that page without an exhaustive linear search.
  1152. *
  1153. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1154. * maps the file to which the target page belongs. The ->vm_private_data field
  1155. * holds the current cursor into that scan. Successive searches will circulate
  1156. * around the vma's virtual address space.
  1157. *
  1158. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1159. * more scanning pressure is placed against them as well. Eventually pages
  1160. * will become fully unmapped and are eligible for eviction.
  1161. *
  1162. * For very sparsely populated VMAs this is a little inefficient - chances are
  1163. * there there won't be many ptes located within the scan cluster. In this case
  1164. * maybe we could scan further - to the end of the pte page, perhaps.
  1165. *
  1166. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1167. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1168. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1169. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1170. */
  1171. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1172. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1173. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1174. struct vm_area_struct *vma, struct page *check_page)
  1175. {
  1176. struct mm_struct *mm = vma->vm_mm;
  1177. pgd_t *pgd;
  1178. pud_t *pud;
  1179. pmd_t *pmd;
  1180. pte_t *pte;
  1181. pte_t pteval;
  1182. spinlock_t *ptl;
  1183. struct page *page;
  1184. unsigned long address;
  1185. unsigned long end;
  1186. int ret = SWAP_AGAIN;
  1187. int locked_vma = 0;
  1188. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1189. end = address + CLUSTER_SIZE;
  1190. if (address < vma->vm_start)
  1191. address = vma->vm_start;
  1192. if (end > vma->vm_end)
  1193. end = vma->vm_end;
  1194. pgd = pgd_offset(mm, address);
  1195. if (!pgd_present(*pgd))
  1196. return ret;
  1197. pud = pud_offset(pgd, address);
  1198. if (!pud_present(*pud))
  1199. return ret;
  1200. pmd = pmd_offset(pud, address);
  1201. if (!pmd_present(*pmd))
  1202. return ret;
  1203. /*
  1204. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1205. * keep the sem while scanning the cluster for mlocking pages.
  1206. */
  1207. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1208. locked_vma = (vma->vm_flags & VM_LOCKED);
  1209. if (!locked_vma)
  1210. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1211. }
  1212. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1213. /* Update high watermark before we lower rss */
  1214. update_hiwater_rss(mm);
  1215. for (; address < end; pte++, address += PAGE_SIZE) {
  1216. if (!pte_present(*pte))
  1217. continue;
  1218. page = vm_normal_page(vma, address, *pte);
  1219. BUG_ON(!page || PageAnon(page));
  1220. if (locked_vma) {
  1221. mlock_vma_page(page); /* no-op if already mlocked */
  1222. if (page == check_page)
  1223. ret = SWAP_MLOCK;
  1224. continue; /* don't unmap */
  1225. }
  1226. if (ptep_clear_flush_young_notify(vma, address, pte))
  1227. continue;
  1228. /* Nuke the page table entry. */
  1229. flush_cache_page(vma, address, pte_pfn(*pte));
  1230. pteval = ptep_clear_flush_notify(vma, address, pte);
  1231. /* If nonlinear, store the file page offset in the pte. */
  1232. if (page->index != linear_page_index(vma, address))
  1233. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1234. /* Move the dirty bit to the physical page now the pte is gone. */
  1235. if (pte_dirty(pteval))
  1236. set_page_dirty(page);
  1237. page_remove_rmap(page);
  1238. page_cache_release(page);
  1239. dec_mm_counter(mm, MM_FILEPAGES);
  1240. (*mapcount)--;
  1241. }
  1242. pte_unmap_unlock(pte - 1, ptl);
  1243. if (locked_vma)
  1244. up_read(&vma->vm_mm->mmap_sem);
  1245. return ret;
  1246. }
  1247. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1248. {
  1249. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1250. if (!maybe_stack)
  1251. return false;
  1252. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1253. VM_STACK_INCOMPLETE_SETUP)
  1254. return true;
  1255. return false;
  1256. }
  1257. /**
  1258. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1259. * rmap method
  1260. * @page: the page to unmap/unlock
  1261. * @flags: action and flags
  1262. *
  1263. * Find all the mappings of a page using the mapping pointer and the vma chains
  1264. * contained in the anon_vma struct it points to.
  1265. *
  1266. * This function is only called from try_to_unmap/try_to_munlock for
  1267. * anonymous pages.
  1268. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1269. * where the page was found will be held for write. So, we won't recheck
  1270. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1271. * 'LOCKED.
  1272. */
  1273. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1274. {
  1275. struct anon_vma *anon_vma;
  1276. struct anon_vma_chain *avc;
  1277. int ret = SWAP_AGAIN;
  1278. anon_vma = page_lock_anon_vma(page);
  1279. if (!anon_vma)
  1280. return ret;
  1281. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1282. struct vm_area_struct *vma = avc->vma;
  1283. unsigned long address;
  1284. /*
  1285. * During exec, a temporary VMA is setup and later moved.
  1286. * The VMA is moved under the anon_vma lock but not the
  1287. * page tables leading to a race where migration cannot
  1288. * find the migration ptes. Rather than increasing the
  1289. * locking requirements of exec(), migration skips
  1290. * temporary VMAs until after exec() completes.
  1291. */
  1292. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1293. is_vma_temporary_stack(vma))
  1294. continue;
  1295. address = vma_address(page, vma);
  1296. if (address == -EFAULT)
  1297. continue;
  1298. ret = try_to_unmap_one(page, vma, address, flags);
  1299. if (ret != SWAP_AGAIN || !page_mapped(page))
  1300. break;
  1301. }
  1302. page_unlock_anon_vma(anon_vma);
  1303. return ret;
  1304. }
  1305. /**
  1306. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1307. * @page: the page to unmap/unlock
  1308. * @flags: action and flags
  1309. *
  1310. * Find all the mappings of a page using the mapping pointer and the vma chains
  1311. * contained in the address_space struct it points to.
  1312. *
  1313. * This function is only called from try_to_unmap/try_to_munlock for
  1314. * object-based pages.
  1315. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1316. * where the page was found will be held for write. So, we won't recheck
  1317. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1318. * 'LOCKED.
  1319. */
  1320. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1321. {
  1322. struct address_space *mapping = page->mapping;
  1323. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1324. struct vm_area_struct *vma;
  1325. struct prio_tree_iter iter;
  1326. int ret = SWAP_AGAIN;
  1327. unsigned long cursor;
  1328. unsigned long max_nl_cursor = 0;
  1329. unsigned long max_nl_size = 0;
  1330. unsigned int mapcount;
  1331. mutex_lock(&mapping->i_mmap_mutex);
  1332. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1333. unsigned long address = vma_address(page, vma);
  1334. if (address == -EFAULT)
  1335. continue;
  1336. ret = try_to_unmap_one(page, vma, address, flags);
  1337. if (ret != SWAP_AGAIN || !page_mapped(page))
  1338. goto out;
  1339. }
  1340. if (list_empty(&mapping->i_mmap_nonlinear))
  1341. goto out;
  1342. /*
  1343. * We don't bother to try to find the munlocked page in nonlinears.
  1344. * It's costly. Instead, later, page reclaim logic may call
  1345. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1346. */
  1347. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1348. goto out;
  1349. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1350. shared.vm_set.list) {
  1351. cursor = (unsigned long) vma->vm_private_data;
  1352. if (cursor > max_nl_cursor)
  1353. max_nl_cursor = cursor;
  1354. cursor = vma->vm_end - vma->vm_start;
  1355. if (cursor > max_nl_size)
  1356. max_nl_size = cursor;
  1357. }
  1358. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1359. ret = SWAP_FAIL;
  1360. goto out;
  1361. }
  1362. /*
  1363. * We don't try to search for this page in the nonlinear vmas,
  1364. * and page_referenced wouldn't have found it anyway. Instead
  1365. * just walk the nonlinear vmas trying to age and unmap some.
  1366. * The mapcount of the page we came in with is irrelevant,
  1367. * but even so use it as a guide to how hard we should try?
  1368. */
  1369. mapcount = page_mapcount(page);
  1370. if (!mapcount)
  1371. goto out;
  1372. cond_resched();
  1373. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1374. if (max_nl_cursor == 0)
  1375. max_nl_cursor = CLUSTER_SIZE;
  1376. do {
  1377. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1378. shared.vm_set.list) {
  1379. cursor = (unsigned long) vma->vm_private_data;
  1380. while ( cursor < max_nl_cursor &&
  1381. cursor < vma->vm_end - vma->vm_start) {
  1382. if (try_to_unmap_cluster(cursor, &mapcount,
  1383. vma, page) == SWAP_MLOCK)
  1384. ret = SWAP_MLOCK;
  1385. cursor += CLUSTER_SIZE;
  1386. vma->vm_private_data = (void *) cursor;
  1387. if ((int)mapcount <= 0)
  1388. goto out;
  1389. }
  1390. vma->vm_private_data = (void *) max_nl_cursor;
  1391. }
  1392. cond_resched();
  1393. max_nl_cursor += CLUSTER_SIZE;
  1394. } while (max_nl_cursor <= max_nl_size);
  1395. /*
  1396. * Don't loop forever (perhaps all the remaining pages are
  1397. * in locked vmas). Reset cursor on all unreserved nonlinear
  1398. * vmas, now forgetting on which ones it had fallen behind.
  1399. */
  1400. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1401. vma->vm_private_data = NULL;
  1402. out:
  1403. mutex_unlock(&mapping->i_mmap_mutex);
  1404. return ret;
  1405. }
  1406. /**
  1407. * try_to_unmap - try to remove all page table mappings to a page
  1408. * @page: the page to get unmapped
  1409. * @flags: action and flags
  1410. *
  1411. * Tries to remove all the page table entries which are mapping this
  1412. * page, used in the pageout path. Caller must hold the page lock.
  1413. * Return values are:
  1414. *
  1415. * SWAP_SUCCESS - we succeeded in removing all mappings
  1416. * SWAP_AGAIN - we missed a mapping, try again later
  1417. * SWAP_FAIL - the page is unswappable
  1418. * SWAP_MLOCK - page is mlocked.
  1419. */
  1420. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1421. {
  1422. int ret;
  1423. BUG_ON(!PageLocked(page));
  1424. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1425. if (unlikely(PageKsm(page)))
  1426. ret = try_to_unmap_ksm(page, flags);
  1427. else if (PageAnon(page))
  1428. ret = try_to_unmap_anon(page, flags);
  1429. else
  1430. ret = try_to_unmap_file(page, flags);
  1431. if (ret != SWAP_MLOCK && !page_mapped(page))
  1432. ret = SWAP_SUCCESS;
  1433. return ret;
  1434. }
  1435. /**
  1436. * try_to_munlock - try to munlock a page
  1437. * @page: the page to be munlocked
  1438. *
  1439. * Called from munlock code. Checks all of the VMAs mapping the page
  1440. * to make sure nobody else has this page mlocked. The page will be
  1441. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1442. *
  1443. * Return values are:
  1444. *
  1445. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1446. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1447. * SWAP_FAIL - page cannot be located at present
  1448. * SWAP_MLOCK - page is now mlocked.
  1449. */
  1450. int try_to_munlock(struct page *page)
  1451. {
  1452. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1453. if (unlikely(PageKsm(page)))
  1454. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1455. else if (PageAnon(page))
  1456. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1457. else
  1458. return try_to_unmap_file(page, TTU_MUNLOCK);
  1459. }
  1460. void __put_anon_vma(struct anon_vma *anon_vma)
  1461. {
  1462. struct anon_vma *root = anon_vma->root;
  1463. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1464. anon_vma_free(root);
  1465. anon_vma_free(anon_vma);
  1466. }
  1467. #ifdef CONFIG_MIGRATION
  1468. /*
  1469. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1470. * Called by migrate.c to remove migration ptes, but might be used more later.
  1471. */
  1472. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1473. struct vm_area_struct *, unsigned long, void *), void *arg)
  1474. {
  1475. struct anon_vma *anon_vma;
  1476. struct anon_vma_chain *avc;
  1477. int ret = SWAP_AGAIN;
  1478. /*
  1479. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1480. * because that depends on page_mapped(); but not all its usages
  1481. * are holding mmap_sem. Users without mmap_sem are required to
  1482. * take a reference count to prevent the anon_vma disappearing
  1483. */
  1484. anon_vma = page_anon_vma(page);
  1485. if (!anon_vma)
  1486. return ret;
  1487. anon_vma_lock(anon_vma);
  1488. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1489. struct vm_area_struct *vma = avc->vma;
  1490. unsigned long address = vma_address(page, vma);
  1491. if (address == -EFAULT)
  1492. continue;
  1493. ret = rmap_one(page, vma, address, arg);
  1494. if (ret != SWAP_AGAIN)
  1495. break;
  1496. }
  1497. anon_vma_unlock(anon_vma);
  1498. return ret;
  1499. }
  1500. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1501. struct vm_area_struct *, unsigned long, void *), void *arg)
  1502. {
  1503. struct address_space *mapping = page->mapping;
  1504. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1505. struct vm_area_struct *vma;
  1506. struct prio_tree_iter iter;
  1507. int ret = SWAP_AGAIN;
  1508. if (!mapping)
  1509. return ret;
  1510. mutex_lock(&mapping->i_mmap_mutex);
  1511. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1512. unsigned long address = vma_address(page, vma);
  1513. if (address == -EFAULT)
  1514. continue;
  1515. ret = rmap_one(page, vma, address, arg);
  1516. if (ret != SWAP_AGAIN)
  1517. break;
  1518. }
  1519. /*
  1520. * No nonlinear handling: being always shared, nonlinear vmas
  1521. * never contain migration ptes. Decide what to do about this
  1522. * limitation to linear when we need rmap_walk() on nonlinear.
  1523. */
  1524. mutex_unlock(&mapping->i_mmap_mutex);
  1525. return ret;
  1526. }
  1527. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1528. struct vm_area_struct *, unsigned long, void *), void *arg)
  1529. {
  1530. VM_BUG_ON(!PageLocked(page));
  1531. if (unlikely(PageKsm(page)))
  1532. return rmap_walk_ksm(page, rmap_one, arg);
  1533. else if (PageAnon(page))
  1534. return rmap_walk_anon(page, rmap_one, arg);
  1535. else
  1536. return rmap_walk_file(page, rmap_one, arg);
  1537. }
  1538. #endif /* CONFIG_MIGRATION */
  1539. #ifdef CONFIG_HUGETLB_PAGE
  1540. /*
  1541. * The following three functions are for anonymous (private mapped) hugepages.
  1542. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1543. * and no lru code, because we handle hugepages differently from common pages.
  1544. */
  1545. static void __hugepage_set_anon_rmap(struct page *page,
  1546. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1547. {
  1548. struct anon_vma *anon_vma = vma->anon_vma;
  1549. BUG_ON(!anon_vma);
  1550. if (PageAnon(page))
  1551. return;
  1552. if (!exclusive)
  1553. anon_vma = anon_vma->root;
  1554. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1555. page->mapping = (struct address_space *) anon_vma;
  1556. page->index = linear_page_index(vma, address);
  1557. }
  1558. void hugepage_add_anon_rmap(struct page *page,
  1559. struct vm_area_struct *vma, unsigned long address)
  1560. {
  1561. struct anon_vma *anon_vma = vma->anon_vma;
  1562. int first;
  1563. BUG_ON(!PageLocked(page));
  1564. BUG_ON(!anon_vma);
  1565. /* address might be in next vma when migration races vma_adjust */
  1566. first = atomic_inc_and_test(&page->_mapcount);
  1567. if (first)
  1568. __hugepage_set_anon_rmap(page, vma, address, 0);
  1569. }
  1570. void hugepage_add_new_anon_rmap(struct page *page,
  1571. struct vm_area_struct *vma, unsigned long address)
  1572. {
  1573. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1574. atomic_set(&page->_mapcount, 0);
  1575. __hugepage_set_anon_rmap(page, vma, address, 1);
  1576. }
  1577. #endif /* CONFIG_HUGETLB_PAGE */