snapshot.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325
  1. /*
  2. * linux/kernel/power/snapshot.c
  3. *
  4. * This file provides system snapshot/restore functionality for swsusp.
  5. *
  6. * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
  7. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  8. *
  9. * This file is released under the GPLv2.
  10. *
  11. */
  12. #include <linux/version.h>
  13. #include <linux/module.h>
  14. #include <linux/mm.h>
  15. #include <linux/suspend.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kernel.h>
  20. #include <linux/pm.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/syscalls.h>
  25. #include <linux/console.h>
  26. #include <linux/highmem.h>
  27. #include <linux/list.h>
  28. #include <linux/slab.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/mmu_context.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/tlbflush.h>
  33. #include <asm/io.h>
  34. #include "power.h"
  35. static int swsusp_page_is_free(struct page *);
  36. static void swsusp_set_page_forbidden(struct page *);
  37. static void swsusp_unset_page_forbidden(struct page *);
  38. /*
  39. * Number of bytes to reserve for memory allocations made by device drivers
  40. * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  41. * cause image creation to fail (tunable via /sys/power/reserved_size).
  42. */
  43. unsigned long reserved_size;
  44. void __init hibernate_reserved_size_init(void)
  45. {
  46. reserved_size = SPARE_PAGES * PAGE_SIZE;
  47. }
  48. /*
  49. * Preferred image size in bytes (tunable via /sys/power/image_size).
  50. * When it is set to N, swsusp will do its best to ensure the image
  51. * size will not exceed N bytes, but if that is impossible, it will
  52. * try to create the smallest image possible.
  53. */
  54. unsigned long image_size;
  55. void __init hibernate_image_size_init(void)
  56. {
  57. image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  58. }
  59. /* List of PBEs needed for restoring the pages that were allocated before
  60. * the suspend and included in the suspend image, but have also been
  61. * allocated by the "resume" kernel, so their contents cannot be written
  62. * directly to their "original" page frames.
  63. */
  64. struct pbe *restore_pblist;
  65. /* Pointer to an auxiliary buffer (1 page) */
  66. static void *buffer;
  67. /**
  68. * @safe_needed - on resume, for storing the PBE list and the image,
  69. * we can only use memory pages that do not conflict with the pages
  70. * used before suspend. The unsafe pages have PageNosaveFree set
  71. * and we count them using unsafe_pages.
  72. *
  73. * Each allocated image page is marked as PageNosave and PageNosaveFree
  74. * so that swsusp_free() can release it.
  75. */
  76. #define PG_ANY 0
  77. #define PG_SAFE 1
  78. #define PG_UNSAFE_CLEAR 1
  79. #define PG_UNSAFE_KEEP 0
  80. static unsigned int allocated_unsafe_pages;
  81. static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  82. {
  83. void *res;
  84. res = (void *)get_zeroed_page(gfp_mask);
  85. if (safe_needed)
  86. while (res && swsusp_page_is_free(virt_to_page(res))) {
  87. /* The page is unsafe, mark it for swsusp_free() */
  88. swsusp_set_page_forbidden(virt_to_page(res));
  89. allocated_unsafe_pages++;
  90. res = (void *)get_zeroed_page(gfp_mask);
  91. }
  92. if (res) {
  93. swsusp_set_page_forbidden(virt_to_page(res));
  94. swsusp_set_page_free(virt_to_page(res));
  95. }
  96. return res;
  97. }
  98. unsigned long get_safe_page(gfp_t gfp_mask)
  99. {
  100. return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
  101. }
  102. static struct page *alloc_image_page(gfp_t gfp_mask)
  103. {
  104. struct page *page;
  105. page = alloc_page(gfp_mask);
  106. if (page) {
  107. swsusp_set_page_forbidden(page);
  108. swsusp_set_page_free(page);
  109. }
  110. return page;
  111. }
  112. /**
  113. * free_image_page - free page represented by @addr, allocated with
  114. * get_image_page (page flags set by it must be cleared)
  115. */
  116. static inline void free_image_page(void *addr, int clear_nosave_free)
  117. {
  118. struct page *page;
  119. BUG_ON(!virt_addr_valid(addr));
  120. page = virt_to_page(addr);
  121. swsusp_unset_page_forbidden(page);
  122. if (clear_nosave_free)
  123. swsusp_unset_page_free(page);
  124. __free_page(page);
  125. }
  126. /* struct linked_page is used to build chains of pages */
  127. #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
  128. struct linked_page {
  129. struct linked_page *next;
  130. char data[LINKED_PAGE_DATA_SIZE];
  131. } __attribute__((packed));
  132. static inline void
  133. free_list_of_pages(struct linked_page *list, int clear_page_nosave)
  134. {
  135. while (list) {
  136. struct linked_page *lp = list->next;
  137. free_image_page(list, clear_page_nosave);
  138. list = lp;
  139. }
  140. }
  141. /**
  142. * struct chain_allocator is used for allocating small objects out of
  143. * a linked list of pages called 'the chain'.
  144. *
  145. * The chain grows each time when there is no room for a new object in
  146. * the current page. The allocated objects cannot be freed individually.
  147. * It is only possible to free them all at once, by freeing the entire
  148. * chain.
  149. *
  150. * NOTE: The chain allocator may be inefficient if the allocated objects
  151. * are not much smaller than PAGE_SIZE.
  152. */
  153. struct chain_allocator {
  154. struct linked_page *chain; /* the chain */
  155. unsigned int used_space; /* total size of objects allocated out
  156. * of the current page
  157. */
  158. gfp_t gfp_mask; /* mask for allocating pages */
  159. int safe_needed; /* if set, only "safe" pages are allocated */
  160. };
  161. static void
  162. chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
  163. {
  164. ca->chain = NULL;
  165. ca->used_space = LINKED_PAGE_DATA_SIZE;
  166. ca->gfp_mask = gfp_mask;
  167. ca->safe_needed = safe_needed;
  168. }
  169. static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
  170. {
  171. void *ret;
  172. if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
  173. struct linked_page *lp;
  174. lp = get_image_page(ca->gfp_mask, ca->safe_needed);
  175. if (!lp)
  176. return NULL;
  177. lp->next = ca->chain;
  178. ca->chain = lp;
  179. ca->used_space = 0;
  180. }
  181. ret = ca->chain->data + ca->used_space;
  182. ca->used_space += size;
  183. return ret;
  184. }
  185. /**
  186. * Data types related to memory bitmaps.
  187. *
  188. * Memory bitmap is a structure consiting of many linked lists of
  189. * objects. The main list's elements are of type struct zone_bitmap
  190. * and each of them corresonds to one zone. For each zone bitmap
  191. * object there is a list of objects of type struct bm_block that
  192. * represent each blocks of bitmap in which information is stored.
  193. *
  194. * struct memory_bitmap contains a pointer to the main list of zone
  195. * bitmap objects, a struct bm_position used for browsing the bitmap,
  196. * and a pointer to the list of pages used for allocating all of the
  197. * zone bitmap objects and bitmap block objects.
  198. *
  199. * NOTE: It has to be possible to lay out the bitmap in memory
  200. * using only allocations of order 0. Additionally, the bitmap is
  201. * designed to work with arbitrary number of zones (this is over the
  202. * top for now, but let's avoid making unnecessary assumptions ;-).
  203. *
  204. * struct zone_bitmap contains a pointer to a list of bitmap block
  205. * objects and a pointer to the bitmap block object that has been
  206. * most recently used for setting bits. Additionally, it contains the
  207. * pfns that correspond to the start and end of the represented zone.
  208. *
  209. * struct bm_block contains a pointer to the memory page in which
  210. * information is stored (in the form of a block of bitmap)
  211. * It also contains the pfns that correspond to the start and end of
  212. * the represented memory area.
  213. */
  214. #define BM_END_OF_MAP (~0UL)
  215. #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
  216. struct bm_block {
  217. struct list_head hook; /* hook into a list of bitmap blocks */
  218. unsigned long start_pfn; /* pfn represented by the first bit */
  219. unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
  220. unsigned long *data; /* bitmap representing pages */
  221. };
  222. static inline unsigned long bm_block_bits(struct bm_block *bb)
  223. {
  224. return bb->end_pfn - bb->start_pfn;
  225. }
  226. /* strcut bm_position is used for browsing memory bitmaps */
  227. struct bm_position {
  228. struct bm_block *block;
  229. int bit;
  230. };
  231. struct memory_bitmap {
  232. struct list_head blocks; /* list of bitmap blocks */
  233. struct linked_page *p_list; /* list of pages used to store zone
  234. * bitmap objects and bitmap block
  235. * objects
  236. */
  237. struct bm_position cur; /* most recently used bit position */
  238. };
  239. /* Functions that operate on memory bitmaps */
  240. static void memory_bm_position_reset(struct memory_bitmap *bm)
  241. {
  242. bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
  243. bm->cur.bit = 0;
  244. }
  245. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
  246. /**
  247. * create_bm_block_list - create a list of block bitmap objects
  248. * @pages - number of pages to track
  249. * @list - list to put the allocated blocks into
  250. * @ca - chain allocator to be used for allocating memory
  251. */
  252. static int create_bm_block_list(unsigned long pages,
  253. struct list_head *list,
  254. struct chain_allocator *ca)
  255. {
  256. unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
  257. while (nr_blocks-- > 0) {
  258. struct bm_block *bb;
  259. bb = chain_alloc(ca, sizeof(struct bm_block));
  260. if (!bb)
  261. return -ENOMEM;
  262. list_add(&bb->hook, list);
  263. }
  264. return 0;
  265. }
  266. struct mem_extent {
  267. struct list_head hook;
  268. unsigned long start;
  269. unsigned long end;
  270. };
  271. /**
  272. * free_mem_extents - free a list of memory extents
  273. * @list - list of extents to empty
  274. */
  275. static void free_mem_extents(struct list_head *list)
  276. {
  277. struct mem_extent *ext, *aux;
  278. list_for_each_entry_safe(ext, aux, list, hook) {
  279. list_del(&ext->hook);
  280. kfree(ext);
  281. }
  282. }
  283. /**
  284. * create_mem_extents - create a list of memory extents representing
  285. * contiguous ranges of PFNs
  286. * @list - list to put the extents into
  287. * @gfp_mask - mask to use for memory allocations
  288. */
  289. static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
  290. {
  291. struct zone *zone;
  292. INIT_LIST_HEAD(list);
  293. for_each_populated_zone(zone) {
  294. unsigned long zone_start, zone_end;
  295. struct mem_extent *ext, *cur, *aux;
  296. zone_start = zone->zone_start_pfn;
  297. zone_end = zone->zone_start_pfn + zone->spanned_pages;
  298. list_for_each_entry(ext, list, hook)
  299. if (zone_start <= ext->end)
  300. break;
  301. if (&ext->hook == list || zone_end < ext->start) {
  302. /* New extent is necessary */
  303. struct mem_extent *new_ext;
  304. new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
  305. if (!new_ext) {
  306. free_mem_extents(list);
  307. return -ENOMEM;
  308. }
  309. new_ext->start = zone_start;
  310. new_ext->end = zone_end;
  311. list_add_tail(&new_ext->hook, &ext->hook);
  312. continue;
  313. }
  314. /* Merge this zone's range of PFNs with the existing one */
  315. if (zone_start < ext->start)
  316. ext->start = zone_start;
  317. if (zone_end > ext->end)
  318. ext->end = zone_end;
  319. /* More merging may be possible */
  320. cur = ext;
  321. list_for_each_entry_safe_continue(cur, aux, list, hook) {
  322. if (zone_end < cur->start)
  323. break;
  324. if (zone_end < cur->end)
  325. ext->end = cur->end;
  326. list_del(&cur->hook);
  327. kfree(cur);
  328. }
  329. }
  330. return 0;
  331. }
  332. /**
  333. * memory_bm_create - allocate memory for a memory bitmap
  334. */
  335. static int
  336. memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
  337. {
  338. struct chain_allocator ca;
  339. struct list_head mem_extents;
  340. struct mem_extent *ext;
  341. int error;
  342. chain_init(&ca, gfp_mask, safe_needed);
  343. INIT_LIST_HEAD(&bm->blocks);
  344. error = create_mem_extents(&mem_extents, gfp_mask);
  345. if (error)
  346. return error;
  347. list_for_each_entry(ext, &mem_extents, hook) {
  348. struct bm_block *bb;
  349. unsigned long pfn = ext->start;
  350. unsigned long pages = ext->end - ext->start;
  351. bb = list_entry(bm->blocks.prev, struct bm_block, hook);
  352. error = create_bm_block_list(pages, bm->blocks.prev, &ca);
  353. if (error)
  354. goto Error;
  355. list_for_each_entry_continue(bb, &bm->blocks, hook) {
  356. bb->data = get_image_page(gfp_mask, safe_needed);
  357. if (!bb->data) {
  358. error = -ENOMEM;
  359. goto Error;
  360. }
  361. bb->start_pfn = pfn;
  362. if (pages >= BM_BITS_PER_BLOCK) {
  363. pfn += BM_BITS_PER_BLOCK;
  364. pages -= BM_BITS_PER_BLOCK;
  365. } else {
  366. /* This is executed only once in the loop */
  367. pfn += pages;
  368. }
  369. bb->end_pfn = pfn;
  370. }
  371. }
  372. bm->p_list = ca.chain;
  373. memory_bm_position_reset(bm);
  374. Exit:
  375. free_mem_extents(&mem_extents);
  376. return error;
  377. Error:
  378. bm->p_list = ca.chain;
  379. memory_bm_free(bm, PG_UNSAFE_CLEAR);
  380. goto Exit;
  381. }
  382. /**
  383. * memory_bm_free - free memory occupied by the memory bitmap @bm
  384. */
  385. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
  386. {
  387. struct bm_block *bb;
  388. list_for_each_entry(bb, &bm->blocks, hook)
  389. if (bb->data)
  390. free_image_page(bb->data, clear_nosave_free);
  391. free_list_of_pages(bm->p_list, clear_nosave_free);
  392. INIT_LIST_HEAD(&bm->blocks);
  393. }
  394. /**
  395. * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
  396. * to given pfn. The cur_zone_bm member of @bm and the cur_block member
  397. * of @bm->cur_zone_bm are updated.
  398. */
  399. static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
  400. void **addr, unsigned int *bit_nr)
  401. {
  402. struct bm_block *bb;
  403. /*
  404. * Check if the pfn corresponds to the current bitmap block and find
  405. * the block where it fits if this is not the case.
  406. */
  407. bb = bm->cur.block;
  408. if (pfn < bb->start_pfn)
  409. list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
  410. if (pfn >= bb->start_pfn)
  411. break;
  412. if (pfn >= bb->end_pfn)
  413. list_for_each_entry_continue(bb, &bm->blocks, hook)
  414. if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
  415. break;
  416. if (&bb->hook == &bm->blocks)
  417. return -EFAULT;
  418. /* The block has been found */
  419. bm->cur.block = bb;
  420. pfn -= bb->start_pfn;
  421. bm->cur.bit = pfn + 1;
  422. *bit_nr = pfn;
  423. *addr = bb->data;
  424. return 0;
  425. }
  426. static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
  427. {
  428. void *addr;
  429. unsigned int bit;
  430. int error;
  431. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  432. BUG_ON(error);
  433. set_bit(bit, addr);
  434. }
  435. static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
  436. {
  437. void *addr;
  438. unsigned int bit;
  439. int error;
  440. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  441. if (!error)
  442. set_bit(bit, addr);
  443. return error;
  444. }
  445. static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
  446. {
  447. void *addr;
  448. unsigned int bit;
  449. int error;
  450. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  451. BUG_ON(error);
  452. clear_bit(bit, addr);
  453. }
  454. static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
  455. {
  456. void *addr;
  457. unsigned int bit;
  458. int error;
  459. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  460. BUG_ON(error);
  461. return test_bit(bit, addr);
  462. }
  463. static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
  464. {
  465. void *addr;
  466. unsigned int bit;
  467. return !memory_bm_find_bit(bm, pfn, &addr, &bit);
  468. }
  469. /**
  470. * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
  471. * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
  472. * returned.
  473. *
  474. * It is required to run memory_bm_position_reset() before the first call to
  475. * this function.
  476. */
  477. static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
  478. {
  479. struct bm_block *bb;
  480. int bit;
  481. bb = bm->cur.block;
  482. do {
  483. bit = bm->cur.bit;
  484. bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
  485. if (bit < bm_block_bits(bb))
  486. goto Return_pfn;
  487. bb = list_entry(bb->hook.next, struct bm_block, hook);
  488. bm->cur.block = bb;
  489. bm->cur.bit = 0;
  490. } while (&bb->hook != &bm->blocks);
  491. memory_bm_position_reset(bm);
  492. return BM_END_OF_MAP;
  493. Return_pfn:
  494. bm->cur.bit = bit + 1;
  495. return bb->start_pfn + bit;
  496. }
  497. /**
  498. * This structure represents a range of page frames the contents of which
  499. * should not be saved during the suspend.
  500. */
  501. struct nosave_region {
  502. struct list_head list;
  503. unsigned long start_pfn;
  504. unsigned long end_pfn;
  505. };
  506. static LIST_HEAD(nosave_regions);
  507. /**
  508. * register_nosave_region - register a range of page frames the contents
  509. * of which should not be saved during the suspend (to be used in the early
  510. * initialization code)
  511. */
  512. void __init
  513. __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
  514. int use_kmalloc)
  515. {
  516. struct nosave_region *region;
  517. if (start_pfn >= end_pfn)
  518. return;
  519. if (!list_empty(&nosave_regions)) {
  520. /* Try to extend the previous region (they should be sorted) */
  521. region = list_entry(nosave_regions.prev,
  522. struct nosave_region, list);
  523. if (region->end_pfn == start_pfn) {
  524. region->end_pfn = end_pfn;
  525. goto Report;
  526. }
  527. }
  528. if (use_kmalloc) {
  529. /* during init, this shouldn't fail */
  530. region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
  531. BUG_ON(!region);
  532. } else
  533. /* This allocation cannot fail */
  534. region = alloc_bootmem(sizeof(struct nosave_region));
  535. region->start_pfn = start_pfn;
  536. region->end_pfn = end_pfn;
  537. list_add_tail(&region->list, &nosave_regions);
  538. Report:
  539. printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
  540. start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  541. }
  542. /*
  543. * Set bits in this map correspond to the page frames the contents of which
  544. * should not be saved during the suspend.
  545. */
  546. static struct memory_bitmap *forbidden_pages_map;
  547. /* Set bits in this map correspond to free page frames. */
  548. static struct memory_bitmap *free_pages_map;
  549. /*
  550. * Each page frame allocated for creating the image is marked by setting the
  551. * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
  552. */
  553. void swsusp_set_page_free(struct page *page)
  554. {
  555. if (free_pages_map)
  556. memory_bm_set_bit(free_pages_map, page_to_pfn(page));
  557. }
  558. static int swsusp_page_is_free(struct page *page)
  559. {
  560. return free_pages_map ?
  561. memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
  562. }
  563. void swsusp_unset_page_free(struct page *page)
  564. {
  565. if (free_pages_map)
  566. memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
  567. }
  568. static void swsusp_set_page_forbidden(struct page *page)
  569. {
  570. if (forbidden_pages_map)
  571. memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
  572. }
  573. int swsusp_page_is_forbidden(struct page *page)
  574. {
  575. return forbidden_pages_map ?
  576. memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
  577. }
  578. static void swsusp_unset_page_forbidden(struct page *page)
  579. {
  580. if (forbidden_pages_map)
  581. memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
  582. }
  583. /**
  584. * mark_nosave_pages - set bits corresponding to the page frames the
  585. * contents of which should not be saved in a given bitmap.
  586. */
  587. static void mark_nosave_pages(struct memory_bitmap *bm)
  588. {
  589. struct nosave_region *region;
  590. if (list_empty(&nosave_regions))
  591. return;
  592. list_for_each_entry(region, &nosave_regions, list) {
  593. unsigned long pfn;
  594. pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
  595. region->start_pfn << PAGE_SHIFT,
  596. region->end_pfn << PAGE_SHIFT);
  597. for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
  598. if (pfn_valid(pfn)) {
  599. /*
  600. * It is safe to ignore the result of
  601. * mem_bm_set_bit_check() here, since we won't
  602. * touch the PFNs for which the error is
  603. * returned anyway.
  604. */
  605. mem_bm_set_bit_check(bm, pfn);
  606. }
  607. }
  608. }
  609. /**
  610. * create_basic_memory_bitmaps - create bitmaps needed for marking page
  611. * frames that should not be saved and free page frames. The pointers
  612. * forbidden_pages_map and free_pages_map are only modified if everything
  613. * goes well, because we don't want the bits to be used before both bitmaps
  614. * are set up.
  615. */
  616. int create_basic_memory_bitmaps(void)
  617. {
  618. struct memory_bitmap *bm1, *bm2;
  619. int error = 0;
  620. BUG_ON(forbidden_pages_map || free_pages_map);
  621. bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  622. if (!bm1)
  623. return -ENOMEM;
  624. error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
  625. if (error)
  626. goto Free_first_object;
  627. bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  628. if (!bm2)
  629. goto Free_first_bitmap;
  630. error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
  631. if (error)
  632. goto Free_second_object;
  633. forbidden_pages_map = bm1;
  634. free_pages_map = bm2;
  635. mark_nosave_pages(forbidden_pages_map);
  636. pr_debug("PM: Basic memory bitmaps created\n");
  637. return 0;
  638. Free_second_object:
  639. kfree(bm2);
  640. Free_first_bitmap:
  641. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  642. Free_first_object:
  643. kfree(bm1);
  644. return -ENOMEM;
  645. }
  646. /**
  647. * free_basic_memory_bitmaps - free memory bitmaps allocated by
  648. * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
  649. * so that the bitmaps themselves are not referred to while they are being
  650. * freed.
  651. */
  652. void free_basic_memory_bitmaps(void)
  653. {
  654. struct memory_bitmap *bm1, *bm2;
  655. BUG_ON(!(forbidden_pages_map && free_pages_map));
  656. bm1 = forbidden_pages_map;
  657. bm2 = free_pages_map;
  658. forbidden_pages_map = NULL;
  659. free_pages_map = NULL;
  660. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  661. kfree(bm1);
  662. memory_bm_free(bm2, PG_UNSAFE_CLEAR);
  663. kfree(bm2);
  664. pr_debug("PM: Basic memory bitmaps freed\n");
  665. }
  666. /**
  667. * snapshot_additional_pages - estimate the number of additional pages
  668. * be needed for setting up the suspend image data structures for given
  669. * zone (usually the returned value is greater than the exact number)
  670. */
  671. unsigned int snapshot_additional_pages(struct zone *zone)
  672. {
  673. unsigned int res;
  674. res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  675. res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
  676. return 2 * res;
  677. }
  678. #ifdef CONFIG_HIGHMEM
  679. /**
  680. * count_free_highmem_pages - compute the total number of free highmem
  681. * pages, system-wide.
  682. */
  683. static unsigned int count_free_highmem_pages(void)
  684. {
  685. struct zone *zone;
  686. unsigned int cnt = 0;
  687. for_each_populated_zone(zone)
  688. if (is_highmem(zone))
  689. cnt += zone_page_state(zone, NR_FREE_PAGES);
  690. return cnt;
  691. }
  692. /**
  693. * saveable_highmem_page - Determine whether a highmem page should be
  694. * included in the suspend image.
  695. *
  696. * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
  697. * and it isn't a part of a free chunk of pages.
  698. */
  699. static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
  700. {
  701. struct page *page;
  702. if (!pfn_valid(pfn))
  703. return NULL;
  704. page = pfn_to_page(pfn);
  705. if (page_zone(page) != zone)
  706. return NULL;
  707. BUG_ON(!PageHighMem(page));
  708. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
  709. PageReserved(page))
  710. return NULL;
  711. return page;
  712. }
  713. /**
  714. * count_highmem_pages - compute the total number of saveable highmem
  715. * pages.
  716. */
  717. static unsigned int count_highmem_pages(void)
  718. {
  719. struct zone *zone;
  720. unsigned int n = 0;
  721. for_each_populated_zone(zone) {
  722. unsigned long pfn, max_zone_pfn;
  723. if (!is_highmem(zone))
  724. continue;
  725. mark_free_pages(zone);
  726. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  727. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  728. if (saveable_highmem_page(zone, pfn))
  729. n++;
  730. }
  731. return n;
  732. }
  733. #else
  734. static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
  735. {
  736. return NULL;
  737. }
  738. #endif /* CONFIG_HIGHMEM */
  739. /**
  740. * saveable_page - Determine whether a non-highmem page should be included
  741. * in the suspend image.
  742. *
  743. * We should save the page if it isn't Nosave, and is not in the range
  744. * of pages statically defined as 'unsaveable', and it isn't a part of
  745. * a free chunk of pages.
  746. */
  747. static struct page *saveable_page(struct zone *zone, unsigned long pfn)
  748. {
  749. struct page *page;
  750. if (!pfn_valid(pfn))
  751. return NULL;
  752. page = pfn_to_page(pfn);
  753. if (page_zone(page) != zone)
  754. return NULL;
  755. BUG_ON(PageHighMem(page));
  756. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
  757. return NULL;
  758. if (PageReserved(page)
  759. && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
  760. return NULL;
  761. return page;
  762. }
  763. /**
  764. * count_data_pages - compute the total number of saveable non-highmem
  765. * pages.
  766. */
  767. static unsigned int count_data_pages(void)
  768. {
  769. struct zone *zone;
  770. unsigned long pfn, max_zone_pfn;
  771. unsigned int n = 0;
  772. for_each_populated_zone(zone) {
  773. if (is_highmem(zone))
  774. continue;
  775. mark_free_pages(zone);
  776. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  777. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  778. if (saveable_page(zone, pfn))
  779. n++;
  780. }
  781. return n;
  782. }
  783. /* This is needed, because copy_page and memcpy are not usable for copying
  784. * task structs.
  785. */
  786. static inline void do_copy_page(long *dst, long *src)
  787. {
  788. int n;
  789. for (n = PAGE_SIZE / sizeof(long); n; n--)
  790. *dst++ = *src++;
  791. }
  792. /**
  793. * safe_copy_page - check if the page we are going to copy is marked as
  794. * present in the kernel page tables (this always is the case if
  795. * CONFIG_DEBUG_PAGEALLOC is not set and in that case
  796. * kernel_page_present() always returns 'true').
  797. */
  798. static void safe_copy_page(void *dst, struct page *s_page)
  799. {
  800. if (kernel_page_present(s_page)) {
  801. do_copy_page(dst, page_address(s_page));
  802. } else {
  803. kernel_map_pages(s_page, 1, 1);
  804. do_copy_page(dst, page_address(s_page));
  805. kernel_map_pages(s_page, 1, 0);
  806. }
  807. }
  808. #ifdef CONFIG_HIGHMEM
  809. static inline struct page *
  810. page_is_saveable(struct zone *zone, unsigned long pfn)
  811. {
  812. return is_highmem(zone) ?
  813. saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
  814. }
  815. static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  816. {
  817. struct page *s_page, *d_page;
  818. void *src, *dst;
  819. s_page = pfn_to_page(src_pfn);
  820. d_page = pfn_to_page(dst_pfn);
  821. if (PageHighMem(s_page)) {
  822. src = kmap_atomic(s_page, KM_USER0);
  823. dst = kmap_atomic(d_page, KM_USER1);
  824. do_copy_page(dst, src);
  825. kunmap_atomic(dst, KM_USER1);
  826. kunmap_atomic(src, KM_USER0);
  827. } else {
  828. if (PageHighMem(d_page)) {
  829. /* Page pointed to by src may contain some kernel
  830. * data modified by kmap_atomic()
  831. */
  832. safe_copy_page(buffer, s_page);
  833. dst = kmap_atomic(d_page, KM_USER0);
  834. copy_page(dst, buffer);
  835. kunmap_atomic(dst, KM_USER0);
  836. } else {
  837. safe_copy_page(page_address(d_page), s_page);
  838. }
  839. }
  840. }
  841. #else
  842. #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
  843. static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  844. {
  845. safe_copy_page(page_address(pfn_to_page(dst_pfn)),
  846. pfn_to_page(src_pfn));
  847. }
  848. #endif /* CONFIG_HIGHMEM */
  849. static void
  850. copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
  851. {
  852. struct zone *zone;
  853. unsigned long pfn;
  854. for_each_populated_zone(zone) {
  855. unsigned long max_zone_pfn;
  856. mark_free_pages(zone);
  857. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  858. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  859. if (page_is_saveable(zone, pfn))
  860. memory_bm_set_bit(orig_bm, pfn);
  861. }
  862. memory_bm_position_reset(orig_bm);
  863. memory_bm_position_reset(copy_bm);
  864. for(;;) {
  865. pfn = memory_bm_next_pfn(orig_bm);
  866. if (unlikely(pfn == BM_END_OF_MAP))
  867. break;
  868. copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
  869. }
  870. }
  871. /* Total number of image pages */
  872. static unsigned int nr_copy_pages;
  873. /* Number of pages needed for saving the original pfns of the image pages */
  874. static unsigned int nr_meta_pages;
  875. /*
  876. * Numbers of normal and highmem page frames allocated for hibernation image
  877. * before suspending devices.
  878. */
  879. unsigned int alloc_normal, alloc_highmem;
  880. /*
  881. * Memory bitmap used for marking saveable pages (during hibernation) or
  882. * hibernation image pages (during restore)
  883. */
  884. static struct memory_bitmap orig_bm;
  885. /*
  886. * Memory bitmap used during hibernation for marking allocated page frames that
  887. * will contain copies of saveable pages. During restore it is initially used
  888. * for marking hibernation image pages, but then the set bits from it are
  889. * duplicated in @orig_bm and it is released. On highmem systems it is next
  890. * used for marking "safe" highmem pages, but it has to be reinitialized for
  891. * this purpose.
  892. */
  893. static struct memory_bitmap copy_bm;
  894. /**
  895. * swsusp_free - free pages allocated for the suspend.
  896. *
  897. * Suspend pages are alocated before the atomic copy is made, so we
  898. * need to release them after the resume.
  899. */
  900. void swsusp_free(void)
  901. {
  902. struct zone *zone;
  903. unsigned long pfn, max_zone_pfn;
  904. for_each_populated_zone(zone) {
  905. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  906. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  907. if (pfn_valid(pfn)) {
  908. struct page *page = pfn_to_page(pfn);
  909. if (swsusp_page_is_forbidden(page) &&
  910. swsusp_page_is_free(page)) {
  911. swsusp_unset_page_forbidden(page);
  912. swsusp_unset_page_free(page);
  913. __free_page(page);
  914. }
  915. }
  916. }
  917. nr_copy_pages = 0;
  918. nr_meta_pages = 0;
  919. restore_pblist = NULL;
  920. buffer = NULL;
  921. alloc_normal = 0;
  922. alloc_highmem = 0;
  923. }
  924. /* Helper functions used for the shrinking of memory. */
  925. #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
  926. /**
  927. * preallocate_image_pages - Allocate a number of pages for hibernation image
  928. * @nr_pages: Number of page frames to allocate.
  929. * @mask: GFP flags to use for the allocation.
  930. *
  931. * Return value: Number of page frames actually allocated
  932. */
  933. static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
  934. {
  935. unsigned long nr_alloc = 0;
  936. while (nr_pages > 0) {
  937. struct page *page;
  938. page = alloc_image_page(mask);
  939. if (!page)
  940. break;
  941. memory_bm_set_bit(&copy_bm, page_to_pfn(page));
  942. if (PageHighMem(page))
  943. alloc_highmem++;
  944. else
  945. alloc_normal++;
  946. nr_pages--;
  947. nr_alloc++;
  948. }
  949. return nr_alloc;
  950. }
  951. static unsigned long preallocate_image_memory(unsigned long nr_pages,
  952. unsigned long avail_normal)
  953. {
  954. unsigned long alloc;
  955. if (avail_normal <= alloc_normal)
  956. return 0;
  957. alloc = avail_normal - alloc_normal;
  958. if (nr_pages < alloc)
  959. alloc = nr_pages;
  960. return preallocate_image_pages(alloc, GFP_IMAGE);
  961. }
  962. #ifdef CONFIG_HIGHMEM
  963. static unsigned long preallocate_image_highmem(unsigned long nr_pages)
  964. {
  965. return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
  966. }
  967. /**
  968. * __fraction - Compute (an approximation of) x * (multiplier / base)
  969. */
  970. static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
  971. {
  972. x *= multiplier;
  973. do_div(x, base);
  974. return (unsigned long)x;
  975. }
  976. static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
  977. unsigned long highmem,
  978. unsigned long total)
  979. {
  980. unsigned long alloc = __fraction(nr_pages, highmem, total);
  981. return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
  982. }
  983. #else /* CONFIG_HIGHMEM */
  984. static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
  985. {
  986. return 0;
  987. }
  988. static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
  989. unsigned long highmem,
  990. unsigned long total)
  991. {
  992. return 0;
  993. }
  994. #endif /* CONFIG_HIGHMEM */
  995. /**
  996. * free_unnecessary_pages - Release preallocated pages not needed for the image
  997. */
  998. static void free_unnecessary_pages(void)
  999. {
  1000. unsigned long save, to_free_normal, to_free_highmem;
  1001. save = count_data_pages();
  1002. if (alloc_normal >= save) {
  1003. to_free_normal = alloc_normal - save;
  1004. save = 0;
  1005. } else {
  1006. to_free_normal = 0;
  1007. save -= alloc_normal;
  1008. }
  1009. save += count_highmem_pages();
  1010. if (alloc_highmem >= save) {
  1011. to_free_highmem = alloc_highmem - save;
  1012. } else {
  1013. to_free_highmem = 0;
  1014. save -= alloc_highmem;
  1015. if (to_free_normal > save)
  1016. to_free_normal -= save;
  1017. else
  1018. to_free_normal = 0;
  1019. }
  1020. memory_bm_position_reset(&copy_bm);
  1021. while (to_free_normal > 0 || to_free_highmem > 0) {
  1022. unsigned long pfn = memory_bm_next_pfn(&copy_bm);
  1023. struct page *page = pfn_to_page(pfn);
  1024. if (PageHighMem(page)) {
  1025. if (!to_free_highmem)
  1026. continue;
  1027. to_free_highmem--;
  1028. alloc_highmem--;
  1029. } else {
  1030. if (!to_free_normal)
  1031. continue;
  1032. to_free_normal--;
  1033. alloc_normal--;
  1034. }
  1035. memory_bm_clear_bit(&copy_bm, pfn);
  1036. swsusp_unset_page_forbidden(page);
  1037. swsusp_unset_page_free(page);
  1038. __free_page(page);
  1039. }
  1040. }
  1041. /**
  1042. * minimum_image_size - Estimate the minimum acceptable size of an image
  1043. * @saveable: Number of saveable pages in the system.
  1044. *
  1045. * We want to avoid attempting to free too much memory too hard, so estimate the
  1046. * minimum acceptable size of a hibernation image to use as the lower limit for
  1047. * preallocating memory.
  1048. *
  1049. * We assume that the minimum image size should be proportional to
  1050. *
  1051. * [number of saveable pages] - [number of pages that can be freed in theory]
  1052. *
  1053. * where the second term is the sum of (1) reclaimable slab pages, (2) active
  1054. * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
  1055. * minus mapped file pages.
  1056. */
  1057. static unsigned long minimum_image_size(unsigned long saveable)
  1058. {
  1059. unsigned long size;
  1060. size = global_page_state(NR_SLAB_RECLAIMABLE)
  1061. + global_page_state(NR_ACTIVE_ANON)
  1062. + global_page_state(NR_INACTIVE_ANON)
  1063. + global_page_state(NR_ACTIVE_FILE)
  1064. + global_page_state(NR_INACTIVE_FILE)
  1065. - global_page_state(NR_FILE_MAPPED);
  1066. return saveable <= size ? 0 : saveable - size;
  1067. }
  1068. /**
  1069. * hibernate_preallocate_memory - Preallocate memory for hibernation image
  1070. *
  1071. * To create a hibernation image it is necessary to make a copy of every page
  1072. * frame in use. We also need a number of page frames to be free during
  1073. * hibernation for allocations made while saving the image and for device
  1074. * drivers, in case they need to allocate memory from their hibernation
  1075. * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
  1076. * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
  1077. * /sys/power/reserved_size, respectively). To make this happen, we compute the
  1078. * total number of available page frames and allocate at least
  1079. *
  1080. * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
  1081. * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
  1082. *
  1083. * of them, which corresponds to the maximum size of a hibernation image.
  1084. *
  1085. * If image_size is set below the number following from the above formula,
  1086. * the preallocation of memory is continued until the total number of saveable
  1087. * pages in the system is below the requested image size or the minimum
  1088. * acceptable image size returned by minimum_image_size(), whichever is greater.
  1089. */
  1090. int hibernate_preallocate_memory(void)
  1091. {
  1092. struct zone *zone;
  1093. unsigned long saveable, size, max_size, count, highmem, pages = 0;
  1094. unsigned long alloc, save_highmem, pages_highmem, avail_normal;
  1095. struct timeval start, stop;
  1096. int error;
  1097. printk(KERN_INFO "PM: Preallocating image memory... ");
  1098. do_gettimeofday(&start);
  1099. error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
  1100. if (error)
  1101. goto err_out;
  1102. error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
  1103. if (error)
  1104. goto err_out;
  1105. alloc_normal = 0;
  1106. alloc_highmem = 0;
  1107. /* Count the number of saveable data pages. */
  1108. save_highmem = count_highmem_pages();
  1109. saveable = count_data_pages();
  1110. /*
  1111. * Compute the total number of page frames we can use (count) and the
  1112. * number of pages needed for image metadata (size).
  1113. */
  1114. count = saveable;
  1115. saveable += save_highmem;
  1116. highmem = save_highmem;
  1117. size = 0;
  1118. for_each_populated_zone(zone) {
  1119. size += snapshot_additional_pages(zone);
  1120. if (is_highmem(zone))
  1121. highmem += zone_page_state(zone, NR_FREE_PAGES);
  1122. else
  1123. count += zone_page_state(zone, NR_FREE_PAGES);
  1124. }
  1125. avail_normal = count;
  1126. count += highmem;
  1127. count -= totalreserve_pages;
  1128. /* Compute the maximum number of saveable pages to leave in memory. */
  1129. max_size = (count - (size + PAGES_FOR_IO)) / 2
  1130. - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
  1131. /* Compute the desired number of image pages specified by image_size. */
  1132. size = DIV_ROUND_UP(image_size, PAGE_SIZE);
  1133. if (size > max_size)
  1134. size = max_size;
  1135. /*
  1136. * If the desired number of image pages is at least as large as the
  1137. * current number of saveable pages in memory, allocate page frames for
  1138. * the image and we're done.
  1139. */
  1140. if (size >= saveable) {
  1141. pages = preallocate_image_highmem(save_highmem);
  1142. pages += preallocate_image_memory(saveable - pages, avail_normal);
  1143. goto out;
  1144. }
  1145. /* Estimate the minimum size of the image. */
  1146. pages = minimum_image_size(saveable);
  1147. /*
  1148. * To avoid excessive pressure on the normal zone, leave room in it to
  1149. * accommodate an image of the minimum size (unless it's already too
  1150. * small, in which case don't preallocate pages from it at all).
  1151. */
  1152. if (avail_normal > pages)
  1153. avail_normal -= pages;
  1154. else
  1155. avail_normal = 0;
  1156. if (size < pages)
  1157. size = min_t(unsigned long, pages, max_size);
  1158. /*
  1159. * Let the memory management subsystem know that we're going to need a
  1160. * large number of page frames to allocate and make it free some memory.
  1161. * NOTE: If this is not done, performance will be hurt badly in some
  1162. * test cases.
  1163. */
  1164. shrink_all_memory(saveable - size);
  1165. /*
  1166. * The number of saveable pages in memory was too high, so apply some
  1167. * pressure to decrease it. First, make room for the largest possible
  1168. * image and fail if that doesn't work. Next, try to decrease the size
  1169. * of the image as much as indicated by 'size' using allocations from
  1170. * highmem and non-highmem zones separately.
  1171. */
  1172. pages_highmem = preallocate_image_highmem(highmem / 2);
  1173. alloc = (count - max_size) - pages_highmem;
  1174. pages = preallocate_image_memory(alloc, avail_normal);
  1175. if (pages < alloc) {
  1176. /* We have exhausted non-highmem pages, try highmem. */
  1177. alloc -= pages;
  1178. pages += pages_highmem;
  1179. pages_highmem = preallocate_image_highmem(alloc);
  1180. if (pages_highmem < alloc)
  1181. goto err_out;
  1182. pages += pages_highmem;
  1183. /*
  1184. * size is the desired number of saveable pages to leave in
  1185. * memory, so try to preallocate (all memory - size) pages.
  1186. */
  1187. alloc = (count - pages) - size;
  1188. pages += preallocate_image_highmem(alloc);
  1189. } else {
  1190. /*
  1191. * There are approximately max_size saveable pages at this point
  1192. * and we want to reduce this number down to size.
  1193. */
  1194. alloc = max_size - size;
  1195. size = preallocate_highmem_fraction(alloc, highmem, count);
  1196. pages_highmem += size;
  1197. alloc -= size;
  1198. size = preallocate_image_memory(alloc, avail_normal);
  1199. pages_highmem += preallocate_image_highmem(alloc - size);
  1200. pages += pages_highmem + size;
  1201. }
  1202. /*
  1203. * We only need as many page frames for the image as there are saveable
  1204. * pages in memory, but we have allocated more. Release the excessive
  1205. * ones now.
  1206. */
  1207. free_unnecessary_pages();
  1208. out:
  1209. do_gettimeofday(&stop);
  1210. printk(KERN_CONT "done (allocated %lu pages)\n", pages);
  1211. swsusp_show_speed(&start, &stop, pages, "Allocated");
  1212. return 0;
  1213. err_out:
  1214. printk(KERN_CONT "\n");
  1215. swsusp_free();
  1216. return -ENOMEM;
  1217. }
  1218. #ifdef CONFIG_HIGHMEM
  1219. /**
  1220. * count_pages_for_highmem - compute the number of non-highmem pages
  1221. * that will be necessary for creating copies of highmem pages.
  1222. */
  1223. static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
  1224. {
  1225. unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
  1226. if (free_highmem >= nr_highmem)
  1227. nr_highmem = 0;
  1228. else
  1229. nr_highmem -= free_highmem;
  1230. return nr_highmem;
  1231. }
  1232. #else
  1233. static unsigned int
  1234. count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
  1235. #endif /* CONFIG_HIGHMEM */
  1236. /**
  1237. * enough_free_mem - Make sure we have enough free memory for the
  1238. * snapshot image.
  1239. */
  1240. static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
  1241. {
  1242. struct zone *zone;
  1243. unsigned int free = alloc_normal;
  1244. for_each_populated_zone(zone)
  1245. if (!is_highmem(zone))
  1246. free += zone_page_state(zone, NR_FREE_PAGES);
  1247. nr_pages += count_pages_for_highmem(nr_highmem);
  1248. pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
  1249. nr_pages, PAGES_FOR_IO, free);
  1250. return free > nr_pages + PAGES_FOR_IO;
  1251. }
  1252. #ifdef CONFIG_HIGHMEM
  1253. /**
  1254. * get_highmem_buffer - if there are some highmem pages in the suspend
  1255. * image, we may need the buffer to copy them and/or load their data.
  1256. */
  1257. static inline int get_highmem_buffer(int safe_needed)
  1258. {
  1259. buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
  1260. return buffer ? 0 : -ENOMEM;
  1261. }
  1262. /**
  1263. * alloc_highmem_image_pages - allocate some highmem pages for the image.
  1264. * Try to allocate as many pages as needed, but if the number of free
  1265. * highmem pages is lesser than that, allocate them all.
  1266. */
  1267. static inline unsigned int
  1268. alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
  1269. {
  1270. unsigned int to_alloc = count_free_highmem_pages();
  1271. if (to_alloc > nr_highmem)
  1272. to_alloc = nr_highmem;
  1273. nr_highmem -= to_alloc;
  1274. while (to_alloc-- > 0) {
  1275. struct page *page;
  1276. page = alloc_image_page(__GFP_HIGHMEM);
  1277. memory_bm_set_bit(bm, page_to_pfn(page));
  1278. }
  1279. return nr_highmem;
  1280. }
  1281. #else
  1282. static inline int get_highmem_buffer(int safe_needed) { return 0; }
  1283. static inline unsigned int
  1284. alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
  1285. #endif /* CONFIG_HIGHMEM */
  1286. /**
  1287. * swsusp_alloc - allocate memory for the suspend image
  1288. *
  1289. * We first try to allocate as many highmem pages as there are
  1290. * saveable highmem pages in the system. If that fails, we allocate
  1291. * non-highmem pages for the copies of the remaining highmem ones.
  1292. *
  1293. * In this approach it is likely that the copies of highmem pages will
  1294. * also be located in the high memory, because of the way in which
  1295. * copy_data_pages() works.
  1296. */
  1297. static int
  1298. swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
  1299. unsigned int nr_pages, unsigned int nr_highmem)
  1300. {
  1301. if (nr_highmem > 0) {
  1302. if (get_highmem_buffer(PG_ANY))
  1303. goto err_out;
  1304. if (nr_highmem > alloc_highmem) {
  1305. nr_highmem -= alloc_highmem;
  1306. nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
  1307. }
  1308. }
  1309. if (nr_pages > alloc_normal) {
  1310. nr_pages -= alloc_normal;
  1311. while (nr_pages-- > 0) {
  1312. struct page *page;
  1313. page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
  1314. if (!page)
  1315. goto err_out;
  1316. memory_bm_set_bit(copy_bm, page_to_pfn(page));
  1317. }
  1318. }
  1319. return 0;
  1320. err_out:
  1321. swsusp_free();
  1322. return -ENOMEM;
  1323. }
  1324. asmlinkage int swsusp_save(void)
  1325. {
  1326. unsigned int nr_pages, nr_highmem;
  1327. printk(KERN_INFO "PM: Creating hibernation image:\n");
  1328. drain_local_pages(NULL);
  1329. nr_pages = count_data_pages();
  1330. nr_highmem = count_highmem_pages();
  1331. printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
  1332. if (!enough_free_mem(nr_pages, nr_highmem)) {
  1333. printk(KERN_ERR "PM: Not enough free memory\n");
  1334. return -ENOMEM;
  1335. }
  1336. if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
  1337. printk(KERN_ERR "PM: Memory allocation failed\n");
  1338. return -ENOMEM;
  1339. }
  1340. /* During allocating of suspend pagedir, new cold pages may appear.
  1341. * Kill them.
  1342. */
  1343. drain_local_pages(NULL);
  1344. copy_data_pages(&copy_bm, &orig_bm);
  1345. /*
  1346. * End of critical section. From now on, we can write to memory,
  1347. * but we should not touch disk. This specially means we must _not_
  1348. * touch swap space! Except we must write out our image of course.
  1349. */
  1350. nr_pages += nr_highmem;
  1351. nr_copy_pages = nr_pages;
  1352. nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
  1353. printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
  1354. nr_pages);
  1355. return 0;
  1356. }
  1357. #ifndef CONFIG_ARCH_HIBERNATION_HEADER
  1358. static int init_header_complete(struct swsusp_info *info)
  1359. {
  1360. memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
  1361. info->version_code = LINUX_VERSION_CODE;
  1362. return 0;
  1363. }
  1364. static char *check_image_kernel(struct swsusp_info *info)
  1365. {
  1366. if (info->version_code != LINUX_VERSION_CODE)
  1367. return "kernel version";
  1368. if (strcmp(info->uts.sysname,init_utsname()->sysname))
  1369. return "system type";
  1370. if (strcmp(info->uts.release,init_utsname()->release))
  1371. return "kernel release";
  1372. if (strcmp(info->uts.version,init_utsname()->version))
  1373. return "version";
  1374. if (strcmp(info->uts.machine,init_utsname()->machine))
  1375. return "machine";
  1376. return NULL;
  1377. }
  1378. #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
  1379. unsigned long snapshot_get_image_size(void)
  1380. {
  1381. return nr_copy_pages + nr_meta_pages + 1;
  1382. }
  1383. static int init_header(struct swsusp_info *info)
  1384. {
  1385. memset(info, 0, sizeof(struct swsusp_info));
  1386. info->num_physpages = num_physpages;
  1387. info->image_pages = nr_copy_pages;
  1388. info->pages = snapshot_get_image_size();
  1389. info->size = info->pages;
  1390. info->size <<= PAGE_SHIFT;
  1391. return init_header_complete(info);
  1392. }
  1393. /**
  1394. * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
  1395. * are stored in the array @buf[] (1 page at a time)
  1396. */
  1397. static inline void
  1398. pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1399. {
  1400. int j;
  1401. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1402. buf[j] = memory_bm_next_pfn(bm);
  1403. if (unlikely(buf[j] == BM_END_OF_MAP))
  1404. break;
  1405. }
  1406. }
  1407. /**
  1408. * snapshot_read_next - used for reading the system memory snapshot.
  1409. *
  1410. * On the first call to it @handle should point to a zeroed
  1411. * snapshot_handle structure. The structure gets updated and a pointer
  1412. * to it should be passed to this function every next time.
  1413. *
  1414. * On success the function returns a positive number. Then, the caller
  1415. * is allowed to read up to the returned number of bytes from the memory
  1416. * location computed by the data_of() macro.
  1417. *
  1418. * The function returns 0 to indicate the end of data stream condition,
  1419. * and a negative number is returned on error. In such cases the
  1420. * structure pointed to by @handle is not updated and should not be used
  1421. * any more.
  1422. */
  1423. int snapshot_read_next(struct snapshot_handle *handle)
  1424. {
  1425. if (handle->cur > nr_meta_pages + nr_copy_pages)
  1426. return 0;
  1427. if (!buffer) {
  1428. /* This makes the buffer be freed by swsusp_free() */
  1429. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1430. if (!buffer)
  1431. return -ENOMEM;
  1432. }
  1433. if (!handle->cur) {
  1434. int error;
  1435. error = init_header((struct swsusp_info *)buffer);
  1436. if (error)
  1437. return error;
  1438. handle->buffer = buffer;
  1439. memory_bm_position_reset(&orig_bm);
  1440. memory_bm_position_reset(&copy_bm);
  1441. } else if (handle->cur <= nr_meta_pages) {
  1442. clear_page(buffer);
  1443. pack_pfns(buffer, &orig_bm);
  1444. } else {
  1445. struct page *page;
  1446. page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
  1447. if (PageHighMem(page)) {
  1448. /* Highmem pages are copied to the buffer,
  1449. * because we can't return with a kmapped
  1450. * highmem page (we may not be called again).
  1451. */
  1452. void *kaddr;
  1453. kaddr = kmap_atomic(page, KM_USER0);
  1454. copy_page(buffer, kaddr);
  1455. kunmap_atomic(kaddr, KM_USER0);
  1456. handle->buffer = buffer;
  1457. } else {
  1458. handle->buffer = page_address(page);
  1459. }
  1460. }
  1461. handle->cur++;
  1462. return PAGE_SIZE;
  1463. }
  1464. /**
  1465. * mark_unsafe_pages - mark the pages that cannot be used for storing
  1466. * the image during resume, because they conflict with the pages that
  1467. * had been used before suspend
  1468. */
  1469. static int mark_unsafe_pages(struct memory_bitmap *bm)
  1470. {
  1471. struct zone *zone;
  1472. unsigned long pfn, max_zone_pfn;
  1473. /* Clear page flags */
  1474. for_each_populated_zone(zone) {
  1475. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1476. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1477. if (pfn_valid(pfn))
  1478. swsusp_unset_page_free(pfn_to_page(pfn));
  1479. }
  1480. /* Mark pages that correspond to the "original" pfns as "unsafe" */
  1481. memory_bm_position_reset(bm);
  1482. do {
  1483. pfn = memory_bm_next_pfn(bm);
  1484. if (likely(pfn != BM_END_OF_MAP)) {
  1485. if (likely(pfn_valid(pfn)))
  1486. swsusp_set_page_free(pfn_to_page(pfn));
  1487. else
  1488. return -EFAULT;
  1489. }
  1490. } while (pfn != BM_END_OF_MAP);
  1491. allocated_unsafe_pages = 0;
  1492. return 0;
  1493. }
  1494. static void
  1495. duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
  1496. {
  1497. unsigned long pfn;
  1498. memory_bm_position_reset(src);
  1499. pfn = memory_bm_next_pfn(src);
  1500. while (pfn != BM_END_OF_MAP) {
  1501. memory_bm_set_bit(dst, pfn);
  1502. pfn = memory_bm_next_pfn(src);
  1503. }
  1504. }
  1505. static int check_header(struct swsusp_info *info)
  1506. {
  1507. char *reason;
  1508. reason = check_image_kernel(info);
  1509. if (!reason && info->num_physpages != num_physpages)
  1510. reason = "memory size";
  1511. if (reason) {
  1512. printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
  1513. return -EPERM;
  1514. }
  1515. return 0;
  1516. }
  1517. /**
  1518. * load header - check the image header and copy data from it
  1519. */
  1520. static int
  1521. load_header(struct swsusp_info *info)
  1522. {
  1523. int error;
  1524. restore_pblist = NULL;
  1525. error = check_header(info);
  1526. if (!error) {
  1527. nr_copy_pages = info->image_pages;
  1528. nr_meta_pages = info->pages - info->image_pages - 1;
  1529. }
  1530. return error;
  1531. }
  1532. /**
  1533. * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
  1534. * the corresponding bit in the memory bitmap @bm
  1535. */
  1536. static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1537. {
  1538. int j;
  1539. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1540. if (unlikely(buf[j] == BM_END_OF_MAP))
  1541. break;
  1542. if (memory_bm_pfn_present(bm, buf[j]))
  1543. memory_bm_set_bit(bm, buf[j]);
  1544. else
  1545. return -EFAULT;
  1546. }
  1547. return 0;
  1548. }
  1549. /* List of "safe" pages that may be used to store data loaded from the suspend
  1550. * image
  1551. */
  1552. static struct linked_page *safe_pages_list;
  1553. #ifdef CONFIG_HIGHMEM
  1554. /* struct highmem_pbe is used for creating the list of highmem pages that
  1555. * should be restored atomically during the resume from disk, because the page
  1556. * frames they have occupied before the suspend are in use.
  1557. */
  1558. struct highmem_pbe {
  1559. struct page *copy_page; /* data is here now */
  1560. struct page *orig_page; /* data was here before the suspend */
  1561. struct highmem_pbe *next;
  1562. };
  1563. /* List of highmem PBEs needed for restoring the highmem pages that were
  1564. * allocated before the suspend and included in the suspend image, but have
  1565. * also been allocated by the "resume" kernel, so their contents cannot be
  1566. * written directly to their "original" page frames.
  1567. */
  1568. static struct highmem_pbe *highmem_pblist;
  1569. /**
  1570. * count_highmem_image_pages - compute the number of highmem pages in the
  1571. * suspend image. The bits in the memory bitmap @bm that correspond to the
  1572. * image pages are assumed to be set.
  1573. */
  1574. static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
  1575. {
  1576. unsigned long pfn;
  1577. unsigned int cnt = 0;
  1578. memory_bm_position_reset(bm);
  1579. pfn = memory_bm_next_pfn(bm);
  1580. while (pfn != BM_END_OF_MAP) {
  1581. if (PageHighMem(pfn_to_page(pfn)))
  1582. cnt++;
  1583. pfn = memory_bm_next_pfn(bm);
  1584. }
  1585. return cnt;
  1586. }
  1587. /**
  1588. * prepare_highmem_image - try to allocate as many highmem pages as
  1589. * there are highmem image pages (@nr_highmem_p points to the variable
  1590. * containing the number of highmem image pages). The pages that are
  1591. * "safe" (ie. will not be overwritten when the suspend image is
  1592. * restored) have the corresponding bits set in @bm (it must be
  1593. * unitialized).
  1594. *
  1595. * NOTE: This function should not be called if there are no highmem
  1596. * image pages.
  1597. */
  1598. static unsigned int safe_highmem_pages;
  1599. static struct memory_bitmap *safe_highmem_bm;
  1600. static int
  1601. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1602. {
  1603. unsigned int to_alloc;
  1604. if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
  1605. return -ENOMEM;
  1606. if (get_highmem_buffer(PG_SAFE))
  1607. return -ENOMEM;
  1608. to_alloc = count_free_highmem_pages();
  1609. if (to_alloc > *nr_highmem_p)
  1610. to_alloc = *nr_highmem_p;
  1611. else
  1612. *nr_highmem_p = to_alloc;
  1613. safe_highmem_pages = 0;
  1614. while (to_alloc-- > 0) {
  1615. struct page *page;
  1616. page = alloc_page(__GFP_HIGHMEM);
  1617. if (!swsusp_page_is_free(page)) {
  1618. /* The page is "safe", set its bit the bitmap */
  1619. memory_bm_set_bit(bm, page_to_pfn(page));
  1620. safe_highmem_pages++;
  1621. }
  1622. /* Mark the page as allocated */
  1623. swsusp_set_page_forbidden(page);
  1624. swsusp_set_page_free(page);
  1625. }
  1626. memory_bm_position_reset(bm);
  1627. safe_highmem_bm = bm;
  1628. return 0;
  1629. }
  1630. /**
  1631. * get_highmem_page_buffer - for given highmem image page find the buffer
  1632. * that suspend_write_next() should set for its caller to write to.
  1633. *
  1634. * If the page is to be saved to its "original" page frame or a copy of
  1635. * the page is to be made in the highmem, @buffer is returned. Otherwise,
  1636. * the copy of the page is to be made in normal memory, so the address of
  1637. * the copy is returned.
  1638. *
  1639. * If @buffer is returned, the caller of suspend_write_next() will write
  1640. * the page's contents to @buffer, so they will have to be copied to the
  1641. * right location on the next call to suspend_write_next() and it is done
  1642. * with the help of copy_last_highmem_page(). For this purpose, if
  1643. * @buffer is returned, @last_highmem page is set to the page to which
  1644. * the data will have to be copied from @buffer.
  1645. */
  1646. static struct page *last_highmem_page;
  1647. static void *
  1648. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1649. {
  1650. struct highmem_pbe *pbe;
  1651. void *kaddr;
  1652. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
  1653. /* We have allocated the "original" page frame and we can
  1654. * use it directly to store the loaded page.
  1655. */
  1656. last_highmem_page = page;
  1657. return buffer;
  1658. }
  1659. /* The "original" page frame has not been allocated and we have to
  1660. * use a "safe" page frame to store the loaded page.
  1661. */
  1662. pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
  1663. if (!pbe) {
  1664. swsusp_free();
  1665. return ERR_PTR(-ENOMEM);
  1666. }
  1667. pbe->orig_page = page;
  1668. if (safe_highmem_pages > 0) {
  1669. struct page *tmp;
  1670. /* Copy of the page will be stored in high memory */
  1671. kaddr = buffer;
  1672. tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
  1673. safe_highmem_pages--;
  1674. last_highmem_page = tmp;
  1675. pbe->copy_page = tmp;
  1676. } else {
  1677. /* Copy of the page will be stored in normal memory */
  1678. kaddr = safe_pages_list;
  1679. safe_pages_list = safe_pages_list->next;
  1680. pbe->copy_page = virt_to_page(kaddr);
  1681. }
  1682. pbe->next = highmem_pblist;
  1683. highmem_pblist = pbe;
  1684. return kaddr;
  1685. }
  1686. /**
  1687. * copy_last_highmem_page - copy the contents of a highmem image from
  1688. * @buffer, where the caller of snapshot_write_next() has place them,
  1689. * to the right location represented by @last_highmem_page .
  1690. */
  1691. static void copy_last_highmem_page(void)
  1692. {
  1693. if (last_highmem_page) {
  1694. void *dst;
  1695. dst = kmap_atomic(last_highmem_page, KM_USER0);
  1696. copy_page(dst, buffer);
  1697. kunmap_atomic(dst, KM_USER0);
  1698. last_highmem_page = NULL;
  1699. }
  1700. }
  1701. static inline int last_highmem_page_copied(void)
  1702. {
  1703. return !last_highmem_page;
  1704. }
  1705. static inline void free_highmem_data(void)
  1706. {
  1707. if (safe_highmem_bm)
  1708. memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
  1709. if (buffer)
  1710. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1711. }
  1712. #else
  1713. static inline int get_safe_write_buffer(void) { return 0; }
  1714. static unsigned int
  1715. count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
  1716. static inline int
  1717. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1718. {
  1719. return 0;
  1720. }
  1721. static inline void *
  1722. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1723. {
  1724. return ERR_PTR(-EINVAL);
  1725. }
  1726. static inline void copy_last_highmem_page(void) {}
  1727. static inline int last_highmem_page_copied(void) { return 1; }
  1728. static inline void free_highmem_data(void) {}
  1729. #endif /* CONFIG_HIGHMEM */
  1730. /**
  1731. * prepare_image - use the memory bitmap @bm to mark the pages that will
  1732. * be overwritten in the process of restoring the system memory state
  1733. * from the suspend image ("unsafe" pages) and allocate memory for the
  1734. * image.
  1735. *
  1736. * The idea is to allocate a new memory bitmap first and then allocate
  1737. * as many pages as needed for the image data, but not to assign these
  1738. * pages to specific tasks initially. Instead, we just mark them as
  1739. * allocated and create a lists of "safe" pages that will be used
  1740. * later. On systems with high memory a list of "safe" highmem pages is
  1741. * also created.
  1742. */
  1743. #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
  1744. static int
  1745. prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
  1746. {
  1747. unsigned int nr_pages, nr_highmem;
  1748. struct linked_page *sp_list, *lp;
  1749. int error;
  1750. /* If there is no highmem, the buffer will not be necessary */
  1751. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1752. buffer = NULL;
  1753. nr_highmem = count_highmem_image_pages(bm);
  1754. error = mark_unsafe_pages(bm);
  1755. if (error)
  1756. goto Free;
  1757. error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
  1758. if (error)
  1759. goto Free;
  1760. duplicate_memory_bitmap(new_bm, bm);
  1761. memory_bm_free(bm, PG_UNSAFE_KEEP);
  1762. if (nr_highmem > 0) {
  1763. error = prepare_highmem_image(bm, &nr_highmem);
  1764. if (error)
  1765. goto Free;
  1766. }
  1767. /* Reserve some safe pages for potential later use.
  1768. *
  1769. * NOTE: This way we make sure there will be enough safe pages for the
  1770. * chain_alloc() in get_buffer(). It is a bit wasteful, but
  1771. * nr_copy_pages cannot be greater than 50% of the memory anyway.
  1772. */
  1773. sp_list = NULL;
  1774. /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
  1775. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1776. nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
  1777. while (nr_pages > 0) {
  1778. lp = get_image_page(GFP_ATOMIC, PG_SAFE);
  1779. if (!lp) {
  1780. error = -ENOMEM;
  1781. goto Free;
  1782. }
  1783. lp->next = sp_list;
  1784. sp_list = lp;
  1785. nr_pages--;
  1786. }
  1787. /* Preallocate memory for the image */
  1788. safe_pages_list = NULL;
  1789. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1790. while (nr_pages > 0) {
  1791. lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
  1792. if (!lp) {
  1793. error = -ENOMEM;
  1794. goto Free;
  1795. }
  1796. if (!swsusp_page_is_free(virt_to_page(lp))) {
  1797. /* The page is "safe", add it to the list */
  1798. lp->next = safe_pages_list;
  1799. safe_pages_list = lp;
  1800. }
  1801. /* Mark the page as allocated */
  1802. swsusp_set_page_forbidden(virt_to_page(lp));
  1803. swsusp_set_page_free(virt_to_page(lp));
  1804. nr_pages--;
  1805. }
  1806. /* Free the reserved safe pages so that chain_alloc() can use them */
  1807. while (sp_list) {
  1808. lp = sp_list->next;
  1809. free_image_page(sp_list, PG_UNSAFE_CLEAR);
  1810. sp_list = lp;
  1811. }
  1812. return 0;
  1813. Free:
  1814. swsusp_free();
  1815. return error;
  1816. }
  1817. /**
  1818. * get_buffer - compute the address that snapshot_write_next() should
  1819. * set for its caller to write to.
  1820. */
  1821. static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
  1822. {
  1823. struct pbe *pbe;
  1824. struct page *page;
  1825. unsigned long pfn = memory_bm_next_pfn(bm);
  1826. if (pfn == BM_END_OF_MAP)
  1827. return ERR_PTR(-EFAULT);
  1828. page = pfn_to_page(pfn);
  1829. if (PageHighMem(page))
  1830. return get_highmem_page_buffer(page, ca);
  1831. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
  1832. /* We have allocated the "original" page frame and we can
  1833. * use it directly to store the loaded page.
  1834. */
  1835. return page_address(page);
  1836. /* The "original" page frame has not been allocated and we have to
  1837. * use a "safe" page frame to store the loaded page.
  1838. */
  1839. pbe = chain_alloc(ca, sizeof(struct pbe));
  1840. if (!pbe) {
  1841. swsusp_free();
  1842. return ERR_PTR(-ENOMEM);
  1843. }
  1844. pbe->orig_address = page_address(page);
  1845. pbe->address = safe_pages_list;
  1846. safe_pages_list = safe_pages_list->next;
  1847. pbe->next = restore_pblist;
  1848. restore_pblist = pbe;
  1849. return pbe->address;
  1850. }
  1851. /**
  1852. * snapshot_write_next - used for writing the system memory snapshot.
  1853. *
  1854. * On the first call to it @handle should point to a zeroed
  1855. * snapshot_handle structure. The structure gets updated and a pointer
  1856. * to it should be passed to this function every next time.
  1857. *
  1858. * On success the function returns a positive number. Then, the caller
  1859. * is allowed to write up to the returned number of bytes to the memory
  1860. * location computed by the data_of() macro.
  1861. *
  1862. * The function returns 0 to indicate the "end of file" condition,
  1863. * and a negative number is returned on error. In such cases the
  1864. * structure pointed to by @handle is not updated and should not be used
  1865. * any more.
  1866. */
  1867. int snapshot_write_next(struct snapshot_handle *handle)
  1868. {
  1869. static struct chain_allocator ca;
  1870. int error = 0;
  1871. /* Check if we have already loaded the entire image */
  1872. if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
  1873. return 0;
  1874. handle->sync_read = 1;
  1875. if (!handle->cur) {
  1876. if (!buffer)
  1877. /* This makes the buffer be freed by swsusp_free() */
  1878. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1879. if (!buffer)
  1880. return -ENOMEM;
  1881. handle->buffer = buffer;
  1882. } else if (handle->cur == 1) {
  1883. error = load_header(buffer);
  1884. if (error)
  1885. return error;
  1886. error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
  1887. if (error)
  1888. return error;
  1889. } else if (handle->cur <= nr_meta_pages + 1) {
  1890. error = unpack_orig_pfns(buffer, &copy_bm);
  1891. if (error)
  1892. return error;
  1893. if (handle->cur == nr_meta_pages + 1) {
  1894. error = prepare_image(&orig_bm, &copy_bm);
  1895. if (error)
  1896. return error;
  1897. chain_init(&ca, GFP_ATOMIC, PG_SAFE);
  1898. memory_bm_position_reset(&orig_bm);
  1899. restore_pblist = NULL;
  1900. handle->buffer = get_buffer(&orig_bm, &ca);
  1901. handle->sync_read = 0;
  1902. if (IS_ERR(handle->buffer))
  1903. return PTR_ERR(handle->buffer);
  1904. }
  1905. } else {
  1906. copy_last_highmem_page();
  1907. handle->buffer = get_buffer(&orig_bm, &ca);
  1908. if (IS_ERR(handle->buffer))
  1909. return PTR_ERR(handle->buffer);
  1910. if (handle->buffer != buffer)
  1911. handle->sync_read = 0;
  1912. }
  1913. handle->cur++;
  1914. return PAGE_SIZE;
  1915. }
  1916. /**
  1917. * snapshot_write_finalize - must be called after the last call to
  1918. * snapshot_write_next() in case the last page in the image happens
  1919. * to be a highmem page and its contents should be stored in the
  1920. * highmem. Additionally, it releases the memory that will not be
  1921. * used any more.
  1922. */
  1923. void snapshot_write_finalize(struct snapshot_handle *handle)
  1924. {
  1925. copy_last_highmem_page();
  1926. /* Free only if we have loaded the image entirely */
  1927. if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
  1928. memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
  1929. free_highmem_data();
  1930. }
  1931. }
  1932. int snapshot_image_loaded(struct snapshot_handle *handle)
  1933. {
  1934. return !(!nr_copy_pages || !last_highmem_page_copied() ||
  1935. handle->cur <= nr_meta_pages + nr_copy_pages);
  1936. }
  1937. #ifdef CONFIG_HIGHMEM
  1938. /* Assumes that @buf is ready and points to a "safe" page */
  1939. static inline void
  1940. swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
  1941. {
  1942. void *kaddr1, *kaddr2;
  1943. kaddr1 = kmap_atomic(p1, KM_USER0);
  1944. kaddr2 = kmap_atomic(p2, KM_USER1);
  1945. copy_page(buf, kaddr1);
  1946. copy_page(kaddr1, kaddr2);
  1947. copy_page(kaddr2, buf);
  1948. kunmap_atomic(kaddr2, KM_USER1);
  1949. kunmap_atomic(kaddr1, KM_USER0);
  1950. }
  1951. /**
  1952. * restore_highmem - for each highmem page that was allocated before
  1953. * the suspend and included in the suspend image, and also has been
  1954. * allocated by the "resume" kernel swap its current (ie. "before
  1955. * resume") contents with the previous (ie. "before suspend") one.
  1956. *
  1957. * If the resume eventually fails, we can call this function once
  1958. * again and restore the "before resume" highmem state.
  1959. */
  1960. int restore_highmem(void)
  1961. {
  1962. struct highmem_pbe *pbe = highmem_pblist;
  1963. void *buf;
  1964. if (!pbe)
  1965. return 0;
  1966. buf = get_image_page(GFP_ATOMIC, PG_SAFE);
  1967. if (!buf)
  1968. return -ENOMEM;
  1969. while (pbe) {
  1970. swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
  1971. pbe = pbe->next;
  1972. }
  1973. free_image_page(buf, PG_UNSAFE_CLEAR);
  1974. return 0;
  1975. }
  1976. #endif /* CONFIG_HIGHMEM */