fsync.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. /*
  2. * linux/fs/ext4/fsync.c
  3. *
  4. * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
  5. * from
  6. * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
  7. * Laboratoire MASI - Institut Blaise Pascal
  8. * Universite Pierre et Marie Curie (Paris VI)
  9. * from
  10. * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
  11. *
  12. * ext4fs fsync primitive
  13. *
  14. * Big-endian to little-endian byte-swapping/bitmaps by
  15. * David S. Miller (davem@caip.rutgers.edu), 1995
  16. *
  17. * Removed unnecessary code duplication for little endian machines
  18. * and excessive __inline__s.
  19. * Andi Kleen, 1997
  20. *
  21. * Major simplications and cleanup - we only need to do the metadata, because
  22. * we can depend on generic_block_fdatasync() to sync the data blocks.
  23. */
  24. #include <linux/time.h>
  25. #include <linux/fs.h>
  26. #include <linux/sched.h>
  27. #include <linux/writeback.h>
  28. #include <linux/jbd2.h>
  29. #include <linux/blkdev.h>
  30. #include "ext4.h"
  31. #include "ext4_jbd2.h"
  32. #include <trace/events/ext4.h>
  33. static void dump_completed_IO(struct inode * inode)
  34. {
  35. #ifdef EXT4FS_DEBUG
  36. struct list_head *cur, *before, *after;
  37. ext4_io_end_t *io, *io0, *io1;
  38. unsigned long flags;
  39. if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
  40. ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
  41. return;
  42. }
  43. ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
  44. spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
  45. list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
  46. cur = &io->list;
  47. before = cur->prev;
  48. io0 = container_of(before, ext4_io_end_t, list);
  49. after = cur->next;
  50. io1 = container_of(after, ext4_io_end_t, list);
  51. ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
  52. io, inode->i_ino, io0, io1);
  53. }
  54. spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
  55. #endif
  56. }
  57. /*
  58. * This function is called from ext4_sync_file().
  59. *
  60. * When IO is completed, the work to convert unwritten extents to
  61. * written is queued on workqueue but may not get immediately
  62. * scheduled. When fsync is called, we need to ensure the
  63. * conversion is complete before fsync returns.
  64. * The inode keeps track of a list of pending/completed IO that
  65. * might needs to do the conversion. This function walks through
  66. * the list and convert the related unwritten extents for completed IO
  67. * to written.
  68. * The function return the number of pending IOs on success.
  69. */
  70. extern int ext4_flush_completed_IO(struct inode *inode)
  71. {
  72. ext4_io_end_t *io;
  73. struct ext4_inode_info *ei = EXT4_I(inode);
  74. unsigned long flags;
  75. int ret = 0;
  76. int ret2 = 0;
  77. if (list_empty(&ei->i_completed_io_list))
  78. return ret;
  79. dump_completed_IO(inode);
  80. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  81. while (!list_empty(&ei->i_completed_io_list)){
  82. io = list_entry(ei->i_completed_io_list.next,
  83. ext4_io_end_t, list);
  84. /*
  85. * Calling ext4_end_io_nolock() to convert completed
  86. * IO to written.
  87. *
  88. * When ext4_sync_file() is called, run_queue() may already
  89. * about to flush the work corresponding to this io structure.
  90. * It will be upset if it founds the io structure related
  91. * to the work-to-be schedule is freed.
  92. *
  93. * Thus we need to keep the io structure still valid here after
  94. * conversion finished. The io structure has a flag to
  95. * avoid double converting from both fsync and background work
  96. * queue work.
  97. */
  98. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  99. ret = ext4_end_io_nolock(io);
  100. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  101. if (ret < 0)
  102. ret2 = ret;
  103. else
  104. list_del_init(&io->list);
  105. }
  106. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  107. return (ret2 < 0) ? ret2 : 0;
  108. }
  109. /*
  110. * If we're not journaling and this is a just-created file, we have to
  111. * sync our parent directory (if it was freshly created) since
  112. * otherwise it will only be written by writeback, leaving a huge
  113. * window during which a crash may lose the file. This may apply for
  114. * the parent directory's parent as well, and so on recursively, if
  115. * they are also freshly created.
  116. */
  117. static int ext4_sync_parent(struct inode *inode)
  118. {
  119. struct writeback_control wbc;
  120. struct dentry *dentry = NULL;
  121. struct inode *next;
  122. int ret = 0;
  123. if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
  124. return 0;
  125. inode = igrab(inode);
  126. while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
  127. ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
  128. dentry = NULL;
  129. spin_lock(&inode->i_lock);
  130. if (!list_empty(&inode->i_dentry)) {
  131. dentry = list_first_entry(&inode->i_dentry,
  132. struct dentry, d_alias);
  133. dget(dentry);
  134. }
  135. spin_unlock(&inode->i_lock);
  136. if (!dentry)
  137. break;
  138. next = igrab(dentry->d_parent->d_inode);
  139. dput(dentry);
  140. if (!next)
  141. break;
  142. iput(inode);
  143. inode = next;
  144. ret = sync_mapping_buffers(inode->i_mapping);
  145. if (ret)
  146. break;
  147. memset(&wbc, 0, sizeof(wbc));
  148. wbc.sync_mode = WB_SYNC_ALL;
  149. wbc.nr_to_write = 0; /* only write out the inode */
  150. ret = sync_inode(inode, &wbc);
  151. if (ret)
  152. break;
  153. }
  154. iput(inode);
  155. return ret;
  156. }
  157. /**
  158. * __sync_file - generic_file_fsync without the locking and filemap_write
  159. * @inode: inode to sync
  160. * @datasync: only sync essential metadata if true
  161. *
  162. * This is just generic_file_fsync without the locking. This is needed for
  163. * nojournal mode to make sure this inodes data/metadata makes it to disk
  164. * properly. The i_mutex should be held already.
  165. */
  166. static int __sync_inode(struct inode *inode, int datasync)
  167. {
  168. int err;
  169. int ret;
  170. ret = sync_mapping_buffers(inode->i_mapping);
  171. if (!(inode->i_state & I_DIRTY))
  172. return ret;
  173. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  174. return ret;
  175. err = sync_inode_metadata(inode, 1);
  176. if (ret == 0)
  177. ret = err;
  178. return ret;
  179. }
  180. /*
  181. * akpm: A new design for ext4_sync_file().
  182. *
  183. * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
  184. * There cannot be a transaction open by this task.
  185. * Another task could have dirtied this inode. Its data can be in any
  186. * state in the journalling system.
  187. *
  188. * What we do is just kick off a commit and wait on it. This will snapshot the
  189. * inode to disk.
  190. *
  191. * i_mutex lock is held when entering and exiting this function
  192. */
  193. int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  194. {
  195. struct inode *inode = file->f_mapping->host;
  196. struct ext4_inode_info *ei = EXT4_I(inode);
  197. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  198. int ret;
  199. tid_t commit_tid;
  200. bool needs_barrier = false;
  201. J_ASSERT(ext4_journal_current_handle() == NULL);
  202. trace_ext4_sync_file_enter(file, datasync);
  203. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  204. if (ret)
  205. return ret;
  206. mutex_lock(&inode->i_mutex);
  207. if (inode->i_sb->s_flags & MS_RDONLY)
  208. goto out;
  209. ret = ext4_flush_completed_IO(inode);
  210. if (ret < 0)
  211. goto out;
  212. if (!journal) {
  213. ret = __sync_inode(inode, datasync);
  214. if (!ret && !list_empty(&inode->i_dentry))
  215. ret = ext4_sync_parent(inode);
  216. goto out;
  217. }
  218. /*
  219. * data=writeback,ordered:
  220. * The caller's filemap_fdatawrite()/wait will sync the data.
  221. * Metadata is in the journal, we wait for proper transaction to
  222. * commit here.
  223. *
  224. * data=journal:
  225. * filemap_fdatawrite won't do anything (the buffers are clean).
  226. * ext4_force_commit will write the file data into the journal and
  227. * will wait on that.
  228. * filemap_fdatawait() will encounter a ton of newly-dirtied pages
  229. * (they were dirtied by commit). But that's OK - the blocks are
  230. * safe in-journal, which is all fsync() needs to ensure.
  231. */
  232. if (ext4_should_journal_data(inode)) {
  233. ret = ext4_force_commit(inode->i_sb);
  234. goto out;
  235. }
  236. commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
  237. if (journal->j_flags & JBD2_BARRIER &&
  238. !jbd2_trans_will_send_data_barrier(journal, commit_tid))
  239. needs_barrier = true;
  240. jbd2_log_start_commit(journal, commit_tid);
  241. ret = jbd2_log_wait_commit(journal, commit_tid);
  242. if (needs_barrier)
  243. blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  244. out:
  245. mutex_unlock(&inode->i_mutex);
  246. trace_ext4_sync_file_exit(inode, ret);
  247. return ret;
  248. }