inode.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include <trace/events/ext3.h>
  41. #include "xattr.h"
  42. #include "acl.h"
  43. static int ext3_writepage_trans_blocks(struct inode *inode);
  44. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  45. /*
  46. * Test whether an inode is a fast symlink.
  47. */
  48. static int ext3_inode_is_fast_symlink(struct inode *inode)
  49. {
  50. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  51. (inode->i_sb->s_blocksize >> 9) : 0;
  52. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  53. }
  54. /*
  55. * The ext3 forget function must perform a revoke if we are freeing data
  56. * which has been journaled. Metadata (eg. indirect blocks) must be
  57. * revoked in all cases.
  58. *
  59. * "bh" may be NULL: a metadata block may have been freed from memory
  60. * but there may still be a record of it in the journal, and that record
  61. * still needs to be revoked.
  62. */
  63. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  64. struct buffer_head *bh, ext3_fsblk_t blocknr)
  65. {
  66. int err;
  67. might_sleep();
  68. trace_ext3_forget(inode, is_metadata, blocknr);
  69. BUFFER_TRACE(bh, "enter");
  70. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  71. "data mode %lx\n",
  72. bh, is_metadata, inode->i_mode,
  73. test_opt(inode->i_sb, DATA_FLAGS));
  74. /* Never use the revoke function if we are doing full data
  75. * journaling: there is no need to, and a V1 superblock won't
  76. * support it. Otherwise, only skip the revoke on un-journaled
  77. * data blocks. */
  78. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  79. (!is_metadata && !ext3_should_journal_data(inode))) {
  80. if (bh) {
  81. BUFFER_TRACE(bh, "call journal_forget");
  82. return ext3_journal_forget(handle, bh);
  83. }
  84. return 0;
  85. }
  86. /*
  87. * data!=journal && (is_metadata || should_journal_data(inode))
  88. */
  89. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  90. err = ext3_journal_revoke(handle, blocknr, bh);
  91. if (err)
  92. ext3_abort(inode->i_sb, __func__,
  93. "error %d when attempting revoke", err);
  94. BUFFER_TRACE(bh, "exit");
  95. return err;
  96. }
  97. /*
  98. * Work out how many blocks we need to proceed with the next chunk of a
  99. * truncate transaction.
  100. */
  101. static unsigned long blocks_for_truncate(struct inode *inode)
  102. {
  103. unsigned long needed;
  104. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  105. /* Give ourselves just enough room to cope with inodes in which
  106. * i_blocks is corrupt: we've seen disk corruptions in the past
  107. * which resulted in random data in an inode which looked enough
  108. * like a regular file for ext3 to try to delete it. Things
  109. * will go a bit crazy if that happens, but at least we should
  110. * try not to panic the whole kernel. */
  111. if (needed < 2)
  112. needed = 2;
  113. /* But we need to bound the transaction so we don't overflow the
  114. * journal. */
  115. if (needed > EXT3_MAX_TRANS_DATA)
  116. needed = EXT3_MAX_TRANS_DATA;
  117. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  118. }
  119. /*
  120. * Truncate transactions can be complex and absolutely huge. So we need to
  121. * be able to restart the transaction at a conventient checkpoint to make
  122. * sure we don't overflow the journal.
  123. *
  124. * start_transaction gets us a new handle for a truncate transaction,
  125. * and extend_transaction tries to extend the existing one a bit. If
  126. * extend fails, we need to propagate the failure up and restart the
  127. * transaction in the top-level truncate loop. --sct
  128. */
  129. static handle_t *start_transaction(struct inode *inode)
  130. {
  131. handle_t *result;
  132. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  133. if (!IS_ERR(result))
  134. return result;
  135. ext3_std_error(inode->i_sb, PTR_ERR(result));
  136. return result;
  137. }
  138. /*
  139. * Try to extend this transaction for the purposes of truncation.
  140. *
  141. * Returns 0 if we managed to create more room. If we can't create more
  142. * room, and the transaction must be restarted we return 1.
  143. */
  144. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  145. {
  146. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  147. return 0;
  148. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  149. return 0;
  150. return 1;
  151. }
  152. /*
  153. * Restart the transaction associated with *handle. This does a commit,
  154. * so before we call here everything must be consistently dirtied against
  155. * this transaction.
  156. */
  157. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  158. {
  159. int ret;
  160. jbd_debug(2, "restarting handle %p\n", handle);
  161. /*
  162. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  163. * At this moment, get_block can be called only for blocks inside
  164. * i_size since page cache has been already dropped and writes are
  165. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  166. */
  167. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  168. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  169. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  170. return ret;
  171. }
  172. /*
  173. * Called at inode eviction from icache
  174. */
  175. void ext3_evict_inode (struct inode *inode)
  176. {
  177. struct ext3_inode_info *ei = EXT3_I(inode);
  178. struct ext3_block_alloc_info *rsv;
  179. handle_t *handle;
  180. int want_delete = 0;
  181. trace_ext3_evict_inode(inode);
  182. if (!inode->i_nlink && !is_bad_inode(inode)) {
  183. dquot_initialize(inode);
  184. want_delete = 1;
  185. }
  186. /*
  187. * When journalling data dirty buffers are tracked only in the journal.
  188. * So although mm thinks everything is clean and ready for reaping the
  189. * inode might still have some pages to write in the running
  190. * transaction or waiting to be checkpointed. Thus calling
  191. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  192. * these buffers can cause data loss. Also even if we did not discard
  193. * these buffers, we would have no way to find them after the inode
  194. * is reaped and thus user could see stale data if he tries to read
  195. * them before the transaction is checkpointed. So be careful and
  196. * force everything to disk here... We use ei->i_datasync_tid to
  197. * store the newest transaction containing inode's data.
  198. *
  199. * Note that directories do not have this problem because they don't
  200. * use page cache.
  201. */
  202. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  203. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
  204. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  205. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  206. log_start_commit(journal, commit_tid);
  207. log_wait_commit(journal, commit_tid);
  208. filemap_write_and_wait(&inode->i_data);
  209. }
  210. truncate_inode_pages(&inode->i_data, 0);
  211. ext3_discard_reservation(inode);
  212. rsv = ei->i_block_alloc_info;
  213. ei->i_block_alloc_info = NULL;
  214. if (unlikely(rsv))
  215. kfree(rsv);
  216. if (!want_delete)
  217. goto no_delete;
  218. handle = start_transaction(inode);
  219. if (IS_ERR(handle)) {
  220. /*
  221. * If we're going to skip the normal cleanup, we still need to
  222. * make sure that the in-core orphan linked list is properly
  223. * cleaned up.
  224. */
  225. ext3_orphan_del(NULL, inode);
  226. goto no_delete;
  227. }
  228. if (IS_SYNC(inode))
  229. handle->h_sync = 1;
  230. inode->i_size = 0;
  231. if (inode->i_blocks)
  232. ext3_truncate(inode);
  233. /*
  234. * Kill off the orphan record created when the inode lost the last
  235. * link. Note that ext3_orphan_del() has to be able to cope with the
  236. * deletion of a non-existent orphan - ext3_truncate() could
  237. * have removed the record.
  238. */
  239. ext3_orphan_del(handle, inode);
  240. ei->i_dtime = get_seconds();
  241. /*
  242. * One subtle ordering requirement: if anything has gone wrong
  243. * (transaction abort, IO errors, whatever), then we can still
  244. * do these next steps (the fs will already have been marked as
  245. * having errors), but we can't free the inode if the mark_dirty
  246. * fails.
  247. */
  248. if (ext3_mark_inode_dirty(handle, inode)) {
  249. /* If that failed, just dquot_drop() and be done with that */
  250. dquot_drop(inode);
  251. end_writeback(inode);
  252. } else {
  253. ext3_xattr_delete_inode(handle, inode);
  254. dquot_free_inode(inode);
  255. dquot_drop(inode);
  256. end_writeback(inode);
  257. ext3_free_inode(handle, inode);
  258. }
  259. ext3_journal_stop(handle);
  260. return;
  261. no_delete:
  262. end_writeback(inode);
  263. dquot_drop(inode);
  264. }
  265. typedef struct {
  266. __le32 *p;
  267. __le32 key;
  268. struct buffer_head *bh;
  269. } Indirect;
  270. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  271. {
  272. p->key = *(p->p = v);
  273. p->bh = bh;
  274. }
  275. static int verify_chain(Indirect *from, Indirect *to)
  276. {
  277. while (from <= to && from->key == *from->p)
  278. from++;
  279. return (from > to);
  280. }
  281. /**
  282. * ext3_block_to_path - parse the block number into array of offsets
  283. * @inode: inode in question (we are only interested in its superblock)
  284. * @i_block: block number to be parsed
  285. * @offsets: array to store the offsets in
  286. * @boundary: set this non-zero if the referred-to block is likely to be
  287. * followed (on disk) by an indirect block.
  288. *
  289. * To store the locations of file's data ext3 uses a data structure common
  290. * for UNIX filesystems - tree of pointers anchored in the inode, with
  291. * data blocks at leaves and indirect blocks in intermediate nodes.
  292. * This function translates the block number into path in that tree -
  293. * return value is the path length and @offsets[n] is the offset of
  294. * pointer to (n+1)th node in the nth one. If @block is out of range
  295. * (negative or too large) warning is printed and zero returned.
  296. *
  297. * Note: function doesn't find node addresses, so no IO is needed. All
  298. * we need to know is the capacity of indirect blocks (taken from the
  299. * inode->i_sb).
  300. */
  301. /*
  302. * Portability note: the last comparison (check that we fit into triple
  303. * indirect block) is spelled differently, because otherwise on an
  304. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  305. * if our filesystem had 8Kb blocks. We might use long long, but that would
  306. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  307. * i_block would have to be negative in the very beginning, so we would not
  308. * get there at all.
  309. */
  310. static int ext3_block_to_path(struct inode *inode,
  311. long i_block, int offsets[4], int *boundary)
  312. {
  313. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  314. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  315. const long direct_blocks = EXT3_NDIR_BLOCKS,
  316. indirect_blocks = ptrs,
  317. double_blocks = (1 << (ptrs_bits * 2));
  318. int n = 0;
  319. int final = 0;
  320. if (i_block < 0) {
  321. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  322. } else if (i_block < direct_blocks) {
  323. offsets[n++] = i_block;
  324. final = direct_blocks;
  325. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  326. offsets[n++] = EXT3_IND_BLOCK;
  327. offsets[n++] = i_block;
  328. final = ptrs;
  329. } else if ((i_block -= indirect_blocks) < double_blocks) {
  330. offsets[n++] = EXT3_DIND_BLOCK;
  331. offsets[n++] = i_block >> ptrs_bits;
  332. offsets[n++] = i_block & (ptrs - 1);
  333. final = ptrs;
  334. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  335. offsets[n++] = EXT3_TIND_BLOCK;
  336. offsets[n++] = i_block >> (ptrs_bits * 2);
  337. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  338. offsets[n++] = i_block & (ptrs - 1);
  339. final = ptrs;
  340. } else {
  341. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  342. }
  343. if (boundary)
  344. *boundary = final - 1 - (i_block & (ptrs - 1));
  345. return n;
  346. }
  347. /**
  348. * ext3_get_branch - read the chain of indirect blocks leading to data
  349. * @inode: inode in question
  350. * @depth: depth of the chain (1 - direct pointer, etc.)
  351. * @offsets: offsets of pointers in inode/indirect blocks
  352. * @chain: place to store the result
  353. * @err: here we store the error value
  354. *
  355. * Function fills the array of triples <key, p, bh> and returns %NULL
  356. * if everything went OK or the pointer to the last filled triple
  357. * (incomplete one) otherwise. Upon the return chain[i].key contains
  358. * the number of (i+1)-th block in the chain (as it is stored in memory,
  359. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  360. * number (it points into struct inode for i==0 and into the bh->b_data
  361. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  362. * block for i>0 and NULL for i==0. In other words, it holds the block
  363. * numbers of the chain, addresses they were taken from (and where we can
  364. * verify that chain did not change) and buffer_heads hosting these
  365. * numbers.
  366. *
  367. * Function stops when it stumbles upon zero pointer (absent block)
  368. * (pointer to last triple returned, *@err == 0)
  369. * or when it gets an IO error reading an indirect block
  370. * (ditto, *@err == -EIO)
  371. * or when it notices that chain had been changed while it was reading
  372. * (ditto, *@err == -EAGAIN)
  373. * or when it reads all @depth-1 indirect blocks successfully and finds
  374. * the whole chain, all way to the data (returns %NULL, *err == 0).
  375. */
  376. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  377. Indirect chain[4], int *err)
  378. {
  379. struct super_block *sb = inode->i_sb;
  380. Indirect *p = chain;
  381. struct buffer_head *bh;
  382. *err = 0;
  383. /* i_data is not going away, no lock needed */
  384. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  385. if (!p->key)
  386. goto no_block;
  387. while (--depth) {
  388. bh = sb_bread(sb, le32_to_cpu(p->key));
  389. if (!bh)
  390. goto failure;
  391. /* Reader: pointers */
  392. if (!verify_chain(chain, p))
  393. goto changed;
  394. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  395. /* Reader: end */
  396. if (!p->key)
  397. goto no_block;
  398. }
  399. return NULL;
  400. changed:
  401. brelse(bh);
  402. *err = -EAGAIN;
  403. goto no_block;
  404. failure:
  405. *err = -EIO;
  406. no_block:
  407. return p;
  408. }
  409. /**
  410. * ext3_find_near - find a place for allocation with sufficient locality
  411. * @inode: owner
  412. * @ind: descriptor of indirect block.
  413. *
  414. * This function returns the preferred place for block allocation.
  415. * It is used when heuristic for sequential allocation fails.
  416. * Rules are:
  417. * + if there is a block to the left of our position - allocate near it.
  418. * + if pointer will live in indirect block - allocate near that block.
  419. * + if pointer will live in inode - allocate in the same
  420. * cylinder group.
  421. *
  422. * In the latter case we colour the starting block by the callers PID to
  423. * prevent it from clashing with concurrent allocations for a different inode
  424. * in the same block group. The PID is used here so that functionally related
  425. * files will be close-by on-disk.
  426. *
  427. * Caller must make sure that @ind is valid and will stay that way.
  428. */
  429. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  430. {
  431. struct ext3_inode_info *ei = EXT3_I(inode);
  432. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  433. __le32 *p;
  434. ext3_fsblk_t bg_start;
  435. ext3_grpblk_t colour;
  436. /* Try to find previous block */
  437. for (p = ind->p - 1; p >= start; p--) {
  438. if (*p)
  439. return le32_to_cpu(*p);
  440. }
  441. /* No such thing, so let's try location of indirect block */
  442. if (ind->bh)
  443. return ind->bh->b_blocknr;
  444. /*
  445. * It is going to be referred to from the inode itself? OK, just put it
  446. * into the same cylinder group then.
  447. */
  448. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  449. colour = (current->pid % 16) *
  450. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  451. return bg_start + colour;
  452. }
  453. /**
  454. * ext3_find_goal - find a preferred place for allocation.
  455. * @inode: owner
  456. * @block: block we want
  457. * @partial: pointer to the last triple within a chain
  458. *
  459. * Normally this function find the preferred place for block allocation,
  460. * returns it.
  461. */
  462. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  463. Indirect *partial)
  464. {
  465. struct ext3_block_alloc_info *block_i;
  466. block_i = EXT3_I(inode)->i_block_alloc_info;
  467. /*
  468. * try the heuristic for sequential allocation,
  469. * failing that at least try to get decent locality.
  470. */
  471. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  472. && (block_i->last_alloc_physical_block != 0)) {
  473. return block_i->last_alloc_physical_block + 1;
  474. }
  475. return ext3_find_near(inode, partial);
  476. }
  477. /**
  478. * ext3_blks_to_allocate - Look up the block map and count the number
  479. * of direct blocks need to be allocated for the given branch.
  480. *
  481. * @branch: chain of indirect blocks
  482. * @k: number of blocks need for indirect blocks
  483. * @blks: number of data blocks to be mapped.
  484. * @blocks_to_boundary: the offset in the indirect block
  485. *
  486. * return the total number of blocks to be allocate, including the
  487. * direct and indirect blocks.
  488. */
  489. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  490. int blocks_to_boundary)
  491. {
  492. unsigned long count = 0;
  493. /*
  494. * Simple case, [t,d]Indirect block(s) has not allocated yet
  495. * then it's clear blocks on that path have not allocated
  496. */
  497. if (k > 0) {
  498. /* right now we don't handle cross boundary allocation */
  499. if (blks < blocks_to_boundary + 1)
  500. count += blks;
  501. else
  502. count += blocks_to_boundary + 1;
  503. return count;
  504. }
  505. count++;
  506. while (count < blks && count <= blocks_to_boundary &&
  507. le32_to_cpu(*(branch[0].p + count)) == 0) {
  508. count++;
  509. }
  510. return count;
  511. }
  512. /**
  513. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  514. * @handle: handle for this transaction
  515. * @inode: owner
  516. * @goal: preferred place for allocation
  517. * @indirect_blks: the number of blocks need to allocate for indirect
  518. * blocks
  519. * @blks: number of blocks need to allocated for direct blocks
  520. * @new_blocks: on return it will store the new block numbers for
  521. * the indirect blocks(if needed) and the first direct block,
  522. * @err: here we store the error value
  523. *
  524. * return the number of direct blocks allocated
  525. */
  526. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  527. ext3_fsblk_t goal, int indirect_blks, int blks,
  528. ext3_fsblk_t new_blocks[4], int *err)
  529. {
  530. int target, i;
  531. unsigned long count = 0;
  532. int index = 0;
  533. ext3_fsblk_t current_block = 0;
  534. int ret = 0;
  535. /*
  536. * Here we try to allocate the requested multiple blocks at once,
  537. * on a best-effort basis.
  538. * To build a branch, we should allocate blocks for
  539. * the indirect blocks(if not allocated yet), and at least
  540. * the first direct block of this branch. That's the
  541. * minimum number of blocks need to allocate(required)
  542. */
  543. target = blks + indirect_blks;
  544. while (1) {
  545. count = target;
  546. /* allocating blocks for indirect blocks and direct blocks */
  547. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  548. if (*err)
  549. goto failed_out;
  550. target -= count;
  551. /* allocate blocks for indirect blocks */
  552. while (index < indirect_blks && count) {
  553. new_blocks[index++] = current_block++;
  554. count--;
  555. }
  556. if (count > 0)
  557. break;
  558. }
  559. /* save the new block number for the first direct block */
  560. new_blocks[index] = current_block;
  561. /* total number of blocks allocated for direct blocks */
  562. ret = count;
  563. *err = 0;
  564. return ret;
  565. failed_out:
  566. for (i = 0; i <index; i++)
  567. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  568. return ret;
  569. }
  570. /**
  571. * ext3_alloc_branch - allocate and set up a chain of blocks.
  572. * @handle: handle for this transaction
  573. * @inode: owner
  574. * @indirect_blks: number of allocated indirect blocks
  575. * @blks: number of allocated direct blocks
  576. * @goal: preferred place for allocation
  577. * @offsets: offsets (in the blocks) to store the pointers to next.
  578. * @branch: place to store the chain in.
  579. *
  580. * This function allocates blocks, zeroes out all but the last one,
  581. * links them into chain and (if we are synchronous) writes them to disk.
  582. * In other words, it prepares a branch that can be spliced onto the
  583. * inode. It stores the information about that chain in the branch[], in
  584. * the same format as ext3_get_branch() would do. We are calling it after
  585. * we had read the existing part of chain and partial points to the last
  586. * triple of that (one with zero ->key). Upon the exit we have the same
  587. * picture as after the successful ext3_get_block(), except that in one
  588. * place chain is disconnected - *branch->p is still zero (we did not
  589. * set the last link), but branch->key contains the number that should
  590. * be placed into *branch->p to fill that gap.
  591. *
  592. * If allocation fails we free all blocks we've allocated (and forget
  593. * their buffer_heads) and return the error value the from failed
  594. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  595. * as described above and return 0.
  596. */
  597. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  598. int indirect_blks, int *blks, ext3_fsblk_t goal,
  599. int *offsets, Indirect *branch)
  600. {
  601. int blocksize = inode->i_sb->s_blocksize;
  602. int i, n = 0;
  603. int err = 0;
  604. struct buffer_head *bh;
  605. int num;
  606. ext3_fsblk_t new_blocks[4];
  607. ext3_fsblk_t current_block;
  608. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  609. *blks, new_blocks, &err);
  610. if (err)
  611. return err;
  612. branch[0].key = cpu_to_le32(new_blocks[0]);
  613. /*
  614. * metadata blocks and data blocks are allocated.
  615. */
  616. for (n = 1; n <= indirect_blks; n++) {
  617. /*
  618. * Get buffer_head for parent block, zero it out
  619. * and set the pointer to new one, then send
  620. * parent to disk.
  621. */
  622. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  623. branch[n].bh = bh;
  624. lock_buffer(bh);
  625. BUFFER_TRACE(bh, "call get_create_access");
  626. err = ext3_journal_get_create_access(handle, bh);
  627. if (err) {
  628. unlock_buffer(bh);
  629. brelse(bh);
  630. goto failed;
  631. }
  632. memset(bh->b_data, 0, blocksize);
  633. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  634. branch[n].key = cpu_to_le32(new_blocks[n]);
  635. *branch[n].p = branch[n].key;
  636. if ( n == indirect_blks) {
  637. current_block = new_blocks[n];
  638. /*
  639. * End of chain, update the last new metablock of
  640. * the chain to point to the new allocated
  641. * data blocks numbers
  642. */
  643. for (i=1; i < num; i++)
  644. *(branch[n].p + i) = cpu_to_le32(++current_block);
  645. }
  646. BUFFER_TRACE(bh, "marking uptodate");
  647. set_buffer_uptodate(bh);
  648. unlock_buffer(bh);
  649. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  650. err = ext3_journal_dirty_metadata(handle, bh);
  651. if (err)
  652. goto failed;
  653. }
  654. *blks = num;
  655. return err;
  656. failed:
  657. /* Allocation failed, free what we already allocated */
  658. for (i = 1; i <= n ; i++) {
  659. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  660. ext3_journal_forget(handle, branch[i].bh);
  661. }
  662. for (i = 0; i <indirect_blks; i++)
  663. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  664. ext3_free_blocks(handle, inode, new_blocks[i], num);
  665. return err;
  666. }
  667. /**
  668. * ext3_splice_branch - splice the allocated branch onto inode.
  669. * @handle: handle for this transaction
  670. * @inode: owner
  671. * @block: (logical) number of block we are adding
  672. * @where: location of missing link
  673. * @num: number of indirect blocks we are adding
  674. * @blks: number of direct blocks we are adding
  675. *
  676. * This function fills the missing link and does all housekeeping needed in
  677. * inode (->i_blocks, etc.). In case of success we end up with the full
  678. * chain to new block and return 0.
  679. */
  680. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  681. long block, Indirect *where, int num, int blks)
  682. {
  683. int i;
  684. int err = 0;
  685. struct ext3_block_alloc_info *block_i;
  686. ext3_fsblk_t current_block;
  687. struct ext3_inode_info *ei = EXT3_I(inode);
  688. block_i = ei->i_block_alloc_info;
  689. /*
  690. * If we're splicing into a [td]indirect block (as opposed to the
  691. * inode) then we need to get write access to the [td]indirect block
  692. * before the splice.
  693. */
  694. if (where->bh) {
  695. BUFFER_TRACE(where->bh, "get_write_access");
  696. err = ext3_journal_get_write_access(handle, where->bh);
  697. if (err)
  698. goto err_out;
  699. }
  700. /* That's it */
  701. *where->p = where->key;
  702. /*
  703. * Update the host buffer_head or inode to point to more just allocated
  704. * direct blocks blocks
  705. */
  706. if (num == 0 && blks > 1) {
  707. current_block = le32_to_cpu(where->key) + 1;
  708. for (i = 1; i < blks; i++)
  709. *(where->p + i ) = cpu_to_le32(current_block++);
  710. }
  711. /*
  712. * update the most recently allocated logical & physical block
  713. * in i_block_alloc_info, to assist find the proper goal block for next
  714. * allocation
  715. */
  716. if (block_i) {
  717. block_i->last_alloc_logical_block = block + blks - 1;
  718. block_i->last_alloc_physical_block =
  719. le32_to_cpu(where[num].key) + blks - 1;
  720. }
  721. /* We are done with atomic stuff, now do the rest of housekeeping */
  722. inode->i_ctime = CURRENT_TIME_SEC;
  723. ext3_mark_inode_dirty(handle, inode);
  724. /* ext3_mark_inode_dirty already updated i_sync_tid */
  725. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  726. /* had we spliced it onto indirect block? */
  727. if (where->bh) {
  728. /*
  729. * If we spliced it onto an indirect block, we haven't
  730. * altered the inode. Note however that if it is being spliced
  731. * onto an indirect block at the very end of the file (the
  732. * file is growing) then we *will* alter the inode to reflect
  733. * the new i_size. But that is not done here - it is done in
  734. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  735. */
  736. jbd_debug(5, "splicing indirect only\n");
  737. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  738. err = ext3_journal_dirty_metadata(handle, where->bh);
  739. if (err)
  740. goto err_out;
  741. } else {
  742. /*
  743. * OK, we spliced it into the inode itself on a direct block.
  744. * Inode was dirtied above.
  745. */
  746. jbd_debug(5, "splicing direct\n");
  747. }
  748. return err;
  749. err_out:
  750. for (i = 1; i <= num; i++) {
  751. BUFFER_TRACE(where[i].bh, "call journal_forget");
  752. ext3_journal_forget(handle, where[i].bh);
  753. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  754. }
  755. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  756. return err;
  757. }
  758. /*
  759. * Allocation strategy is simple: if we have to allocate something, we will
  760. * have to go the whole way to leaf. So let's do it before attaching anything
  761. * to tree, set linkage between the newborn blocks, write them if sync is
  762. * required, recheck the path, free and repeat if check fails, otherwise
  763. * set the last missing link (that will protect us from any truncate-generated
  764. * removals - all blocks on the path are immune now) and possibly force the
  765. * write on the parent block.
  766. * That has a nice additional property: no special recovery from the failed
  767. * allocations is needed - we simply release blocks and do not touch anything
  768. * reachable from inode.
  769. *
  770. * `handle' can be NULL if create == 0.
  771. *
  772. * The BKL may not be held on entry here. Be sure to take it early.
  773. * return > 0, # of blocks mapped or allocated.
  774. * return = 0, if plain lookup failed.
  775. * return < 0, error case.
  776. */
  777. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  778. sector_t iblock, unsigned long maxblocks,
  779. struct buffer_head *bh_result,
  780. int create)
  781. {
  782. int err = -EIO;
  783. int offsets[4];
  784. Indirect chain[4];
  785. Indirect *partial;
  786. ext3_fsblk_t goal;
  787. int indirect_blks;
  788. int blocks_to_boundary = 0;
  789. int depth;
  790. struct ext3_inode_info *ei = EXT3_I(inode);
  791. int count = 0;
  792. ext3_fsblk_t first_block = 0;
  793. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  794. J_ASSERT(handle != NULL || create == 0);
  795. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  796. if (depth == 0)
  797. goto out;
  798. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  799. /* Simplest case - block found, no allocation needed */
  800. if (!partial) {
  801. first_block = le32_to_cpu(chain[depth - 1].key);
  802. clear_buffer_new(bh_result);
  803. count++;
  804. /*map more blocks*/
  805. while (count < maxblocks && count <= blocks_to_boundary) {
  806. ext3_fsblk_t blk;
  807. if (!verify_chain(chain, chain + depth - 1)) {
  808. /*
  809. * Indirect block might be removed by
  810. * truncate while we were reading it.
  811. * Handling of that case: forget what we've
  812. * got now. Flag the err as EAGAIN, so it
  813. * will reread.
  814. */
  815. err = -EAGAIN;
  816. count = 0;
  817. break;
  818. }
  819. blk = le32_to_cpu(*(chain[depth-1].p + count));
  820. if (blk == first_block + count)
  821. count++;
  822. else
  823. break;
  824. }
  825. if (err != -EAGAIN)
  826. goto got_it;
  827. }
  828. /* Next simple case - plain lookup or failed read of indirect block */
  829. if (!create || err == -EIO)
  830. goto cleanup;
  831. /*
  832. * Block out ext3_truncate while we alter the tree
  833. */
  834. mutex_lock(&ei->truncate_mutex);
  835. /*
  836. * If the indirect block is missing while we are reading
  837. * the chain(ext3_get_branch() returns -EAGAIN err), or
  838. * if the chain has been changed after we grab the semaphore,
  839. * (either because another process truncated this branch, or
  840. * another get_block allocated this branch) re-grab the chain to see if
  841. * the request block has been allocated or not.
  842. *
  843. * Since we already block the truncate/other get_block
  844. * at this point, we will have the current copy of the chain when we
  845. * splice the branch into the tree.
  846. */
  847. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  848. while (partial > chain) {
  849. brelse(partial->bh);
  850. partial--;
  851. }
  852. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  853. if (!partial) {
  854. count++;
  855. mutex_unlock(&ei->truncate_mutex);
  856. if (err)
  857. goto cleanup;
  858. clear_buffer_new(bh_result);
  859. goto got_it;
  860. }
  861. }
  862. /*
  863. * Okay, we need to do block allocation. Lazily initialize the block
  864. * allocation info here if necessary
  865. */
  866. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  867. ext3_init_block_alloc_info(inode);
  868. goal = ext3_find_goal(inode, iblock, partial);
  869. /* the number of blocks need to allocate for [d,t]indirect blocks */
  870. indirect_blks = (chain + depth) - partial - 1;
  871. /*
  872. * Next look up the indirect map to count the totoal number of
  873. * direct blocks to allocate for this branch.
  874. */
  875. count = ext3_blks_to_allocate(partial, indirect_blks,
  876. maxblocks, blocks_to_boundary);
  877. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  878. offsets + (partial - chain), partial);
  879. /*
  880. * The ext3_splice_branch call will free and forget any buffers
  881. * on the new chain if there is a failure, but that risks using
  882. * up transaction credits, especially for bitmaps where the
  883. * credits cannot be returned. Can we handle this somehow? We
  884. * may need to return -EAGAIN upwards in the worst case. --sct
  885. */
  886. if (!err)
  887. err = ext3_splice_branch(handle, inode, iblock,
  888. partial, indirect_blks, count);
  889. mutex_unlock(&ei->truncate_mutex);
  890. if (err)
  891. goto cleanup;
  892. set_buffer_new(bh_result);
  893. got_it:
  894. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  895. if (count > blocks_to_boundary)
  896. set_buffer_boundary(bh_result);
  897. err = count;
  898. /* Clean up and exit */
  899. partial = chain + depth - 1; /* the whole chain */
  900. cleanup:
  901. while (partial > chain) {
  902. BUFFER_TRACE(partial->bh, "call brelse");
  903. brelse(partial->bh);
  904. partial--;
  905. }
  906. BUFFER_TRACE(bh_result, "returned");
  907. out:
  908. trace_ext3_get_blocks_exit(inode, iblock,
  909. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  910. count, err);
  911. return err;
  912. }
  913. /* Maximum number of blocks we map for direct IO at once. */
  914. #define DIO_MAX_BLOCKS 4096
  915. /*
  916. * Number of credits we need for writing DIO_MAX_BLOCKS:
  917. * We need sb + group descriptor + bitmap + inode -> 4
  918. * For B blocks with A block pointers per block we need:
  919. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  920. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  921. */
  922. #define DIO_CREDITS 25
  923. static int ext3_get_block(struct inode *inode, sector_t iblock,
  924. struct buffer_head *bh_result, int create)
  925. {
  926. handle_t *handle = ext3_journal_current_handle();
  927. int ret = 0, started = 0;
  928. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  929. if (create && !handle) { /* Direct IO write... */
  930. if (max_blocks > DIO_MAX_BLOCKS)
  931. max_blocks = DIO_MAX_BLOCKS;
  932. handle = ext3_journal_start(inode, DIO_CREDITS +
  933. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  934. if (IS_ERR(handle)) {
  935. ret = PTR_ERR(handle);
  936. goto out;
  937. }
  938. started = 1;
  939. }
  940. ret = ext3_get_blocks_handle(handle, inode, iblock,
  941. max_blocks, bh_result, create);
  942. if (ret > 0) {
  943. bh_result->b_size = (ret << inode->i_blkbits);
  944. ret = 0;
  945. }
  946. if (started)
  947. ext3_journal_stop(handle);
  948. out:
  949. return ret;
  950. }
  951. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  952. u64 start, u64 len)
  953. {
  954. return generic_block_fiemap(inode, fieinfo, start, len,
  955. ext3_get_block);
  956. }
  957. /*
  958. * `handle' can be NULL if create is zero
  959. */
  960. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  961. long block, int create, int *errp)
  962. {
  963. struct buffer_head dummy;
  964. int fatal = 0, err;
  965. J_ASSERT(handle != NULL || create == 0);
  966. dummy.b_state = 0;
  967. dummy.b_blocknr = -1000;
  968. buffer_trace_init(&dummy.b_history);
  969. err = ext3_get_blocks_handle(handle, inode, block, 1,
  970. &dummy, create);
  971. /*
  972. * ext3_get_blocks_handle() returns number of blocks
  973. * mapped. 0 in case of a HOLE.
  974. */
  975. if (err > 0) {
  976. if (err > 1)
  977. WARN_ON(1);
  978. err = 0;
  979. }
  980. *errp = err;
  981. if (!err && buffer_mapped(&dummy)) {
  982. struct buffer_head *bh;
  983. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  984. if (!bh) {
  985. *errp = -EIO;
  986. goto err;
  987. }
  988. if (buffer_new(&dummy)) {
  989. J_ASSERT(create != 0);
  990. J_ASSERT(handle != NULL);
  991. /*
  992. * Now that we do not always journal data, we should
  993. * keep in mind whether this should always journal the
  994. * new buffer as metadata. For now, regular file
  995. * writes use ext3_get_block instead, so it's not a
  996. * problem.
  997. */
  998. lock_buffer(bh);
  999. BUFFER_TRACE(bh, "call get_create_access");
  1000. fatal = ext3_journal_get_create_access(handle, bh);
  1001. if (!fatal && !buffer_uptodate(bh)) {
  1002. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1003. set_buffer_uptodate(bh);
  1004. }
  1005. unlock_buffer(bh);
  1006. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1007. err = ext3_journal_dirty_metadata(handle, bh);
  1008. if (!fatal)
  1009. fatal = err;
  1010. } else {
  1011. BUFFER_TRACE(bh, "not a new buffer");
  1012. }
  1013. if (fatal) {
  1014. *errp = fatal;
  1015. brelse(bh);
  1016. bh = NULL;
  1017. }
  1018. return bh;
  1019. }
  1020. err:
  1021. return NULL;
  1022. }
  1023. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1024. int block, int create, int *err)
  1025. {
  1026. struct buffer_head * bh;
  1027. bh = ext3_getblk(handle, inode, block, create, err);
  1028. if (!bh)
  1029. return bh;
  1030. if (buffer_uptodate(bh))
  1031. return bh;
  1032. ll_rw_block(READ_META, 1, &bh);
  1033. wait_on_buffer(bh);
  1034. if (buffer_uptodate(bh))
  1035. return bh;
  1036. put_bh(bh);
  1037. *err = -EIO;
  1038. return NULL;
  1039. }
  1040. static int walk_page_buffers( handle_t *handle,
  1041. struct buffer_head *head,
  1042. unsigned from,
  1043. unsigned to,
  1044. int *partial,
  1045. int (*fn)( handle_t *handle,
  1046. struct buffer_head *bh))
  1047. {
  1048. struct buffer_head *bh;
  1049. unsigned block_start, block_end;
  1050. unsigned blocksize = head->b_size;
  1051. int err, ret = 0;
  1052. struct buffer_head *next;
  1053. for ( bh = head, block_start = 0;
  1054. ret == 0 && (bh != head || !block_start);
  1055. block_start = block_end, bh = next)
  1056. {
  1057. next = bh->b_this_page;
  1058. block_end = block_start + blocksize;
  1059. if (block_end <= from || block_start >= to) {
  1060. if (partial && !buffer_uptodate(bh))
  1061. *partial = 1;
  1062. continue;
  1063. }
  1064. err = (*fn)(handle, bh);
  1065. if (!ret)
  1066. ret = err;
  1067. }
  1068. return ret;
  1069. }
  1070. /*
  1071. * To preserve ordering, it is essential that the hole instantiation and
  1072. * the data write be encapsulated in a single transaction. We cannot
  1073. * close off a transaction and start a new one between the ext3_get_block()
  1074. * and the commit_write(). So doing the journal_start at the start of
  1075. * prepare_write() is the right place.
  1076. *
  1077. * Also, this function can nest inside ext3_writepage() ->
  1078. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1079. * has generated enough buffer credits to do the whole page. So we won't
  1080. * block on the journal in that case, which is good, because the caller may
  1081. * be PF_MEMALLOC.
  1082. *
  1083. * By accident, ext3 can be reentered when a transaction is open via
  1084. * quota file writes. If we were to commit the transaction while thus
  1085. * reentered, there can be a deadlock - we would be holding a quota
  1086. * lock, and the commit would never complete if another thread had a
  1087. * transaction open and was blocking on the quota lock - a ranking
  1088. * violation.
  1089. *
  1090. * So what we do is to rely on the fact that journal_stop/journal_start
  1091. * will _not_ run commit under these circumstances because handle->h_ref
  1092. * is elevated. We'll still have enough credits for the tiny quotafile
  1093. * write.
  1094. */
  1095. static int do_journal_get_write_access(handle_t *handle,
  1096. struct buffer_head *bh)
  1097. {
  1098. int dirty = buffer_dirty(bh);
  1099. int ret;
  1100. if (!buffer_mapped(bh) || buffer_freed(bh))
  1101. return 0;
  1102. /*
  1103. * __block_prepare_write() could have dirtied some buffers. Clean
  1104. * the dirty bit as jbd2_journal_get_write_access() could complain
  1105. * otherwise about fs integrity issues. Setting of the dirty bit
  1106. * by __block_prepare_write() isn't a real problem here as we clear
  1107. * the bit before releasing a page lock and thus writeback cannot
  1108. * ever write the buffer.
  1109. */
  1110. if (dirty)
  1111. clear_buffer_dirty(bh);
  1112. ret = ext3_journal_get_write_access(handle, bh);
  1113. if (!ret && dirty)
  1114. ret = ext3_journal_dirty_metadata(handle, bh);
  1115. return ret;
  1116. }
  1117. /*
  1118. * Truncate blocks that were not used by write. We have to truncate the
  1119. * pagecache as well so that corresponding buffers get properly unmapped.
  1120. */
  1121. static void ext3_truncate_failed_write(struct inode *inode)
  1122. {
  1123. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1124. ext3_truncate(inode);
  1125. }
  1126. /*
  1127. * Truncate blocks that were not used by direct IO write. We have to zero out
  1128. * the last file block as well because direct IO might have written to it.
  1129. */
  1130. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1131. {
  1132. ext3_block_truncate_page(inode, inode->i_size);
  1133. ext3_truncate(inode);
  1134. }
  1135. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1136. loff_t pos, unsigned len, unsigned flags,
  1137. struct page **pagep, void **fsdata)
  1138. {
  1139. struct inode *inode = mapping->host;
  1140. int ret;
  1141. handle_t *handle;
  1142. int retries = 0;
  1143. struct page *page;
  1144. pgoff_t index;
  1145. unsigned from, to;
  1146. /* Reserve one block more for addition to orphan list in case
  1147. * we allocate blocks but write fails for some reason */
  1148. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1149. trace_ext3_write_begin(inode, pos, len, flags);
  1150. index = pos >> PAGE_CACHE_SHIFT;
  1151. from = pos & (PAGE_CACHE_SIZE - 1);
  1152. to = from + len;
  1153. retry:
  1154. page = grab_cache_page_write_begin(mapping, index, flags);
  1155. if (!page)
  1156. return -ENOMEM;
  1157. *pagep = page;
  1158. handle = ext3_journal_start(inode, needed_blocks);
  1159. if (IS_ERR(handle)) {
  1160. unlock_page(page);
  1161. page_cache_release(page);
  1162. ret = PTR_ERR(handle);
  1163. goto out;
  1164. }
  1165. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1166. if (ret)
  1167. goto write_begin_failed;
  1168. if (ext3_should_journal_data(inode)) {
  1169. ret = walk_page_buffers(handle, page_buffers(page),
  1170. from, to, NULL, do_journal_get_write_access);
  1171. }
  1172. write_begin_failed:
  1173. if (ret) {
  1174. /*
  1175. * block_write_begin may have instantiated a few blocks
  1176. * outside i_size. Trim these off again. Don't need
  1177. * i_size_read because we hold i_mutex.
  1178. *
  1179. * Add inode to orphan list in case we crash before truncate
  1180. * finishes. Do this only if ext3_can_truncate() agrees so
  1181. * that orphan processing code is happy.
  1182. */
  1183. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1184. ext3_orphan_add(handle, inode);
  1185. ext3_journal_stop(handle);
  1186. unlock_page(page);
  1187. page_cache_release(page);
  1188. if (pos + len > inode->i_size)
  1189. ext3_truncate_failed_write(inode);
  1190. }
  1191. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1192. goto retry;
  1193. out:
  1194. return ret;
  1195. }
  1196. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1197. {
  1198. int err = journal_dirty_data(handle, bh);
  1199. if (err)
  1200. ext3_journal_abort_handle(__func__, __func__,
  1201. bh, handle, err);
  1202. return err;
  1203. }
  1204. /* For ordered writepage and write_end functions */
  1205. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1206. {
  1207. /*
  1208. * Write could have mapped the buffer but it didn't copy the data in
  1209. * yet. So avoid filing such buffer into a transaction.
  1210. */
  1211. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1212. return ext3_journal_dirty_data(handle, bh);
  1213. return 0;
  1214. }
  1215. /* For write_end() in data=journal mode */
  1216. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1217. {
  1218. if (!buffer_mapped(bh) || buffer_freed(bh))
  1219. return 0;
  1220. set_buffer_uptodate(bh);
  1221. return ext3_journal_dirty_metadata(handle, bh);
  1222. }
  1223. /*
  1224. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1225. * for the whole page but later we failed to copy the data in. Update inode
  1226. * size according to what we managed to copy. The rest is going to be
  1227. * truncated in write_end function.
  1228. */
  1229. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1230. {
  1231. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1232. if (pos + copied > inode->i_size)
  1233. i_size_write(inode, pos + copied);
  1234. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1235. EXT3_I(inode)->i_disksize = pos + copied;
  1236. mark_inode_dirty(inode);
  1237. }
  1238. }
  1239. /*
  1240. * We need to pick up the new inode size which generic_commit_write gave us
  1241. * `file' can be NULL - eg, when called from page_symlink().
  1242. *
  1243. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1244. * buffers are managed internally.
  1245. */
  1246. static int ext3_ordered_write_end(struct file *file,
  1247. struct address_space *mapping,
  1248. loff_t pos, unsigned len, unsigned copied,
  1249. struct page *page, void *fsdata)
  1250. {
  1251. handle_t *handle = ext3_journal_current_handle();
  1252. struct inode *inode = file->f_mapping->host;
  1253. unsigned from, to;
  1254. int ret = 0, ret2;
  1255. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1256. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1257. from = pos & (PAGE_CACHE_SIZE - 1);
  1258. to = from + copied;
  1259. ret = walk_page_buffers(handle, page_buffers(page),
  1260. from, to, NULL, journal_dirty_data_fn);
  1261. if (ret == 0)
  1262. update_file_sizes(inode, pos, copied);
  1263. /*
  1264. * There may be allocated blocks outside of i_size because
  1265. * we failed to copy some data. Prepare for truncate.
  1266. */
  1267. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1268. ext3_orphan_add(handle, inode);
  1269. ret2 = ext3_journal_stop(handle);
  1270. if (!ret)
  1271. ret = ret2;
  1272. unlock_page(page);
  1273. page_cache_release(page);
  1274. if (pos + len > inode->i_size)
  1275. ext3_truncate_failed_write(inode);
  1276. return ret ? ret : copied;
  1277. }
  1278. static int ext3_writeback_write_end(struct file *file,
  1279. struct address_space *mapping,
  1280. loff_t pos, unsigned len, unsigned copied,
  1281. struct page *page, void *fsdata)
  1282. {
  1283. handle_t *handle = ext3_journal_current_handle();
  1284. struct inode *inode = file->f_mapping->host;
  1285. int ret;
  1286. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1287. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1288. update_file_sizes(inode, pos, copied);
  1289. /*
  1290. * There may be allocated blocks outside of i_size because
  1291. * we failed to copy some data. Prepare for truncate.
  1292. */
  1293. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1294. ext3_orphan_add(handle, inode);
  1295. ret = ext3_journal_stop(handle);
  1296. unlock_page(page);
  1297. page_cache_release(page);
  1298. if (pos + len > inode->i_size)
  1299. ext3_truncate_failed_write(inode);
  1300. return ret ? ret : copied;
  1301. }
  1302. static int ext3_journalled_write_end(struct file *file,
  1303. struct address_space *mapping,
  1304. loff_t pos, unsigned len, unsigned copied,
  1305. struct page *page, void *fsdata)
  1306. {
  1307. handle_t *handle = ext3_journal_current_handle();
  1308. struct inode *inode = mapping->host;
  1309. struct ext3_inode_info *ei = EXT3_I(inode);
  1310. int ret = 0, ret2;
  1311. int partial = 0;
  1312. unsigned from, to;
  1313. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1314. from = pos & (PAGE_CACHE_SIZE - 1);
  1315. to = from + len;
  1316. if (copied < len) {
  1317. if (!PageUptodate(page))
  1318. copied = 0;
  1319. page_zero_new_buffers(page, from + copied, to);
  1320. to = from + copied;
  1321. }
  1322. ret = walk_page_buffers(handle, page_buffers(page), from,
  1323. to, &partial, write_end_fn);
  1324. if (!partial)
  1325. SetPageUptodate(page);
  1326. if (pos + copied > inode->i_size)
  1327. i_size_write(inode, pos + copied);
  1328. /*
  1329. * There may be allocated blocks outside of i_size because
  1330. * we failed to copy some data. Prepare for truncate.
  1331. */
  1332. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1333. ext3_orphan_add(handle, inode);
  1334. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1335. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1336. if (inode->i_size > ei->i_disksize) {
  1337. ei->i_disksize = inode->i_size;
  1338. ret2 = ext3_mark_inode_dirty(handle, inode);
  1339. if (!ret)
  1340. ret = ret2;
  1341. }
  1342. ret2 = ext3_journal_stop(handle);
  1343. if (!ret)
  1344. ret = ret2;
  1345. unlock_page(page);
  1346. page_cache_release(page);
  1347. if (pos + len > inode->i_size)
  1348. ext3_truncate_failed_write(inode);
  1349. return ret ? ret : copied;
  1350. }
  1351. /*
  1352. * bmap() is special. It gets used by applications such as lilo and by
  1353. * the swapper to find the on-disk block of a specific piece of data.
  1354. *
  1355. * Naturally, this is dangerous if the block concerned is still in the
  1356. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1357. * filesystem and enables swap, then they may get a nasty shock when the
  1358. * data getting swapped to that swapfile suddenly gets overwritten by
  1359. * the original zero's written out previously to the journal and
  1360. * awaiting writeback in the kernel's buffer cache.
  1361. *
  1362. * So, if we see any bmap calls here on a modified, data-journaled file,
  1363. * take extra steps to flush any blocks which might be in the cache.
  1364. */
  1365. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1366. {
  1367. struct inode *inode = mapping->host;
  1368. journal_t *journal;
  1369. int err;
  1370. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1371. /*
  1372. * This is a REALLY heavyweight approach, but the use of
  1373. * bmap on dirty files is expected to be extremely rare:
  1374. * only if we run lilo or swapon on a freshly made file
  1375. * do we expect this to happen.
  1376. *
  1377. * (bmap requires CAP_SYS_RAWIO so this does not
  1378. * represent an unprivileged user DOS attack --- we'd be
  1379. * in trouble if mortal users could trigger this path at
  1380. * will.)
  1381. *
  1382. * NB. EXT3_STATE_JDATA is not set on files other than
  1383. * regular files. If somebody wants to bmap a directory
  1384. * or symlink and gets confused because the buffer
  1385. * hasn't yet been flushed to disk, they deserve
  1386. * everything they get.
  1387. */
  1388. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1389. journal = EXT3_JOURNAL(inode);
  1390. journal_lock_updates(journal);
  1391. err = journal_flush(journal);
  1392. journal_unlock_updates(journal);
  1393. if (err)
  1394. return 0;
  1395. }
  1396. return generic_block_bmap(mapping,block,ext3_get_block);
  1397. }
  1398. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1399. {
  1400. get_bh(bh);
  1401. return 0;
  1402. }
  1403. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1404. {
  1405. put_bh(bh);
  1406. return 0;
  1407. }
  1408. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1409. {
  1410. return !buffer_mapped(bh);
  1411. }
  1412. /*
  1413. * Note that we always start a transaction even if we're not journalling
  1414. * data. This is to preserve ordering: any hole instantiation within
  1415. * __block_write_full_page -> ext3_get_block() should be journalled
  1416. * along with the data so we don't crash and then get metadata which
  1417. * refers to old data.
  1418. *
  1419. * In all journalling modes block_write_full_page() will start the I/O.
  1420. *
  1421. * Problem:
  1422. *
  1423. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1424. * ext3_writepage()
  1425. *
  1426. * Similar for:
  1427. *
  1428. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1429. *
  1430. * Same applies to ext3_get_block(). We will deadlock on various things like
  1431. * lock_journal and i_truncate_mutex.
  1432. *
  1433. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1434. * allocations fail.
  1435. *
  1436. * 16May01: If we're reentered then journal_current_handle() will be
  1437. * non-zero. We simply *return*.
  1438. *
  1439. * 1 July 2001: @@@ FIXME:
  1440. * In journalled data mode, a data buffer may be metadata against the
  1441. * current transaction. But the same file is part of a shared mapping
  1442. * and someone does a writepage() on it.
  1443. *
  1444. * We will move the buffer onto the async_data list, but *after* it has
  1445. * been dirtied. So there's a small window where we have dirty data on
  1446. * BJ_Metadata.
  1447. *
  1448. * Note that this only applies to the last partial page in the file. The
  1449. * bit which block_write_full_page() uses prepare/commit for. (That's
  1450. * broken code anyway: it's wrong for msync()).
  1451. *
  1452. * It's a rare case: affects the final partial page, for journalled data
  1453. * where the file is subject to bith write() and writepage() in the same
  1454. * transction. To fix it we'll need a custom block_write_full_page().
  1455. * We'll probably need that anyway for journalling writepage() output.
  1456. *
  1457. * We don't honour synchronous mounts for writepage(). That would be
  1458. * disastrous. Any write() or metadata operation will sync the fs for
  1459. * us.
  1460. *
  1461. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1462. * we don't need to open a transaction here.
  1463. */
  1464. static int ext3_ordered_writepage(struct page *page,
  1465. struct writeback_control *wbc)
  1466. {
  1467. struct inode *inode = page->mapping->host;
  1468. struct buffer_head *page_bufs;
  1469. handle_t *handle = NULL;
  1470. int ret = 0;
  1471. int err;
  1472. J_ASSERT(PageLocked(page));
  1473. WARN_ON_ONCE(IS_RDONLY(inode));
  1474. /*
  1475. * We give up here if we're reentered, because it might be for a
  1476. * different filesystem.
  1477. */
  1478. if (ext3_journal_current_handle())
  1479. goto out_fail;
  1480. trace_ext3_ordered_writepage(page);
  1481. if (!page_has_buffers(page)) {
  1482. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1483. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1484. page_bufs = page_buffers(page);
  1485. } else {
  1486. page_bufs = page_buffers(page);
  1487. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1488. NULL, buffer_unmapped)) {
  1489. /* Provide NULL get_block() to catch bugs if buffers
  1490. * weren't really mapped */
  1491. return block_write_full_page(page, NULL, wbc);
  1492. }
  1493. }
  1494. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1495. if (IS_ERR(handle)) {
  1496. ret = PTR_ERR(handle);
  1497. goto out_fail;
  1498. }
  1499. walk_page_buffers(handle, page_bufs, 0,
  1500. PAGE_CACHE_SIZE, NULL, bget_one);
  1501. ret = block_write_full_page(page, ext3_get_block, wbc);
  1502. /*
  1503. * The page can become unlocked at any point now, and
  1504. * truncate can then come in and change things. So we
  1505. * can't touch *page from now on. But *page_bufs is
  1506. * safe due to elevated refcount.
  1507. */
  1508. /*
  1509. * And attach them to the current transaction. But only if
  1510. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1511. * and generally junk.
  1512. */
  1513. if (ret == 0) {
  1514. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1515. NULL, journal_dirty_data_fn);
  1516. if (!ret)
  1517. ret = err;
  1518. }
  1519. walk_page_buffers(handle, page_bufs, 0,
  1520. PAGE_CACHE_SIZE, NULL, bput_one);
  1521. err = ext3_journal_stop(handle);
  1522. if (!ret)
  1523. ret = err;
  1524. return ret;
  1525. out_fail:
  1526. redirty_page_for_writepage(wbc, page);
  1527. unlock_page(page);
  1528. return ret;
  1529. }
  1530. static int ext3_writeback_writepage(struct page *page,
  1531. struct writeback_control *wbc)
  1532. {
  1533. struct inode *inode = page->mapping->host;
  1534. handle_t *handle = NULL;
  1535. int ret = 0;
  1536. int err;
  1537. J_ASSERT(PageLocked(page));
  1538. WARN_ON_ONCE(IS_RDONLY(inode));
  1539. if (ext3_journal_current_handle())
  1540. goto out_fail;
  1541. trace_ext3_writeback_writepage(page);
  1542. if (page_has_buffers(page)) {
  1543. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1544. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1545. /* Provide NULL get_block() to catch bugs if buffers
  1546. * weren't really mapped */
  1547. return block_write_full_page(page, NULL, wbc);
  1548. }
  1549. }
  1550. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1551. if (IS_ERR(handle)) {
  1552. ret = PTR_ERR(handle);
  1553. goto out_fail;
  1554. }
  1555. ret = block_write_full_page(page, ext3_get_block, wbc);
  1556. err = ext3_journal_stop(handle);
  1557. if (!ret)
  1558. ret = err;
  1559. return ret;
  1560. out_fail:
  1561. redirty_page_for_writepage(wbc, page);
  1562. unlock_page(page);
  1563. return ret;
  1564. }
  1565. static int ext3_journalled_writepage(struct page *page,
  1566. struct writeback_control *wbc)
  1567. {
  1568. struct inode *inode = page->mapping->host;
  1569. handle_t *handle = NULL;
  1570. int ret = 0;
  1571. int err;
  1572. J_ASSERT(PageLocked(page));
  1573. WARN_ON_ONCE(IS_RDONLY(inode));
  1574. if (ext3_journal_current_handle())
  1575. goto no_write;
  1576. trace_ext3_journalled_writepage(page);
  1577. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1578. if (IS_ERR(handle)) {
  1579. ret = PTR_ERR(handle);
  1580. goto no_write;
  1581. }
  1582. if (!page_has_buffers(page) || PageChecked(page)) {
  1583. /*
  1584. * It's mmapped pagecache. Add buffers and journal it. There
  1585. * doesn't seem much point in redirtying the page here.
  1586. */
  1587. ClearPageChecked(page);
  1588. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1589. ext3_get_block);
  1590. if (ret != 0) {
  1591. ext3_journal_stop(handle);
  1592. goto out_unlock;
  1593. }
  1594. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1595. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1596. err = walk_page_buffers(handle, page_buffers(page), 0,
  1597. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1598. if (ret == 0)
  1599. ret = err;
  1600. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1601. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1602. handle->h_transaction->t_tid);
  1603. unlock_page(page);
  1604. } else {
  1605. /*
  1606. * It may be a page full of checkpoint-mode buffers. We don't
  1607. * really know unless we go poke around in the buffer_heads.
  1608. * But block_write_full_page will do the right thing.
  1609. */
  1610. ret = block_write_full_page(page, ext3_get_block, wbc);
  1611. }
  1612. err = ext3_journal_stop(handle);
  1613. if (!ret)
  1614. ret = err;
  1615. out:
  1616. return ret;
  1617. no_write:
  1618. redirty_page_for_writepage(wbc, page);
  1619. out_unlock:
  1620. unlock_page(page);
  1621. goto out;
  1622. }
  1623. static int ext3_readpage(struct file *file, struct page *page)
  1624. {
  1625. trace_ext3_readpage(page);
  1626. return mpage_readpage(page, ext3_get_block);
  1627. }
  1628. static int
  1629. ext3_readpages(struct file *file, struct address_space *mapping,
  1630. struct list_head *pages, unsigned nr_pages)
  1631. {
  1632. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1633. }
  1634. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1635. {
  1636. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1637. trace_ext3_invalidatepage(page, offset);
  1638. /*
  1639. * If it's a full truncate we just forget about the pending dirtying
  1640. */
  1641. if (offset == 0)
  1642. ClearPageChecked(page);
  1643. journal_invalidatepage(journal, page, offset);
  1644. }
  1645. static int ext3_releasepage(struct page *page, gfp_t wait)
  1646. {
  1647. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1648. trace_ext3_releasepage(page);
  1649. WARN_ON(PageChecked(page));
  1650. if (!page_has_buffers(page))
  1651. return 0;
  1652. return journal_try_to_free_buffers(journal, page, wait);
  1653. }
  1654. /*
  1655. * If the O_DIRECT write will extend the file then add this inode to the
  1656. * orphan list. So recovery will truncate it back to the original size
  1657. * if the machine crashes during the write.
  1658. *
  1659. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1660. * crashes then stale disk data _may_ be exposed inside the file. But current
  1661. * VFS code falls back into buffered path in that case so we are safe.
  1662. */
  1663. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1664. const struct iovec *iov, loff_t offset,
  1665. unsigned long nr_segs)
  1666. {
  1667. struct file *file = iocb->ki_filp;
  1668. struct inode *inode = file->f_mapping->host;
  1669. struct ext3_inode_info *ei = EXT3_I(inode);
  1670. handle_t *handle;
  1671. ssize_t ret;
  1672. int orphan = 0;
  1673. size_t count = iov_length(iov, nr_segs);
  1674. int retries = 0;
  1675. trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  1676. if (rw == WRITE) {
  1677. loff_t final_size = offset + count;
  1678. if (final_size > inode->i_size) {
  1679. /* Credits for sb + inode write */
  1680. handle = ext3_journal_start(inode, 2);
  1681. if (IS_ERR(handle)) {
  1682. ret = PTR_ERR(handle);
  1683. goto out;
  1684. }
  1685. ret = ext3_orphan_add(handle, inode);
  1686. if (ret) {
  1687. ext3_journal_stop(handle);
  1688. goto out;
  1689. }
  1690. orphan = 1;
  1691. ei->i_disksize = inode->i_size;
  1692. ext3_journal_stop(handle);
  1693. }
  1694. }
  1695. retry:
  1696. ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  1697. ext3_get_block);
  1698. /*
  1699. * In case of error extending write may have instantiated a few
  1700. * blocks outside i_size. Trim these off again.
  1701. */
  1702. if (unlikely((rw & WRITE) && ret < 0)) {
  1703. loff_t isize = i_size_read(inode);
  1704. loff_t end = offset + iov_length(iov, nr_segs);
  1705. if (end > isize)
  1706. ext3_truncate_failed_direct_write(inode);
  1707. }
  1708. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1709. goto retry;
  1710. if (orphan) {
  1711. int err;
  1712. /* Credits for sb + inode write */
  1713. handle = ext3_journal_start(inode, 2);
  1714. if (IS_ERR(handle)) {
  1715. /* This is really bad luck. We've written the data
  1716. * but cannot extend i_size. Truncate allocated blocks
  1717. * and pretend the write failed... */
  1718. ext3_truncate_failed_direct_write(inode);
  1719. ret = PTR_ERR(handle);
  1720. goto out;
  1721. }
  1722. if (inode->i_nlink)
  1723. ext3_orphan_del(handle, inode);
  1724. if (ret > 0) {
  1725. loff_t end = offset + ret;
  1726. if (end > inode->i_size) {
  1727. ei->i_disksize = end;
  1728. i_size_write(inode, end);
  1729. /*
  1730. * We're going to return a positive `ret'
  1731. * here due to non-zero-length I/O, so there's
  1732. * no way of reporting error returns from
  1733. * ext3_mark_inode_dirty() to userspace. So
  1734. * ignore it.
  1735. */
  1736. ext3_mark_inode_dirty(handle, inode);
  1737. }
  1738. }
  1739. err = ext3_journal_stop(handle);
  1740. if (ret == 0)
  1741. ret = err;
  1742. }
  1743. out:
  1744. trace_ext3_direct_IO_exit(inode, offset,
  1745. iov_length(iov, nr_segs), rw, ret);
  1746. return ret;
  1747. }
  1748. /*
  1749. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1750. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1751. * much here because ->set_page_dirty is called under VFS locks. The page is
  1752. * not necessarily locked.
  1753. *
  1754. * We cannot just dirty the page and leave attached buffers clean, because the
  1755. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1756. * or jbddirty because all the journalling code will explode.
  1757. *
  1758. * So what we do is to mark the page "pending dirty" and next time writepage
  1759. * is called, propagate that into the buffers appropriately.
  1760. */
  1761. static int ext3_journalled_set_page_dirty(struct page *page)
  1762. {
  1763. SetPageChecked(page);
  1764. return __set_page_dirty_nobuffers(page);
  1765. }
  1766. static const struct address_space_operations ext3_ordered_aops = {
  1767. .readpage = ext3_readpage,
  1768. .readpages = ext3_readpages,
  1769. .writepage = ext3_ordered_writepage,
  1770. .write_begin = ext3_write_begin,
  1771. .write_end = ext3_ordered_write_end,
  1772. .bmap = ext3_bmap,
  1773. .invalidatepage = ext3_invalidatepage,
  1774. .releasepage = ext3_releasepage,
  1775. .direct_IO = ext3_direct_IO,
  1776. .migratepage = buffer_migrate_page,
  1777. .is_partially_uptodate = block_is_partially_uptodate,
  1778. .error_remove_page = generic_error_remove_page,
  1779. };
  1780. static const struct address_space_operations ext3_writeback_aops = {
  1781. .readpage = ext3_readpage,
  1782. .readpages = ext3_readpages,
  1783. .writepage = ext3_writeback_writepage,
  1784. .write_begin = ext3_write_begin,
  1785. .write_end = ext3_writeback_write_end,
  1786. .bmap = ext3_bmap,
  1787. .invalidatepage = ext3_invalidatepage,
  1788. .releasepage = ext3_releasepage,
  1789. .direct_IO = ext3_direct_IO,
  1790. .migratepage = buffer_migrate_page,
  1791. .is_partially_uptodate = block_is_partially_uptodate,
  1792. .error_remove_page = generic_error_remove_page,
  1793. };
  1794. static const struct address_space_operations ext3_journalled_aops = {
  1795. .readpage = ext3_readpage,
  1796. .readpages = ext3_readpages,
  1797. .writepage = ext3_journalled_writepage,
  1798. .write_begin = ext3_write_begin,
  1799. .write_end = ext3_journalled_write_end,
  1800. .set_page_dirty = ext3_journalled_set_page_dirty,
  1801. .bmap = ext3_bmap,
  1802. .invalidatepage = ext3_invalidatepage,
  1803. .releasepage = ext3_releasepage,
  1804. .is_partially_uptodate = block_is_partially_uptodate,
  1805. .error_remove_page = generic_error_remove_page,
  1806. };
  1807. void ext3_set_aops(struct inode *inode)
  1808. {
  1809. if (ext3_should_order_data(inode))
  1810. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1811. else if (ext3_should_writeback_data(inode))
  1812. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1813. else
  1814. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1815. }
  1816. /*
  1817. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1818. * up to the end of the block which corresponds to `from'.
  1819. * This required during truncate. We need to physically zero the tail end
  1820. * of that block so it doesn't yield old data if the file is later grown.
  1821. */
  1822. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1823. {
  1824. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1825. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1826. unsigned blocksize, iblock, length, pos;
  1827. struct page *page;
  1828. handle_t *handle = NULL;
  1829. struct buffer_head *bh;
  1830. int err = 0;
  1831. /* Truncated on block boundary - nothing to do */
  1832. blocksize = inode->i_sb->s_blocksize;
  1833. if ((from & (blocksize - 1)) == 0)
  1834. return 0;
  1835. page = grab_cache_page(inode->i_mapping, index);
  1836. if (!page)
  1837. return -ENOMEM;
  1838. length = blocksize - (offset & (blocksize - 1));
  1839. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1840. if (!page_has_buffers(page))
  1841. create_empty_buffers(page, blocksize, 0);
  1842. /* Find the buffer that contains "offset" */
  1843. bh = page_buffers(page);
  1844. pos = blocksize;
  1845. while (offset >= pos) {
  1846. bh = bh->b_this_page;
  1847. iblock++;
  1848. pos += blocksize;
  1849. }
  1850. err = 0;
  1851. if (buffer_freed(bh)) {
  1852. BUFFER_TRACE(bh, "freed: skip");
  1853. goto unlock;
  1854. }
  1855. if (!buffer_mapped(bh)) {
  1856. BUFFER_TRACE(bh, "unmapped");
  1857. ext3_get_block(inode, iblock, bh, 0);
  1858. /* unmapped? It's a hole - nothing to do */
  1859. if (!buffer_mapped(bh)) {
  1860. BUFFER_TRACE(bh, "still unmapped");
  1861. goto unlock;
  1862. }
  1863. }
  1864. /* Ok, it's mapped. Make sure it's up-to-date */
  1865. if (PageUptodate(page))
  1866. set_buffer_uptodate(bh);
  1867. if (!buffer_uptodate(bh)) {
  1868. err = -EIO;
  1869. ll_rw_block(READ, 1, &bh);
  1870. wait_on_buffer(bh);
  1871. /* Uhhuh. Read error. Complain and punt. */
  1872. if (!buffer_uptodate(bh))
  1873. goto unlock;
  1874. }
  1875. /* data=writeback mode doesn't need transaction to zero-out data */
  1876. if (!ext3_should_writeback_data(inode)) {
  1877. /* We journal at most one block */
  1878. handle = ext3_journal_start(inode, 1);
  1879. if (IS_ERR(handle)) {
  1880. clear_highpage(page);
  1881. flush_dcache_page(page);
  1882. err = PTR_ERR(handle);
  1883. goto unlock;
  1884. }
  1885. }
  1886. if (ext3_should_journal_data(inode)) {
  1887. BUFFER_TRACE(bh, "get write access");
  1888. err = ext3_journal_get_write_access(handle, bh);
  1889. if (err)
  1890. goto stop;
  1891. }
  1892. zero_user(page, offset, length);
  1893. BUFFER_TRACE(bh, "zeroed end of block");
  1894. err = 0;
  1895. if (ext3_should_journal_data(inode)) {
  1896. err = ext3_journal_dirty_metadata(handle, bh);
  1897. } else {
  1898. if (ext3_should_order_data(inode))
  1899. err = ext3_journal_dirty_data(handle, bh);
  1900. mark_buffer_dirty(bh);
  1901. }
  1902. stop:
  1903. if (handle)
  1904. ext3_journal_stop(handle);
  1905. unlock:
  1906. unlock_page(page);
  1907. page_cache_release(page);
  1908. return err;
  1909. }
  1910. /*
  1911. * Probably it should be a library function... search for first non-zero word
  1912. * or memcmp with zero_page, whatever is better for particular architecture.
  1913. * Linus?
  1914. */
  1915. static inline int all_zeroes(__le32 *p, __le32 *q)
  1916. {
  1917. while (p < q)
  1918. if (*p++)
  1919. return 0;
  1920. return 1;
  1921. }
  1922. /**
  1923. * ext3_find_shared - find the indirect blocks for partial truncation.
  1924. * @inode: inode in question
  1925. * @depth: depth of the affected branch
  1926. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1927. * @chain: place to store the pointers to partial indirect blocks
  1928. * @top: place to the (detached) top of branch
  1929. *
  1930. * This is a helper function used by ext3_truncate().
  1931. *
  1932. * When we do truncate() we may have to clean the ends of several
  1933. * indirect blocks but leave the blocks themselves alive. Block is
  1934. * partially truncated if some data below the new i_size is referred
  1935. * from it (and it is on the path to the first completely truncated
  1936. * data block, indeed). We have to free the top of that path along
  1937. * with everything to the right of the path. Since no allocation
  1938. * past the truncation point is possible until ext3_truncate()
  1939. * finishes, we may safely do the latter, but top of branch may
  1940. * require special attention - pageout below the truncation point
  1941. * might try to populate it.
  1942. *
  1943. * We atomically detach the top of branch from the tree, store the
  1944. * block number of its root in *@top, pointers to buffer_heads of
  1945. * partially truncated blocks - in @chain[].bh and pointers to
  1946. * their last elements that should not be removed - in
  1947. * @chain[].p. Return value is the pointer to last filled element
  1948. * of @chain.
  1949. *
  1950. * The work left to caller to do the actual freeing of subtrees:
  1951. * a) free the subtree starting from *@top
  1952. * b) free the subtrees whose roots are stored in
  1953. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1954. * c) free the subtrees growing from the inode past the @chain[0].
  1955. * (no partially truncated stuff there). */
  1956. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1957. int offsets[4], Indirect chain[4], __le32 *top)
  1958. {
  1959. Indirect *partial, *p;
  1960. int k, err;
  1961. *top = 0;
  1962. /* Make k index the deepest non-null offset + 1 */
  1963. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1964. ;
  1965. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1966. /* Writer: pointers */
  1967. if (!partial)
  1968. partial = chain + k-1;
  1969. /*
  1970. * If the branch acquired continuation since we've looked at it -
  1971. * fine, it should all survive and (new) top doesn't belong to us.
  1972. */
  1973. if (!partial->key && *partial->p)
  1974. /* Writer: end */
  1975. goto no_top;
  1976. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1977. ;
  1978. /*
  1979. * OK, we've found the last block that must survive. The rest of our
  1980. * branch should be detached before unlocking. However, if that rest
  1981. * of branch is all ours and does not grow immediately from the inode
  1982. * it's easier to cheat and just decrement partial->p.
  1983. */
  1984. if (p == chain + k - 1 && p > chain) {
  1985. p->p--;
  1986. } else {
  1987. *top = *p->p;
  1988. /* Nope, don't do this in ext3. Must leave the tree intact */
  1989. #if 0
  1990. *p->p = 0;
  1991. #endif
  1992. }
  1993. /* Writer: end */
  1994. while(partial > p) {
  1995. brelse(partial->bh);
  1996. partial--;
  1997. }
  1998. no_top:
  1999. return partial;
  2000. }
  2001. /*
  2002. * Zero a number of block pointers in either an inode or an indirect block.
  2003. * If we restart the transaction we must again get write access to the
  2004. * indirect block for further modification.
  2005. *
  2006. * We release `count' blocks on disk, but (last - first) may be greater
  2007. * than `count' because there can be holes in there.
  2008. */
  2009. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  2010. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  2011. unsigned long count, __le32 *first, __le32 *last)
  2012. {
  2013. __le32 *p;
  2014. if (try_to_extend_transaction(handle, inode)) {
  2015. if (bh) {
  2016. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2017. if (ext3_journal_dirty_metadata(handle, bh))
  2018. return;
  2019. }
  2020. ext3_mark_inode_dirty(handle, inode);
  2021. truncate_restart_transaction(handle, inode);
  2022. if (bh) {
  2023. BUFFER_TRACE(bh, "retaking write access");
  2024. if (ext3_journal_get_write_access(handle, bh))
  2025. return;
  2026. }
  2027. }
  2028. /*
  2029. * Any buffers which are on the journal will be in memory. We find
  2030. * them on the hash table so journal_revoke() will run journal_forget()
  2031. * on them. We've already detached each block from the file, so
  2032. * bforget() in journal_forget() should be safe.
  2033. *
  2034. * AKPM: turn on bforget in journal_forget()!!!
  2035. */
  2036. for (p = first; p < last; p++) {
  2037. u32 nr = le32_to_cpu(*p);
  2038. if (nr) {
  2039. struct buffer_head *bh;
  2040. *p = 0;
  2041. bh = sb_find_get_block(inode->i_sb, nr);
  2042. ext3_forget(handle, 0, inode, bh, nr);
  2043. }
  2044. }
  2045. ext3_free_blocks(handle, inode, block_to_free, count);
  2046. }
  2047. /**
  2048. * ext3_free_data - free a list of data blocks
  2049. * @handle: handle for this transaction
  2050. * @inode: inode we are dealing with
  2051. * @this_bh: indirect buffer_head which contains *@first and *@last
  2052. * @first: array of block numbers
  2053. * @last: points immediately past the end of array
  2054. *
  2055. * We are freeing all blocks referred from that array (numbers are stored as
  2056. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2057. *
  2058. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2059. * blocks are contiguous then releasing them at one time will only affect one
  2060. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2061. * actually use a lot of journal space.
  2062. *
  2063. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2064. * block pointers.
  2065. */
  2066. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2067. struct buffer_head *this_bh,
  2068. __le32 *first, __le32 *last)
  2069. {
  2070. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2071. unsigned long count = 0; /* Number of blocks in the run */
  2072. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2073. corresponding to
  2074. block_to_free */
  2075. ext3_fsblk_t nr; /* Current block # */
  2076. __le32 *p; /* Pointer into inode/ind
  2077. for current block */
  2078. int err;
  2079. if (this_bh) { /* For indirect block */
  2080. BUFFER_TRACE(this_bh, "get_write_access");
  2081. err = ext3_journal_get_write_access(handle, this_bh);
  2082. /* Important: if we can't update the indirect pointers
  2083. * to the blocks, we can't free them. */
  2084. if (err)
  2085. return;
  2086. }
  2087. for (p = first; p < last; p++) {
  2088. nr = le32_to_cpu(*p);
  2089. if (nr) {
  2090. /* accumulate blocks to free if they're contiguous */
  2091. if (count == 0) {
  2092. block_to_free = nr;
  2093. block_to_free_p = p;
  2094. count = 1;
  2095. } else if (nr == block_to_free + count) {
  2096. count++;
  2097. } else {
  2098. ext3_clear_blocks(handle, inode, this_bh,
  2099. block_to_free,
  2100. count, block_to_free_p, p);
  2101. block_to_free = nr;
  2102. block_to_free_p = p;
  2103. count = 1;
  2104. }
  2105. }
  2106. }
  2107. if (count > 0)
  2108. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2109. count, block_to_free_p, p);
  2110. if (this_bh) {
  2111. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2112. /*
  2113. * The buffer head should have an attached journal head at this
  2114. * point. However, if the data is corrupted and an indirect
  2115. * block pointed to itself, it would have been detached when
  2116. * the block was cleared. Check for this instead of OOPSing.
  2117. */
  2118. if (bh2jh(this_bh))
  2119. ext3_journal_dirty_metadata(handle, this_bh);
  2120. else
  2121. ext3_error(inode->i_sb, "ext3_free_data",
  2122. "circular indirect block detected, "
  2123. "inode=%lu, block=%llu",
  2124. inode->i_ino,
  2125. (unsigned long long)this_bh->b_blocknr);
  2126. }
  2127. }
  2128. /**
  2129. * ext3_free_branches - free an array of branches
  2130. * @handle: JBD handle for this transaction
  2131. * @inode: inode we are dealing with
  2132. * @parent_bh: the buffer_head which contains *@first and *@last
  2133. * @first: array of block numbers
  2134. * @last: pointer immediately past the end of array
  2135. * @depth: depth of the branches to free
  2136. *
  2137. * We are freeing all blocks referred from these branches (numbers are
  2138. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2139. * appropriately.
  2140. */
  2141. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2142. struct buffer_head *parent_bh,
  2143. __le32 *first, __le32 *last, int depth)
  2144. {
  2145. ext3_fsblk_t nr;
  2146. __le32 *p;
  2147. if (is_handle_aborted(handle))
  2148. return;
  2149. if (depth--) {
  2150. struct buffer_head *bh;
  2151. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2152. p = last;
  2153. while (--p >= first) {
  2154. nr = le32_to_cpu(*p);
  2155. if (!nr)
  2156. continue; /* A hole */
  2157. /* Go read the buffer for the next level down */
  2158. bh = sb_bread(inode->i_sb, nr);
  2159. /*
  2160. * A read failure? Report error and clear slot
  2161. * (should be rare).
  2162. */
  2163. if (!bh) {
  2164. ext3_error(inode->i_sb, "ext3_free_branches",
  2165. "Read failure, inode=%lu, block="E3FSBLK,
  2166. inode->i_ino, nr);
  2167. continue;
  2168. }
  2169. /* This zaps the entire block. Bottom up. */
  2170. BUFFER_TRACE(bh, "free child branches");
  2171. ext3_free_branches(handle, inode, bh,
  2172. (__le32*)bh->b_data,
  2173. (__le32*)bh->b_data + addr_per_block,
  2174. depth);
  2175. /*
  2176. * Everything below this this pointer has been
  2177. * released. Now let this top-of-subtree go.
  2178. *
  2179. * We want the freeing of this indirect block to be
  2180. * atomic in the journal with the updating of the
  2181. * bitmap block which owns it. So make some room in
  2182. * the journal.
  2183. *
  2184. * We zero the parent pointer *after* freeing its
  2185. * pointee in the bitmaps, so if extend_transaction()
  2186. * for some reason fails to put the bitmap changes and
  2187. * the release into the same transaction, recovery
  2188. * will merely complain about releasing a free block,
  2189. * rather than leaking blocks.
  2190. */
  2191. if (is_handle_aborted(handle))
  2192. return;
  2193. if (try_to_extend_transaction(handle, inode)) {
  2194. ext3_mark_inode_dirty(handle, inode);
  2195. truncate_restart_transaction(handle, inode);
  2196. }
  2197. /*
  2198. * We've probably journalled the indirect block several
  2199. * times during the truncate. But it's no longer
  2200. * needed and we now drop it from the transaction via
  2201. * journal_revoke().
  2202. *
  2203. * That's easy if it's exclusively part of this
  2204. * transaction. But if it's part of the committing
  2205. * transaction then journal_forget() will simply
  2206. * brelse() it. That means that if the underlying
  2207. * block is reallocated in ext3_get_block(),
  2208. * unmap_underlying_metadata() will find this block
  2209. * and will try to get rid of it. damn, damn. Thus
  2210. * we don't allow a block to be reallocated until
  2211. * a transaction freeing it has fully committed.
  2212. *
  2213. * We also have to make sure journal replay after a
  2214. * crash does not overwrite non-journaled data blocks
  2215. * with old metadata when the block got reallocated for
  2216. * data. Thus we have to store a revoke record for a
  2217. * block in the same transaction in which we free the
  2218. * block.
  2219. */
  2220. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2221. ext3_free_blocks(handle, inode, nr, 1);
  2222. if (parent_bh) {
  2223. /*
  2224. * The block which we have just freed is
  2225. * pointed to by an indirect block: journal it
  2226. */
  2227. BUFFER_TRACE(parent_bh, "get_write_access");
  2228. if (!ext3_journal_get_write_access(handle,
  2229. parent_bh)){
  2230. *p = 0;
  2231. BUFFER_TRACE(parent_bh,
  2232. "call ext3_journal_dirty_metadata");
  2233. ext3_journal_dirty_metadata(handle,
  2234. parent_bh);
  2235. }
  2236. }
  2237. }
  2238. } else {
  2239. /* We have reached the bottom of the tree. */
  2240. BUFFER_TRACE(parent_bh, "free data blocks");
  2241. ext3_free_data(handle, inode, parent_bh, first, last);
  2242. }
  2243. }
  2244. int ext3_can_truncate(struct inode *inode)
  2245. {
  2246. if (S_ISREG(inode->i_mode))
  2247. return 1;
  2248. if (S_ISDIR(inode->i_mode))
  2249. return 1;
  2250. if (S_ISLNK(inode->i_mode))
  2251. return !ext3_inode_is_fast_symlink(inode);
  2252. return 0;
  2253. }
  2254. /*
  2255. * ext3_truncate()
  2256. *
  2257. * We block out ext3_get_block() block instantiations across the entire
  2258. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2259. * simultaneously on behalf of the same inode.
  2260. *
  2261. * As we work through the truncate and commmit bits of it to the journal there
  2262. * is one core, guiding principle: the file's tree must always be consistent on
  2263. * disk. We must be able to restart the truncate after a crash.
  2264. *
  2265. * The file's tree may be transiently inconsistent in memory (although it
  2266. * probably isn't), but whenever we close off and commit a journal transaction,
  2267. * the contents of (the filesystem + the journal) must be consistent and
  2268. * restartable. It's pretty simple, really: bottom up, right to left (although
  2269. * left-to-right works OK too).
  2270. *
  2271. * Note that at recovery time, journal replay occurs *before* the restart of
  2272. * truncate against the orphan inode list.
  2273. *
  2274. * The committed inode has the new, desired i_size (which is the same as
  2275. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2276. * that this inode's truncate did not complete and it will again call
  2277. * ext3_truncate() to have another go. So there will be instantiated blocks
  2278. * to the right of the truncation point in a crashed ext3 filesystem. But
  2279. * that's fine - as long as they are linked from the inode, the post-crash
  2280. * ext3_truncate() run will find them and release them.
  2281. */
  2282. void ext3_truncate(struct inode *inode)
  2283. {
  2284. handle_t *handle;
  2285. struct ext3_inode_info *ei = EXT3_I(inode);
  2286. __le32 *i_data = ei->i_data;
  2287. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2288. int offsets[4];
  2289. Indirect chain[4];
  2290. Indirect *partial;
  2291. __le32 nr = 0;
  2292. int n;
  2293. long last_block;
  2294. unsigned blocksize = inode->i_sb->s_blocksize;
  2295. trace_ext3_truncate_enter(inode);
  2296. if (!ext3_can_truncate(inode))
  2297. goto out_notrans;
  2298. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2299. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2300. handle = start_transaction(inode);
  2301. if (IS_ERR(handle))
  2302. goto out_notrans;
  2303. last_block = (inode->i_size + blocksize-1)
  2304. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2305. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2306. if (n == 0)
  2307. goto out_stop; /* error */
  2308. /*
  2309. * OK. This truncate is going to happen. We add the inode to the
  2310. * orphan list, so that if this truncate spans multiple transactions,
  2311. * and we crash, we will resume the truncate when the filesystem
  2312. * recovers. It also marks the inode dirty, to catch the new size.
  2313. *
  2314. * Implication: the file must always be in a sane, consistent
  2315. * truncatable state while each transaction commits.
  2316. */
  2317. if (ext3_orphan_add(handle, inode))
  2318. goto out_stop;
  2319. /*
  2320. * The orphan list entry will now protect us from any crash which
  2321. * occurs before the truncate completes, so it is now safe to propagate
  2322. * the new, shorter inode size (held for now in i_size) into the
  2323. * on-disk inode. We do this via i_disksize, which is the value which
  2324. * ext3 *really* writes onto the disk inode.
  2325. */
  2326. ei->i_disksize = inode->i_size;
  2327. /*
  2328. * From here we block out all ext3_get_block() callers who want to
  2329. * modify the block allocation tree.
  2330. */
  2331. mutex_lock(&ei->truncate_mutex);
  2332. if (n == 1) { /* direct blocks */
  2333. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2334. i_data + EXT3_NDIR_BLOCKS);
  2335. goto do_indirects;
  2336. }
  2337. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2338. /* Kill the top of shared branch (not detached) */
  2339. if (nr) {
  2340. if (partial == chain) {
  2341. /* Shared branch grows from the inode */
  2342. ext3_free_branches(handle, inode, NULL,
  2343. &nr, &nr+1, (chain+n-1) - partial);
  2344. *partial->p = 0;
  2345. /*
  2346. * We mark the inode dirty prior to restart,
  2347. * and prior to stop. No need for it here.
  2348. */
  2349. } else {
  2350. /* Shared branch grows from an indirect block */
  2351. ext3_free_branches(handle, inode, partial->bh,
  2352. partial->p,
  2353. partial->p+1, (chain+n-1) - partial);
  2354. }
  2355. }
  2356. /* Clear the ends of indirect blocks on the shared branch */
  2357. while (partial > chain) {
  2358. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2359. (__le32*)partial->bh->b_data+addr_per_block,
  2360. (chain+n-1) - partial);
  2361. BUFFER_TRACE(partial->bh, "call brelse");
  2362. brelse (partial->bh);
  2363. partial--;
  2364. }
  2365. do_indirects:
  2366. /* Kill the remaining (whole) subtrees */
  2367. switch (offsets[0]) {
  2368. default:
  2369. nr = i_data[EXT3_IND_BLOCK];
  2370. if (nr) {
  2371. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2372. i_data[EXT3_IND_BLOCK] = 0;
  2373. }
  2374. case EXT3_IND_BLOCK:
  2375. nr = i_data[EXT3_DIND_BLOCK];
  2376. if (nr) {
  2377. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2378. i_data[EXT3_DIND_BLOCK] = 0;
  2379. }
  2380. case EXT3_DIND_BLOCK:
  2381. nr = i_data[EXT3_TIND_BLOCK];
  2382. if (nr) {
  2383. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2384. i_data[EXT3_TIND_BLOCK] = 0;
  2385. }
  2386. case EXT3_TIND_BLOCK:
  2387. ;
  2388. }
  2389. ext3_discard_reservation(inode);
  2390. mutex_unlock(&ei->truncate_mutex);
  2391. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2392. ext3_mark_inode_dirty(handle, inode);
  2393. /*
  2394. * In a multi-transaction truncate, we only make the final transaction
  2395. * synchronous
  2396. */
  2397. if (IS_SYNC(inode))
  2398. handle->h_sync = 1;
  2399. out_stop:
  2400. /*
  2401. * If this was a simple ftruncate(), and the file will remain alive
  2402. * then we need to clear up the orphan record which we created above.
  2403. * However, if this was a real unlink then we were called by
  2404. * ext3_evict_inode(), and we allow that function to clean up the
  2405. * orphan info for us.
  2406. */
  2407. if (inode->i_nlink)
  2408. ext3_orphan_del(handle, inode);
  2409. ext3_journal_stop(handle);
  2410. trace_ext3_truncate_exit(inode);
  2411. return;
  2412. out_notrans:
  2413. /*
  2414. * Delete the inode from orphan list so that it doesn't stay there
  2415. * forever and trigger assertion on umount.
  2416. */
  2417. if (inode->i_nlink)
  2418. ext3_orphan_del(NULL, inode);
  2419. trace_ext3_truncate_exit(inode);
  2420. }
  2421. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2422. unsigned long ino, struct ext3_iloc *iloc)
  2423. {
  2424. unsigned long block_group;
  2425. unsigned long offset;
  2426. ext3_fsblk_t block;
  2427. struct ext3_group_desc *gdp;
  2428. if (!ext3_valid_inum(sb, ino)) {
  2429. /*
  2430. * This error is already checked for in namei.c unless we are
  2431. * looking at an NFS filehandle, in which case no error
  2432. * report is needed
  2433. */
  2434. return 0;
  2435. }
  2436. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2437. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2438. if (!gdp)
  2439. return 0;
  2440. /*
  2441. * Figure out the offset within the block group inode table
  2442. */
  2443. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2444. EXT3_INODE_SIZE(sb);
  2445. block = le32_to_cpu(gdp->bg_inode_table) +
  2446. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2447. iloc->block_group = block_group;
  2448. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2449. return block;
  2450. }
  2451. /*
  2452. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2453. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2454. * data in memory that is needed to recreate the on-disk version of this
  2455. * inode.
  2456. */
  2457. static int __ext3_get_inode_loc(struct inode *inode,
  2458. struct ext3_iloc *iloc, int in_mem)
  2459. {
  2460. ext3_fsblk_t block;
  2461. struct buffer_head *bh;
  2462. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2463. if (!block)
  2464. return -EIO;
  2465. bh = sb_getblk(inode->i_sb, block);
  2466. if (!bh) {
  2467. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2468. "unable to read inode block - "
  2469. "inode=%lu, block="E3FSBLK,
  2470. inode->i_ino, block);
  2471. return -EIO;
  2472. }
  2473. if (!buffer_uptodate(bh)) {
  2474. lock_buffer(bh);
  2475. /*
  2476. * If the buffer has the write error flag, we have failed
  2477. * to write out another inode in the same block. In this
  2478. * case, we don't have to read the block because we may
  2479. * read the old inode data successfully.
  2480. */
  2481. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2482. set_buffer_uptodate(bh);
  2483. if (buffer_uptodate(bh)) {
  2484. /* someone brought it uptodate while we waited */
  2485. unlock_buffer(bh);
  2486. goto has_buffer;
  2487. }
  2488. /*
  2489. * If we have all information of the inode in memory and this
  2490. * is the only valid inode in the block, we need not read the
  2491. * block.
  2492. */
  2493. if (in_mem) {
  2494. struct buffer_head *bitmap_bh;
  2495. struct ext3_group_desc *desc;
  2496. int inodes_per_buffer;
  2497. int inode_offset, i;
  2498. int block_group;
  2499. int start;
  2500. block_group = (inode->i_ino - 1) /
  2501. EXT3_INODES_PER_GROUP(inode->i_sb);
  2502. inodes_per_buffer = bh->b_size /
  2503. EXT3_INODE_SIZE(inode->i_sb);
  2504. inode_offset = ((inode->i_ino - 1) %
  2505. EXT3_INODES_PER_GROUP(inode->i_sb));
  2506. start = inode_offset & ~(inodes_per_buffer - 1);
  2507. /* Is the inode bitmap in cache? */
  2508. desc = ext3_get_group_desc(inode->i_sb,
  2509. block_group, NULL);
  2510. if (!desc)
  2511. goto make_io;
  2512. bitmap_bh = sb_getblk(inode->i_sb,
  2513. le32_to_cpu(desc->bg_inode_bitmap));
  2514. if (!bitmap_bh)
  2515. goto make_io;
  2516. /*
  2517. * If the inode bitmap isn't in cache then the
  2518. * optimisation may end up performing two reads instead
  2519. * of one, so skip it.
  2520. */
  2521. if (!buffer_uptodate(bitmap_bh)) {
  2522. brelse(bitmap_bh);
  2523. goto make_io;
  2524. }
  2525. for (i = start; i < start + inodes_per_buffer; i++) {
  2526. if (i == inode_offset)
  2527. continue;
  2528. if (ext3_test_bit(i, bitmap_bh->b_data))
  2529. break;
  2530. }
  2531. brelse(bitmap_bh);
  2532. if (i == start + inodes_per_buffer) {
  2533. /* all other inodes are free, so skip I/O */
  2534. memset(bh->b_data, 0, bh->b_size);
  2535. set_buffer_uptodate(bh);
  2536. unlock_buffer(bh);
  2537. goto has_buffer;
  2538. }
  2539. }
  2540. make_io:
  2541. /*
  2542. * There are other valid inodes in the buffer, this inode
  2543. * has in-inode xattrs, or we don't have this inode in memory.
  2544. * Read the block from disk.
  2545. */
  2546. trace_ext3_load_inode(inode);
  2547. get_bh(bh);
  2548. bh->b_end_io = end_buffer_read_sync;
  2549. submit_bh(READ_META, bh);
  2550. wait_on_buffer(bh);
  2551. if (!buffer_uptodate(bh)) {
  2552. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2553. "unable to read inode block - "
  2554. "inode=%lu, block="E3FSBLK,
  2555. inode->i_ino, block);
  2556. brelse(bh);
  2557. return -EIO;
  2558. }
  2559. }
  2560. has_buffer:
  2561. iloc->bh = bh;
  2562. return 0;
  2563. }
  2564. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2565. {
  2566. /* We have all inode data except xattrs in memory here. */
  2567. return __ext3_get_inode_loc(inode, iloc,
  2568. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2569. }
  2570. void ext3_set_inode_flags(struct inode *inode)
  2571. {
  2572. unsigned int flags = EXT3_I(inode)->i_flags;
  2573. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2574. if (flags & EXT3_SYNC_FL)
  2575. inode->i_flags |= S_SYNC;
  2576. if (flags & EXT3_APPEND_FL)
  2577. inode->i_flags |= S_APPEND;
  2578. if (flags & EXT3_IMMUTABLE_FL)
  2579. inode->i_flags |= S_IMMUTABLE;
  2580. if (flags & EXT3_NOATIME_FL)
  2581. inode->i_flags |= S_NOATIME;
  2582. if (flags & EXT3_DIRSYNC_FL)
  2583. inode->i_flags |= S_DIRSYNC;
  2584. }
  2585. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2586. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2587. {
  2588. unsigned int flags = ei->vfs_inode.i_flags;
  2589. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2590. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2591. if (flags & S_SYNC)
  2592. ei->i_flags |= EXT3_SYNC_FL;
  2593. if (flags & S_APPEND)
  2594. ei->i_flags |= EXT3_APPEND_FL;
  2595. if (flags & S_IMMUTABLE)
  2596. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2597. if (flags & S_NOATIME)
  2598. ei->i_flags |= EXT3_NOATIME_FL;
  2599. if (flags & S_DIRSYNC)
  2600. ei->i_flags |= EXT3_DIRSYNC_FL;
  2601. }
  2602. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2603. {
  2604. struct ext3_iloc iloc;
  2605. struct ext3_inode *raw_inode;
  2606. struct ext3_inode_info *ei;
  2607. struct buffer_head *bh;
  2608. struct inode *inode;
  2609. journal_t *journal = EXT3_SB(sb)->s_journal;
  2610. transaction_t *transaction;
  2611. long ret;
  2612. int block;
  2613. inode = iget_locked(sb, ino);
  2614. if (!inode)
  2615. return ERR_PTR(-ENOMEM);
  2616. if (!(inode->i_state & I_NEW))
  2617. return inode;
  2618. ei = EXT3_I(inode);
  2619. ei->i_block_alloc_info = NULL;
  2620. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2621. if (ret < 0)
  2622. goto bad_inode;
  2623. bh = iloc.bh;
  2624. raw_inode = ext3_raw_inode(&iloc);
  2625. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2626. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2627. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2628. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2629. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2630. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2631. }
  2632. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2633. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2634. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2635. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2636. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2637. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2638. ei->i_state_flags = 0;
  2639. ei->i_dir_start_lookup = 0;
  2640. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2641. /* We now have enough fields to check if the inode was active or not.
  2642. * This is needed because nfsd might try to access dead inodes
  2643. * the test is that same one that e2fsck uses
  2644. * NeilBrown 1999oct15
  2645. */
  2646. if (inode->i_nlink == 0) {
  2647. if (inode->i_mode == 0 ||
  2648. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2649. /* this inode is deleted */
  2650. brelse (bh);
  2651. ret = -ESTALE;
  2652. goto bad_inode;
  2653. }
  2654. /* The only unlinked inodes we let through here have
  2655. * valid i_mode and are being read by the orphan
  2656. * recovery code: that's fine, we're about to complete
  2657. * the process of deleting those. */
  2658. }
  2659. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2660. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2661. #ifdef EXT3_FRAGMENTS
  2662. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2663. ei->i_frag_no = raw_inode->i_frag;
  2664. ei->i_frag_size = raw_inode->i_fsize;
  2665. #endif
  2666. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2667. if (!S_ISREG(inode->i_mode)) {
  2668. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2669. } else {
  2670. inode->i_size |=
  2671. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2672. }
  2673. ei->i_disksize = inode->i_size;
  2674. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2675. ei->i_block_group = iloc.block_group;
  2676. /*
  2677. * NOTE! The in-memory inode i_data array is in little-endian order
  2678. * even on big-endian machines: we do NOT byteswap the block numbers!
  2679. */
  2680. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2681. ei->i_data[block] = raw_inode->i_block[block];
  2682. INIT_LIST_HEAD(&ei->i_orphan);
  2683. /*
  2684. * Set transaction id's of transactions that have to be committed
  2685. * to finish f[data]sync. We set them to currently running transaction
  2686. * as we cannot be sure that the inode or some of its metadata isn't
  2687. * part of the transaction - the inode could have been reclaimed and
  2688. * now it is reread from disk.
  2689. */
  2690. if (journal) {
  2691. tid_t tid;
  2692. spin_lock(&journal->j_state_lock);
  2693. if (journal->j_running_transaction)
  2694. transaction = journal->j_running_transaction;
  2695. else
  2696. transaction = journal->j_committing_transaction;
  2697. if (transaction)
  2698. tid = transaction->t_tid;
  2699. else
  2700. tid = journal->j_commit_sequence;
  2701. spin_unlock(&journal->j_state_lock);
  2702. atomic_set(&ei->i_sync_tid, tid);
  2703. atomic_set(&ei->i_datasync_tid, tid);
  2704. }
  2705. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2706. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2707. /*
  2708. * When mke2fs creates big inodes it does not zero out
  2709. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2710. * so ignore those first few inodes.
  2711. */
  2712. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2713. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2714. EXT3_INODE_SIZE(inode->i_sb)) {
  2715. brelse (bh);
  2716. ret = -EIO;
  2717. goto bad_inode;
  2718. }
  2719. if (ei->i_extra_isize == 0) {
  2720. /* The extra space is currently unused. Use it. */
  2721. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2722. EXT3_GOOD_OLD_INODE_SIZE;
  2723. } else {
  2724. __le32 *magic = (void *)raw_inode +
  2725. EXT3_GOOD_OLD_INODE_SIZE +
  2726. ei->i_extra_isize;
  2727. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2728. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2729. }
  2730. } else
  2731. ei->i_extra_isize = 0;
  2732. if (S_ISREG(inode->i_mode)) {
  2733. inode->i_op = &ext3_file_inode_operations;
  2734. inode->i_fop = &ext3_file_operations;
  2735. ext3_set_aops(inode);
  2736. } else if (S_ISDIR(inode->i_mode)) {
  2737. inode->i_op = &ext3_dir_inode_operations;
  2738. inode->i_fop = &ext3_dir_operations;
  2739. } else if (S_ISLNK(inode->i_mode)) {
  2740. if (ext3_inode_is_fast_symlink(inode)) {
  2741. inode->i_op = &ext3_fast_symlink_inode_operations;
  2742. nd_terminate_link(ei->i_data, inode->i_size,
  2743. sizeof(ei->i_data) - 1);
  2744. } else {
  2745. inode->i_op = &ext3_symlink_inode_operations;
  2746. ext3_set_aops(inode);
  2747. }
  2748. } else {
  2749. inode->i_op = &ext3_special_inode_operations;
  2750. if (raw_inode->i_block[0])
  2751. init_special_inode(inode, inode->i_mode,
  2752. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2753. else
  2754. init_special_inode(inode, inode->i_mode,
  2755. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2756. }
  2757. brelse (iloc.bh);
  2758. ext3_set_inode_flags(inode);
  2759. unlock_new_inode(inode);
  2760. return inode;
  2761. bad_inode:
  2762. iget_failed(inode);
  2763. return ERR_PTR(ret);
  2764. }
  2765. /*
  2766. * Post the struct inode info into an on-disk inode location in the
  2767. * buffer-cache. This gobbles the caller's reference to the
  2768. * buffer_head in the inode location struct.
  2769. *
  2770. * The caller must have write access to iloc->bh.
  2771. */
  2772. static int ext3_do_update_inode(handle_t *handle,
  2773. struct inode *inode,
  2774. struct ext3_iloc *iloc)
  2775. {
  2776. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2777. struct ext3_inode_info *ei = EXT3_I(inode);
  2778. struct buffer_head *bh = iloc->bh;
  2779. int err = 0, rc, block;
  2780. again:
  2781. /* we can't allow multiple procs in here at once, its a bit racey */
  2782. lock_buffer(bh);
  2783. /* For fields not not tracking in the in-memory inode,
  2784. * initialise them to zero for new inodes. */
  2785. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2786. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2787. ext3_get_inode_flags(ei);
  2788. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2789. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2790. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2791. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2792. /*
  2793. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2794. * re-used with the upper 16 bits of the uid/gid intact
  2795. */
  2796. if(!ei->i_dtime) {
  2797. raw_inode->i_uid_high =
  2798. cpu_to_le16(high_16_bits(inode->i_uid));
  2799. raw_inode->i_gid_high =
  2800. cpu_to_le16(high_16_bits(inode->i_gid));
  2801. } else {
  2802. raw_inode->i_uid_high = 0;
  2803. raw_inode->i_gid_high = 0;
  2804. }
  2805. } else {
  2806. raw_inode->i_uid_low =
  2807. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2808. raw_inode->i_gid_low =
  2809. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2810. raw_inode->i_uid_high = 0;
  2811. raw_inode->i_gid_high = 0;
  2812. }
  2813. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2814. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2815. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2816. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2817. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2818. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2819. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2820. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2821. #ifdef EXT3_FRAGMENTS
  2822. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2823. raw_inode->i_frag = ei->i_frag_no;
  2824. raw_inode->i_fsize = ei->i_frag_size;
  2825. #endif
  2826. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2827. if (!S_ISREG(inode->i_mode)) {
  2828. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2829. } else {
  2830. raw_inode->i_size_high =
  2831. cpu_to_le32(ei->i_disksize >> 32);
  2832. if (ei->i_disksize > 0x7fffffffULL) {
  2833. struct super_block *sb = inode->i_sb;
  2834. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2835. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2836. EXT3_SB(sb)->s_es->s_rev_level ==
  2837. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2838. /* If this is the first large file
  2839. * created, add a flag to the superblock.
  2840. */
  2841. unlock_buffer(bh);
  2842. err = ext3_journal_get_write_access(handle,
  2843. EXT3_SB(sb)->s_sbh);
  2844. if (err)
  2845. goto out_brelse;
  2846. ext3_update_dynamic_rev(sb);
  2847. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2848. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2849. handle->h_sync = 1;
  2850. err = ext3_journal_dirty_metadata(handle,
  2851. EXT3_SB(sb)->s_sbh);
  2852. /* get our lock and start over */
  2853. goto again;
  2854. }
  2855. }
  2856. }
  2857. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2858. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2859. if (old_valid_dev(inode->i_rdev)) {
  2860. raw_inode->i_block[0] =
  2861. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2862. raw_inode->i_block[1] = 0;
  2863. } else {
  2864. raw_inode->i_block[0] = 0;
  2865. raw_inode->i_block[1] =
  2866. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2867. raw_inode->i_block[2] = 0;
  2868. }
  2869. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2870. raw_inode->i_block[block] = ei->i_data[block];
  2871. if (ei->i_extra_isize)
  2872. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2873. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2874. unlock_buffer(bh);
  2875. rc = ext3_journal_dirty_metadata(handle, bh);
  2876. if (!err)
  2877. err = rc;
  2878. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2879. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2880. out_brelse:
  2881. brelse (bh);
  2882. ext3_std_error(inode->i_sb, err);
  2883. return err;
  2884. }
  2885. /*
  2886. * ext3_write_inode()
  2887. *
  2888. * We are called from a few places:
  2889. *
  2890. * - Within generic_file_write() for O_SYNC files.
  2891. * Here, there will be no transaction running. We wait for any running
  2892. * trasnaction to commit.
  2893. *
  2894. * - Within sys_sync(), kupdate and such.
  2895. * We wait on commit, if tol to.
  2896. *
  2897. * - Within prune_icache() (PF_MEMALLOC == true)
  2898. * Here we simply return. We can't afford to block kswapd on the
  2899. * journal commit.
  2900. *
  2901. * In all cases it is actually safe for us to return without doing anything,
  2902. * because the inode has been copied into a raw inode buffer in
  2903. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2904. * knfsd.
  2905. *
  2906. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2907. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2908. * which we are interested.
  2909. *
  2910. * It would be a bug for them to not do this. The code:
  2911. *
  2912. * mark_inode_dirty(inode)
  2913. * stuff();
  2914. * inode->i_size = expr;
  2915. *
  2916. * is in error because a kswapd-driven write_inode() could occur while
  2917. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2918. * will no longer be on the superblock's dirty inode list.
  2919. */
  2920. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2921. {
  2922. if (current->flags & PF_MEMALLOC)
  2923. return 0;
  2924. if (ext3_journal_current_handle()) {
  2925. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2926. dump_stack();
  2927. return -EIO;
  2928. }
  2929. if (wbc->sync_mode != WB_SYNC_ALL)
  2930. return 0;
  2931. return ext3_force_commit(inode->i_sb);
  2932. }
  2933. /*
  2934. * ext3_setattr()
  2935. *
  2936. * Called from notify_change.
  2937. *
  2938. * We want to trap VFS attempts to truncate the file as soon as
  2939. * possible. In particular, we want to make sure that when the VFS
  2940. * shrinks i_size, we put the inode on the orphan list and modify
  2941. * i_disksize immediately, so that during the subsequent flushing of
  2942. * dirty pages and freeing of disk blocks, we can guarantee that any
  2943. * commit will leave the blocks being flushed in an unused state on
  2944. * disk. (On recovery, the inode will get truncated and the blocks will
  2945. * be freed, so we have a strong guarantee that no future commit will
  2946. * leave these blocks visible to the user.)
  2947. *
  2948. * Called with inode->sem down.
  2949. */
  2950. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2951. {
  2952. struct inode *inode = dentry->d_inode;
  2953. int error, rc = 0;
  2954. const unsigned int ia_valid = attr->ia_valid;
  2955. error = inode_change_ok(inode, attr);
  2956. if (error)
  2957. return error;
  2958. if (is_quota_modification(inode, attr))
  2959. dquot_initialize(inode);
  2960. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2961. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2962. handle_t *handle;
  2963. /* (user+group)*(old+new) structure, inode write (sb,
  2964. * inode block, ? - but truncate inode update has it) */
  2965. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2966. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2967. if (IS_ERR(handle)) {
  2968. error = PTR_ERR(handle);
  2969. goto err_out;
  2970. }
  2971. error = dquot_transfer(inode, attr);
  2972. if (error) {
  2973. ext3_journal_stop(handle);
  2974. return error;
  2975. }
  2976. /* Update corresponding info in inode so that everything is in
  2977. * one transaction */
  2978. if (attr->ia_valid & ATTR_UID)
  2979. inode->i_uid = attr->ia_uid;
  2980. if (attr->ia_valid & ATTR_GID)
  2981. inode->i_gid = attr->ia_gid;
  2982. error = ext3_mark_inode_dirty(handle, inode);
  2983. ext3_journal_stop(handle);
  2984. }
  2985. if (attr->ia_valid & ATTR_SIZE)
  2986. inode_dio_wait(inode);
  2987. if (S_ISREG(inode->i_mode) &&
  2988. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2989. handle_t *handle;
  2990. handle = ext3_journal_start(inode, 3);
  2991. if (IS_ERR(handle)) {
  2992. error = PTR_ERR(handle);
  2993. goto err_out;
  2994. }
  2995. error = ext3_orphan_add(handle, inode);
  2996. if (error) {
  2997. ext3_journal_stop(handle);
  2998. goto err_out;
  2999. }
  3000. EXT3_I(inode)->i_disksize = attr->ia_size;
  3001. error = ext3_mark_inode_dirty(handle, inode);
  3002. ext3_journal_stop(handle);
  3003. if (error) {
  3004. /* Some hard fs error must have happened. Bail out. */
  3005. ext3_orphan_del(NULL, inode);
  3006. goto err_out;
  3007. }
  3008. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3009. if (rc) {
  3010. /* Cleanup orphan list and exit */
  3011. handle = ext3_journal_start(inode, 3);
  3012. if (IS_ERR(handle)) {
  3013. ext3_orphan_del(NULL, inode);
  3014. goto err_out;
  3015. }
  3016. ext3_orphan_del(handle, inode);
  3017. ext3_journal_stop(handle);
  3018. goto err_out;
  3019. }
  3020. }
  3021. if ((attr->ia_valid & ATTR_SIZE) &&
  3022. attr->ia_size != i_size_read(inode)) {
  3023. truncate_setsize(inode, attr->ia_size);
  3024. ext3_truncate(inode);
  3025. }
  3026. setattr_copy(inode, attr);
  3027. mark_inode_dirty(inode);
  3028. if (ia_valid & ATTR_MODE)
  3029. rc = ext3_acl_chmod(inode);
  3030. err_out:
  3031. ext3_std_error(inode->i_sb, error);
  3032. if (!error)
  3033. error = rc;
  3034. return error;
  3035. }
  3036. /*
  3037. * How many blocks doth make a writepage()?
  3038. *
  3039. * With N blocks per page, it may be:
  3040. * N data blocks
  3041. * 2 indirect block
  3042. * 2 dindirect
  3043. * 1 tindirect
  3044. * N+5 bitmap blocks (from the above)
  3045. * N+5 group descriptor summary blocks
  3046. * 1 inode block
  3047. * 1 superblock.
  3048. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3049. *
  3050. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3051. *
  3052. * With ordered or writeback data it's the same, less the N data blocks.
  3053. *
  3054. * If the inode's direct blocks can hold an integral number of pages then a
  3055. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3056. * and dindirect block, and the "5" above becomes "3".
  3057. *
  3058. * This still overestimates under most circumstances. If we were to pass the
  3059. * start and end offsets in here as well we could do block_to_path() on each
  3060. * block and work out the exact number of indirects which are touched. Pah.
  3061. */
  3062. static int ext3_writepage_trans_blocks(struct inode *inode)
  3063. {
  3064. int bpp = ext3_journal_blocks_per_page(inode);
  3065. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3066. int ret;
  3067. if (ext3_should_journal_data(inode))
  3068. ret = 3 * (bpp + indirects) + 2;
  3069. else
  3070. ret = 2 * (bpp + indirects) + indirects + 2;
  3071. #ifdef CONFIG_QUOTA
  3072. /* We know that structure was already allocated during dquot_initialize so
  3073. * we will be updating only the data blocks + inodes */
  3074. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3075. #endif
  3076. return ret;
  3077. }
  3078. /*
  3079. * The caller must have previously called ext3_reserve_inode_write().
  3080. * Give this, we know that the caller already has write access to iloc->bh.
  3081. */
  3082. int ext3_mark_iloc_dirty(handle_t *handle,
  3083. struct inode *inode, struct ext3_iloc *iloc)
  3084. {
  3085. int err = 0;
  3086. /* the do_update_inode consumes one bh->b_count */
  3087. get_bh(iloc->bh);
  3088. /* ext3_do_update_inode() does journal_dirty_metadata */
  3089. err = ext3_do_update_inode(handle, inode, iloc);
  3090. put_bh(iloc->bh);
  3091. return err;
  3092. }
  3093. /*
  3094. * On success, We end up with an outstanding reference count against
  3095. * iloc->bh. This _must_ be cleaned up later.
  3096. */
  3097. int
  3098. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3099. struct ext3_iloc *iloc)
  3100. {
  3101. int err = 0;
  3102. if (handle) {
  3103. err = ext3_get_inode_loc(inode, iloc);
  3104. if (!err) {
  3105. BUFFER_TRACE(iloc->bh, "get_write_access");
  3106. err = ext3_journal_get_write_access(handle, iloc->bh);
  3107. if (err) {
  3108. brelse(iloc->bh);
  3109. iloc->bh = NULL;
  3110. }
  3111. }
  3112. }
  3113. ext3_std_error(inode->i_sb, err);
  3114. return err;
  3115. }
  3116. /*
  3117. * What we do here is to mark the in-core inode as clean with respect to inode
  3118. * dirtiness (it may still be data-dirty).
  3119. * This means that the in-core inode may be reaped by prune_icache
  3120. * without having to perform any I/O. This is a very good thing,
  3121. * because *any* task may call prune_icache - even ones which
  3122. * have a transaction open against a different journal.
  3123. *
  3124. * Is this cheating? Not really. Sure, we haven't written the
  3125. * inode out, but prune_icache isn't a user-visible syncing function.
  3126. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3127. * we start and wait on commits.
  3128. *
  3129. * Is this efficient/effective? Well, we're being nice to the system
  3130. * by cleaning up our inodes proactively so they can be reaped
  3131. * without I/O. But we are potentially leaving up to five seconds'
  3132. * worth of inodes floating about which prune_icache wants us to
  3133. * write out. One way to fix that would be to get prune_icache()
  3134. * to do a write_super() to free up some memory. It has the desired
  3135. * effect.
  3136. */
  3137. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3138. {
  3139. struct ext3_iloc iloc;
  3140. int err;
  3141. might_sleep();
  3142. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3143. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3144. if (!err)
  3145. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3146. return err;
  3147. }
  3148. /*
  3149. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3150. *
  3151. * We're really interested in the case where a file is being extended.
  3152. * i_size has been changed by generic_commit_write() and we thus need
  3153. * to include the updated inode in the current transaction.
  3154. *
  3155. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3156. * are allocated to the file.
  3157. *
  3158. * If the inode is marked synchronous, we don't honour that here - doing
  3159. * so would cause a commit on atime updates, which we don't bother doing.
  3160. * We handle synchronous inodes at the highest possible level.
  3161. */
  3162. void ext3_dirty_inode(struct inode *inode, int flags)
  3163. {
  3164. handle_t *current_handle = ext3_journal_current_handle();
  3165. handle_t *handle;
  3166. handle = ext3_journal_start(inode, 2);
  3167. if (IS_ERR(handle))
  3168. goto out;
  3169. if (current_handle &&
  3170. current_handle->h_transaction != handle->h_transaction) {
  3171. /* This task has a transaction open against a different fs */
  3172. printk(KERN_EMERG "%s: transactions do not match!\n",
  3173. __func__);
  3174. } else {
  3175. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3176. current_handle);
  3177. ext3_mark_inode_dirty(handle, inode);
  3178. }
  3179. ext3_journal_stop(handle);
  3180. out:
  3181. return;
  3182. }
  3183. #if 0
  3184. /*
  3185. * Bind an inode's backing buffer_head into this transaction, to prevent
  3186. * it from being flushed to disk early. Unlike
  3187. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3188. * returns no iloc structure, so the caller needs to repeat the iloc
  3189. * lookup to mark the inode dirty later.
  3190. */
  3191. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3192. {
  3193. struct ext3_iloc iloc;
  3194. int err = 0;
  3195. if (handle) {
  3196. err = ext3_get_inode_loc(inode, &iloc);
  3197. if (!err) {
  3198. BUFFER_TRACE(iloc.bh, "get_write_access");
  3199. err = journal_get_write_access(handle, iloc.bh);
  3200. if (!err)
  3201. err = ext3_journal_dirty_metadata(handle,
  3202. iloc.bh);
  3203. brelse(iloc.bh);
  3204. }
  3205. }
  3206. ext3_std_error(inode->i_sb, err);
  3207. return err;
  3208. }
  3209. #endif
  3210. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3211. {
  3212. journal_t *journal;
  3213. handle_t *handle;
  3214. int err;
  3215. /*
  3216. * We have to be very careful here: changing a data block's
  3217. * journaling status dynamically is dangerous. If we write a
  3218. * data block to the journal, change the status and then delete
  3219. * that block, we risk forgetting to revoke the old log record
  3220. * from the journal and so a subsequent replay can corrupt data.
  3221. * So, first we make sure that the journal is empty and that
  3222. * nobody is changing anything.
  3223. */
  3224. journal = EXT3_JOURNAL(inode);
  3225. if (is_journal_aborted(journal))
  3226. return -EROFS;
  3227. journal_lock_updates(journal);
  3228. journal_flush(journal);
  3229. /*
  3230. * OK, there are no updates running now, and all cached data is
  3231. * synced to disk. We are now in a completely consistent state
  3232. * which doesn't have anything in the journal, and we know that
  3233. * no filesystem updates are running, so it is safe to modify
  3234. * the inode's in-core data-journaling state flag now.
  3235. */
  3236. if (val)
  3237. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3238. else
  3239. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3240. ext3_set_aops(inode);
  3241. journal_unlock_updates(journal);
  3242. /* Finally we can mark the inode as dirty. */
  3243. handle = ext3_journal_start(inode, 1);
  3244. if (IS_ERR(handle))
  3245. return PTR_ERR(handle);
  3246. err = ext3_mark_inode_dirty(handle, inode);
  3247. handle->h_sync = 1;
  3248. ext3_journal_stop(handle);
  3249. ext3_std_error(inode->i_sb, err);
  3250. return err;
  3251. }