cifsencrypt.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. /*
  2. * fs/cifs/cifsencrypt.c
  3. *
  4. * Copyright (C) International Business Machines Corp., 2005,2006
  5. * Author(s): Steve French (sfrench@us.ibm.com)
  6. *
  7. * This library is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published
  9. * by the Free Software Foundation; either version 2.1 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  15. * the GNU Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public License
  18. * along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/fs.h>
  22. #include <linux/slab.h>
  23. #include "cifspdu.h"
  24. #include "cifsglob.h"
  25. #include "cifs_debug.h"
  26. #include "cifs_unicode.h"
  27. #include "cifsproto.h"
  28. #include "ntlmssp.h"
  29. #include <linux/ctype.h>
  30. #include <linux/random.h>
  31. /*
  32. * Calculate and return the CIFS signature based on the mac key and SMB PDU.
  33. * The 16 byte signature must be allocated by the caller. Note we only use the
  34. * 1st eight bytes and that the smb header signature field on input contains
  35. * the sequence number before this function is called. Also, this function
  36. * should be called with the server->srv_mutex held.
  37. */
  38. static int cifs_calculate_signature(const struct smb_hdr *cifs_pdu,
  39. struct TCP_Server_Info *server, char *signature)
  40. {
  41. int rc;
  42. if (cifs_pdu == NULL || signature == NULL || server == NULL)
  43. return -EINVAL;
  44. if (!server->secmech.sdescmd5) {
  45. cERROR(1, "%s: Can't generate signature\n", __func__);
  46. return -1;
  47. }
  48. rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
  49. if (rc) {
  50. cERROR(1, "%s: Could not init md5\n", __func__);
  51. return rc;
  52. }
  53. rc = crypto_shash_update(&server->secmech.sdescmd5->shash,
  54. server->session_key.response, server->session_key.len);
  55. if (rc) {
  56. cERROR(1, "%s: Could not update with response\n", __func__);
  57. return rc;
  58. }
  59. rc = crypto_shash_update(&server->secmech.sdescmd5->shash,
  60. cifs_pdu->Protocol, be32_to_cpu(cifs_pdu->smb_buf_length));
  61. if (rc) {
  62. cERROR(1, "%s: Could not update with payload\n", __func__);
  63. return rc;
  64. }
  65. rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
  66. if (rc)
  67. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  68. return rc;
  69. }
  70. /* must be called with server->srv_mutex held */
  71. int cifs_sign_smb(struct smb_hdr *cifs_pdu, struct TCP_Server_Info *server,
  72. __u32 *pexpected_response_sequence_number)
  73. {
  74. int rc = 0;
  75. char smb_signature[20];
  76. if ((cifs_pdu == NULL) || (server == NULL))
  77. return -EINVAL;
  78. if (!(cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) ||
  79. server->tcpStatus == CifsNeedNegotiate)
  80. return rc;
  81. if (!server->session_estab) {
  82. strncpy(cifs_pdu->Signature.SecuritySignature, "BSRSPYL", 8);
  83. return rc;
  84. }
  85. cifs_pdu->Signature.Sequence.SequenceNumber =
  86. cpu_to_le32(server->sequence_number);
  87. cifs_pdu->Signature.Sequence.Reserved = 0;
  88. *pexpected_response_sequence_number = server->sequence_number++;
  89. server->sequence_number++;
  90. rc = cifs_calculate_signature(cifs_pdu, server, smb_signature);
  91. if (rc)
  92. memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
  93. else
  94. memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
  95. return rc;
  96. }
  97. static int cifs_calc_signature2(const struct kvec *iov, int n_vec,
  98. struct TCP_Server_Info *server, char *signature)
  99. {
  100. int i;
  101. int rc;
  102. if (iov == NULL || signature == NULL || server == NULL)
  103. return -EINVAL;
  104. if (!server->secmech.sdescmd5) {
  105. cERROR(1, "%s: Can't generate signature\n", __func__);
  106. return -1;
  107. }
  108. rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
  109. if (rc) {
  110. cERROR(1, "%s: Could not init md5\n", __func__);
  111. return rc;
  112. }
  113. rc = crypto_shash_update(&server->secmech.sdescmd5->shash,
  114. server->session_key.response, server->session_key.len);
  115. if (rc) {
  116. cERROR(1, "%s: Could not update with response\n", __func__);
  117. return rc;
  118. }
  119. for (i = 0; i < n_vec; i++) {
  120. if (iov[i].iov_len == 0)
  121. continue;
  122. if (iov[i].iov_base == NULL) {
  123. cERROR(1, "null iovec entry");
  124. return -EIO;
  125. }
  126. /* The first entry includes a length field (which does not get
  127. signed that occupies the first 4 bytes before the header */
  128. if (i == 0) {
  129. if (iov[0].iov_len <= 8) /* cmd field at offset 9 */
  130. break; /* nothing to sign or corrupt header */
  131. rc =
  132. crypto_shash_update(&server->secmech.sdescmd5->shash,
  133. iov[i].iov_base + 4, iov[i].iov_len - 4);
  134. } else {
  135. rc =
  136. crypto_shash_update(&server->secmech.sdescmd5->shash,
  137. iov[i].iov_base, iov[i].iov_len);
  138. }
  139. if (rc) {
  140. cERROR(1, "%s: Could not update with payload\n",
  141. __func__);
  142. return rc;
  143. }
  144. }
  145. rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
  146. if (rc)
  147. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  148. return rc;
  149. }
  150. /* must be called with server->srv_mutex held */
  151. int cifs_sign_smb2(struct kvec *iov, int n_vec, struct TCP_Server_Info *server,
  152. __u32 *pexpected_response_sequence_number)
  153. {
  154. int rc = 0;
  155. char smb_signature[20];
  156. struct smb_hdr *cifs_pdu = iov[0].iov_base;
  157. if ((cifs_pdu == NULL) || (server == NULL))
  158. return -EINVAL;
  159. if (!(cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) ||
  160. server->tcpStatus == CifsNeedNegotiate)
  161. return rc;
  162. if (!server->session_estab) {
  163. strncpy(cifs_pdu->Signature.SecuritySignature, "BSRSPYL", 8);
  164. return rc;
  165. }
  166. cifs_pdu->Signature.Sequence.SequenceNumber =
  167. cpu_to_le32(server->sequence_number);
  168. cifs_pdu->Signature.Sequence.Reserved = 0;
  169. *pexpected_response_sequence_number = server->sequence_number++;
  170. server->sequence_number++;
  171. rc = cifs_calc_signature2(iov, n_vec, server, smb_signature);
  172. if (rc)
  173. memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
  174. else
  175. memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
  176. return rc;
  177. }
  178. int cifs_verify_signature(struct smb_hdr *cifs_pdu,
  179. struct TCP_Server_Info *server,
  180. __u32 expected_sequence_number)
  181. {
  182. unsigned int rc;
  183. char server_response_sig[8];
  184. char what_we_think_sig_should_be[20];
  185. if (cifs_pdu == NULL || server == NULL)
  186. return -EINVAL;
  187. if (!server->session_estab)
  188. return 0;
  189. if (cifs_pdu->Command == SMB_COM_LOCKING_ANDX) {
  190. struct smb_com_lock_req *pSMB =
  191. (struct smb_com_lock_req *)cifs_pdu;
  192. if (pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)
  193. return 0;
  194. }
  195. /* BB what if signatures are supposed to be on for session but
  196. server does not send one? BB */
  197. /* Do not need to verify session setups with signature "BSRSPYL " */
  198. if (memcmp(cifs_pdu->Signature.SecuritySignature, "BSRSPYL ", 8) == 0)
  199. cFYI(1, "dummy signature received for smb command 0x%x",
  200. cifs_pdu->Command);
  201. /* save off the origiginal signature so we can modify the smb and check
  202. its signature against what the server sent */
  203. memcpy(server_response_sig, cifs_pdu->Signature.SecuritySignature, 8);
  204. cifs_pdu->Signature.Sequence.SequenceNumber =
  205. cpu_to_le32(expected_sequence_number);
  206. cifs_pdu->Signature.Sequence.Reserved = 0;
  207. mutex_lock(&server->srv_mutex);
  208. rc = cifs_calculate_signature(cifs_pdu, server,
  209. what_we_think_sig_should_be);
  210. mutex_unlock(&server->srv_mutex);
  211. if (rc)
  212. return rc;
  213. /* cifs_dump_mem("what we think it should be: ",
  214. what_we_think_sig_should_be, 16); */
  215. if (memcmp(server_response_sig, what_we_think_sig_should_be, 8))
  216. return -EACCES;
  217. else
  218. return 0;
  219. }
  220. /* first calculate 24 bytes ntlm response and then 16 byte session key */
  221. int setup_ntlm_response(struct cifs_ses *ses)
  222. {
  223. int rc = 0;
  224. unsigned int temp_len = CIFS_SESS_KEY_SIZE + CIFS_AUTH_RESP_SIZE;
  225. char temp_key[CIFS_SESS_KEY_SIZE];
  226. if (!ses)
  227. return -EINVAL;
  228. ses->auth_key.response = kmalloc(temp_len, GFP_KERNEL);
  229. if (!ses->auth_key.response) {
  230. cERROR(1, "NTLM can't allocate (%u bytes) memory", temp_len);
  231. return -ENOMEM;
  232. }
  233. ses->auth_key.len = temp_len;
  234. rc = SMBNTencrypt(ses->password, ses->server->cryptkey,
  235. ses->auth_key.response + CIFS_SESS_KEY_SIZE);
  236. if (rc) {
  237. cFYI(1, "%s Can't generate NTLM response, error: %d",
  238. __func__, rc);
  239. return rc;
  240. }
  241. rc = E_md4hash(ses->password, temp_key);
  242. if (rc) {
  243. cFYI(1, "%s Can't generate NT hash, error: %d", __func__, rc);
  244. return rc;
  245. }
  246. rc = mdfour(ses->auth_key.response, temp_key, CIFS_SESS_KEY_SIZE);
  247. if (rc)
  248. cFYI(1, "%s Can't generate NTLM session key, error: %d",
  249. __func__, rc);
  250. return rc;
  251. }
  252. #ifdef CONFIG_CIFS_WEAK_PW_HASH
  253. int calc_lanman_hash(const char *password, const char *cryptkey, bool encrypt,
  254. char *lnm_session_key)
  255. {
  256. int i;
  257. int rc;
  258. char password_with_pad[CIFS_ENCPWD_SIZE];
  259. memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
  260. if (password)
  261. strncpy(password_with_pad, password, CIFS_ENCPWD_SIZE);
  262. if (!encrypt && global_secflags & CIFSSEC_MAY_PLNTXT) {
  263. memset(lnm_session_key, 0, CIFS_SESS_KEY_SIZE);
  264. memcpy(lnm_session_key, password_with_pad,
  265. CIFS_ENCPWD_SIZE);
  266. return 0;
  267. }
  268. /* calculate old style session key */
  269. /* calling toupper is less broken than repeatedly
  270. calling nls_toupper would be since that will never
  271. work for UTF8, but neither handles multibyte code pages
  272. but the only alternative would be converting to UCS-16 (Unicode)
  273. (using a routine something like UniStrupr) then
  274. uppercasing and then converting back from Unicode - which
  275. would only worth doing it if we knew it were utf8. Basically
  276. utf8 and other multibyte codepages each need their own strupper
  277. function since a byte at a time will ont work. */
  278. for (i = 0; i < CIFS_ENCPWD_SIZE; i++)
  279. password_with_pad[i] = toupper(password_with_pad[i]);
  280. rc = SMBencrypt(password_with_pad, cryptkey, lnm_session_key);
  281. return rc;
  282. }
  283. #endif /* CIFS_WEAK_PW_HASH */
  284. /* Build a proper attribute value/target info pairs blob.
  285. * Fill in netbios and dns domain name and workstation name
  286. * and client time (total five av pairs and + one end of fields indicator.
  287. * Allocate domain name which gets freed when session struct is deallocated.
  288. */
  289. static int
  290. build_avpair_blob(struct cifs_ses *ses, const struct nls_table *nls_cp)
  291. {
  292. unsigned int dlen;
  293. unsigned int wlen;
  294. unsigned int size = 6 * sizeof(struct ntlmssp2_name);
  295. __le64 curtime;
  296. char *defdmname = "WORKGROUP";
  297. unsigned char *blobptr;
  298. struct ntlmssp2_name *attrptr;
  299. if (!ses->domainName) {
  300. ses->domainName = kstrdup(defdmname, GFP_KERNEL);
  301. if (!ses->domainName)
  302. return -ENOMEM;
  303. }
  304. dlen = strlen(ses->domainName);
  305. wlen = strlen(ses->server->hostname);
  306. /* The length of this blob is a size which is
  307. * six times the size of a structure which holds name/size +
  308. * two times the unicode length of a domain name +
  309. * two times the unicode length of a server name +
  310. * size of a timestamp (which is 8 bytes).
  311. */
  312. ses->auth_key.len = size + 2 * (2 * dlen) + 2 * (2 * wlen) + 8;
  313. ses->auth_key.response = kzalloc(ses->auth_key.len, GFP_KERNEL);
  314. if (!ses->auth_key.response) {
  315. ses->auth_key.len = 0;
  316. cERROR(1, "Challenge target info allocation failure");
  317. return -ENOMEM;
  318. }
  319. blobptr = ses->auth_key.response;
  320. attrptr = (struct ntlmssp2_name *) blobptr;
  321. attrptr->type = cpu_to_le16(NTLMSSP_AV_NB_DOMAIN_NAME);
  322. attrptr->length = cpu_to_le16(2 * dlen);
  323. blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
  324. cifs_strtoUCS((__le16 *)blobptr, ses->domainName, dlen, nls_cp);
  325. blobptr += 2 * dlen;
  326. attrptr = (struct ntlmssp2_name *) blobptr;
  327. attrptr->type = cpu_to_le16(NTLMSSP_AV_NB_COMPUTER_NAME);
  328. attrptr->length = cpu_to_le16(2 * wlen);
  329. blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
  330. cifs_strtoUCS((__le16 *)blobptr, ses->server->hostname, wlen, nls_cp);
  331. blobptr += 2 * wlen;
  332. attrptr = (struct ntlmssp2_name *) blobptr;
  333. attrptr->type = cpu_to_le16(NTLMSSP_AV_DNS_DOMAIN_NAME);
  334. attrptr->length = cpu_to_le16(2 * dlen);
  335. blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
  336. cifs_strtoUCS((__le16 *)blobptr, ses->domainName, dlen, nls_cp);
  337. blobptr += 2 * dlen;
  338. attrptr = (struct ntlmssp2_name *) blobptr;
  339. attrptr->type = cpu_to_le16(NTLMSSP_AV_DNS_COMPUTER_NAME);
  340. attrptr->length = cpu_to_le16(2 * wlen);
  341. blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
  342. cifs_strtoUCS((__le16 *)blobptr, ses->server->hostname, wlen, nls_cp);
  343. blobptr += 2 * wlen;
  344. attrptr = (struct ntlmssp2_name *) blobptr;
  345. attrptr->type = cpu_to_le16(NTLMSSP_AV_TIMESTAMP);
  346. attrptr->length = cpu_to_le16(sizeof(__le64));
  347. blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
  348. curtime = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
  349. memcpy(blobptr, &curtime, sizeof(__le64));
  350. return 0;
  351. }
  352. /* Server has provided av pairs/target info in the type 2 challenge
  353. * packet and we have plucked it and stored within smb session.
  354. * We parse that blob here to find netbios domain name to be used
  355. * as part of ntlmv2 authentication (in Target String), if not already
  356. * specified on the command line.
  357. * If this function returns without any error but without fetching
  358. * domain name, authentication may fail against some server but
  359. * may not fail against other (those who are not very particular
  360. * about target string i.e. for some, just user name might suffice.
  361. */
  362. static int
  363. find_domain_name(struct cifs_ses *ses, const struct nls_table *nls_cp)
  364. {
  365. unsigned int attrsize;
  366. unsigned int type;
  367. unsigned int onesize = sizeof(struct ntlmssp2_name);
  368. unsigned char *blobptr;
  369. unsigned char *blobend;
  370. struct ntlmssp2_name *attrptr;
  371. if (!ses->auth_key.len || !ses->auth_key.response)
  372. return 0;
  373. blobptr = ses->auth_key.response;
  374. blobend = blobptr + ses->auth_key.len;
  375. while (blobptr + onesize < blobend) {
  376. attrptr = (struct ntlmssp2_name *) blobptr;
  377. type = le16_to_cpu(attrptr->type);
  378. if (type == NTLMSSP_AV_EOL)
  379. break;
  380. blobptr += 2; /* advance attr type */
  381. attrsize = le16_to_cpu(attrptr->length);
  382. blobptr += 2; /* advance attr size */
  383. if (blobptr + attrsize > blobend)
  384. break;
  385. if (type == NTLMSSP_AV_NB_DOMAIN_NAME) {
  386. if (!attrsize)
  387. break;
  388. if (!ses->domainName) {
  389. ses->domainName =
  390. kmalloc(attrsize + 1, GFP_KERNEL);
  391. if (!ses->domainName)
  392. return -ENOMEM;
  393. cifs_from_ucs2(ses->domainName,
  394. (__le16 *)blobptr, attrsize, attrsize,
  395. nls_cp, false);
  396. break;
  397. }
  398. }
  399. blobptr += attrsize; /* advance attr value */
  400. }
  401. return 0;
  402. }
  403. static int calc_ntlmv2_hash(struct cifs_ses *ses, char *ntlmv2_hash,
  404. const struct nls_table *nls_cp)
  405. {
  406. int rc = 0;
  407. int len;
  408. char nt_hash[CIFS_NTHASH_SIZE];
  409. wchar_t *user;
  410. wchar_t *domain;
  411. wchar_t *server;
  412. if (!ses->server->secmech.sdeschmacmd5) {
  413. cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
  414. return -1;
  415. }
  416. /* calculate md4 hash of password */
  417. E_md4hash(ses->password, nt_hash);
  418. rc = crypto_shash_setkey(ses->server->secmech.hmacmd5, nt_hash,
  419. CIFS_NTHASH_SIZE);
  420. if (rc) {
  421. cERROR(1, "%s: Could not set NT Hash as a key", __func__);
  422. return rc;
  423. }
  424. rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
  425. if (rc) {
  426. cERROR(1, "calc_ntlmv2_hash: could not init hmacmd5\n");
  427. return rc;
  428. }
  429. /* convert ses->user_name to unicode and uppercase */
  430. len = strlen(ses->user_name);
  431. user = kmalloc(2 + (len * 2), GFP_KERNEL);
  432. if (user == NULL) {
  433. cERROR(1, "calc_ntlmv2_hash: user mem alloc failure\n");
  434. rc = -ENOMEM;
  435. return rc;
  436. }
  437. len = cifs_strtoUCS((__le16 *)user, ses->user_name, len, nls_cp);
  438. UniStrupr(user);
  439. rc = crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  440. (char *)user, 2 * len);
  441. kfree(user);
  442. if (rc) {
  443. cERROR(1, "%s: Could not update with user\n", __func__);
  444. return rc;
  445. }
  446. /* convert ses->domainName to unicode and uppercase */
  447. if (ses->domainName) {
  448. len = strlen(ses->domainName);
  449. domain = kmalloc(2 + (len * 2), GFP_KERNEL);
  450. if (domain == NULL) {
  451. cERROR(1, "calc_ntlmv2_hash: domain mem alloc failure");
  452. rc = -ENOMEM;
  453. return rc;
  454. }
  455. len = cifs_strtoUCS((__le16 *)domain, ses->domainName, len,
  456. nls_cp);
  457. rc =
  458. crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  459. (char *)domain, 2 * len);
  460. kfree(domain);
  461. if (rc) {
  462. cERROR(1, "%s: Could not update with domain\n",
  463. __func__);
  464. return rc;
  465. }
  466. } else if (ses->serverName) {
  467. len = strlen(ses->serverName);
  468. server = kmalloc(2 + (len * 2), GFP_KERNEL);
  469. if (server == NULL) {
  470. cERROR(1, "calc_ntlmv2_hash: server mem alloc failure");
  471. rc = -ENOMEM;
  472. return rc;
  473. }
  474. len = cifs_strtoUCS((__le16 *)server, ses->serverName, len,
  475. nls_cp);
  476. rc =
  477. crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  478. (char *)server, 2 * len);
  479. kfree(server);
  480. if (rc) {
  481. cERROR(1, "%s: Could not update with server\n",
  482. __func__);
  483. return rc;
  484. }
  485. }
  486. rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
  487. ntlmv2_hash);
  488. if (rc)
  489. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  490. return rc;
  491. }
  492. static int
  493. CalcNTLMv2_response(const struct cifs_ses *ses, char *ntlmv2_hash)
  494. {
  495. int rc;
  496. unsigned int offset = CIFS_SESS_KEY_SIZE + 8;
  497. if (!ses->server->secmech.sdeschmacmd5) {
  498. cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
  499. return -1;
  500. }
  501. rc = crypto_shash_setkey(ses->server->secmech.hmacmd5,
  502. ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
  503. if (rc) {
  504. cERROR(1, "%s: Could not set NTLMV2 Hash as a key", __func__);
  505. return rc;
  506. }
  507. rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
  508. if (rc) {
  509. cERROR(1, "CalcNTLMv2_response: could not init hmacmd5");
  510. return rc;
  511. }
  512. if (ses->server->secType == RawNTLMSSP)
  513. memcpy(ses->auth_key.response + offset,
  514. ses->ntlmssp->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
  515. else
  516. memcpy(ses->auth_key.response + offset,
  517. ses->server->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
  518. rc = crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  519. ses->auth_key.response + offset, ses->auth_key.len - offset);
  520. if (rc) {
  521. cERROR(1, "%s: Could not update with response\n", __func__);
  522. return rc;
  523. }
  524. rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
  525. ses->auth_key.response + CIFS_SESS_KEY_SIZE);
  526. if (rc)
  527. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  528. return rc;
  529. }
  530. int
  531. setup_ntlmv2_rsp(struct cifs_ses *ses, const struct nls_table *nls_cp)
  532. {
  533. int rc;
  534. int baselen;
  535. unsigned int tilen;
  536. struct ntlmv2_resp *buf;
  537. char ntlmv2_hash[16];
  538. unsigned char *tiblob = NULL; /* target info blob */
  539. if (ses->server->secType == RawNTLMSSP) {
  540. if (!ses->domainName) {
  541. rc = find_domain_name(ses, nls_cp);
  542. if (rc) {
  543. cERROR(1, "error %d finding domain name", rc);
  544. goto setup_ntlmv2_rsp_ret;
  545. }
  546. }
  547. } else {
  548. rc = build_avpair_blob(ses, nls_cp);
  549. if (rc) {
  550. cERROR(1, "error %d building av pair blob", rc);
  551. goto setup_ntlmv2_rsp_ret;
  552. }
  553. }
  554. baselen = CIFS_SESS_KEY_SIZE + sizeof(struct ntlmv2_resp);
  555. tilen = ses->auth_key.len;
  556. tiblob = ses->auth_key.response;
  557. ses->auth_key.response = kmalloc(baselen + tilen, GFP_KERNEL);
  558. if (!ses->auth_key.response) {
  559. rc = ENOMEM;
  560. ses->auth_key.len = 0;
  561. cERROR(1, "%s: Can't allocate auth blob", __func__);
  562. goto setup_ntlmv2_rsp_ret;
  563. }
  564. ses->auth_key.len += baselen;
  565. buf = (struct ntlmv2_resp *)
  566. (ses->auth_key.response + CIFS_SESS_KEY_SIZE);
  567. buf->blob_signature = cpu_to_le32(0x00000101);
  568. buf->reserved = 0;
  569. buf->time = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
  570. get_random_bytes(&buf->client_chal, sizeof(buf->client_chal));
  571. buf->reserved2 = 0;
  572. memcpy(ses->auth_key.response + baselen, tiblob, tilen);
  573. /* calculate ntlmv2_hash */
  574. rc = calc_ntlmv2_hash(ses, ntlmv2_hash, nls_cp);
  575. if (rc) {
  576. cERROR(1, "could not get v2 hash rc %d", rc);
  577. goto setup_ntlmv2_rsp_ret;
  578. }
  579. /* calculate first part of the client response (CR1) */
  580. rc = CalcNTLMv2_response(ses, ntlmv2_hash);
  581. if (rc) {
  582. cERROR(1, "Could not calculate CR1 rc: %d", rc);
  583. goto setup_ntlmv2_rsp_ret;
  584. }
  585. /* now calculate the session key for NTLMv2 */
  586. rc = crypto_shash_setkey(ses->server->secmech.hmacmd5,
  587. ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
  588. if (rc) {
  589. cERROR(1, "%s: Could not set NTLMV2 Hash as a key", __func__);
  590. goto setup_ntlmv2_rsp_ret;
  591. }
  592. rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
  593. if (rc) {
  594. cERROR(1, "%s: Could not init hmacmd5\n", __func__);
  595. goto setup_ntlmv2_rsp_ret;
  596. }
  597. rc = crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  598. ses->auth_key.response + CIFS_SESS_KEY_SIZE,
  599. CIFS_HMAC_MD5_HASH_SIZE);
  600. if (rc) {
  601. cERROR(1, "%s: Could not update with response\n", __func__);
  602. goto setup_ntlmv2_rsp_ret;
  603. }
  604. rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
  605. ses->auth_key.response);
  606. if (rc)
  607. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  608. setup_ntlmv2_rsp_ret:
  609. kfree(tiblob);
  610. return rc;
  611. }
  612. int
  613. calc_seckey(struct cifs_ses *ses)
  614. {
  615. int rc;
  616. struct crypto_blkcipher *tfm_arc4;
  617. struct scatterlist sgin, sgout;
  618. struct blkcipher_desc desc;
  619. unsigned char sec_key[CIFS_SESS_KEY_SIZE]; /* a nonce */
  620. get_random_bytes(sec_key, CIFS_SESS_KEY_SIZE);
  621. tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
  622. if (IS_ERR(tfm_arc4)) {
  623. rc = PTR_ERR(tfm_arc4);
  624. cERROR(1, "could not allocate crypto API arc4\n");
  625. return rc;
  626. }
  627. desc.tfm = tfm_arc4;
  628. rc = crypto_blkcipher_setkey(tfm_arc4, ses->auth_key.response,
  629. CIFS_SESS_KEY_SIZE);
  630. if (rc) {
  631. cERROR(1, "%s: Could not set response as a key", __func__);
  632. return rc;
  633. }
  634. sg_init_one(&sgin, sec_key, CIFS_SESS_KEY_SIZE);
  635. sg_init_one(&sgout, ses->ntlmssp->ciphertext, CIFS_CPHTXT_SIZE);
  636. rc = crypto_blkcipher_encrypt(&desc, &sgout, &sgin, CIFS_CPHTXT_SIZE);
  637. if (rc) {
  638. cERROR(1, "could not encrypt session key rc: %d\n", rc);
  639. crypto_free_blkcipher(tfm_arc4);
  640. return rc;
  641. }
  642. /* make secondary_key/nonce as session key */
  643. memcpy(ses->auth_key.response, sec_key, CIFS_SESS_KEY_SIZE);
  644. /* and make len as that of session key only */
  645. ses->auth_key.len = CIFS_SESS_KEY_SIZE;
  646. crypto_free_blkcipher(tfm_arc4);
  647. return rc;
  648. }
  649. void
  650. cifs_crypto_shash_release(struct TCP_Server_Info *server)
  651. {
  652. if (server->secmech.md5)
  653. crypto_free_shash(server->secmech.md5);
  654. if (server->secmech.hmacmd5)
  655. crypto_free_shash(server->secmech.hmacmd5);
  656. kfree(server->secmech.sdeschmacmd5);
  657. kfree(server->secmech.sdescmd5);
  658. }
  659. int
  660. cifs_crypto_shash_allocate(struct TCP_Server_Info *server)
  661. {
  662. int rc;
  663. unsigned int size;
  664. server->secmech.hmacmd5 = crypto_alloc_shash("hmac(md5)", 0, 0);
  665. if (IS_ERR(server->secmech.hmacmd5)) {
  666. cERROR(1, "could not allocate crypto hmacmd5\n");
  667. return PTR_ERR(server->secmech.hmacmd5);
  668. }
  669. server->secmech.md5 = crypto_alloc_shash("md5", 0, 0);
  670. if (IS_ERR(server->secmech.md5)) {
  671. cERROR(1, "could not allocate crypto md5\n");
  672. rc = PTR_ERR(server->secmech.md5);
  673. goto crypto_allocate_md5_fail;
  674. }
  675. size = sizeof(struct shash_desc) +
  676. crypto_shash_descsize(server->secmech.hmacmd5);
  677. server->secmech.sdeschmacmd5 = kmalloc(size, GFP_KERNEL);
  678. if (!server->secmech.sdeschmacmd5) {
  679. cERROR(1, "cifs_crypto_shash_allocate: can't alloc hmacmd5\n");
  680. rc = -ENOMEM;
  681. goto crypto_allocate_hmacmd5_sdesc_fail;
  682. }
  683. server->secmech.sdeschmacmd5->shash.tfm = server->secmech.hmacmd5;
  684. server->secmech.sdeschmacmd5->shash.flags = 0x0;
  685. size = sizeof(struct shash_desc) +
  686. crypto_shash_descsize(server->secmech.md5);
  687. server->secmech.sdescmd5 = kmalloc(size, GFP_KERNEL);
  688. if (!server->secmech.sdescmd5) {
  689. cERROR(1, "cifs_crypto_shash_allocate: can't alloc md5\n");
  690. rc = -ENOMEM;
  691. goto crypto_allocate_md5_sdesc_fail;
  692. }
  693. server->secmech.sdescmd5->shash.tfm = server->secmech.md5;
  694. server->secmech.sdescmd5->shash.flags = 0x0;
  695. return 0;
  696. crypto_allocate_md5_sdesc_fail:
  697. kfree(server->secmech.sdeschmacmd5);
  698. crypto_allocate_hmacmd5_sdesc_fail:
  699. crypto_free_shash(server->secmech.md5);
  700. crypto_allocate_md5_fail:
  701. crypto_free_shash(server->secmech.hmacmd5);
  702. return rc;
  703. }