disk-io.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. static struct extent_io_ops btree_extent_io_ops;
  46. static void end_workqueue_fn(struct btrfs_work *work);
  47. static void free_fs_root(struct btrfs_root *root);
  48. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  49. int read_only);
  50. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  51. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  52. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  53. struct btrfs_root *root);
  54. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  55. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  56. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  57. struct extent_io_tree *dirty_pages,
  58. int mark);
  59. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  60. struct extent_io_tree *pinned_extents);
  61. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. };
  98. /*
  99. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  100. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  101. * the level the eb occupies in the tree.
  102. *
  103. * Different roots are used for different purposes and may nest inside each
  104. * other and they require separate keysets. As lockdep keys should be
  105. * static, assign keysets according to the purpose of the root as indicated
  106. * by btrfs_root->objectid. This ensures that all special purpose roots
  107. * have separate keysets.
  108. *
  109. * Lock-nesting across peer nodes is always done with the immediate parent
  110. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  111. * subclass to avoid triggering lockdep warning in such cases.
  112. *
  113. * The key is set by the readpage_end_io_hook after the buffer has passed
  114. * csum validation but before the pages are unlocked. It is also set by
  115. * btrfs_init_new_buffer on freshly allocated blocks.
  116. *
  117. * We also add a check to make sure the highest level of the tree is the
  118. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  119. * needs update as well.
  120. */
  121. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  122. # if BTRFS_MAX_LEVEL != 8
  123. # error
  124. # endif
  125. static struct btrfs_lockdep_keyset {
  126. u64 id; /* root objectid */
  127. const char *name_stem; /* lock name stem */
  128. char names[BTRFS_MAX_LEVEL + 1][20];
  129. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  130. } btrfs_lockdep_keysets[] = {
  131. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  132. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  133. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  134. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  135. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  136. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  137. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  138. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  139. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  140. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  141. { .id = 0, .name_stem = "tree" },
  142. };
  143. void __init btrfs_init_lockdep(void)
  144. {
  145. int i, j;
  146. /* initialize lockdep class names */
  147. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  148. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  149. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  150. snprintf(ks->names[j], sizeof(ks->names[j]),
  151. "btrfs-%s-%02d", ks->name_stem, j);
  152. }
  153. }
  154. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  155. int level)
  156. {
  157. struct btrfs_lockdep_keyset *ks;
  158. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  159. /* find the matching keyset, id 0 is the default entry */
  160. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  161. if (ks->id == objectid)
  162. break;
  163. lockdep_set_class_and_name(&eb->lock,
  164. &ks->keys[level], ks->names[level]);
  165. }
  166. #endif
  167. /*
  168. * extents on the btree inode are pretty simple, there's one extent
  169. * that covers the entire device
  170. */
  171. static struct extent_map *btree_get_extent(struct inode *inode,
  172. struct page *page, size_t pg_offset, u64 start, u64 len,
  173. int create)
  174. {
  175. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  176. struct extent_map *em;
  177. int ret;
  178. read_lock(&em_tree->lock);
  179. em = lookup_extent_mapping(em_tree, start, len);
  180. if (em) {
  181. em->bdev =
  182. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  183. read_unlock(&em_tree->lock);
  184. goto out;
  185. }
  186. read_unlock(&em_tree->lock);
  187. em = alloc_extent_map();
  188. if (!em) {
  189. em = ERR_PTR(-ENOMEM);
  190. goto out;
  191. }
  192. em->start = 0;
  193. em->len = (u64)-1;
  194. em->block_len = (u64)-1;
  195. em->block_start = 0;
  196. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  197. write_lock(&em_tree->lock);
  198. ret = add_extent_mapping(em_tree, em);
  199. if (ret == -EEXIST) {
  200. u64 failed_start = em->start;
  201. u64 failed_len = em->len;
  202. free_extent_map(em);
  203. em = lookup_extent_mapping(em_tree, start, len);
  204. if (em) {
  205. ret = 0;
  206. } else {
  207. em = lookup_extent_mapping(em_tree, failed_start,
  208. failed_len);
  209. ret = -EIO;
  210. }
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = NULL;
  214. }
  215. write_unlock(&em_tree->lock);
  216. if (ret)
  217. em = ERR_PTR(ret);
  218. out:
  219. return em;
  220. }
  221. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  222. {
  223. return crc32c(seed, data, len);
  224. }
  225. void btrfs_csum_final(u32 crc, char *result)
  226. {
  227. put_unaligned_le32(~crc, result);
  228. }
  229. /*
  230. * compute the csum for a btree block, and either verify it or write it
  231. * into the csum field of the block.
  232. */
  233. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  234. int verify)
  235. {
  236. u16 csum_size =
  237. btrfs_super_csum_size(&root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state, GFP_NOFS);
  306. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  339. btree_get_extent, mirror_num);
  340. if (!ret &&
  341. !verify_parent_transid(io_tree, eb, parent_transid))
  342. return ret;
  343. /*
  344. * This buffer's crc is fine, but its contents are corrupted, so
  345. * there is no reason to read the other copies, they won't be
  346. * any less wrong.
  347. */
  348. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  349. return ret;
  350. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  351. eb->start, eb->len);
  352. if (num_copies == 1)
  353. return ret;
  354. mirror_num++;
  355. if (mirror_num > num_copies)
  356. return ret;
  357. }
  358. return -EIO;
  359. }
  360. /*
  361. * checksum a dirty tree block before IO. This has extra checks to make sure
  362. * we only fill in the checksum field in the first page of a multi-page block
  363. */
  364. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  365. {
  366. struct extent_io_tree *tree;
  367. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  368. u64 found_start;
  369. unsigned long len;
  370. struct extent_buffer *eb;
  371. int ret;
  372. tree = &BTRFS_I(page->mapping->host)->io_tree;
  373. if (page->private == EXTENT_PAGE_PRIVATE) {
  374. WARN_ON(1);
  375. goto out;
  376. }
  377. if (!page->private) {
  378. WARN_ON(1);
  379. goto out;
  380. }
  381. len = page->private >> 2;
  382. WARN_ON(len == 0);
  383. eb = alloc_extent_buffer(tree, start, len, page);
  384. if (eb == NULL) {
  385. WARN_ON(1);
  386. goto out;
  387. }
  388. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  389. btrfs_header_generation(eb));
  390. BUG_ON(ret);
  391. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  392. found_start = btrfs_header_bytenr(eb);
  393. if (found_start != start) {
  394. WARN_ON(1);
  395. goto err;
  396. }
  397. if (eb->first_page != page) {
  398. WARN_ON(1);
  399. goto err;
  400. }
  401. if (!PageUptodate(page)) {
  402. WARN_ON(1);
  403. goto err;
  404. }
  405. csum_tree_block(root, eb, 0);
  406. err:
  407. free_extent_buffer(eb);
  408. out:
  409. return 0;
  410. }
  411. static int check_tree_block_fsid(struct btrfs_root *root,
  412. struct extent_buffer *eb)
  413. {
  414. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  415. u8 fsid[BTRFS_UUID_SIZE];
  416. int ret = 1;
  417. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  418. BTRFS_FSID_SIZE);
  419. while (fs_devices) {
  420. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  421. ret = 0;
  422. break;
  423. }
  424. fs_devices = fs_devices->seed;
  425. }
  426. return ret;
  427. }
  428. #define CORRUPT(reason, eb, root, slot) \
  429. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  430. "root=%llu, slot=%d\n", reason, \
  431. (unsigned long long)btrfs_header_bytenr(eb), \
  432. (unsigned long long)root->objectid, slot)
  433. static noinline int check_leaf(struct btrfs_root *root,
  434. struct extent_buffer *leaf)
  435. {
  436. struct btrfs_key key;
  437. struct btrfs_key leaf_key;
  438. u32 nritems = btrfs_header_nritems(leaf);
  439. int slot;
  440. if (nritems == 0)
  441. return 0;
  442. /* Check the 0 item */
  443. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  444. BTRFS_LEAF_DATA_SIZE(root)) {
  445. CORRUPT("invalid item offset size pair", leaf, root, 0);
  446. return -EIO;
  447. }
  448. /*
  449. * Check to make sure each items keys are in the correct order and their
  450. * offsets make sense. We only have to loop through nritems-1 because
  451. * we check the current slot against the next slot, which verifies the
  452. * next slot's offset+size makes sense and that the current's slot
  453. * offset is correct.
  454. */
  455. for (slot = 0; slot < nritems - 1; slot++) {
  456. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  457. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  458. /* Make sure the keys are in the right order */
  459. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  460. CORRUPT("bad key order", leaf, root, slot);
  461. return -EIO;
  462. }
  463. /*
  464. * Make sure the offset and ends are right, remember that the
  465. * item data starts at the end of the leaf and grows towards the
  466. * front.
  467. */
  468. if (btrfs_item_offset_nr(leaf, slot) !=
  469. btrfs_item_end_nr(leaf, slot + 1)) {
  470. CORRUPT("slot offset bad", leaf, root, slot);
  471. return -EIO;
  472. }
  473. /*
  474. * Check to make sure that we don't point outside of the leaf,
  475. * just incase all the items are consistent to eachother, but
  476. * all point outside of the leaf.
  477. */
  478. if (btrfs_item_end_nr(leaf, slot) >
  479. BTRFS_LEAF_DATA_SIZE(root)) {
  480. CORRUPT("slot end outside of leaf", leaf, root, slot);
  481. return -EIO;
  482. }
  483. }
  484. return 0;
  485. }
  486. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  487. struct extent_state *state)
  488. {
  489. struct extent_io_tree *tree;
  490. u64 found_start;
  491. int found_level;
  492. unsigned long len;
  493. struct extent_buffer *eb;
  494. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  495. int ret = 0;
  496. tree = &BTRFS_I(page->mapping->host)->io_tree;
  497. if (page->private == EXTENT_PAGE_PRIVATE)
  498. goto out;
  499. if (!page->private)
  500. goto out;
  501. len = page->private >> 2;
  502. WARN_ON(len == 0);
  503. eb = alloc_extent_buffer(tree, start, len, page);
  504. if (eb == NULL) {
  505. ret = -EIO;
  506. goto out;
  507. }
  508. found_start = btrfs_header_bytenr(eb);
  509. if (found_start != start) {
  510. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  511. "%llu %llu\n",
  512. (unsigned long long)found_start,
  513. (unsigned long long)eb->start);
  514. ret = -EIO;
  515. goto err;
  516. }
  517. if (eb->first_page != page) {
  518. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  519. eb->first_page->index, page->index);
  520. WARN_ON(1);
  521. ret = -EIO;
  522. goto err;
  523. }
  524. if (check_tree_block_fsid(root, eb)) {
  525. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  526. (unsigned long long)eb->start);
  527. ret = -EIO;
  528. goto err;
  529. }
  530. found_level = btrfs_header_level(eb);
  531. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  532. eb, found_level);
  533. ret = csum_tree_block(root, eb, 1);
  534. if (ret) {
  535. ret = -EIO;
  536. goto err;
  537. }
  538. /*
  539. * If this is a leaf block and it is corrupt, set the corrupt bit so
  540. * that we don't try and read the other copies of this block, just
  541. * return -EIO.
  542. */
  543. if (found_level == 0 && check_leaf(root, eb)) {
  544. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  545. ret = -EIO;
  546. }
  547. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  548. end = eb->start + end - 1;
  549. err:
  550. free_extent_buffer(eb);
  551. out:
  552. return ret;
  553. }
  554. static void end_workqueue_bio(struct bio *bio, int err)
  555. {
  556. struct end_io_wq *end_io_wq = bio->bi_private;
  557. struct btrfs_fs_info *fs_info;
  558. fs_info = end_io_wq->info;
  559. end_io_wq->error = err;
  560. end_io_wq->work.func = end_workqueue_fn;
  561. end_io_wq->work.flags = 0;
  562. if (bio->bi_rw & REQ_WRITE) {
  563. if (end_io_wq->metadata == 1)
  564. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  565. &end_io_wq->work);
  566. else if (end_io_wq->metadata == 2)
  567. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  568. &end_io_wq->work);
  569. else
  570. btrfs_queue_worker(&fs_info->endio_write_workers,
  571. &end_io_wq->work);
  572. } else {
  573. if (end_io_wq->metadata)
  574. btrfs_queue_worker(&fs_info->endio_meta_workers,
  575. &end_io_wq->work);
  576. else
  577. btrfs_queue_worker(&fs_info->endio_workers,
  578. &end_io_wq->work);
  579. }
  580. }
  581. /*
  582. * For the metadata arg you want
  583. *
  584. * 0 - if data
  585. * 1 - if normal metadta
  586. * 2 - if writing to the free space cache area
  587. */
  588. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  589. int metadata)
  590. {
  591. struct end_io_wq *end_io_wq;
  592. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  593. if (!end_io_wq)
  594. return -ENOMEM;
  595. end_io_wq->private = bio->bi_private;
  596. end_io_wq->end_io = bio->bi_end_io;
  597. end_io_wq->info = info;
  598. end_io_wq->error = 0;
  599. end_io_wq->bio = bio;
  600. end_io_wq->metadata = metadata;
  601. bio->bi_private = end_io_wq;
  602. bio->bi_end_io = end_workqueue_bio;
  603. return 0;
  604. }
  605. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  606. {
  607. unsigned long limit = min_t(unsigned long,
  608. info->workers.max_workers,
  609. info->fs_devices->open_devices);
  610. return 256 * limit;
  611. }
  612. static void run_one_async_start(struct btrfs_work *work)
  613. {
  614. struct async_submit_bio *async;
  615. async = container_of(work, struct async_submit_bio, work);
  616. async->submit_bio_start(async->inode, async->rw, async->bio,
  617. async->mirror_num, async->bio_flags,
  618. async->bio_offset);
  619. }
  620. static void run_one_async_done(struct btrfs_work *work)
  621. {
  622. struct btrfs_fs_info *fs_info;
  623. struct async_submit_bio *async;
  624. int limit;
  625. async = container_of(work, struct async_submit_bio, work);
  626. fs_info = BTRFS_I(async->inode)->root->fs_info;
  627. limit = btrfs_async_submit_limit(fs_info);
  628. limit = limit * 2 / 3;
  629. atomic_dec(&fs_info->nr_async_submits);
  630. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  631. waitqueue_active(&fs_info->async_submit_wait))
  632. wake_up(&fs_info->async_submit_wait);
  633. async->submit_bio_done(async->inode, async->rw, async->bio,
  634. async->mirror_num, async->bio_flags,
  635. async->bio_offset);
  636. }
  637. static void run_one_async_free(struct btrfs_work *work)
  638. {
  639. struct async_submit_bio *async;
  640. async = container_of(work, struct async_submit_bio, work);
  641. kfree(async);
  642. }
  643. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  644. int rw, struct bio *bio, int mirror_num,
  645. unsigned long bio_flags,
  646. u64 bio_offset,
  647. extent_submit_bio_hook_t *submit_bio_start,
  648. extent_submit_bio_hook_t *submit_bio_done)
  649. {
  650. struct async_submit_bio *async;
  651. async = kmalloc(sizeof(*async), GFP_NOFS);
  652. if (!async)
  653. return -ENOMEM;
  654. async->inode = inode;
  655. async->rw = rw;
  656. async->bio = bio;
  657. async->mirror_num = mirror_num;
  658. async->submit_bio_start = submit_bio_start;
  659. async->submit_bio_done = submit_bio_done;
  660. async->work.func = run_one_async_start;
  661. async->work.ordered_func = run_one_async_done;
  662. async->work.ordered_free = run_one_async_free;
  663. async->work.flags = 0;
  664. async->bio_flags = bio_flags;
  665. async->bio_offset = bio_offset;
  666. atomic_inc(&fs_info->nr_async_submits);
  667. if (rw & REQ_SYNC)
  668. btrfs_set_work_high_prio(&async->work);
  669. btrfs_queue_worker(&fs_info->workers, &async->work);
  670. while (atomic_read(&fs_info->async_submit_draining) &&
  671. atomic_read(&fs_info->nr_async_submits)) {
  672. wait_event(fs_info->async_submit_wait,
  673. (atomic_read(&fs_info->nr_async_submits) == 0));
  674. }
  675. return 0;
  676. }
  677. static int btree_csum_one_bio(struct bio *bio)
  678. {
  679. struct bio_vec *bvec = bio->bi_io_vec;
  680. int bio_index = 0;
  681. struct btrfs_root *root;
  682. WARN_ON(bio->bi_vcnt <= 0);
  683. while (bio_index < bio->bi_vcnt) {
  684. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  685. csum_dirty_buffer(root, bvec->bv_page);
  686. bio_index++;
  687. bvec++;
  688. }
  689. return 0;
  690. }
  691. static int __btree_submit_bio_start(struct inode *inode, int rw,
  692. struct bio *bio, int mirror_num,
  693. unsigned long bio_flags,
  694. u64 bio_offset)
  695. {
  696. /*
  697. * when we're called for a write, we're already in the async
  698. * submission context. Just jump into btrfs_map_bio
  699. */
  700. btree_csum_one_bio(bio);
  701. return 0;
  702. }
  703. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  704. int mirror_num, unsigned long bio_flags,
  705. u64 bio_offset)
  706. {
  707. /*
  708. * when we're called for a write, we're already in the async
  709. * submission context. Just jump into btrfs_map_bio
  710. */
  711. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  712. }
  713. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  714. int mirror_num, unsigned long bio_flags,
  715. u64 bio_offset)
  716. {
  717. int ret;
  718. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  719. bio, 1);
  720. BUG_ON(ret);
  721. if (!(rw & REQ_WRITE)) {
  722. /*
  723. * called for a read, do the setup so that checksum validation
  724. * can happen in the async kernel threads
  725. */
  726. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  727. mirror_num, 0);
  728. }
  729. /*
  730. * kthread helpers are used to submit writes so that checksumming
  731. * can happen in parallel across all CPUs
  732. */
  733. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  734. inode, rw, bio, mirror_num, 0,
  735. bio_offset,
  736. __btree_submit_bio_start,
  737. __btree_submit_bio_done);
  738. }
  739. #ifdef CONFIG_MIGRATION
  740. static int btree_migratepage(struct address_space *mapping,
  741. struct page *newpage, struct page *page)
  742. {
  743. /*
  744. * we can't safely write a btree page from here,
  745. * we haven't done the locking hook
  746. */
  747. if (PageDirty(page))
  748. return -EAGAIN;
  749. /*
  750. * Buffers may be managed in a filesystem specific way.
  751. * We must have no buffers or drop them.
  752. */
  753. if (page_has_private(page) &&
  754. !try_to_release_page(page, GFP_KERNEL))
  755. return -EAGAIN;
  756. return migrate_page(mapping, newpage, page);
  757. }
  758. #endif
  759. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  760. {
  761. struct extent_io_tree *tree;
  762. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  763. struct extent_buffer *eb;
  764. int was_dirty;
  765. tree = &BTRFS_I(page->mapping->host)->io_tree;
  766. if (!(current->flags & PF_MEMALLOC)) {
  767. return extent_write_full_page(tree, page,
  768. btree_get_extent, wbc);
  769. }
  770. redirty_page_for_writepage(wbc, page);
  771. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  772. WARN_ON(!eb);
  773. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  774. if (!was_dirty) {
  775. spin_lock(&root->fs_info->delalloc_lock);
  776. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  777. spin_unlock(&root->fs_info->delalloc_lock);
  778. }
  779. free_extent_buffer(eb);
  780. unlock_page(page);
  781. return 0;
  782. }
  783. static int btree_writepages(struct address_space *mapping,
  784. struct writeback_control *wbc)
  785. {
  786. struct extent_io_tree *tree;
  787. tree = &BTRFS_I(mapping->host)->io_tree;
  788. if (wbc->sync_mode == WB_SYNC_NONE) {
  789. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  790. u64 num_dirty;
  791. unsigned long thresh = 32 * 1024 * 1024;
  792. if (wbc->for_kupdate)
  793. return 0;
  794. /* this is a bit racy, but that's ok */
  795. num_dirty = root->fs_info->dirty_metadata_bytes;
  796. if (num_dirty < thresh)
  797. return 0;
  798. }
  799. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  800. }
  801. static int btree_readpage(struct file *file, struct page *page)
  802. {
  803. struct extent_io_tree *tree;
  804. tree = &BTRFS_I(page->mapping->host)->io_tree;
  805. return extent_read_full_page(tree, page, btree_get_extent);
  806. }
  807. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  808. {
  809. struct extent_io_tree *tree;
  810. struct extent_map_tree *map;
  811. int ret;
  812. if (PageWriteback(page) || PageDirty(page))
  813. return 0;
  814. tree = &BTRFS_I(page->mapping->host)->io_tree;
  815. map = &BTRFS_I(page->mapping->host)->extent_tree;
  816. ret = try_release_extent_state(map, tree, page, gfp_flags);
  817. if (!ret)
  818. return 0;
  819. ret = try_release_extent_buffer(tree, page);
  820. if (ret == 1) {
  821. ClearPagePrivate(page);
  822. set_page_private(page, 0);
  823. page_cache_release(page);
  824. }
  825. return ret;
  826. }
  827. static void btree_invalidatepage(struct page *page, unsigned long offset)
  828. {
  829. struct extent_io_tree *tree;
  830. tree = &BTRFS_I(page->mapping->host)->io_tree;
  831. extent_invalidatepage(tree, page, offset);
  832. btree_releasepage(page, GFP_NOFS);
  833. if (PagePrivate(page)) {
  834. printk(KERN_WARNING "btrfs warning page private not zero "
  835. "on page %llu\n", (unsigned long long)page_offset(page));
  836. ClearPagePrivate(page);
  837. set_page_private(page, 0);
  838. page_cache_release(page);
  839. }
  840. }
  841. static const struct address_space_operations btree_aops = {
  842. .readpage = btree_readpage,
  843. .writepage = btree_writepage,
  844. .writepages = btree_writepages,
  845. .releasepage = btree_releasepage,
  846. .invalidatepage = btree_invalidatepage,
  847. #ifdef CONFIG_MIGRATION
  848. .migratepage = btree_migratepage,
  849. #endif
  850. };
  851. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  852. u64 parent_transid)
  853. {
  854. struct extent_buffer *buf = NULL;
  855. struct inode *btree_inode = root->fs_info->btree_inode;
  856. int ret = 0;
  857. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  858. if (!buf)
  859. return 0;
  860. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  861. buf, 0, 0, btree_get_extent, 0);
  862. free_extent_buffer(buf);
  863. return ret;
  864. }
  865. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  866. u64 bytenr, u32 blocksize)
  867. {
  868. struct inode *btree_inode = root->fs_info->btree_inode;
  869. struct extent_buffer *eb;
  870. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  871. bytenr, blocksize);
  872. return eb;
  873. }
  874. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  875. u64 bytenr, u32 blocksize)
  876. {
  877. struct inode *btree_inode = root->fs_info->btree_inode;
  878. struct extent_buffer *eb;
  879. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  880. bytenr, blocksize, NULL);
  881. return eb;
  882. }
  883. int btrfs_write_tree_block(struct extent_buffer *buf)
  884. {
  885. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  886. buf->start + buf->len - 1);
  887. }
  888. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  889. {
  890. return filemap_fdatawait_range(buf->first_page->mapping,
  891. buf->start, buf->start + buf->len - 1);
  892. }
  893. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  894. u32 blocksize, u64 parent_transid)
  895. {
  896. struct extent_buffer *buf = NULL;
  897. int ret;
  898. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  899. if (!buf)
  900. return NULL;
  901. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  902. if (ret == 0)
  903. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  904. return buf;
  905. }
  906. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  907. struct extent_buffer *buf)
  908. {
  909. struct inode *btree_inode = root->fs_info->btree_inode;
  910. if (btrfs_header_generation(buf) ==
  911. root->fs_info->running_transaction->transid) {
  912. btrfs_assert_tree_locked(buf);
  913. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  914. spin_lock(&root->fs_info->delalloc_lock);
  915. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  916. root->fs_info->dirty_metadata_bytes -= buf->len;
  917. else
  918. WARN_ON(1);
  919. spin_unlock(&root->fs_info->delalloc_lock);
  920. }
  921. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  922. btrfs_set_lock_blocking(buf);
  923. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  924. buf);
  925. }
  926. return 0;
  927. }
  928. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  929. u32 stripesize, struct btrfs_root *root,
  930. struct btrfs_fs_info *fs_info,
  931. u64 objectid)
  932. {
  933. root->node = NULL;
  934. root->commit_root = NULL;
  935. root->sectorsize = sectorsize;
  936. root->nodesize = nodesize;
  937. root->leafsize = leafsize;
  938. root->stripesize = stripesize;
  939. root->ref_cows = 0;
  940. root->track_dirty = 0;
  941. root->in_radix = 0;
  942. root->orphan_item_inserted = 0;
  943. root->orphan_cleanup_state = 0;
  944. root->fs_info = fs_info;
  945. root->objectid = objectid;
  946. root->last_trans = 0;
  947. root->highest_objectid = 0;
  948. root->name = NULL;
  949. root->inode_tree = RB_ROOT;
  950. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  951. root->block_rsv = NULL;
  952. root->orphan_block_rsv = NULL;
  953. INIT_LIST_HEAD(&root->dirty_list);
  954. INIT_LIST_HEAD(&root->orphan_list);
  955. INIT_LIST_HEAD(&root->root_list);
  956. spin_lock_init(&root->orphan_lock);
  957. spin_lock_init(&root->inode_lock);
  958. spin_lock_init(&root->accounting_lock);
  959. mutex_init(&root->objectid_mutex);
  960. mutex_init(&root->log_mutex);
  961. init_waitqueue_head(&root->log_writer_wait);
  962. init_waitqueue_head(&root->log_commit_wait[0]);
  963. init_waitqueue_head(&root->log_commit_wait[1]);
  964. atomic_set(&root->log_commit[0], 0);
  965. atomic_set(&root->log_commit[1], 0);
  966. atomic_set(&root->log_writers, 0);
  967. root->log_batch = 0;
  968. root->log_transid = 0;
  969. root->last_log_commit = 0;
  970. extent_io_tree_init(&root->dirty_log_pages,
  971. fs_info->btree_inode->i_mapping);
  972. memset(&root->root_key, 0, sizeof(root->root_key));
  973. memset(&root->root_item, 0, sizeof(root->root_item));
  974. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  975. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  976. root->defrag_trans_start = fs_info->generation;
  977. init_completion(&root->kobj_unregister);
  978. root->defrag_running = 0;
  979. root->root_key.objectid = objectid;
  980. root->anon_dev = 0;
  981. return 0;
  982. }
  983. static int find_and_setup_root(struct btrfs_root *tree_root,
  984. struct btrfs_fs_info *fs_info,
  985. u64 objectid,
  986. struct btrfs_root *root)
  987. {
  988. int ret;
  989. u32 blocksize;
  990. u64 generation;
  991. __setup_root(tree_root->nodesize, tree_root->leafsize,
  992. tree_root->sectorsize, tree_root->stripesize,
  993. root, fs_info, objectid);
  994. ret = btrfs_find_last_root(tree_root, objectid,
  995. &root->root_item, &root->root_key);
  996. if (ret > 0)
  997. return -ENOENT;
  998. BUG_ON(ret);
  999. generation = btrfs_root_generation(&root->root_item);
  1000. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1001. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1002. blocksize, generation);
  1003. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1004. free_extent_buffer(root->node);
  1005. return -EIO;
  1006. }
  1007. root->commit_root = btrfs_root_node(root);
  1008. return 0;
  1009. }
  1010. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1011. struct btrfs_fs_info *fs_info)
  1012. {
  1013. struct btrfs_root *root;
  1014. struct btrfs_root *tree_root = fs_info->tree_root;
  1015. struct extent_buffer *leaf;
  1016. root = kzalloc(sizeof(*root), GFP_NOFS);
  1017. if (!root)
  1018. return ERR_PTR(-ENOMEM);
  1019. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1020. tree_root->sectorsize, tree_root->stripesize,
  1021. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1022. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1023. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1024. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1025. /*
  1026. * log trees do not get reference counted because they go away
  1027. * before a real commit is actually done. They do store pointers
  1028. * to file data extents, and those reference counts still get
  1029. * updated (along with back refs to the log tree).
  1030. */
  1031. root->ref_cows = 0;
  1032. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1033. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1034. if (IS_ERR(leaf)) {
  1035. kfree(root);
  1036. return ERR_CAST(leaf);
  1037. }
  1038. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1039. btrfs_set_header_bytenr(leaf, leaf->start);
  1040. btrfs_set_header_generation(leaf, trans->transid);
  1041. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1042. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1043. root->node = leaf;
  1044. write_extent_buffer(root->node, root->fs_info->fsid,
  1045. (unsigned long)btrfs_header_fsid(root->node),
  1046. BTRFS_FSID_SIZE);
  1047. btrfs_mark_buffer_dirty(root->node);
  1048. btrfs_tree_unlock(root->node);
  1049. return root;
  1050. }
  1051. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1052. struct btrfs_fs_info *fs_info)
  1053. {
  1054. struct btrfs_root *log_root;
  1055. log_root = alloc_log_tree(trans, fs_info);
  1056. if (IS_ERR(log_root))
  1057. return PTR_ERR(log_root);
  1058. WARN_ON(fs_info->log_root_tree);
  1059. fs_info->log_root_tree = log_root;
  1060. return 0;
  1061. }
  1062. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1063. struct btrfs_root *root)
  1064. {
  1065. struct btrfs_root *log_root;
  1066. struct btrfs_inode_item *inode_item;
  1067. log_root = alloc_log_tree(trans, root->fs_info);
  1068. if (IS_ERR(log_root))
  1069. return PTR_ERR(log_root);
  1070. log_root->last_trans = trans->transid;
  1071. log_root->root_key.offset = root->root_key.objectid;
  1072. inode_item = &log_root->root_item.inode;
  1073. inode_item->generation = cpu_to_le64(1);
  1074. inode_item->size = cpu_to_le64(3);
  1075. inode_item->nlink = cpu_to_le32(1);
  1076. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1077. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1078. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1079. WARN_ON(root->log_root);
  1080. root->log_root = log_root;
  1081. root->log_transid = 0;
  1082. root->last_log_commit = 0;
  1083. return 0;
  1084. }
  1085. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1086. struct btrfs_key *location)
  1087. {
  1088. struct btrfs_root *root;
  1089. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1090. struct btrfs_path *path;
  1091. struct extent_buffer *l;
  1092. u64 generation;
  1093. u32 blocksize;
  1094. int ret = 0;
  1095. root = kzalloc(sizeof(*root), GFP_NOFS);
  1096. if (!root)
  1097. return ERR_PTR(-ENOMEM);
  1098. if (location->offset == (u64)-1) {
  1099. ret = find_and_setup_root(tree_root, fs_info,
  1100. location->objectid, root);
  1101. if (ret) {
  1102. kfree(root);
  1103. return ERR_PTR(ret);
  1104. }
  1105. goto out;
  1106. }
  1107. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1108. tree_root->sectorsize, tree_root->stripesize,
  1109. root, fs_info, location->objectid);
  1110. path = btrfs_alloc_path();
  1111. if (!path) {
  1112. kfree(root);
  1113. return ERR_PTR(-ENOMEM);
  1114. }
  1115. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1116. if (ret == 0) {
  1117. l = path->nodes[0];
  1118. read_extent_buffer(l, &root->root_item,
  1119. btrfs_item_ptr_offset(l, path->slots[0]),
  1120. sizeof(root->root_item));
  1121. memcpy(&root->root_key, location, sizeof(*location));
  1122. }
  1123. btrfs_free_path(path);
  1124. if (ret) {
  1125. kfree(root);
  1126. if (ret > 0)
  1127. ret = -ENOENT;
  1128. return ERR_PTR(ret);
  1129. }
  1130. generation = btrfs_root_generation(&root->root_item);
  1131. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1132. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1133. blocksize, generation);
  1134. root->commit_root = btrfs_root_node(root);
  1135. BUG_ON(!root->node);
  1136. out:
  1137. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1138. root->ref_cows = 1;
  1139. btrfs_check_and_init_root_item(&root->root_item);
  1140. }
  1141. return root;
  1142. }
  1143. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1144. struct btrfs_key *location)
  1145. {
  1146. struct btrfs_root *root;
  1147. int ret;
  1148. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1149. return fs_info->tree_root;
  1150. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1151. return fs_info->extent_root;
  1152. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1153. return fs_info->chunk_root;
  1154. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1155. return fs_info->dev_root;
  1156. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1157. return fs_info->csum_root;
  1158. again:
  1159. spin_lock(&fs_info->fs_roots_radix_lock);
  1160. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1161. (unsigned long)location->objectid);
  1162. spin_unlock(&fs_info->fs_roots_radix_lock);
  1163. if (root)
  1164. return root;
  1165. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1166. if (IS_ERR(root))
  1167. return root;
  1168. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1169. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1170. GFP_NOFS);
  1171. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1172. ret = -ENOMEM;
  1173. goto fail;
  1174. }
  1175. btrfs_init_free_ino_ctl(root);
  1176. mutex_init(&root->fs_commit_mutex);
  1177. spin_lock_init(&root->cache_lock);
  1178. init_waitqueue_head(&root->cache_wait);
  1179. ret = get_anon_bdev(&root->anon_dev);
  1180. if (ret)
  1181. goto fail;
  1182. if (btrfs_root_refs(&root->root_item) == 0) {
  1183. ret = -ENOENT;
  1184. goto fail;
  1185. }
  1186. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1187. if (ret < 0)
  1188. goto fail;
  1189. if (ret == 0)
  1190. root->orphan_item_inserted = 1;
  1191. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1192. if (ret)
  1193. goto fail;
  1194. spin_lock(&fs_info->fs_roots_radix_lock);
  1195. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1196. (unsigned long)root->root_key.objectid,
  1197. root);
  1198. if (ret == 0)
  1199. root->in_radix = 1;
  1200. spin_unlock(&fs_info->fs_roots_radix_lock);
  1201. radix_tree_preload_end();
  1202. if (ret) {
  1203. if (ret == -EEXIST) {
  1204. free_fs_root(root);
  1205. goto again;
  1206. }
  1207. goto fail;
  1208. }
  1209. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1210. root->root_key.objectid);
  1211. WARN_ON(ret);
  1212. return root;
  1213. fail:
  1214. free_fs_root(root);
  1215. return ERR_PTR(ret);
  1216. }
  1217. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1218. {
  1219. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1220. int ret = 0;
  1221. struct btrfs_device *device;
  1222. struct backing_dev_info *bdi;
  1223. rcu_read_lock();
  1224. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1225. if (!device->bdev)
  1226. continue;
  1227. bdi = blk_get_backing_dev_info(device->bdev);
  1228. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1229. ret = 1;
  1230. break;
  1231. }
  1232. }
  1233. rcu_read_unlock();
  1234. return ret;
  1235. }
  1236. /*
  1237. * If this fails, caller must call bdi_destroy() to get rid of the
  1238. * bdi again.
  1239. */
  1240. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1241. {
  1242. int err;
  1243. bdi->capabilities = BDI_CAP_MAP_COPY;
  1244. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1245. if (err)
  1246. return err;
  1247. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1248. bdi->congested_fn = btrfs_congested_fn;
  1249. bdi->congested_data = info;
  1250. return 0;
  1251. }
  1252. static int bio_ready_for_csum(struct bio *bio)
  1253. {
  1254. u64 length = 0;
  1255. u64 buf_len = 0;
  1256. u64 start = 0;
  1257. struct page *page;
  1258. struct extent_io_tree *io_tree = NULL;
  1259. struct bio_vec *bvec;
  1260. int i;
  1261. int ret;
  1262. bio_for_each_segment(bvec, bio, i) {
  1263. page = bvec->bv_page;
  1264. if (page->private == EXTENT_PAGE_PRIVATE) {
  1265. length += bvec->bv_len;
  1266. continue;
  1267. }
  1268. if (!page->private) {
  1269. length += bvec->bv_len;
  1270. continue;
  1271. }
  1272. length = bvec->bv_len;
  1273. buf_len = page->private >> 2;
  1274. start = page_offset(page) + bvec->bv_offset;
  1275. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1276. }
  1277. /* are we fully contained in this bio? */
  1278. if (buf_len <= length)
  1279. return 1;
  1280. ret = extent_range_uptodate(io_tree, start + length,
  1281. start + buf_len - 1);
  1282. return ret;
  1283. }
  1284. /*
  1285. * called by the kthread helper functions to finally call the bio end_io
  1286. * functions. This is where read checksum verification actually happens
  1287. */
  1288. static void end_workqueue_fn(struct btrfs_work *work)
  1289. {
  1290. struct bio *bio;
  1291. struct end_io_wq *end_io_wq;
  1292. struct btrfs_fs_info *fs_info;
  1293. int error;
  1294. end_io_wq = container_of(work, struct end_io_wq, work);
  1295. bio = end_io_wq->bio;
  1296. fs_info = end_io_wq->info;
  1297. /* metadata bio reads are special because the whole tree block must
  1298. * be checksummed at once. This makes sure the entire block is in
  1299. * ram and up to date before trying to verify things. For
  1300. * blocksize <= pagesize, it is basically a noop
  1301. */
  1302. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1303. !bio_ready_for_csum(bio)) {
  1304. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1305. &end_io_wq->work);
  1306. return;
  1307. }
  1308. error = end_io_wq->error;
  1309. bio->bi_private = end_io_wq->private;
  1310. bio->bi_end_io = end_io_wq->end_io;
  1311. kfree(end_io_wq);
  1312. bio_endio(bio, error);
  1313. }
  1314. static int cleaner_kthread(void *arg)
  1315. {
  1316. struct btrfs_root *root = arg;
  1317. do {
  1318. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1319. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1320. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1321. btrfs_run_delayed_iputs(root);
  1322. btrfs_clean_old_snapshots(root);
  1323. mutex_unlock(&root->fs_info->cleaner_mutex);
  1324. btrfs_run_defrag_inodes(root->fs_info);
  1325. }
  1326. if (freezing(current)) {
  1327. refrigerator();
  1328. } else {
  1329. set_current_state(TASK_INTERRUPTIBLE);
  1330. if (!kthread_should_stop())
  1331. schedule();
  1332. __set_current_state(TASK_RUNNING);
  1333. }
  1334. } while (!kthread_should_stop());
  1335. return 0;
  1336. }
  1337. static int transaction_kthread(void *arg)
  1338. {
  1339. struct btrfs_root *root = arg;
  1340. struct btrfs_trans_handle *trans;
  1341. struct btrfs_transaction *cur;
  1342. u64 transid;
  1343. unsigned long now;
  1344. unsigned long delay;
  1345. int ret;
  1346. do {
  1347. delay = HZ * 30;
  1348. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1349. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1350. spin_lock(&root->fs_info->trans_lock);
  1351. cur = root->fs_info->running_transaction;
  1352. if (!cur) {
  1353. spin_unlock(&root->fs_info->trans_lock);
  1354. goto sleep;
  1355. }
  1356. now = get_seconds();
  1357. if (!cur->blocked &&
  1358. (now < cur->start_time || now - cur->start_time < 30)) {
  1359. spin_unlock(&root->fs_info->trans_lock);
  1360. delay = HZ * 5;
  1361. goto sleep;
  1362. }
  1363. transid = cur->transid;
  1364. spin_unlock(&root->fs_info->trans_lock);
  1365. trans = btrfs_join_transaction(root);
  1366. BUG_ON(IS_ERR(trans));
  1367. if (transid == trans->transid) {
  1368. ret = btrfs_commit_transaction(trans, root);
  1369. BUG_ON(ret);
  1370. } else {
  1371. btrfs_end_transaction(trans, root);
  1372. }
  1373. sleep:
  1374. wake_up_process(root->fs_info->cleaner_kthread);
  1375. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1376. if (freezing(current)) {
  1377. refrigerator();
  1378. } else {
  1379. set_current_state(TASK_INTERRUPTIBLE);
  1380. if (!kthread_should_stop() &&
  1381. !btrfs_transaction_blocked(root->fs_info))
  1382. schedule_timeout(delay);
  1383. __set_current_state(TASK_RUNNING);
  1384. }
  1385. } while (!kthread_should_stop());
  1386. return 0;
  1387. }
  1388. struct btrfs_root *open_ctree(struct super_block *sb,
  1389. struct btrfs_fs_devices *fs_devices,
  1390. char *options)
  1391. {
  1392. u32 sectorsize;
  1393. u32 nodesize;
  1394. u32 leafsize;
  1395. u32 blocksize;
  1396. u32 stripesize;
  1397. u64 generation;
  1398. u64 features;
  1399. struct btrfs_key location;
  1400. struct buffer_head *bh;
  1401. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1402. GFP_NOFS);
  1403. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1404. GFP_NOFS);
  1405. struct btrfs_root *tree_root = btrfs_sb(sb);
  1406. struct btrfs_fs_info *fs_info = NULL;
  1407. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1408. GFP_NOFS);
  1409. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1410. GFP_NOFS);
  1411. struct btrfs_root *log_tree_root;
  1412. int ret;
  1413. int err = -EINVAL;
  1414. struct btrfs_super_block *disk_super;
  1415. if (!extent_root || !tree_root || !tree_root->fs_info ||
  1416. !chunk_root || !dev_root || !csum_root) {
  1417. err = -ENOMEM;
  1418. goto fail;
  1419. }
  1420. fs_info = tree_root->fs_info;
  1421. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1422. if (ret) {
  1423. err = ret;
  1424. goto fail;
  1425. }
  1426. ret = setup_bdi(fs_info, &fs_info->bdi);
  1427. if (ret) {
  1428. err = ret;
  1429. goto fail_srcu;
  1430. }
  1431. fs_info->btree_inode = new_inode(sb);
  1432. if (!fs_info->btree_inode) {
  1433. err = -ENOMEM;
  1434. goto fail_bdi;
  1435. }
  1436. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1437. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1438. INIT_LIST_HEAD(&fs_info->trans_list);
  1439. INIT_LIST_HEAD(&fs_info->dead_roots);
  1440. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1441. INIT_LIST_HEAD(&fs_info->hashers);
  1442. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1443. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1444. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1445. spin_lock_init(&fs_info->delalloc_lock);
  1446. spin_lock_init(&fs_info->trans_lock);
  1447. spin_lock_init(&fs_info->ref_cache_lock);
  1448. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1449. spin_lock_init(&fs_info->delayed_iput_lock);
  1450. spin_lock_init(&fs_info->defrag_inodes_lock);
  1451. mutex_init(&fs_info->reloc_mutex);
  1452. init_completion(&fs_info->kobj_unregister);
  1453. fs_info->tree_root = tree_root;
  1454. fs_info->extent_root = extent_root;
  1455. fs_info->csum_root = csum_root;
  1456. fs_info->chunk_root = chunk_root;
  1457. fs_info->dev_root = dev_root;
  1458. fs_info->fs_devices = fs_devices;
  1459. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1460. INIT_LIST_HEAD(&fs_info->space_info);
  1461. btrfs_mapping_init(&fs_info->mapping_tree);
  1462. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1463. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1464. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1465. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1466. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1467. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1468. mutex_init(&fs_info->durable_block_rsv_mutex);
  1469. atomic_set(&fs_info->nr_async_submits, 0);
  1470. atomic_set(&fs_info->async_delalloc_pages, 0);
  1471. atomic_set(&fs_info->async_submit_draining, 0);
  1472. atomic_set(&fs_info->nr_async_bios, 0);
  1473. atomic_set(&fs_info->defrag_running, 0);
  1474. fs_info->sb = sb;
  1475. fs_info->max_inline = 8192 * 1024;
  1476. fs_info->metadata_ratio = 0;
  1477. fs_info->defrag_inodes = RB_ROOT;
  1478. fs_info->trans_no_join = 0;
  1479. fs_info->thread_pool_size = min_t(unsigned long,
  1480. num_online_cpus() + 2, 8);
  1481. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1482. spin_lock_init(&fs_info->ordered_extent_lock);
  1483. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1484. GFP_NOFS);
  1485. if (!fs_info->delayed_root) {
  1486. err = -ENOMEM;
  1487. goto fail_iput;
  1488. }
  1489. btrfs_init_delayed_root(fs_info->delayed_root);
  1490. mutex_init(&fs_info->scrub_lock);
  1491. atomic_set(&fs_info->scrubs_running, 0);
  1492. atomic_set(&fs_info->scrub_pause_req, 0);
  1493. atomic_set(&fs_info->scrubs_paused, 0);
  1494. atomic_set(&fs_info->scrub_cancel_req, 0);
  1495. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1496. init_rwsem(&fs_info->scrub_super_lock);
  1497. fs_info->scrub_workers_refcnt = 0;
  1498. sb->s_blocksize = 4096;
  1499. sb->s_blocksize_bits = blksize_bits(4096);
  1500. sb->s_bdi = &fs_info->bdi;
  1501. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1502. fs_info->btree_inode->i_nlink = 1;
  1503. /*
  1504. * we set the i_size on the btree inode to the max possible int.
  1505. * the real end of the address space is determined by all of
  1506. * the devices in the system
  1507. */
  1508. fs_info->btree_inode->i_size = OFFSET_MAX;
  1509. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1510. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1511. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1512. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1513. fs_info->btree_inode->i_mapping);
  1514. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1515. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1516. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1517. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1518. sizeof(struct btrfs_key));
  1519. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1520. insert_inode_hash(fs_info->btree_inode);
  1521. spin_lock_init(&fs_info->block_group_cache_lock);
  1522. fs_info->block_group_cache_tree = RB_ROOT;
  1523. extent_io_tree_init(&fs_info->freed_extents[0],
  1524. fs_info->btree_inode->i_mapping);
  1525. extent_io_tree_init(&fs_info->freed_extents[1],
  1526. fs_info->btree_inode->i_mapping);
  1527. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1528. fs_info->do_barriers = 1;
  1529. mutex_init(&fs_info->ordered_operations_mutex);
  1530. mutex_init(&fs_info->tree_log_mutex);
  1531. mutex_init(&fs_info->chunk_mutex);
  1532. mutex_init(&fs_info->transaction_kthread_mutex);
  1533. mutex_init(&fs_info->cleaner_mutex);
  1534. mutex_init(&fs_info->volume_mutex);
  1535. init_rwsem(&fs_info->extent_commit_sem);
  1536. init_rwsem(&fs_info->cleanup_work_sem);
  1537. init_rwsem(&fs_info->subvol_sem);
  1538. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1539. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1540. init_waitqueue_head(&fs_info->transaction_throttle);
  1541. init_waitqueue_head(&fs_info->transaction_wait);
  1542. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1543. init_waitqueue_head(&fs_info->async_submit_wait);
  1544. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1545. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1546. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1547. if (!bh) {
  1548. err = -EINVAL;
  1549. goto fail_alloc;
  1550. }
  1551. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1552. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1553. sizeof(fs_info->super_for_commit));
  1554. brelse(bh);
  1555. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1556. disk_super = &fs_info->super_copy;
  1557. if (!btrfs_super_root(disk_super))
  1558. goto fail_alloc;
  1559. /* check FS state, whether FS is broken. */
  1560. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1561. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1562. /*
  1563. * In the long term, we'll store the compression type in the super
  1564. * block, and it'll be used for per file compression control.
  1565. */
  1566. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1567. ret = btrfs_parse_options(tree_root, options);
  1568. if (ret) {
  1569. err = ret;
  1570. goto fail_alloc;
  1571. }
  1572. features = btrfs_super_incompat_flags(disk_super) &
  1573. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1574. if (features) {
  1575. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1576. "unsupported optional features (%Lx).\n",
  1577. (unsigned long long)features);
  1578. err = -EINVAL;
  1579. goto fail_alloc;
  1580. }
  1581. features = btrfs_super_incompat_flags(disk_super);
  1582. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1583. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1584. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1585. btrfs_set_super_incompat_flags(disk_super, features);
  1586. features = btrfs_super_compat_ro_flags(disk_super) &
  1587. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1588. if (!(sb->s_flags & MS_RDONLY) && features) {
  1589. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1590. "unsupported option features (%Lx).\n",
  1591. (unsigned long long)features);
  1592. err = -EINVAL;
  1593. goto fail_alloc;
  1594. }
  1595. btrfs_init_workers(&fs_info->generic_worker,
  1596. "genwork", 1, NULL);
  1597. btrfs_init_workers(&fs_info->workers, "worker",
  1598. fs_info->thread_pool_size,
  1599. &fs_info->generic_worker);
  1600. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1601. fs_info->thread_pool_size,
  1602. &fs_info->generic_worker);
  1603. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1604. min_t(u64, fs_devices->num_devices,
  1605. fs_info->thread_pool_size),
  1606. &fs_info->generic_worker);
  1607. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1608. 2, &fs_info->generic_worker);
  1609. /* a higher idle thresh on the submit workers makes it much more
  1610. * likely that bios will be send down in a sane order to the
  1611. * devices
  1612. */
  1613. fs_info->submit_workers.idle_thresh = 64;
  1614. fs_info->workers.idle_thresh = 16;
  1615. fs_info->workers.ordered = 1;
  1616. fs_info->delalloc_workers.idle_thresh = 2;
  1617. fs_info->delalloc_workers.ordered = 1;
  1618. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1619. &fs_info->generic_worker);
  1620. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1621. fs_info->thread_pool_size,
  1622. &fs_info->generic_worker);
  1623. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1624. fs_info->thread_pool_size,
  1625. &fs_info->generic_worker);
  1626. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1627. "endio-meta-write", fs_info->thread_pool_size,
  1628. &fs_info->generic_worker);
  1629. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1630. fs_info->thread_pool_size,
  1631. &fs_info->generic_worker);
  1632. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1633. 1, &fs_info->generic_worker);
  1634. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1635. fs_info->thread_pool_size,
  1636. &fs_info->generic_worker);
  1637. /*
  1638. * endios are largely parallel and should have a very
  1639. * low idle thresh
  1640. */
  1641. fs_info->endio_workers.idle_thresh = 4;
  1642. fs_info->endio_meta_workers.idle_thresh = 4;
  1643. fs_info->endio_write_workers.idle_thresh = 2;
  1644. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1645. btrfs_start_workers(&fs_info->workers, 1);
  1646. btrfs_start_workers(&fs_info->generic_worker, 1);
  1647. btrfs_start_workers(&fs_info->submit_workers, 1);
  1648. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1649. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1650. btrfs_start_workers(&fs_info->endio_workers, 1);
  1651. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1652. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1653. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1654. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1655. btrfs_start_workers(&fs_info->delayed_workers, 1);
  1656. btrfs_start_workers(&fs_info->caching_workers, 1);
  1657. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1658. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1659. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1660. nodesize = btrfs_super_nodesize(disk_super);
  1661. leafsize = btrfs_super_leafsize(disk_super);
  1662. sectorsize = btrfs_super_sectorsize(disk_super);
  1663. stripesize = btrfs_super_stripesize(disk_super);
  1664. tree_root->nodesize = nodesize;
  1665. tree_root->leafsize = leafsize;
  1666. tree_root->sectorsize = sectorsize;
  1667. tree_root->stripesize = stripesize;
  1668. sb->s_blocksize = sectorsize;
  1669. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1670. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1671. sizeof(disk_super->magic))) {
  1672. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1673. goto fail_sb_buffer;
  1674. }
  1675. mutex_lock(&fs_info->chunk_mutex);
  1676. ret = btrfs_read_sys_array(tree_root);
  1677. mutex_unlock(&fs_info->chunk_mutex);
  1678. if (ret) {
  1679. printk(KERN_WARNING "btrfs: failed to read the system "
  1680. "array on %s\n", sb->s_id);
  1681. goto fail_sb_buffer;
  1682. }
  1683. blocksize = btrfs_level_size(tree_root,
  1684. btrfs_super_chunk_root_level(disk_super));
  1685. generation = btrfs_super_chunk_root_generation(disk_super);
  1686. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1687. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1688. chunk_root->node = read_tree_block(chunk_root,
  1689. btrfs_super_chunk_root(disk_super),
  1690. blocksize, generation);
  1691. BUG_ON(!chunk_root->node);
  1692. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1693. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1694. sb->s_id);
  1695. goto fail_chunk_root;
  1696. }
  1697. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1698. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1699. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1700. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1701. BTRFS_UUID_SIZE);
  1702. mutex_lock(&fs_info->chunk_mutex);
  1703. ret = btrfs_read_chunk_tree(chunk_root);
  1704. mutex_unlock(&fs_info->chunk_mutex);
  1705. if (ret) {
  1706. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1707. sb->s_id);
  1708. goto fail_chunk_root;
  1709. }
  1710. btrfs_close_extra_devices(fs_devices);
  1711. blocksize = btrfs_level_size(tree_root,
  1712. btrfs_super_root_level(disk_super));
  1713. generation = btrfs_super_generation(disk_super);
  1714. tree_root->node = read_tree_block(tree_root,
  1715. btrfs_super_root(disk_super),
  1716. blocksize, generation);
  1717. if (!tree_root->node)
  1718. goto fail_chunk_root;
  1719. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1720. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1721. sb->s_id);
  1722. goto fail_tree_root;
  1723. }
  1724. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1725. tree_root->commit_root = btrfs_root_node(tree_root);
  1726. ret = find_and_setup_root(tree_root, fs_info,
  1727. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1728. if (ret)
  1729. goto fail_tree_root;
  1730. extent_root->track_dirty = 1;
  1731. ret = find_and_setup_root(tree_root, fs_info,
  1732. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1733. if (ret)
  1734. goto fail_extent_root;
  1735. dev_root->track_dirty = 1;
  1736. ret = find_and_setup_root(tree_root, fs_info,
  1737. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1738. if (ret)
  1739. goto fail_dev_root;
  1740. csum_root->track_dirty = 1;
  1741. fs_info->generation = generation;
  1742. fs_info->last_trans_committed = generation;
  1743. fs_info->data_alloc_profile = (u64)-1;
  1744. fs_info->metadata_alloc_profile = (u64)-1;
  1745. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1746. ret = btrfs_init_space_info(fs_info);
  1747. if (ret) {
  1748. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  1749. goto fail_block_groups;
  1750. }
  1751. ret = btrfs_read_block_groups(extent_root);
  1752. if (ret) {
  1753. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1754. goto fail_block_groups;
  1755. }
  1756. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1757. "btrfs-cleaner");
  1758. if (IS_ERR(fs_info->cleaner_kthread))
  1759. goto fail_block_groups;
  1760. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1761. tree_root,
  1762. "btrfs-transaction");
  1763. if (IS_ERR(fs_info->transaction_kthread))
  1764. goto fail_cleaner;
  1765. if (!btrfs_test_opt(tree_root, SSD) &&
  1766. !btrfs_test_opt(tree_root, NOSSD) &&
  1767. !fs_info->fs_devices->rotating) {
  1768. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1769. "mode\n");
  1770. btrfs_set_opt(fs_info->mount_opt, SSD);
  1771. }
  1772. /* do not make disk changes in broken FS */
  1773. if (btrfs_super_log_root(disk_super) != 0 &&
  1774. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1775. u64 bytenr = btrfs_super_log_root(disk_super);
  1776. if (fs_devices->rw_devices == 0) {
  1777. printk(KERN_WARNING "Btrfs log replay required "
  1778. "on RO media\n");
  1779. err = -EIO;
  1780. goto fail_trans_kthread;
  1781. }
  1782. blocksize =
  1783. btrfs_level_size(tree_root,
  1784. btrfs_super_log_root_level(disk_super));
  1785. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1786. if (!log_tree_root) {
  1787. err = -ENOMEM;
  1788. goto fail_trans_kthread;
  1789. }
  1790. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1791. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1792. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1793. blocksize,
  1794. generation + 1);
  1795. ret = btrfs_recover_log_trees(log_tree_root);
  1796. BUG_ON(ret);
  1797. if (sb->s_flags & MS_RDONLY) {
  1798. ret = btrfs_commit_super(tree_root);
  1799. BUG_ON(ret);
  1800. }
  1801. }
  1802. ret = btrfs_find_orphan_roots(tree_root);
  1803. BUG_ON(ret);
  1804. if (!(sb->s_flags & MS_RDONLY)) {
  1805. ret = btrfs_cleanup_fs_roots(fs_info);
  1806. BUG_ON(ret);
  1807. ret = btrfs_recover_relocation(tree_root);
  1808. if (ret < 0) {
  1809. printk(KERN_WARNING
  1810. "btrfs: failed to recover relocation\n");
  1811. err = -EINVAL;
  1812. goto fail_trans_kthread;
  1813. }
  1814. }
  1815. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1816. location.type = BTRFS_ROOT_ITEM_KEY;
  1817. location.offset = (u64)-1;
  1818. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1819. if (!fs_info->fs_root)
  1820. goto fail_trans_kthread;
  1821. if (IS_ERR(fs_info->fs_root)) {
  1822. err = PTR_ERR(fs_info->fs_root);
  1823. goto fail_trans_kthread;
  1824. }
  1825. if (!(sb->s_flags & MS_RDONLY)) {
  1826. down_read(&fs_info->cleanup_work_sem);
  1827. err = btrfs_orphan_cleanup(fs_info->fs_root);
  1828. if (!err)
  1829. err = btrfs_orphan_cleanup(fs_info->tree_root);
  1830. up_read(&fs_info->cleanup_work_sem);
  1831. if (err) {
  1832. close_ctree(tree_root);
  1833. return ERR_PTR(err);
  1834. }
  1835. }
  1836. return tree_root;
  1837. fail_trans_kthread:
  1838. kthread_stop(fs_info->transaction_kthread);
  1839. fail_cleaner:
  1840. kthread_stop(fs_info->cleaner_kthread);
  1841. /*
  1842. * make sure we're done with the btree inode before we stop our
  1843. * kthreads
  1844. */
  1845. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1846. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1847. fail_block_groups:
  1848. btrfs_free_block_groups(fs_info);
  1849. free_extent_buffer(csum_root->node);
  1850. free_extent_buffer(csum_root->commit_root);
  1851. fail_dev_root:
  1852. free_extent_buffer(dev_root->node);
  1853. free_extent_buffer(dev_root->commit_root);
  1854. fail_extent_root:
  1855. free_extent_buffer(extent_root->node);
  1856. free_extent_buffer(extent_root->commit_root);
  1857. fail_tree_root:
  1858. free_extent_buffer(tree_root->node);
  1859. free_extent_buffer(tree_root->commit_root);
  1860. fail_chunk_root:
  1861. free_extent_buffer(chunk_root->node);
  1862. free_extent_buffer(chunk_root->commit_root);
  1863. fail_sb_buffer:
  1864. btrfs_stop_workers(&fs_info->generic_worker);
  1865. btrfs_stop_workers(&fs_info->fixup_workers);
  1866. btrfs_stop_workers(&fs_info->delalloc_workers);
  1867. btrfs_stop_workers(&fs_info->workers);
  1868. btrfs_stop_workers(&fs_info->endio_workers);
  1869. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1870. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1871. btrfs_stop_workers(&fs_info->endio_write_workers);
  1872. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1873. btrfs_stop_workers(&fs_info->submit_workers);
  1874. btrfs_stop_workers(&fs_info->delayed_workers);
  1875. btrfs_stop_workers(&fs_info->caching_workers);
  1876. fail_alloc:
  1877. kfree(fs_info->delayed_root);
  1878. fail_iput:
  1879. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1880. iput(fs_info->btree_inode);
  1881. btrfs_close_devices(fs_info->fs_devices);
  1882. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1883. fail_bdi:
  1884. bdi_destroy(&fs_info->bdi);
  1885. fail_srcu:
  1886. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1887. fail:
  1888. kfree(extent_root);
  1889. kfree(tree_root);
  1890. kfree(fs_info);
  1891. kfree(chunk_root);
  1892. kfree(dev_root);
  1893. kfree(csum_root);
  1894. return ERR_PTR(err);
  1895. }
  1896. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1897. {
  1898. char b[BDEVNAME_SIZE];
  1899. if (uptodate) {
  1900. set_buffer_uptodate(bh);
  1901. } else {
  1902. printk_ratelimited(KERN_WARNING "lost page write due to "
  1903. "I/O error on %s\n",
  1904. bdevname(bh->b_bdev, b));
  1905. /* note, we dont' set_buffer_write_io_error because we have
  1906. * our own ways of dealing with the IO errors
  1907. */
  1908. clear_buffer_uptodate(bh);
  1909. }
  1910. unlock_buffer(bh);
  1911. put_bh(bh);
  1912. }
  1913. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1914. {
  1915. struct buffer_head *bh;
  1916. struct buffer_head *latest = NULL;
  1917. struct btrfs_super_block *super;
  1918. int i;
  1919. u64 transid = 0;
  1920. u64 bytenr;
  1921. /* we would like to check all the supers, but that would make
  1922. * a btrfs mount succeed after a mkfs from a different FS.
  1923. * So, we need to add a special mount option to scan for
  1924. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1925. */
  1926. for (i = 0; i < 1; i++) {
  1927. bytenr = btrfs_sb_offset(i);
  1928. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1929. break;
  1930. bh = __bread(bdev, bytenr / 4096, 4096);
  1931. if (!bh)
  1932. continue;
  1933. super = (struct btrfs_super_block *)bh->b_data;
  1934. if (btrfs_super_bytenr(super) != bytenr ||
  1935. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1936. sizeof(super->magic))) {
  1937. brelse(bh);
  1938. continue;
  1939. }
  1940. if (!latest || btrfs_super_generation(super) > transid) {
  1941. brelse(latest);
  1942. latest = bh;
  1943. transid = btrfs_super_generation(super);
  1944. } else {
  1945. brelse(bh);
  1946. }
  1947. }
  1948. return latest;
  1949. }
  1950. /*
  1951. * this should be called twice, once with wait == 0 and
  1952. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1953. * we write are pinned.
  1954. *
  1955. * They are released when wait == 1 is done.
  1956. * max_mirrors must be the same for both runs, and it indicates how
  1957. * many supers on this one device should be written.
  1958. *
  1959. * max_mirrors == 0 means to write them all.
  1960. */
  1961. static int write_dev_supers(struct btrfs_device *device,
  1962. struct btrfs_super_block *sb,
  1963. int do_barriers, int wait, int max_mirrors)
  1964. {
  1965. struct buffer_head *bh;
  1966. int i;
  1967. int ret;
  1968. int errors = 0;
  1969. u32 crc;
  1970. u64 bytenr;
  1971. int last_barrier = 0;
  1972. if (max_mirrors == 0)
  1973. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1974. /* make sure only the last submit_bh does a barrier */
  1975. if (do_barriers) {
  1976. for (i = 0; i < max_mirrors; i++) {
  1977. bytenr = btrfs_sb_offset(i);
  1978. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1979. device->total_bytes)
  1980. break;
  1981. last_barrier = i;
  1982. }
  1983. }
  1984. for (i = 0; i < max_mirrors; i++) {
  1985. bytenr = btrfs_sb_offset(i);
  1986. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1987. break;
  1988. if (wait) {
  1989. bh = __find_get_block(device->bdev, bytenr / 4096,
  1990. BTRFS_SUPER_INFO_SIZE);
  1991. BUG_ON(!bh);
  1992. wait_on_buffer(bh);
  1993. if (!buffer_uptodate(bh))
  1994. errors++;
  1995. /* drop our reference */
  1996. brelse(bh);
  1997. /* drop the reference from the wait == 0 run */
  1998. brelse(bh);
  1999. continue;
  2000. } else {
  2001. btrfs_set_super_bytenr(sb, bytenr);
  2002. crc = ~(u32)0;
  2003. crc = btrfs_csum_data(NULL, (char *)sb +
  2004. BTRFS_CSUM_SIZE, crc,
  2005. BTRFS_SUPER_INFO_SIZE -
  2006. BTRFS_CSUM_SIZE);
  2007. btrfs_csum_final(crc, sb->csum);
  2008. /*
  2009. * one reference for us, and we leave it for the
  2010. * caller
  2011. */
  2012. bh = __getblk(device->bdev, bytenr / 4096,
  2013. BTRFS_SUPER_INFO_SIZE);
  2014. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2015. /* one reference for submit_bh */
  2016. get_bh(bh);
  2017. set_buffer_uptodate(bh);
  2018. lock_buffer(bh);
  2019. bh->b_end_io = btrfs_end_buffer_write_sync;
  2020. }
  2021. if (i == last_barrier && do_barriers)
  2022. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  2023. else
  2024. ret = submit_bh(WRITE_SYNC, bh);
  2025. if (ret)
  2026. errors++;
  2027. }
  2028. return errors < i ? 0 : -1;
  2029. }
  2030. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2031. {
  2032. struct list_head *head;
  2033. struct btrfs_device *dev;
  2034. struct btrfs_super_block *sb;
  2035. struct btrfs_dev_item *dev_item;
  2036. int ret;
  2037. int do_barriers;
  2038. int max_errors;
  2039. int total_errors = 0;
  2040. u64 flags;
  2041. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  2042. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2043. sb = &root->fs_info->super_for_commit;
  2044. dev_item = &sb->dev_item;
  2045. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2046. head = &root->fs_info->fs_devices->devices;
  2047. list_for_each_entry_rcu(dev, head, dev_list) {
  2048. if (!dev->bdev) {
  2049. total_errors++;
  2050. continue;
  2051. }
  2052. if (!dev->in_fs_metadata || !dev->writeable)
  2053. continue;
  2054. btrfs_set_stack_device_generation(dev_item, 0);
  2055. btrfs_set_stack_device_type(dev_item, dev->type);
  2056. btrfs_set_stack_device_id(dev_item, dev->devid);
  2057. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2058. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2059. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2060. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2061. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2062. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2063. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2064. flags = btrfs_super_flags(sb);
  2065. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2066. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2067. if (ret)
  2068. total_errors++;
  2069. }
  2070. if (total_errors > max_errors) {
  2071. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2072. total_errors);
  2073. BUG();
  2074. }
  2075. total_errors = 0;
  2076. list_for_each_entry_rcu(dev, head, dev_list) {
  2077. if (!dev->bdev)
  2078. continue;
  2079. if (!dev->in_fs_metadata || !dev->writeable)
  2080. continue;
  2081. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2082. if (ret)
  2083. total_errors++;
  2084. }
  2085. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2086. if (total_errors > max_errors) {
  2087. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2088. total_errors);
  2089. BUG();
  2090. }
  2091. return 0;
  2092. }
  2093. int write_ctree_super(struct btrfs_trans_handle *trans,
  2094. struct btrfs_root *root, int max_mirrors)
  2095. {
  2096. int ret;
  2097. ret = write_all_supers(root, max_mirrors);
  2098. return ret;
  2099. }
  2100. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2101. {
  2102. spin_lock(&fs_info->fs_roots_radix_lock);
  2103. radix_tree_delete(&fs_info->fs_roots_radix,
  2104. (unsigned long)root->root_key.objectid);
  2105. spin_unlock(&fs_info->fs_roots_radix_lock);
  2106. if (btrfs_root_refs(&root->root_item) == 0)
  2107. synchronize_srcu(&fs_info->subvol_srcu);
  2108. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2109. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2110. free_fs_root(root);
  2111. return 0;
  2112. }
  2113. static void free_fs_root(struct btrfs_root *root)
  2114. {
  2115. iput(root->cache_inode);
  2116. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2117. if (root->anon_dev)
  2118. free_anon_bdev(root->anon_dev);
  2119. free_extent_buffer(root->node);
  2120. free_extent_buffer(root->commit_root);
  2121. kfree(root->free_ino_ctl);
  2122. kfree(root->free_ino_pinned);
  2123. kfree(root->name);
  2124. kfree(root);
  2125. }
  2126. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2127. {
  2128. int ret;
  2129. struct btrfs_root *gang[8];
  2130. int i;
  2131. while (!list_empty(&fs_info->dead_roots)) {
  2132. gang[0] = list_entry(fs_info->dead_roots.next,
  2133. struct btrfs_root, root_list);
  2134. list_del(&gang[0]->root_list);
  2135. if (gang[0]->in_radix) {
  2136. btrfs_free_fs_root(fs_info, gang[0]);
  2137. } else {
  2138. free_extent_buffer(gang[0]->node);
  2139. free_extent_buffer(gang[0]->commit_root);
  2140. kfree(gang[0]);
  2141. }
  2142. }
  2143. while (1) {
  2144. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2145. (void **)gang, 0,
  2146. ARRAY_SIZE(gang));
  2147. if (!ret)
  2148. break;
  2149. for (i = 0; i < ret; i++)
  2150. btrfs_free_fs_root(fs_info, gang[i]);
  2151. }
  2152. return 0;
  2153. }
  2154. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2155. {
  2156. u64 root_objectid = 0;
  2157. struct btrfs_root *gang[8];
  2158. int i;
  2159. int ret;
  2160. while (1) {
  2161. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2162. (void **)gang, root_objectid,
  2163. ARRAY_SIZE(gang));
  2164. if (!ret)
  2165. break;
  2166. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2167. for (i = 0; i < ret; i++) {
  2168. int err;
  2169. root_objectid = gang[i]->root_key.objectid;
  2170. err = btrfs_orphan_cleanup(gang[i]);
  2171. if (err)
  2172. return err;
  2173. }
  2174. root_objectid++;
  2175. }
  2176. return 0;
  2177. }
  2178. int btrfs_commit_super(struct btrfs_root *root)
  2179. {
  2180. struct btrfs_trans_handle *trans;
  2181. int ret;
  2182. mutex_lock(&root->fs_info->cleaner_mutex);
  2183. btrfs_run_delayed_iputs(root);
  2184. btrfs_clean_old_snapshots(root);
  2185. mutex_unlock(&root->fs_info->cleaner_mutex);
  2186. /* wait until ongoing cleanup work done */
  2187. down_write(&root->fs_info->cleanup_work_sem);
  2188. up_write(&root->fs_info->cleanup_work_sem);
  2189. trans = btrfs_join_transaction(root);
  2190. if (IS_ERR(trans))
  2191. return PTR_ERR(trans);
  2192. ret = btrfs_commit_transaction(trans, root);
  2193. BUG_ON(ret);
  2194. /* run commit again to drop the original snapshot */
  2195. trans = btrfs_join_transaction(root);
  2196. if (IS_ERR(trans))
  2197. return PTR_ERR(trans);
  2198. btrfs_commit_transaction(trans, root);
  2199. ret = btrfs_write_and_wait_transaction(NULL, root);
  2200. BUG_ON(ret);
  2201. ret = write_ctree_super(NULL, root, 0);
  2202. return ret;
  2203. }
  2204. int close_ctree(struct btrfs_root *root)
  2205. {
  2206. struct btrfs_fs_info *fs_info = root->fs_info;
  2207. int ret;
  2208. fs_info->closing = 1;
  2209. smp_mb();
  2210. btrfs_scrub_cancel(root);
  2211. /* wait for any defraggers to finish */
  2212. wait_event(fs_info->transaction_wait,
  2213. (atomic_read(&fs_info->defrag_running) == 0));
  2214. /* clear out the rbtree of defraggable inodes */
  2215. btrfs_run_defrag_inodes(root->fs_info);
  2216. btrfs_put_block_group_cache(fs_info);
  2217. /*
  2218. * Here come 2 situations when btrfs is broken to flip readonly:
  2219. *
  2220. * 1. when btrfs flips readonly somewhere else before
  2221. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2222. * and btrfs will skip to write sb directly to keep
  2223. * ERROR state on disk.
  2224. *
  2225. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2226. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2227. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2228. * btrfs will cleanup all FS resources first and write sb then.
  2229. */
  2230. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2231. ret = btrfs_commit_super(root);
  2232. if (ret)
  2233. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2234. }
  2235. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2236. ret = btrfs_error_commit_super(root);
  2237. if (ret)
  2238. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2239. }
  2240. kthread_stop(root->fs_info->transaction_kthread);
  2241. kthread_stop(root->fs_info->cleaner_kthread);
  2242. fs_info->closing = 2;
  2243. smp_mb();
  2244. if (fs_info->delalloc_bytes) {
  2245. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2246. (unsigned long long)fs_info->delalloc_bytes);
  2247. }
  2248. if (fs_info->total_ref_cache_size) {
  2249. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2250. (unsigned long long)fs_info->total_ref_cache_size);
  2251. }
  2252. free_extent_buffer(fs_info->extent_root->node);
  2253. free_extent_buffer(fs_info->extent_root->commit_root);
  2254. free_extent_buffer(fs_info->tree_root->node);
  2255. free_extent_buffer(fs_info->tree_root->commit_root);
  2256. free_extent_buffer(root->fs_info->chunk_root->node);
  2257. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2258. free_extent_buffer(root->fs_info->dev_root->node);
  2259. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2260. free_extent_buffer(root->fs_info->csum_root->node);
  2261. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2262. btrfs_free_block_groups(root->fs_info);
  2263. del_fs_roots(fs_info);
  2264. iput(fs_info->btree_inode);
  2265. kfree(fs_info->delayed_root);
  2266. btrfs_stop_workers(&fs_info->generic_worker);
  2267. btrfs_stop_workers(&fs_info->fixup_workers);
  2268. btrfs_stop_workers(&fs_info->delalloc_workers);
  2269. btrfs_stop_workers(&fs_info->workers);
  2270. btrfs_stop_workers(&fs_info->endio_workers);
  2271. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2272. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2273. btrfs_stop_workers(&fs_info->endio_write_workers);
  2274. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2275. btrfs_stop_workers(&fs_info->submit_workers);
  2276. btrfs_stop_workers(&fs_info->delayed_workers);
  2277. btrfs_stop_workers(&fs_info->caching_workers);
  2278. btrfs_close_devices(fs_info->fs_devices);
  2279. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2280. bdi_destroy(&fs_info->bdi);
  2281. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2282. kfree(fs_info->extent_root);
  2283. kfree(fs_info->tree_root);
  2284. kfree(fs_info->chunk_root);
  2285. kfree(fs_info->dev_root);
  2286. kfree(fs_info->csum_root);
  2287. kfree(fs_info);
  2288. return 0;
  2289. }
  2290. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2291. {
  2292. int ret;
  2293. struct inode *btree_inode = buf->first_page->mapping->host;
  2294. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2295. NULL);
  2296. if (!ret)
  2297. return ret;
  2298. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2299. parent_transid);
  2300. return !ret;
  2301. }
  2302. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2303. {
  2304. struct inode *btree_inode = buf->first_page->mapping->host;
  2305. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2306. buf);
  2307. }
  2308. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2309. {
  2310. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2311. u64 transid = btrfs_header_generation(buf);
  2312. struct inode *btree_inode = root->fs_info->btree_inode;
  2313. int was_dirty;
  2314. btrfs_assert_tree_locked(buf);
  2315. if (transid != root->fs_info->generation) {
  2316. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2317. "found %llu running %llu\n",
  2318. (unsigned long long)buf->start,
  2319. (unsigned long long)transid,
  2320. (unsigned long long)root->fs_info->generation);
  2321. WARN_ON(1);
  2322. }
  2323. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2324. buf);
  2325. if (!was_dirty) {
  2326. spin_lock(&root->fs_info->delalloc_lock);
  2327. root->fs_info->dirty_metadata_bytes += buf->len;
  2328. spin_unlock(&root->fs_info->delalloc_lock);
  2329. }
  2330. }
  2331. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2332. {
  2333. /*
  2334. * looks as though older kernels can get into trouble with
  2335. * this code, they end up stuck in balance_dirty_pages forever
  2336. */
  2337. u64 num_dirty;
  2338. unsigned long thresh = 32 * 1024 * 1024;
  2339. if (current->flags & PF_MEMALLOC)
  2340. return;
  2341. btrfs_balance_delayed_items(root);
  2342. num_dirty = root->fs_info->dirty_metadata_bytes;
  2343. if (num_dirty > thresh) {
  2344. balance_dirty_pages_ratelimited_nr(
  2345. root->fs_info->btree_inode->i_mapping, 1);
  2346. }
  2347. return;
  2348. }
  2349. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2350. {
  2351. /*
  2352. * looks as though older kernels can get into trouble with
  2353. * this code, they end up stuck in balance_dirty_pages forever
  2354. */
  2355. u64 num_dirty;
  2356. unsigned long thresh = 32 * 1024 * 1024;
  2357. if (current->flags & PF_MEMALLOC)
  2358. return;
  2359. num_dirty = root->fs_info->dirty_metadata_bytes;
  2360. if (num_dirty > thresh) {
  2361. balance_dirty_pages_ratelimited_nr(
  2362. root->fs_info->btree_inode->i_mapping, 1);
  2363. }
  2364. return;
  2365. }
  2366. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2367. {
  2368. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2369. int ret;
  2370. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2371. if (ret == 0)
  2372. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2373. return ret;
  2374. }
  2375. int btree_lock_page_hook(struct page *page)
  2376. {
  2377. struct inode *inode = page->mapping->host;
  2378. struct btrfs_root *root = BTRFS_I(inode)->root;
  2379. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2380. struct extent_buffer *eb;
  2381. unsigned long len;
  2382. u64 bytenr = page_offset(page);
  2383. if (page->private == EXTENT_PAGE_PRIVATE)
  2384. goto out;
  2385. len = page->private >> 2;
  2386. eb = find_extent_buffer(io_tree, bytenr, len);
  2387. if (!eb)
  2388. goto out;
  2389. btrfs_tree_lock(eb);
  2390. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2391. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2392. spin_lock(&root->fs_info->delalloc_lock);
  2393. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2394. root->fs_info->dirty_metadata_bytes -= eb->len;
  2395. else
  2396. WARN_ON(1);
  2397. spin_unlock(&root->fs_info->delalloc_lock);
  2398. }
  2399. btrfs_tree_unlock(eb);
  2400. free_extent_buffer(eb);
  2401. out:
  2402. lock_page(page);
  2403. return 0;
  2404. }
  2405. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2406. int read_only)
  2407. {
  2408. if (read_only)
  2409. return;
  2410. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2411. printk(KERN_WARNING "warning: mount fs with errors, "
  2412. "running btrfsck is recommended\n");
  2413. }
  2414. int btrfs_error_commit_super(struct btrfs_root *root)
  2415. {
  2416. int ret;
  2417. mutex_lock(&root->fs_info->cleaner_mutex);
  2418. btrfs_run_delayed_iputs(root);
  2419. mutex_unlock(&root->fs_info->cleaner_mutex);
  2420. down_write(&root->fs_info->cleanup_work_sem);
  2421. up_write(&root->fs_info->cleanup_work_sem);
  2422. /* cleanup FS via transaction */
  2423. btrfs_cleanup_transaction(root);
  2424. ret = write_ctree_super(NULL, root, 0);
  2425. return ret;
  2426. }
  2427. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2428. {
  2429. struct btrfs_inode *btrfs_inode;
  2430. struct list_head splice;
  2431. INIT_LIST_HEAD(&splice);
  2432. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2433. spin_lock(&root->fs_info->ordered_extent_lock);
  2434. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2435. while (!list_empty(&splice)) {
  2436. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2437. ordered_operations);
  2438. list_del_init(&btrfs_inode->ordered_operations);
  2439. btrfs_invalidate_inodes(btrfs_inode->root);
  2440. }
  2441. spin_unlock(&root->fs_info->ordered_extent_lock);
  2442. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2443. return 0;
  2444. }
  2445. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2446. {
  2447. struct list_head splice;
  2448. struct btrfs_ordered_extent *ordered;
  2449. struct inode *inode;
  2450. INIT_LIST_HEAD(&splice);
  2451. spin_lock(&root->fs_info->ordered_extent_lock);
  2452. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2453. while (!list_empty(&splice)) {
  2454. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2455. root_extent_list);
  2456. list_del_init(&ordered->root_extent_list);
  2457. atomic_inc(&ordered->refs);
  2458. /* the inode may be getting freed (in sys_unlink path). */
  2459. inode = igrab(ordered->inode);
  2460. spin_unlock(&root->fs_info->ordered_extent_lock);
  2461. if (inode)
  2462. iput(inode);
  2463. atomic_set(&ordered->refs, 1);
  2464. btrfs_put_ordered_extent(ordered);
  2465. spin_lock(&root->fs_info->ordered_extent_lock);
  2466. }
  2467. spin_unlock(&root->fs_info->ordered_extent_lock);
  2468. return 0;
  2469. }
  2470. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2471. struct btrfs_root *root)
  2472. {
  2473. struct rb_node *node;
  2474. struct btrfs_delayed_ref_root *delayed_refs;
  2475. struct btrfs_delayed_ref_node *ref;
  2476. int ret = 0;
  2477. delayed_refs = &trans->delayed_refs;
  2478. spin_lock(&delayed_refs->lock);
  2479. if (delayed_refs->num_entries == 0) {
  2480. spin_unlock(&delayed_refs->lock);
  2481. printk(KERN_INFO "delayed_refs has NO entry\n");
  2482. return ret;
  2483. }
  2484. node = rb_first(&delayed_refs->root);
  2485. while (node) {
  2486. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2487. node = rb_next(node);
  2488. ref->in_tree = 0;
  2489. rb_erase(&ref->rb_node, &delayed_refs->root);
  2490. delayed_refs->num_entries--;
  2491. atomic_set(&ref->refs, 1);
  2492. if (btrfs_delayed_ref_is_head(ref)) {
  2493. struct btrfs_delayed_ref_head *head;
  2494. head = btrfs_delayed_node_to_head(ref);
  2495. mutex_lock(&head->mutex);
  2496. kfree(head->extent_op);
  2497. delayed_refs->num_heads--;
  2498. if (list_empty(&head->cluster))
  2499. delayed_refs->num_heads_ready--;
  2500. list_del_init(&head->cluster);
  2501. mutex_unlock(&head->mutex);
  2502. }
  2503. spin_unlock(&delayed_refs->lock);
  2504. btrfs_put_delayed_ref(ref);
  2505. cond_resched();
  2506. spin_lock(&delayed_refs->lock);
  2507. }
  2508. spin_unlock(&delayed_refs->lock);
  2509. return ret;
  2510. }
  2511. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2512. {
  2513. struct btrfs_pending_snapshot *snapshot;
  2514. struct list_head splice;
  2515. INIT_LIST_HEAD(&splice);
  2516. list_splice_init(&t->pending_snapshots, &splice);
  2517. while (!list_empty(&splice)) {
  2518. snapshot = list_entry(splice.next,
  2519. struct btrfs_pending_snapshot,
  2520. list);
  2521. list_del_init(&snapshot->list);
  2522. kfree(snapshot);
  2523. }
  2524. return 0;
  2525. }
  2526. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2527. {
  2528. struct btrfs_inode *btrfs_inode;
  2529. struct list_head splice;
  2530. INIT_LIST_HEAD(&splice);
  2531. spin_lock(&root->fs_info->delalloc_lock);
  2532. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2533. while (!list_empty(&splice)) {
  2534. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2535. delalloc_inodes);
  2536. list_del_init(&btrfs_inode->delalloc_inodes);
  2537. btrfs_invalidate_inodes(btrfs_inode->root);
  2538. }
  2539. spin_unlock(&root->fs_info->delalloc_lock);
  2540. return 0;
  2541. }
  2542. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2543. struct extent_io_tree *dirty_pages,
  2544. int mark)
  2545. {
  2546. int ret;
  2547. struct page *page;
  2548. struct inode *btree_inode = root->fs_info->btree_inode;
  2549. struct extent_buffer *eb;
  2550. u64 start = 0;
  2551. u64 end;
  2552. u64 offset;
  2553. unsigned long index;
  2554. while (1) {
  2555. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2556. mark);
  2557. if (ret)
  2558. break;
  2559. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2560. while (start <= end) {
  2561. index = start >> PAGE_CACHE_SHIFT;
  2562. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2563. page = find_get_page(btree_inode->i_mapping, index);
  2564. if (!page)
  2565. continue;
  2566. offset = page_offset(page);
  2567. spin_lock(&dirty_pages->buffer_lock);
  2568. eb = radix_tree_lookup(
  2569. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2570. offset >> PAGE_CACHE_SHIFT);
  2571. spin_unlock(&dirty_pages->buffer_lock);
  2572. if (eb) {
  2573. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2574. &eb->bflags);
  2575. atomic_set(&eb->refs, 1);
  2576. }
  2577. if (PageWriteback(page))
  2578. end_page_writeback(page);
  2579. lock_page(page);
  2580. if (PageDirty(page)) {
  2581. clear_page_dirty_for_io(page);
  2582. spin_lock_irq(&page->mapping->tree_lock);
  2583. radix_tree_tag_clear(&page->mapping->page_tree,
  2584. page_index(page),
  2585. PAGECACHE_TAG_DIRTY);
  2586. spin_unlock_irq(&page->mapping->tree_lock);
  2587. }
  2588. page->mapping->a_ops->invalidatepage(page, 0);
  2589. unlock_page(page);
  2590. }
  2591. }
  2592. return ret;
  2593. }
  2594. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2595. struct extent_io_tree *pinned_extents)
  2596. {
  2597. struct extent_io_tree *unpin;
  2598. u64 start;
  2599. u64 end;
  2600. int ret;
  2601. unpin = pinned_extents;
  2602. while (1) {
  2603. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2604. EXTENT_DIRTY);
  2605. if (ret)
  2606. break;
  2607. /* opt_discard */
  2608. if (btrfs_test_opt(root, DISCARD))
  2609. ret = btrfs_error_discard_extent(root, start,
  2610. end + 1 - start,
  2611. NULL);
  2612. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2613. btrfs_error_unpin_extent_range(root, start, end);
  2614. cond_resched();
  2615. }
  2616. return 0;
  2617. }
  2618. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2619. {
  2620. struct btrfs_transaction *t;
  2621. LIST_HEAD(list);
  2622. WARN_ON(1);
  2623. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2624. spin_lock(&root->fs_info->trans_lock);
  2625. list_splice_init(&root->fs_info->trans_list, &list);
  2626. root->fs_info->trans_no_join = 1;
  2627. spin_unlock(&root->fs_info->trans_lock);
  2628. while (!list_empty(&list)) {
  2629. t = list_entry(list.next, struct btrfs_transaction, list);
  2630. if (!t)
  2631. break;
  2632. btrfs_destroy_ordered_operations(root);
  2633. btrfs_destroy_ordered_extents(root);
  2634. btrfs_destroy_delayed_refs(t, root);
  2635. btrfs_block_rsv_release(root,
  2636. &root->fs_info->trans_block_rsv,
  2637. t->dirty_pages.dirty_bytes);
  2638. /* FIXME: cleanup wait for commit */
  2639. t->in_commit = 1;
  2640. t->blocked = 1;
  2641. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2642. wake_up(&root->fs_info->transaction_blocked_wait);
  2643. t->blocked = 0;
  2644. if (waitqueue_active(&root->fs_info->transaction_wait))
  2645. wake_up(&root->fs_info->transaction_wait);
  2646. t->commit_done = 1;
  2647. if (waitqueue_active(&t->commit_wait))
  2648. wake_up(&t->commit_wait);
  2649. btrfs_destroy_pending_snapshots(t);
  2650. btrfs_destroy_delalloc_inodes(root);
  2651. spin_lock(&root->fs_info->trans_lock);
  2652. root->fs_info->running_transaction = NULL;
  2653. spin_unlock(&root->fs_info->trans_lock);
  2654. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2655. EXTENT_DIRTY);
  2656. btrfs_destroy_pinned_extent(root,
  2657. root->fs_info->pinned_extents);
  2658. atomic_set(&t->use_count, 0);
  2659. list_del_init(&t->list);
  2660. memset(t, 0, sizeof(*t));
  2661. kmem_cache_free(btrfs_transaction_cachep, t);
  2662. }
  2663. spin_lock(&root->fs_info->trans_lock);
  2664. root->fs_info->trans_no_join = 0;
  2665. spin_unlock(&root->fs_info->trans_lock);
  2666. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2667. return 0;
  2668. }
  2669. static struct extent_io_ops btree_extent_io_ops = {
  2670. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2671. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2672. .submit_bio_hook = btree_submit_bio_hook,
  2673. /* note we're sharing with inode.c for the merge bio hook */
  2674. .merge_bio_hook = btrfs_merge_bio_hook,
  2675. };