ctree.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. rcu_read_lock();
  147. eb = rcu_dereference(root->node);
  148. extent_buffer_get(eb);
  149. rcu_read_unlock();
  150. return eb;
  151. }
  152. /* loop around taking references on and locking the root node of the
  153. * tree until you end up with a lock on the root. A locked buffer
  154. * is returned, with a reference held.
  155. */
  156. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  157. {
  158. struct extent_buffer *eb;
  159. while (1) {
  160. eb = btrfs_root_node(root);
  161. btrfs_tree_lock(eb);
  162. if (eb == root->node)
  163. break;
  164. btrfs_tree_unlock(eb);
  165. free_extent_buffer(eb);
  166. }
  167. return eb;
  168. }
  169. /* loop around taking references on and locking the root node of the
  170. * tree until you end up with a lock on the root. A locked buffer
  171. * is returned, with a reference held.
  172. */
  173. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  174. {
  175. struct extent_buffer *eb;
  176. while (1) {
  177. eb = btrfs_root_node(root);
  178. btrfs_tree_read_lock(eb);
  179. if (eb == root->node)
  180. break;
  181. btrfs_tree_read_unlock(eb);
  182. free_extent_buffer(eb);
  183. }
  184. return eb;
  185. }
  186. /* cowonly root (everything not a reference counted cow subvolume), just get
  187. * put onto a simple dirty list. transaction.c walks this to make sure they
  188. * get properly updated on disk.
  189. */
  190. static void add_root_to_dirty_list(struct btrfs_root *root)
  191. {
  192. if (root->track_dirty && list_empty(&root->dirty_list)) {
  193. list_add(&root->dirty_list,
  194. &root->fs_info->dirty_cowonly_roots);
  195. }
  196. }
  197. /*
  198. * used by snapshot creation to make a copy of a root for a tree with
  199. * a given objectid. The buffer with the new root node is returned in
  200. * cow_ret, and this func returns zero on success or a negative error code.
  201. */
  202. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  203. struct btrfs_root *root,
  204. struct extent_buffer *buf,
  205. struct extent_buffer **cow_ret, u64 new_root_objectid)
  206. {
  207. struct extent_buffer *cow;
  208. int ret = 0;
  209. int level;
  210. struct btrfs_disk_key disk_key;
  211. WARN_ON(root->ref_cows && trans->transid !=
  212. root->fs_info->running_transaction->transid);
  213. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  214. level = btrfs_header_level(buf);
  215. if (level == 0)
  216. btrfs_item_key(buf, &disk_key, 0);
  217. else
  218. btrfs_node_key(buf, &disk_key, 0);
  219. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  220. new_root_objectid, &disk_key, level,
  221. buf->start, 0);
  222. if (IS_ERR(cow))
  223. return PTR_ERR(cow);
  224. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  225. btrfs_set_header_bytenr(cow, cow->start);
  226. btrfs_set_header_generation(cow, trans->transid);
  227. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  228. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  229. BTRFS_HEADER_FLAG_RELOC);
  230. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  231. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  232. else
  233. btrfs_set_header_owner(cow, new_root_objectid);
  234. write_extent_buffer(cow, root->fs_info->fsid,
  235. (unsigned long)btrfs_header_fsid(cow),
  236. BTRFS_FSID_SIZE);
  237. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  238. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  239. ret = btrfs_inc_ref(trans, root, cow, 1);
  240. else
  241. ret = btrfs_inc_ref(trans, root, cow, 0);
  242. if (ret)
  243. return ret;
  244. btrfs_mark_buffer_dirty(cow);
  245. *cow_ret = cow;
  246. return 0;
  247. }
  248. /*
  249. * check if the tree block can be shared by multiple trees
  250. */
  251. int btrfs_block_can_be_shared(struct btrfs_root *root,
  252. struct extent_buffer *buf)
  253. {
  254. /*
  255. * Tree blocks not in refernece counted trees and tree roots
  256. * are never shared. If a block was allocated after the last
  257. * snapshot and the block was not allocated by tree relocation,
  258. * we know the block is not shared.
  259. */
  260. if (root->ref_cows &&
  261. buf != root->node && buf != root->commit_root &&
  262. (btrfs_header_generation(buf) <=
  263. btrfs_root_last_snapshot(&root->root_item) ||
  264. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  265. return 1;
  266. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  267. if (root->ref_cows &&
  268. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  269. return 1;
  270. #endif
  271. return 0;
  272. }
  273. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  274. struct btrfs_root *root,
  275. struct extent_buffer *buf,
  276. struct extent_buffer *cow,
  277. int *last_ref)
  278. {
  279. u64 refs;
  280. u64 owner;
  281. u64 flags;
  282. u64 new_flags = 0;
  283. int ret;
  284. /*
  285. * Backrefs update rules:
  286. *
  287. * Always use full backrefs for extent pointers in tree block
  288. * allocated by tree relocation.
  289. *
  290. * If a shared tree block is no longer referenced by its owner
  291. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  292. * use full backrefs for extent pointers in tree block.
  293. *
  294. * If a tree block is been relocating
  295. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  296. * use full backrefs for extent pointers in tree block.
  297. * The reason for this is some operations (such as drop tree)
  298. * are only allowed for blocks use full backrefs.
  299. */
  300. if (btrfs_block_can_be_shared(root, buf)) {
  301. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  302. buf->len, &refs, &flags);
  303. BUG_ON(ret);
  304. BUG_ON(refs == 0);
  305. } else {
  306. refs = 1;
  307. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  308. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  309. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  310. else
  311. flags = 0;
  312. }
  313. owner = btrfs_header_owner(buf);
  314. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  315. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  316. if (refs > 1) {
  317. if ((owner == root->root_key.objectid ||
  318. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  319. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  320. ret = btrfs_inc_ref(trans, root, buf, 1);
  321. BUG_ON(ret);
  322. if (root->root_key.objectid ==
  323. BTRFS_TREE_RELOC_OBJECTID) {
  324. ret = btrfs_dec_ref(trans, root, buf, 0);
  325. BUG_ON(ret);
  326. ret = btrfs_inc_ref(trans, root, cow, 1);
  327. BUG_ON(ret);
  328. }
  329. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  330. } else {
  331. if (root->root_key.objectid ==
  332. BTRFS_TREE_RELOC_OBJECTID)
  333. ret = btrfs_inc_ref(trans, root, cow, 1);
  334. else
  335. ret = btrfs_inc_ref(trans, root, cow, 0);
  336. BUG_ON(ret);
  337. }
  338. if (new_flags != 0) {
  339. ret = btrfs_set_disk_extent_flags(trans, root,
  340. buf->start,
  341. buf->len,
  342. new_flags, 0);
  343. BUG_ON(ret);
  344. }
  345. } else {
  346. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  347. if (root->root_key.objectid ==
  348. BTRFS_TREE_RELOC_OBJECTID)
  349. ret = btrfs_inc_ref(trans, root, cow, 1);
  350. else
  351. ret = btrfs_inc_ref(trans, root, cow, 0);
  352. BUG_ON(ret);
  353. ret = btrfs_dec_ref(trans, root, buf, 1);
  354. BUG_ON(ret);
  355. }
  356. clean_tree_block(trans, root, buf);
  357. *last_ref = 1;
  358. }
  359. return 0;
  360. }
  361. /*
  362. * does the dirty work in cow of a single block. The parent block (if
  363. * supplied) is updated to point to the new cow copy. The new buffer is marked
  364. * dirty and returned locked. If you modify the block it needs to be marked
  365. * dirty again.
  366. *
  367. * search_start -- an allocation hint for the new block
  368. *
  369. * empty_size -- a hint that you plan on doing more cow. This is the size in
  370. * bytes the allocator should try to find free next to the block it returns.
  371. * This is just a hint and may be ignored by the allocator.
  372. */
  373. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  374. struct btrfs_root *root,
  375. struct extent_buffer *buf,
  376. struct extent_buffer *parent, int parent_slot,
  377. struct extent_buffer **cow_ret,
  378. u64 search_start, u64 empty_size)
  379. {
  380. struct btrfs_disk_key disk_key;
  381. struct extent_buffer *cow;
  382. int level;
  383. int last_ref = 0;
  384. int unlock_orig = 0;
  385. u64 parent_start;
  386. if (*cow_ret == buf)
  387. unlock_orig = 1;
  388. btrfs_assert_tree_locked(buf);
  389. WARN_ON(root->ref_cows && trans->transid !=
  390. root->fs_info->running_transaction->transid);
  391. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  392. level = btrfs_header_level(buf);
  393. if (level == 0)
  394. btrfs_item_key(buf, &disk_key, 0);
  395. else
  396. btrfs_node_key(buf, &disk_key, 0);
  397. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  398. if (parent)
  399. parent_start = parent->start;
  400. else
  401. parent_start = 0;
  402. } else
  403. parent_start = 0;
  404. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  405. root->root_key.objectid, &disk_key,
  406. level, search_start, empty_size);
  407. if (IS_ERR(cow))
  408. return PTR_ERR(cow);
  409. /* cow is set to blocking by btrfs_init_new_buffer */
  410. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  411. btrfs_set_header_bytenr(cow, cow->start);
  412. btrfs_set_header_generation(cow, trans->transid);
  413. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  414. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  415. BTRFS_HEADER_FLAG_RELOC);
  416. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  417. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  418. else
  419. btrfs_set_header_owner(cow, root->root_key.objectid);
  420. write_extent_buffer(cow, root->fs_info->fsid,
  421. (unsigned long)btrfs_header_fsid(cow),
  422. BTRFS_FSID_SIZE);
  423. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  424. if (root->ref_cows)
  425. btrfs_reloc_cow_block(trans, root, buf, cow);
  426. if (buf == root->node) {
  427. WARN_ON(parent && parent != buf);
  428. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  429. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  430. parent_start = buf->start;
  431. else
  432. parent_start = 0;
  433. extent_buffer_get(cow);
  434. rcu_assign_pointer(root->node, cow);
  435. btrfs_free_tree_block(trans, root, buf, parent_start,
  436. last_ref);
  437. free_extent_buffer(buf);
  438. add_root_to_dirty_list(root);
  439. } else {
  440. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  441. parent_start = parent->start;
  442. else
  443. parent_start = 0;
  444. WARN_ON(trans->transid != btrfs_header_generation(parent));
  445. btrfs_set_node_blockptr(parent, parent_slot,
  446. cow->start);
  447. btrfs_set_node_ptr_generation(parent, parent_slot,
  448. trans->transid);
  449. btrfs_mark_buffer_dirty(parent);
  450. btrfs_free_tree_block(trans, root, buf, parent_start,
  451. last_ref);
  452. }
  453. if (unlock_orig)
  454. btrfs_tree_unlock(buf);
  455. free_extent_buffer(buf);
  456. btrfs_mark_buffer_dirty(cow);
  457. *cow_ret = cow;
  458. return 0;
  459. }
  460. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  461. struct btrfs_root *root,
  462. struct extent_buffer *buf)
  463. {
  464. if (btrfs_header_generation(buf) == trans->transid &&
  465. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  466. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  467. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  468. return 0;
  469. return 1;
  470. }
  471. /*
  472. * cows a single block, see __btrfs_cow_block for the real work.
  473. * This version of it has extra checks so that a block isn't cow'd more than
  474. * once per transaction, as long as it hasn't been written yet
  475. */
  476. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  477. struct btrfs_root *root, struct extent_buffer *buf,
  478. struct extent_buffer *parent, int parent_slot,
  479. struct extent_buffer **cow_ret)
  480. {
  481. u64 search_start;
  482. int ret;
  483. if (trans->transaction != root->fs_info->running_transaction) {
  484. printk(KERN_CRIT "trans %llu running %llu\n",
  485. (unsigned long long)trans->transid,
  486. (unsigned long long)
  487. root->fs_info->running_transaction->transid);
  488. WARN_ON(1);
  489. }
  490. if (trans->transid != root->fs_info->generation) {
  491. printk(KERN_CRIT "trans %llu running %llu\n",
  492. (unsigned long long)trans->transid,
  493. (unsigned long long)root->fs_info->generation);
  494. WARN_ON(1);
  495. }
  496. if (!should_cow_block(trans, root, buf)) {
  497. *cow_ret = buf;
  498. return 0;
  499. }
  500. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  501. if (parent)
  502. btrfs_set_lock_blocking(parent);
  503. btrfs_set_lock_blocking(buf);
  504. ret = __btrfs_cow_block(trans, root, buf, parent,
  505. parent_slot, cow_ret, search_start, 0);
  506. trace_btrfs_cow_block(root, buf, *cow_ret);
  507. return ret;
  508. }
  509. /*
  510. * helper function for defrag to decide if two blocks pointed to by a
  511. * node are actually close by
  512. */
  513. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  514. {
  515. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  516. return 1;
  517. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  518. return 1;
  519. return 0;
  520. }
  521. /*
  522. * compare two keys in a memcmp fashion
  523. */
  524. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  525. {
  526. struct btrfs_key k1;
  527. btrfs_disk_key_to_cpu(&k1, disk);
  528. return btrfs_comp_cpu_keys(&k1, k2);
  529. }
  530. /*
  531. * same as comp_keys only with two btrfs_key's
  532. */
  533. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  534. {
  535. if (k1->objectid > k2->objectid)
  536. return 1;
  537. if (k1->objectid < k2->objectid)
  538. return -1;
  539. if (k1->type > k2->type)
  540. return 1;
  541. if (k1->type < k2->type)
  542. return -1;
  543. if (k1->offset > k2->offset)
  544. return 1;
  545. if (k1->offset < k2->offset)
  546. return -1;
  547. return 0;
  548. }
  549. /*
  550. * this is used by the defrag code to go through all the
  551. * leaves pointed to by a node and reallocate them so that
  552. * disk order is close to key order
  553. */
  554. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  555. struct btrfs_root *root, struct extent_buffer *parent,
  556. int start_slot, int cache_only, u64 *last_ret,
  557. struct btrfs_key *progress)
  558. {
  559. struct extent_buffer *cur;
  560. u64 blocknr;
  561. u64 gen;
  562. u64 search_start = *last_ret;
  563. u64 last_block = 0;
  564. u64 other;
  565. u32 parent_nritems;
  566. int end_slot;
  567. int i;
  568. int err = 0;
  569. int parent_level;
  570. int uptodate;
  571. u32 blocksize;
  572. int progress_passed = 0;
  573. struct btrfs_disk_key disk_key;
  574. parent_level = btrfs_header_level(parent);
  575. if (cache_only && parent_level != 1)
  576. return 0;
  577. if (trans->transaction != root->fs_info->running_transaction)
  578. WARN_ON(1);
  579. if (trans->transid != root->fs_info->generation)
  580. WARN_ON(1);
  581. parent_nritems = btrfs_header_nritems(parent);
  582. blocksize = btrfs_level_size(root, parent_level - 1);
  583. end_slot = parent_nritems;
  584. if (parent_nritems == 1)
  585. return 0;
  586. btrfs_set_lock_blocking(parent);
  587. for (i = start_slot; i < end_slot; i++) {
  588. int close = 1;
  589. btrfs_node_key(parent, &disk_key, i);
  590. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  591. continue;
  592. progress_passed = 1;
  593. blocknr = btrfs_node_blockptr(parent, i);
  594. gen = btrfs_node_ptr_generation(parent, i);
  595. if (last_block == 0)
  596. last_block = blocknr;
  597. if (i > 0) {
  598. other = btrfs_node_blockptr(parent, i - 1);
  599. close = close_blocks(blocknr, other, blocksize);
  600. }
  601. if (!close && i < end_slot - 2) {
  602. other = btrfs_node_blockptr(parent, i + 1);
  603. close = close_blocks(blocknr, other, blocksize);
  604. }
  605. if (close) {
  606. last_block = blocknr;
  607. continue;
  608. }
  609. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  610. if (cur)
  611. uptodate = btrfs_buffer_uptodate(cur, gen);
  612. else
  613. uptodate = 0;
  614. if (!cur || !uptodate) {
  615. if (cache_only) {
  616. free_extent_buffer(cur);
  617. continue;
  618. }
  619. if (!cur) {
  620. cur = read_tree_block(root, blocknr,
  621. blocksize, gen);
  622. if (!cur)
  623. return -EIO;
  624. } else if (!uptodate) {
  625. btrfs_read_buffer(cur, gen);
  626. }
  627. }
  628. if (search_start == 0)
  629. search_start = last_block;
  630. btrfs_tree_lock(cur);
  631. btrfs_set_lock_blocking(cur);
  632. err = __btrfs_cow_block(trans, root, cur, parent, i,
  633. &cur, search_start,
  634. min(16 * blocksize,
  635. (end_slot - i) * blocksize));
  636. if (err) {
  637. btrfs_tree_unlock(cur);
  638. free_extent_buffer(cur);
  639. break;
  640. }
  641. search_start = cur->start;
  642. last_block = cur->start;
  643. *last_ret = search_start;
  644. btrfs_tree_unlock(cur);
  645. free_extent_buffer(cur);
  646. }
  647. return err;
  648. }
  649. /*
  650. * The leaf data grows from end-to-front in the node.
  651. * this returns the address of the start of the last item,
  652. * which is the stop of the leaf data stack
  653. */
  654. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  655. struct extent_buffer *leaf)
  656. {
  657. u32 nr = btrfs_header_nritems(leaf);
  658. if (nr == 0)
  659. return BTRFS_LEAF_DATA_SIZE(root);
  660. return btrfs_item_offset_nr(leaf, nr - 1);
  661. }
  662. /*
  663. * search for key in the extent_buffer. The items start at offset p,
  664. * and they are item_size apart. There are 'max' items in p.
  665. *
  666. * the slot in the array is returned via slot, and it points to
  667. * the place where you would insert key if it is not found in
  668. * the array.
  669. *
  670. * slot may point to max if the key is bigger than all of the keys
  671. */
  672. static noinline int generic_bin_search(struct extent_buffer *eb,
  673. unsigned long p,
  674. int item_size, struct btrfs_key *key,
  675. int max, int *slot)
  676. {
  677. int low = 0;
  678. int high = max;
  679. int mid;
  680. int ret;
  681. struct btrfs_disk_key *tmp = NULL;
  682. struct btrfs_disk_key unaligned;
  683. unsigned long offset;
  684. char *kaddr = NULL;
  685. unsigned long map_start = 0;
  686. unsigned long map_len = 0;
  687. int err;
  688. while (low < high) {
  689. mid = (low + high) / 2;
  690. offset = p + mid * item_size;
  691. if (!kaddr || offset < map_start ||
  692. (offset + sizeof(struct btrfs_disk_key)) >
  693. map_start + map_len) {
  694. err = map_private_extent_buffer(eb, offset,
  695. sizeof(struct btrfs_disk_key),
  696. &kaddr, &map_start, &map_len);
  697. if (!err) {
  698. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  699. map_start);
  700. } else {
  701. read_extent_buffer(eb, &unaligned,
  702. offset, sizeof(unaligned));
  703. tmp = &unaligned;
  704. }
  705. } else {
  706. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  707. map_start);
  708. }
  709. ret = comp_keys(tmp, key);
  710. if (ret < 0)
  711. low = mid + 1;
  712. else if (ret > 0)
  713. high = mid;
  714. else {
  715. *slot = mid;
  716. return 0;
  717. }
  718. }
  719. *slot = low;
  720. return 1;
  721. }
  722. /*
  723. * simple bin_search frontend that does the right thing for
  724. * leaves vs nodes
  725. */
  726. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  727. int level, int *slot)
  728. {
  729. if (level == 0) {
  730. return generic_bin_search(eb,
  731. offsetof(struct btrfs_leaf, items),
  732. sizeof(struct btrfs_item),
  733. key, btrfs_header_nritems(eb),
  734. slot);
  735. } else {
  736. return generic_bin_search(eb,
  737. offsetof(struct btrfs_node, ptrs),
  738. sizeof(struct btrfs_key_ptr),
  739. key, btrfs_header_nritems(eb),
  740. slot);
  741. }
  742. return -1;
  743. }
  744. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  745. int level, int *slot)
  746. {
  747. return bin_search(eb, key, level, slot);
  748. }
  749. static void root_add_used(struct btrfs_root *root, u32 size)
  750. {
  751. spin_lock(&root->accounting_lock);
  752. btrfs_set_root_used(&root->root_item,
  753. btrfs_root_used(&root->root_item) + size);
  754. spin_unlock(&root->accounting_lock);
  755. }
  756. static void root_sub_used(struct btrfs_root *root, u32 size)
  757. {
  758. spin_lock(&root->accounting_lock);
  759. btrfs_set_root_used(&root->root_item,
  760. btrfs_root_used(&root->root_item) - size);
  761. spin_unlock(&root->accounting_lock);
  762. }
  763. /* given a node and slot number, this reads the blocks it points to. The
  764. * extent buffer is returned with a reference taken (but unlocked).
  765. * NULL is returned on error.
  766. */
  767. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  768. struct extent_buffer *parent, int slot)
  769. {
  770. int level = btrfs_header_level(parent);
  771. if (slot < 0)
  772. return NULL;
  773. if (slot >= btrfs_header_nritems(parent))
  774. return NULL;
  775. BUG_ON(level == 0);
  776. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  777. btrfs_level_size(root, level - 1),
  778. btrfs_node_ptr_generation(parent, slot));
  779. }
  780. /*
  781. * node level balancing, used to make sure nodes are in proper order for
  782. * item deletion. We balance from the top down, so we have to make sure
  783. * that a deletion won't leave an node completely empty later on.
  784. */
  785. static noinline int balance_level(struct btrfs_trans_handle *trans,
  786. struct btrfs_root *root,
  787. struct btrfs_path *path, int level)
  788. {
  789. struct extent_buffer *right = NULL;
  790. struct extent_buffer *mid;
  791. struct extent_buffer *left = NULL;
  792. struct extent_buffer *parent = NULL;
  793. int ret = 0;
  794. int wret;
  795. int pslot;
  796. int orig_slot = path->slots[level];
  797. u64 orig_ptr;
  798. if (level == 0)
  799. return 0;
  800. mid = path->nodes[level];
  801. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  802. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  803. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  804. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  805. if (level < BTRFS_MAX_LEVEL - 1)
  806. parent = path->nodes[level + 1];
  807. pslot = path->slots[level + 1];
  808. /*
  809. * deal with the case where there is only one pointer in the root
  810. * by promoting the node below to a root
  811. */
  812. if (!parent) {
  813. struct extent_buffer *child;
  814. if (btrfs_header_nritems(mid) != 1)
  815. return 0;
  816. /* promote the child to a root */
  817. child = read_node_slot(root, mid, 0);
  818. BUG_ON(!child);
  819. btrfs_tree_lock(child);
  820. btrfs_set_lock_blocking(child);
  821. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  822. if (ret) {
  823. btrfs_tree_unlock(child);
  824. free_extent_buffer(child);
  825. goto enospc;
  826. }
  827. rcu_assign_pointer(root->node, child);
  828. add_root_to_dirty_list(root);
  829. btrfs_tree_unlock(child);
  830. path->locks[level] = 0;
  831. path->nodes[level] = NULL;
  832. clean_tree_block(trans, root, mid);
  833. btrfs_tree_unlock(mid);
  834. /* once for the path */
  835. free_extent_buffer(mid);
  836. root_sub_used(root, mid->len);
  837. btrfs_free_tree_block(trans, root, mid, 0, 1);
  838. /* once for the root ptr */
  839. free_extent_buffer(mid);
  840. return 0;
  841. }
  842. if (btrfs_header_nritems(mid) >
  843. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  844. return 0;
  845. btrfs_header_nritems(mid);
  846. left = read_node_slot(root, parent, pslot - 1);
  847. if (left) {
  848. btrfs_tree_lock(left);
  849. btrfs_set_lock_blocking(left);
  850. wret = btrfs_cow_block(trans, root, left,
  851. parent, pslot - 1, &left);
  852. if (wret) {
  853. ret = wret;
  854. goto enospc;
  855. }
  856. }
  857. right = read_node_slot(root, parent, pslot + 1);
  858. if (right) {
  859. btrfs_tree_lock(right);
  860. btrfs_set_lock_blocking(right);
  861. wret = btrfs_cow_block(trans, root, right,
  862. parent, pslot + 1, &right);
  863. if (wret) {
  864. ret = wret;
  865. goto enospc;
  866. }
  867. }
  868. /* first, try to make some room in the middle buffer */
  869. if (left) {
  870. orig_slot += btrfs_header_nritems(left);
  871. wret = push_node_left(trans, root, left, mid, 1);
  872. if (wret < 0)
  873. ret = wret;
  874. btrfs_header_nritems(mid);
  875. }
  876. /*
  877. * then try to empty the right most buffer into the middle
  878. */
  879. if (right) {
  880. wret = push_node_left(trans, root, mid, right, 1);
  881. if (wret < 0 && wret != -ENOSPC)
  882. ret = wret;
  883. if (btrfs_header_nritems(right) == 0) {
  884. clean_tree_block(trans, root, right);
  885. btrfs_tree_unlock(right);
  886. wret = del_ptr(trans, root, path, level + 1, pslot +
  887. 1);
  888. if (wret)
  889. ret = wret;
  890. root_sub_used(root, right->len);
  891. btrfs_free_tree_block(trans, root, right, 0, 1);
  892. free_extent_buffer(right);
  893. right = NULL;
  894. } else {
  895. struct btrfs_disk_key right_key;
  896. btrfs_node_key(right, &right_key, 0);
  897. btrfs_set_node_key(parent, &right_key, pslot + 1);
  898. btrfs_mark_buffer_dirty(parent);
  899. }
  900. }
  901. if (btrfs_header_nritems(mid) == 1) {
  902. /*
  903. * we're not allowed to leave a node with one item in the
  904. * tree during a delete. A deletion from lower in the tree
  905. * could try to delete the only pointer in this node.
  906. * So, pull some keys from the left.
  907. * There has to be a left pointer at this point because
  908. * otherwise we would have pulled some pointers from the
  909. * right
  910. */
  911. BUG_ON(!left);
  912. wret = balance_node_right(trans, root, mid, left);
  913. if (wret < 0) {
  914. ret = wret;
  915. goto enospc;
  916. }
  917. if (wret == 1) {
  918. wret = push_node_left(trans, root, left, mid, 1);
  919. if (wret < 0)
  920. ret = wret;
  921. }
  922. BUG_ON(wret == 1);
  923. }
  924. if (btrfs_header_nritems(mid) == 0) {
  925. clean_tree_block(trans, root, mid);
  926. btrfs_tree_unlock(mid);
  927. wret = del_ptr(trans, root, path, level + 1, pslot);
  928. if (wret)
  929. ret = wret;
  930. root_sub_used(root, mid->len);
  931. btrfs_free_tree_block(trans, root, mid, 0, 1);
  932. free_extent_buffer(mid);
  933. mid = NULL;
  934. } else {
  935. /* update the parent key to reflect our changes */
  936. struct btrfs_disk_key mid_key;
  937. btrfs_node_key(mid, &mid_key, 0);
  938. btrfs_set_node_key(parent, &mid_key, pslot);
  939. btrfs_mark_buffer_dirty(parent);
  940. }
  941. /* update the path */
  942. if (left) {
  943. if (btrfs_header_nritems(left) > orig_slot) {
  944. extent_buffer_get(left);
  945. /* left was locked after cow */
  946. path->nodes[level] = left;
  947. path->slots[level + 1] -= 1;
  948. path->slots[level] = orig_slot;
  949. if (mid) {
  950. btrfs_tree_unlock(mid);
  951. free_extent_buffer(mid);
  952. }
  953. } else {
  954. orig_slot -= btrfs_header_nritems(left);
  955. path->slots[level] = orig_slot;
  956. }
  957. }
  958. /* double check we haven't messed things up */
  959. if (orig_ptr !=
  960. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  961. BUG();
  962. enospc:
  963. if (right) {
  964. btrfs_tree_unlock(right);
  965. free_extent_buffer(right);
  966. }
  967. if (left) {
  968. if (path->nodes[level] != left)
  969. btrfs_tree_unlock(left);
  970. free_extent_buffer(left);
  971. }
  972. return ret;
  973. }
  974. /* Node balancing for insertion. Here we only split or push nodes around
  975. * when they are completely full. This is also done top down, so we
  976. * have to be pessimistic.
  977. */
  978. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  979. struct btrfs_root *root,
  980. struct btrfs_path *path, int level)
  981. {
  982. struct extent_buffer *right = NULL;
  983. struct extent_buffer *mid;
  984. struct extent_buffer *left = NULL;
  985. struct extent_buffer *parent = NULL;
  986. int ret = 0;
  987. int wret;
  988. int pslot;
  989. int orig_slot = path->slots[level];
  990. if (level == 0)
  991. return 1;
  992. mid = path->nodes[level];
  993. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  994. if (level < BTRFS_MAX_LEVEL - 1)
  995. parent = path->nodes[level + 1];
  996. pslot = path->slots[level + 1];
  997. if (!parent)
  998. return 1;
  999. left = read_node_slot(root, parent, pslot - 1);
  1000. /* first, try to make some room in the middle buffer */
  1001. if (left) {
  1002. u32 left_nr;
  1003. btrfs_tree_lock(left);
  1004. btrfs_set_lock_blocking(left);
  1005. left_nr = btrfs_header_nritems(left);
  1006. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1007. wret = 1;
  1008. } else {
  1009. ret = btrfs_cow_block(trans, root, left, parent,
  1010. pslot - 1, &left);
  1011. if (ret)
  1012. wret = 1;
  1013. else {
  1014. wret = push_node_left(trans, root,
  1015. left, mid, 0);
  1016. }
  1017. }
  1018. if (wret < 0)
  1019. ret = wret;
  1020. if (wret == 0) {
  1021. struct btrfs_disk_key disk_key;
  1022. orig_slot += left_nr;
  1023. btrfs_node_key(mid, &disk_key, 0);
  1024. btrfs_set_node_key(parent, &disk_key, pslot);
  1025. btrfs_mark_buffer_dirty(parent);
  1026. if (btrfs_header_nritems(left) > orig_slot) {
  1027. path->nodes[level] = left;
  1028. path->slots[level + 1] -= 1;
  1029. path->slots[level] = orig_slot;
  1030. btrfs_tree_unlock(mid);
  1031. free_extent_buffer(mid);
  1032. } else {
  1033. orig_slot -=
  1034. btrfs_header_nritems(left);
  1035. path->slots[level] = orig_slot;
  1036. btrfs_tree_unlock(left);
  1037. free_extent_buffer(left);
  1038. }
  1039. return 0;
  1040. }
  1041. btrfs_tree_unlock(left);
  1042. free_extent_buffer(left);
  1043. }
  1044. right = read_node_slot(root, parent, pslot + 1);
  1045. /*
  1046. * then try to empty the right most buffer into the middle
  1047. */
  1048. if (right) {
  1049. u32 right_nr;
  1050. btrfs_tree_lock(right);
  1051. btrfs_set_lock_blocking(right);
  1052. right_nr = btrfs_header_nritems(right);
  1053. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1054. wret = 1;
  1055. } else {
  1056. ret = btrfs_cow_block(trans, root, right,
  1057. parent, pslot + 1,
  1058. &right);
  1059. if (ret)
  1060. wret = 1;
  1061. else {
  1062. wret = balance_node_right(trans, root,
  1063. right, mid);
  1064. }
  1065. }
  1066. if (wret < 0)
  1067. ret = wret;
  1068. if (wret == 0) {
  1069. struct btrfs_disk_key disk_key;
  1070. btrfs_node_key(right, &disk_key, 0);
  1071. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1072. btrfs_mark_buffer_dirty(parent);
  1073. if (btrfs_header_nritems(mid) <= orig_slot) {
  1074. path->nodes[level] = right;
  1075. path->slots[level + 1] += 1;
  1076. path->slots[level] = orig_slot -
  1077. btrfs_header_nritems(mid);
  1078. btrfs_tree_unlock(mid);
  1079. free_extent_buffer(mid);
  1080. } else {
  1081. btrfs_tree_unlock(right);
  1082. free_extent_buffer(right);
  1083. }
  1084. return 0;
  1085. }
  1086. btrfs_tree_unlock(right);
  1087. free_extent_buffer(right);
  1088. }
  1089. return 1;
  1090. }
  1091. /*
  1092. * readahead one full node of leaves, finding things that are close
  1093. * to the block in 'slot', and triggering ra on them.
  1094. */
  1095. static void reada_for_search(struct btrfs_root *root,
  1096. struct btrfs_path *path,
  1097. int level, int slot, u64 objectid)
  1098. {
  1099. struct extent_buffer *node;
  1100. struct btrfs_disk_key disk_key;
  1101. u32 nritems;
  1102. u64 search;
  1103. u64 target;
  1104. u64 nread = 0;
  1105. u64 gen;
  1106. int direction = path->reada;
  1107. struct extent_buffer *eb;
  1108. u32 nr;
  1109. u32 blocksize;
  1110. u32 nscan = 0;
  1111. if (level != 1)
  1112. return;
  1113. if (!path->nodes[level])
  1114. return;
  1115. node = path->nodes[level];
  1116. search = btrfs_node_blockptr(node, slot);
  1117. blocksize = btrfs_level_size(root, level - 1);
  1118. eb = btrfs_find_tree_block(root, search, blocksize);
  1119. if (eb) {
  1120. free_extent_buffer(eb);
  1121. return;
  1122. }
  1123. target = search;
  1124. nritems = btrfs_header_nritems(node);
  1125. nr = slot;
  1126. while (1) {
  1127. if (direction < 0) {
  1128. if (nr == 0)
  1129. break;
  1130. nr--;
  1131. } else if (direction > 0) {
  1132. nr++;
  1133. if (nr >= nritems)
  1134. break;
  1135. }
  1136. if (path->reada < 0 && objectid) {
  1137. btrfs_node_key(node, &disk_key, nr);
  1138. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1139. break;
  1140. }
  1141. search = btrfs_node_blockptr(node, nr);
  1142. if ((search <= target && target - search <= 65536) ||
  1143. (search > target && search - target <= 65536)) {
  1144. gen = btrfs_node_ptr_generation(node, nr);
  1145. readahead_tree_block(root, search, blocksize, gen);
  1146. nread += blocksize;
  1147. }
  1148. nscan++;
  1149. if ((nread > 65536 || nscan > 32))
  1150. break;
  1151. }
  1152. }
  1153. /*
  1154. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1155. * cache
  1156. */
  1157. static noinline int reada_for_balance(struct btrfs_root *root,
  1158. struct btrfs_path *path, int level)
  1159. {
  1160. int slot;
  1161. int nritems;
  1162. struct extent_buffer *parent;
  1163. struct extent_buffer *eb;
  1164. u64 gen;
  1165. u64 block1 = 0;
  1166. u64 block2 = 0;
  1167. int ret = 0;
  1168. int blocksize;
  1169. parent = path->nodes[level + 1];
  1170. if (!parent)
  1171. return 0;
  1172. nritems = btrfs_header_nritems(parent);
  1173. slot = path->slots[level + 1];
  1174. blocksize = btrfs_level_size(root, level);
  1175. if (slot > 0) {
  1176. block1 = btrfs_node_blockptr(parent, slot - 1);
  1177. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1178. eb = btrfs_find_tree_block(root, block1, blocksize);
  1179. if (eb && btrfs_buffer_uptodate(eb, gen))
  1180. block1 = 0;
  1181. free_extent_buffer(eb);
  1182. }
  1183. if (slot + 1 < nritems) {
  1184. block2 = btrfs_node_blockptr(parent, slot + 1);
  1185. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1186. eb = btrfs_find_tree_block(root, block2, blocksize);
  1187. if (eb && btrfs_buffer_uptodate(eb, gen))
  1188. block2 = 0;
  1189. free_extent_buffer(eb);
  1190. }
  1191. if (block1 || block2) {
  1192. ret = -EAGAIN;
  1193. /* release the whole path */
  1194. btrfs_release_path(path);
  1195. /* read the blocks */
  1196. if (block1)
  1197. readahead_tree_block(root, block1, blocksize, 0);
  1198. if (block2)
  1199. readahead_tree_block(root, block2, blocksize, 0);
  1200. if (block1) {
  1201. eb = read_tree_block(root, block1, blocksize, 0);
  1202. free_extent_buffer(eb);
  1203. }
  1204. if (block2) {
  1205. eb = read_tree_block(root, block2, blocksize, 0);
  1206. free_extent_buffer(eb);
  1207. }
  1208. }
  1209. return ret;
  1210. }
  1211. /*
  1212. * when we walk down the tree, it is usually safe to unlock the higher layers
  1213. * in the tree. The exceptions are when our path goes through slot 0, because
  1214. * operations on the tree might require changing key pointers higher up in the
  1215. * tree.
  1216. *
  1217. * callers might also have set path->keep_locks, which tells this code to keep
  1218. * the lock if the path points to the last slot in the block. This is part of
  1219. * walking through the tree, and selecting the next slot in the higher block.
  1220. *
  1221. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1222. * if lowest_unlock is 1, level 0 won't be unlocked
  1223. */
  1224. static noinline void unlock_up(struct btrfs_path *path, int level,
  1225. int lowest_unlock)
  1226. {
  1227. int i;
  1228. int skip_level = level;
  1229. int no_skips = 0;
  1230. struct extent_buffer *t;
  1231. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1232. if (!path->nodes[i])
  1233. break;
  1234. if (!path->locks[i])
  1235. break;
  1236. if (!no_skips && path->slots[i] == 0) {
  1237. skip_level = i + 1;
  1238. continue;
  1239. }
  1240. if (!no_skips && path->keep_locks) {
  1241. u32 nritems;
  1242. t = path->nodes[i];
  1243. nritems = btrfs_header_nritems(t);
  1244. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1245. skip_level = i + 1;
  1246. continue;
  1247. }
  1248. }
  1249. if (skip_level < i && i >= lowest_unlock)
  1250. no_skips = 1;
  1251. t = path->nodes[i];
  1252. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1253. btrfs_tree_unlock_rw(t, path->locks[i]);
  1254. path->locks[i] = 0;
  1255. }
  1256. }
  1257. }
  1258. /*
  1259. * This releases any locks held in the path starting at level and
  1260. * going all the way up to the root.
  1261. *
  1262. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1263. * corner cases, such as COW of the block at slot zero in the node. This
  1264. * ignores those rules, and it should only be called when there are no
  1265. * more updates to be done higher up in the tree.
  1266. */
  1267. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1268. {
  1269. int i;
  1270. if (path->keep_locks)
  1271. return;
  1272. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1273. if (!path->nodes[i])
  1274. continue;
  1275. if (!path->locks[i])
  1276. continue;
  1277. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1278. path->locks[i] = 0;
  1279. }
  1280. }
  1281. /*
  1282. * helper function for btrfs_search_slot. The goal is to find a block
  1283. * in cache without setting the path to blocking. If we find the block
  1284. * we return zero and the path is unchanged.
  1285. *
  1286. * If we can't find the block, we set the path blocking and do some
  1287. * reada. -EAGAIN is returned and the search must be repeated.
  1288. */
  1289. static int
  1290. read_block_for_search(struct btrfs_trans_handle *trans,
  1291. struct btrfs_root *root, struct btrfs_path *p,
  1292. struct extent_buffer **eb_ret, int level, int slot,
  1293. struct btrfs_key *key)
  1294. {
  1295. u64 blocknr;
  1296. u64 gen;
  1297. u32 blocksize;
  1298. struct extent_buffer *b = *eb_ret;
  1299. struct extent_buffer *tmp;
  1300. int ret;
  1301. blocknr = btrfs_node_blockptr(b, slot);
  1302. gen = btrfs_node_ptr_generation(b, slot);
  1303. blocksize = btrfs_level_size(root, level - 1);
  1304. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1305. if (tmp) {
  1306. if (btrfs_buffer_uptodate(tmp, 0)) {
  1307. if (btrfs_buffer_uptodate(tmp, gen)) {
  1308. /*
  1309. * we found an up to date block without
  1310. * sleeping, return
  1311. * right away
  1312. */
  1313. *eb_ret = tmp;
  1314. return 0;
  1315. }
  1316. /* the pages were up to date, but we failed
  1317. * the generation number check. Do a full
  1318. * read for the generation number that is correct.
  1319. * We must do this without dropping locks so
  1320. * we can trust our generation number
  1321. */
  1322. free_extent_buffer(tmp);
  1323. btrfs_set_path_blocking(p);
  1324. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1325. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1326. *eb_ret = tmp;
  1327. return 0;
  1328. }
  1329. free_extent_buffer(tmp);
  1330. btrfs_release_path(p);
  1331. return -EIO;
  1332. }
  1333. }
  1334. /*
  1335. * reduce lock contention at high levels
  1336. * of the btree by dropping locks before
  1337. * we read. Don't release the lock on the current
  1338. * level because we need to walk this node to figure
  1339. * out which blocks to read.
  1340. */
  1341. btrfs_unlock_up_safe(p, level + 1);
  1342. btrfs_set_path_blocking(p);
  1343. free_extent_buffer(tmp);
  1344. if (p->reada)
  1345. reada_for_search(root, p, level, slot, key->objectid);
  1346. btrfs_release_path(p);
  1347. ret = -EAGAIN;
  1348. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1349. if (tmp) {
  1350. /*
  1351. * If the read above didn't mark this buffer up to date,
  1352. * it will never end up being up to date. Set ret to EIO now
  1353. * and give up so that our caller doesn't loop forever
  1354. * on our EAGAINs.
  1355. */
  1356. if (!btrfs_buffer_uptodate(tmp, 0))
  1357. ret = -EIO;
  1358. free_extent_buffer(tmp);
  1359. }
  1360. return ret;
  1361. }
  1362. /*
  1363. * helper function for btrfs_search_slot. This does all of the checks
  1364. * for node-level blocks and does any balancing required based on
  1365. * the ins_len.
  1366. *
  1367. * If no extra work was required, zero is returned. If we had to
  1368. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1369. * start over
  1370. */
  1371. static int
  1372. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1373. struct btrfs_root *root, struct btrfs_path *p,
  1374. struct extent_buffer *b, int level, int ins_len,
  1375. int *write_lock_level)
  1376. {
  1377. int ret;
  1378. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1379. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1380. int sret;
  1381. if (*write_lock_level < level + 1) {
  1382. *write_lock_level = level + 1;
  1383. btrfs_release_path(p);
  1384. goto again;
  1385. }
  1386. sret = reada_for_balance(root, p, level);
  1387. if (sret)
  1388. goto again;
  1389. btrfs_set_path_blocking(p);
  1390. sret = split_node(trans, root, p, level);
  1391. btrfs_clear_path_blocking(p, NULL, 0);
  1392. BUG_ON(sret > 0);
  1393. if (sret) {
  1394. ret = sret;
  1395. goto done;
  1396. }
  1397. b = p->nodes[level];
  1398. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1399. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1400. int sret;
  1401. if (*write_lock_level < level + 1) {
  1402. *write_lock_level = level + 1;
  1403. btrfs_release_path(p);
  1404. goto again;
  1405. }
  1406. sret = reada_for_balance(root, p, level);
  1407. if (sret)
  1408. goto again;
  1409. btrfs_set_path_blocking(p);
  1410. sret = balance_level(trans, root, p, level);
  1411. btrfs_clear_path_blocking(p, NULL, 0);
  1412. if (sret) {
  1413. ret = sret;
  1414. goto done;
  1415. }
  1416. b = p->nodes[level];
  1417. if (!b) {
  1418. btrfs_release_path(p);
  1419. goto again;
  1420. }
  1421. BUG_ON(btrfs_header_nritems(b) == 1);
  1422. }
  1423. return 0;
  1424. again:
  1425. ret = -EAGAIN;
  1426. done:
  1427. return ret;
  1428. }
  1429. /*
  1430. * look for key in the tree. path is filled in with nodes along the way
  1431. * if key is found, we return zero and you can find the item in the leaf
  1432. * level of the path (level 0)
  1433. *
  1434. * If the key isn't found, the path points to the slot where it should
  1435. * be inserted, and 1 is returned. If there are other errors during the
  1436. * search a negative error number is returned.
  1437. *
  1438. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1439. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1440. * possible)
  1441. */
  1442. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1443. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1444. ins_len, int cow)
  1445. {
  1446. struct extent_buffer *b;
  1447. int slot;
  1448. int ret;
  1449. int err;
  1450. int level;
  1451. int lowest_unlock = 1;
  1452. int root_lock;
  1453. /* everything at write_lock_level or lower must be write locked */
  1454. int write_lock_level = 0;
  1455. u8 lowest_level = 0;
  1456. lowest_level = p->lowest_level;
  1457. WARN_ON(lowest_level && ins_len > 0);
  1458. WARN_ON(p->nodes[0] != NULL);
  1459. if (ins_len < 0) {
  1460. lowest_unlock = 2;
  1461. /* when we are removing items, we might have to go up to level
  1462. * two as we update tree pointers Make sure we keep write
  1463. * for those levels as well
  1464. */
  1465. write_lock_level = 2;
  1466. } else if (ins_len > 0) {
  1467. /*
  1468. * for inserting items, make sure we have a write lock on
  1469. * level 1 so we can update keys
  1470. */
  1471. write_lock_level = 1;
  1472. }
  1473. if (!cow)
  1474. write_lock_level = -1;
  1475. if (cow && (p->keep_locks || p->lowest_level))
  1476. write_lock_level = BTRFS_MAX_LEVEL;
  1477. again:
  1478. /*
  1479. * we try very hard to do read locks on the root
  1480. */
  1481. root_lock = BTRFS_READ_LOCK;
  1482. level = 0;
  1483. if (p->search_commit_root) {
  1484. /*
  1485. * the commit roots are read only
  1486. * so we always do read locks
  1487. */
  1488. b = root->commit_root;
  1489. extent_buffer_get(b);
  1490. level = btrfs_header_level(b);
  1491. if (!p->skip_locking)
  1492. btrfs_tree_read_lock(b);
  1493. } else {
  1494. if (p->skip_locking) {
  1495. b = btrfs_root_node(root);
  1496. level = btrfs_header_level(b);
  1497. } else {
  1498. /* we don't know the level of the root node
  1499. * until we actually have it read locked
  1500. */
  1501. b = btrfs_read_lock_root_node(root);
  1502. level = btrfs_header_level(b);
  1503. if (level <= write_lock_level) {
  1504. /* whoops, must trade for write lock */
  1505. btrfs_tree_read_unlock(b);
  1506. free_extent_buffer(b);
  1507. b = btrfs_lock_root_node(root);
  1508. root_lock = BTRFS_WRITE_LOCK;
  1509. /* the level might have changed, check again */
  1510. level = btrfs_header_level(b);
  1511. }
  1512. }
  1513. }
  1514. p->nodes[level] = b;
  1515. if (!p->skip_locking)
  1516. p->locks[level] = root_lock;
  1517. while (b) {
  1518. level = btrfs_header_level(b);
  1519. /*
  1520. * setup the path here so we can release it under lock
  1521. * contention with the cow code
  1522. */
  1523. if (cow) {
  1524. /*
  1525. * if we don't really need to cow this block
  1526. * then we don't want to set the path blocking,
  1527. * so we test it here
  1528. */
  1529. if (!should_cow_block(trans, root, b))
  1530. goto cow_done;
  1531. btrfs_set_path_blocking(p);
  1532. /*
  1533. * must have write locks on this node and the
  1534. * parent
  1535. */
  1536. if (level + 1 > write_lock_level) {
  1537. write_lock_level = level + 1;
  1538. btrfs_release_path(p);
  1539. goto again;
  1540. }
  1541. err = btrfs_cow_block(trans, root, b,
  1542. p->nodes[level + 1],
  1543. p->slots[level + 1], &b);
  1544. if (err) {
  1545. ret = err;
  1546. goto done;
  1547. }
  1548. }
  1549. cow_done:
  1550. BUG_ON(!cow && ins_len);
  1551. p->nodes[level] = b;
  1552. btrfs_clear_path_blocking(p, NULL, 0);
  1553. /*
  1554. * we have a lock on b and as long as we aren't changing
  1555. * the tree, there is no way to for the items in b to change.
  1556. * It is safe to drop the lock on our parent before we
  1557. * go through the expensive btree search on b.
  1558. *
  1559. * If cow is true, then we might be changing slot zero,
  1560. * which may require changing the parent. So, we can't
  1561. * drop the lock until after we know which slot we're
  1562. * operating on.
  1563. */
  1564. if (!cow)
  1565. btrfs_unlock_up_safe(p, level + 1);
  1566. ret = bin_search(b, key, level, &slot);
  1567. if (level != 0) {
  1568. int dec = 0;
  1569. if (ret && slot > 0) {
  1570. dec = 1;
  1571. slot -= 1;
  1572. }
  1573. p->slots[level] = slot;
  1574. err = setup_nodes_for_search(trans, root, p, b, level,
  1575. ins_len, &write_lock_level);
  1576. if (err == -EAGAIN)
  1577. goto again;
  1578. if (err) {
  1579. ret = err;
  1580. goto done;
  1581. }
  1582. b = p->nodes[level];
  1583. slot = p->slots[level];
  1584. /*
  1585. * slot 0 is special, if we change the key
  1586. * we have to update the parent pointer
  1587. * which means we must have a write lock
  1588. * on the parent
  1589. */
  1590. if (slot == 0 && cow &&
  1591. write_lock_level < level + 1) {
  1592. write_lock_level = level + 1;
  1593. btrfs_release_path(p);
  1594. goto again;
  1595. }
  1596. unlock_up(p, level, lowest_unlock);
  1597. if (level == lowest_level) {
  1598. if (dec)
  1599. p->slots[level]++;
  1600. goto done;
  1601. }
  1602. err = read_block_for_search(trans, root, p,
  1603. &b, level, slot, key);
  1604. if (err == -EAGAIN)
  1605. goto again;
  1606. if (err) {
  1607. ret = err;
  1608. goto done;
  1609. }
  1610. if (!p->skip_locking) {
  1611. level = btrfs_header_level(b);
  1612. if (level <= write_lock_level) {
  1613. err = btrfs_try_tree_write_lock(b);
  1614. if (!err) {
  1615. btrfs_set_path_blocking(p);
  1616. btrfs_tree_lock(b);
  1617. btrfs_clear_path_blocking(p, b,
  1618. BTRFS_WRITE_LOCK);
  1619. }
  1620. p->locks[level] = BTRFS_WRITE_LOCK;
  1621. } else {
  1622. err = btrfs_try_tree_read_lock(b);
  1623. if (!err) {
  1624. btrfs_set_path_blocking(p);
  1625. btrfs_tree_read_lock(b);
  1626. btrfs_clear_path_blocking(p, b,
  1627. BTRFS_READ_LOCK);
  1628. }
  1629. p->locks[level] = BTRFS_READ_LOCK;
  1630. }
  1631. p->nodes[level] = b;
  1632. }
  1633. } else {
  1634. p->slots[level] = slot;
  1635. if (ins_len > 0 &&
  1636. btrfs_leaf_free_space(root, b) < ins_len) {
  1637. if (write_lock_level < 1) {
  1638. write_lock_level = 1;
  1639. btrfs_release_path(p);
  1640. goto again;
  1641. }
  1642. btrfs_set_path_blocking(p);
  1643. err = split_leaf(trans, root, key,
  1644. p, ins_len, ret == 0);
  1645. btrfs_clear_path_blocking(p, NULL, 0);
  1646. BUG_ON(err > 0);
  1647. if (err) {
  1648. ret = err;
  1649. goto done;
  1650. }
  1651. }
  1652. if (!p->search_for_split)
  1653. unlock_up(p, level, lowest_unlock);
  1654. goto done;
  1655. }
  1656. }
  1657. ret = 1;
  1658. done:
  1659. /*
  1660. * we don't really know what they plan on doing with the path
  1661. * from here on, so for now just mark it as blocking
  1662. */
  1663. if (!p->leave_spinning)
  1664. btrfs_set_path_blocking(p);
  1665. if (ret < 0)
  1666. btrfs_release_path(p);
  1667. return ret;
  1668. }
  1669. /*
  1670. * adjust the pointers going up the tree, starting at level
  1671. * making sure the right key of each node is points to 'key'.
  1672. * This is used after shifting pointers to the left, so it stops
  1673. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1674. * higher levels
  1675. *
  1676. * If this fails to write a tree block, it returns -1, but continues
  1677. * fixing up the blocks in ram so the tree is consistent.
  1678. */
  1679. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1680. struct btrfs_root *root, struct btrfs_path *path,
  1681. struct btrfs_disk_key *key, int level)
  1682. {
  1683. int i;
  1684. int ret = 0;
  1685. struct extent_buffer *t;
  1686. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1687. int tslot = path->slots[i];
  1688. if (!path->nodes[i])
  1689. break;
  1690. t = path->nodes[i];
  1691. btrfs_set_node_key(t, key, tslot);
  1692. btrfs_mark_buffer_dirty(path->nodes[i]);
  1693. if (tslot != 0)
  1694. break;
  1695. }
  1696. return ret;
  1697. }
  1698. /*
  1699. * update item key.
  1700. *
  1701. * This function isn't completely safe. It's the caller's responsibility
  1702. * that the new key won't break the order
  1703. */
  1704. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1705. struct btrfs_root *root, struct btrfs_path *path,
  1706. struct btrfs_key *new_key)
  1707. {
  1708. struct btrfs_disk_key disk_key;
  1709. struct extent_buffer *eb;
  1710. int slot;
  1711. eb = path->nodes[0];
  1712. slot = path->slots[0];
  1713. if (slot > 0) {
  1714. btrfs_item_key(eb, &disk_key, slot - 1);
  1715. if (comp_keys(&disk_key, new_key) >= 0)
  1716. return -1;
  1717. }
  1718. if (slot < btrfs_header_nritems(eb) - 1) {
  1719. btrfs_item_key(eb, &disk_key, slot + 1);
  1720. if (comp_keys(&disk_key, new_key) <= 0)
  1721. return -1;
  1722. }
  1723. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1724. btrfs_set_item_key(eb, &disk_key, slot);
  1725. btrfs_mark_buffer_dirty(eb);
  1726. if (slot == 0)
  1727. fixup_low_keys(trans, root, path, &disk_key, 1);
  1728. return 0;
  1729. }
  1730. /*
  1731. * try to push data from one node into the next node left in the
  1732. * tree.
  1733. *
  1734. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1735. * error, and > 0 if there was no room in the left hand block.
  1736. */
  1737. static int push_node_left(struct btrfs_trans_handle *trans,
  1738. struct btrfs_root *root, struct extent_buffer *dst,
  1739. struct extent_buffer *src, int empty)
  1740. {
  1741. int push_items = 0;
  1742. int src_nritems;
  1743. int dst_nritems;
  1744. int ret = 0;
  1745. src_nritems = btrfs_header_nritems(src);
  1746. dst_nritems = btrfs_header_nritems(dst);
  1747. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1748. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1749. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1750. if (!empty && src_nritems <= 8)
  1751. return 1;
  1752. if (push_items <= 0)
  1753. return 1;
  1754. if (empty) {
  1755. push_items = min(src_nritems, push_items);
  1756. if (push_items < src_nritems) {
  1757. /* leave at least 8 pointers in the node if
  1758. * we aren't going to empty it
  1759. */
  1760. if (src_nritems - push_items < 8) {
  1761. if (push_items <= 8)
  1762. return 1;
  1763. push_items -= 8;
  1764. }
  1765. }
  1766. } else
  1767. push_items = min(src_nritems - 8, push_items);
  1768. copy_extent_buffer(dst, src,
  1769. btrfs_node_key_ptr_offset(dst_nritems),
  1770. btrfs_node_key_ptr_offset(0),
  1771. push_items * sizeof(struct btrfs_key_ptr));
  1772. if (push_items < src_nritems) {
  1773. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1774. btrfs_node_key_ptr_offset(push_items),
  1775. (src_nritems - push_items) *
  1776. sizeof(struct btrfs_key_ptr));
  1777. }
  1778. btrfs_set_header_nritems(src, src_nritems - push_items);
  1779. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1780. btrfs_mark_buffer_dirty(src);
  1781. btrfs_mark_buffer_dirty(dst);
  1782. return ret;
  1783. }
  1784. /*
  1785. * try to push data from one node into the next node right in the
  1786. * tree.
  1787. *
  1788. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1789. * error, and > 0 if there was no room in the right hand block.
  1790. *
  1791. * this will only push up to 1/2 the contents of the left node over
  1792. */
  1793. static int balance_node_right(struct btrfs_trans_handle *trans,
  1794. struct btrfs_root *root,
  1795. struct extent_buffer *dst,
  1796. struct extent_buffer *src)
  1797. {
  1798. int push_items = 0;
  1799. int max_push;
  1800. int src_nritems;
  1801. int dst_nritems;
  1802. int ret = 0;
  1803. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1804. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1805. src_nritems = btrfs_header_nritems(src);
  1806. dst_nritems = btrfs_header_nritems(dst);
  1807. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1808. if (push_items <= 0)
  1809. return 1;
  1810. if (src_nritems < 4)
  1811. return 1;
  1812. max_push = src_nritems / 2 + 1;
  1813. /* don't try to empty the node */
  1814. if (max_push >= src_nritems)
  1815. return 1;
  1816. if (max_push < push_items)
  1817. push_items = max_push;
  1818. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1819. btrfs_node_key_ptr_offset(0),
  1820. (dst_nritems) *
  1821. sizeof(struct btrfs_key_ptr));
  1822. copy_extent_buffer(dst, src,
  1823. btrfs_node_key_ptr_offset(0),
  1824. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1825. push_items * sizeof(struct btrfs_key_ptr));
  1826. btrfs_set_header_nritems(src, src_nritems - push_items);
  1827. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1828. btrfs_mark_buffer_dirty(src);
  1829. btrfs_mark_buffer_dirty(dst);
  1830. return ret;
  1831. }
  1832. /*
  1833. * helper function to insert a new root level in the tree.
  1834. * A new node is allocated, and a single item is inserted to
  1835. * point to the existing root
  1836. *
  1837. * returns zero on success or < 0 on failure.
  1838. */
  1839. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1840. struct btrfs_root *root,
  1841. struct btrfs_path *path, int level)
  1842. {
  1843. u64 lower_gen;
  1844. struct extent_buffer *lower;
  1845. struct extent_buffer *c;
  1846. struct extent_buffer *old;
  1847. struct btrfs_disk_key lower_key;
  1848. BUG_ON(path->nodes[level]);
  1849. BUG_ON(path->nodes[level-1] != root->node);
  1850. lower = path->nodes[level-1];
  1851. if (level == 1)
  1852. btrfs_item_key(lower, &lower_key, 0);
  1853. else
  1854. btrfs_node_key(lower, &lower_key, 0);
  1855. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1856. root->root_key.objectid, &lower_key,
  1857. level, root->node->start, 0);
  1858. if (IS_ERR(c))
  1859. return PTR_ERR(c);
  1860. root_add_used(root, root->nodesize);
  1861. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1862. btrfs_set_header_nritems(c, 1);
  1863. btrfs_set_header_level(c, level);
  1864. btrfs_set_header_bytenr(c, c->start);
  1865. btrfs_set_header_generation(c, trans->transid);
  1866. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1867. btrfs_set_header_owner(c, root->root_key.objectid);
  1868. write_extent_buffer(c, root->fs_info->fsid,
  1869. (unsigned long)btrfs_header_fsid(c),
  1870. BTRFS_FSID_SIZE);
  1871. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1872. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1873. BTRFS_UUID_SIZE);
  1874. btrfs_set_node_key(c, &lower_key, 0);
  1875. btrfs_set_node_blockptr(c, 0, lower->start);
  1876. lower_gen = btrfs_header_generation(lower);
  1877. WARN_ON(lower_gen != trans->transid);
  1878. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1879. btrfs_mark_buffer_dirty(c);
  1880. old = root->node;
  1881. rcu_assign_pointer(root->node, c);
  1882. /* the super has an extra ref to root->node */
  1883. free_extent_buffer(old);
  1884. add_root_to_dirty_list(root);
  1885. extent_buffer_get(c);
  1886. path->nodes[level] = c;
  1887. path->locks[level] = BTRFS_WRITE_LOCK;
  1888. path->slots[level] = 0;
  1889. return 0;
  1890. }
  1891. /*
  1892. * worker function to insert a single pointer in a node.
  1893. * the node should have enough room for the pointer already
  1894. *
  1895. * slot and level indicate where you want the key to go, and
  1896. * blocknr is the block the key points to.
  1897. *
  1898. * returns zero on success and < 0 on any error
  1899. */
  1900. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1901. *root, struct btrfs_path *path, struct btrfs_disk_key
  1902. *key, u64 bytenr, int slot, int level)
  1903. {
  1904. struct extent_buffer *lower;
  1905. int nritems;
  1906. BUG_ON(!path->nodes[level]);
  1907. btrfs_assert_tree_locked(path->nodes[level]);
  1908. lower = path->nodes[level];
  1909. nritems = btrfs_header_nritems(lower);
  1910. BUG_ON(slot > nritems);
  1911. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1912. BUG();
  1913. if (slot != nritems) {
  1914. memmove_extent_buffer(lower,
  1915. btrfs_node_key_ptr_offset(slot + 1),
  1916. btrfs_node_key_ptr_offset(slot),
  1917. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1918. }
  1919. btrfs_set_node_key(lower, key, slot);
  1920. btrfs_set_node_blockptr(lower, slot, bytenr);
  1921. WARN_ON(trans->transid == 0);
  1922. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1923. btrfs_set_header_nritems(lower, nritems + 1);
  1924. btrfs_mark_buffer_dirty(lower);
  1925. return 0;
  1926. }
  1927. /*
  1928. * split the node at the specified level in path in two.
  1929. * The path is corrected to point to the appropriate node after the split
  1930. *
  1931. * Before splitting this tries to make some room in the node by pushing
  1932. * left and right, if either one works, it returns right away.
  1933. *
  1934. * returns 0 on success and < 0 on failure
  1935. */
  1936. static noinline int split_node(struct btrfs_trans_handle *trans,
  1937. struct btrfs_root *root,
  1938. struct btrfs_path *path, int level)
  1939. {
  1940. struct extent_buffer *c;
  1941. struct extent_buffer *split;
  1942. struct btrfs_disk_key disk_key;
  1943. int mid;
  1944. int ret;
  1945. int wret;
  1946. u32 c_nritems;
  1947. c = path->nodes[level];
  1948. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1949. if (c == root->node) {
  1950. /* trying to split the root, lets make a new one */
  1951. ret = insert_new_root(trans, root, path, level + 1);
  1952. if (ret)
  1953. return ret;
  1954. } else {
  1955. ret = push_nodes_for_insert(trans, root, path, level);
  1956. c = path->nodes[level];
  1957. if (!ret && btrfs_header_nritems(c) <
  1958. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1959. return 0;
  1960. if (ret < 0)
  1961. return ret;
  1962. }
  1963. c_nritems = btrfs_header_nritems(c);
  1964. mid = (c_nritems + 1) / 2;
  1965. btrfs_node_key(c, &disk_key, mid);
  1966. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1967. root->root_key.objectid,
  1968. &disk_key, level, c->start, 0);
  1969. if (IS_ERR(split))
  1970. return PTR_ERR(split);
  1971. root_add_used(root, root->nodesize);
  1972. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1973. btrfs_set_header_level(split, btrfs_header_level(c));
  1974. btrfs_set_header_bytenr(split, split->start);
  1975. btrfs_set_header_generation(split, trans->transid);
  1976. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1977. btrfs_set_header_owner(split, root->root_key.objectid);
  1978. write_extent_buffer(split, root->fs_info->fsid,
  1979. (unsigned long)btrfs_header_fsid(split),
  1980. BTRFS_FSID_SIZE);
  1981. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1982. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1983. BTRFS_UUID_SIZE);
  1984. copy_extent_buffer(split, c,
  1985. btrfs_node_key_ptr_offset(0),
  1986. btrfs_node_key_ptr_offset(mid),
  1987. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1988. btrfs_set_header_nritems(split, c_nritems - mid);
  1989. btrfs_set_header_nritems(c, mid);
  1990. ret = 0;
  1991. btrfs_mark_buffer_dirty(c);
  1992. btrfs_mark_buffer_dirty(split);
  1993. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1994. path->slots[level + 1] + 1,
  1995. level + 1);
  1996. if (wret)
  1997. ret = wret;
  1998. if (path->slots[level] >= mid) {
  1999. path->slots[level] -= mid;
  2000. btrfs_tree_unlock(c);
  2001. free_extent_buffer(c);
  2002. path->nodes[level] = split;
  2003. path->slots[level + 1] += 1;
  2004. } else {
  2005. btrfs_tree_unlock(split);
  2006. free_extent_buffer(split);
  2007. }
  2008. return ret;
  2009. }
  2010. /*
  2011. * how many bytes are required to store the items in a leaf. start
  2012. * and nr indicate which items in the leaf to check. This totals up the
  2013. * space used both by the item structs and the item data
  2014. */
  2015. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2016. {
  2017. int data_len;
  2018. int nritems = btrfs_header_nritems(l);
  2019. int end = min(nritems, start + nr) - 1;
  2020. if (!nr)
  2021. return 0;
  2022. data_len = btrfs_item_end_nr(l, start);
  2023. data_len = data_len - btrfs_item_offset_nr(l, end);
  2024. data_len += sizeof(struct btrfs_item) * nr;
  2025. WARN_ON(data_len < 0);
  2026. return data_len;
  2027. }
  2028. /*
  2029. * The space between the end of the leaf items and
  2030. * the start of the leaf data. IOW, how much room
  2031. * the leaf has left for both items and data
  2032. */
  2033. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2034. struct extent_buffer *leaf)
  2035. {
  2036. int nritems = btrfs_header_nritems(leaf);
  2037. int ret;
  2038. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2039. if (ret < 0) {
  2040. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2041. "used %d nritems %d\n",
  2042. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2043. leaf_space_used(leaf, 0, nritems), nritems);
  2044. }
  2045. return ret;
  2046. }
  2047. /*
  2048. * min slot controls the lowest index we're willing to push to the
  2049. * right. We'll push up to and including min_slot, but no lower
  2050. */
  2051. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2052. struct btrfs_root *root,
  2053. struct btrfs_path *path,
  2054. int data_size, int empty,
  2055. struct extent_buffer *right,
  2056. int free_space, u32 left_nritems,
  2057. u32 min_slot)
  2058. {
  2059. struct extent_buffer *left = path->nodes[0];
  2060. struct extent_buffer *upper = path->nodes[1];
  2061. struct btrfs_disk_key disk_key;
  2062. int slot;
  2063. u32 i;
  2064. int push_space = 0;
  2065. int push_items = 0;
  2066. struct btrfs_item *item;
  2067. u32 nr;
  2068. u32 right_nritems;
  2069. u32 data_end;
  2070. u32 this_item_size;
  2071. if (empty)
  2072. nr = 0;
  2073. else
  2074. nr = max_t(u32, 1, min_slot);
  2075. if (path->slots[0] >= left_nritems)
  2076. push_space += data_size;
  2077. slot = path->slots[1];
  2078. i = left_nritems - 1;
  2079. while (i >= nr) {
  2080. item = btrfs_item_nr(left, i);
  2081. if (!empty && push_items > 0) {
  2082. if (path->slots[0] > i)
  2083. break;
  2084. if (path->slots[0] == i) {
  2085. int space = btrfs_leaf_free_space(root, left);
  2086. if (space + push_space * 2 > free_space)
  2087. break;
  2088. }
  2089. }
  2090. if (path->slots[0] == i)
  2091. push_space += data_size;
  2092. this_item_size = btrfs_item_size(left, item);
  2093. if (this_item_size + sizeof(*item) + push_space > free_space)
  2094. break;
  2095. push_items++;
  2096. push_space += this_item_size + sizeof(*item);
  2097. if (i == 0)
  2098. break;
  2099. i--;
  2100. }
  2101. if (push_items == 0)
  2102. goto out_unlock;
  2103. if (!empty && push_items == left_nritems)
  2104. WARN_ON(1);
  2105. /* push left to right */
  2106. right_nritems = btrfs_header_nritems(right);
  2107. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2108. push_space -= leaf_data_end(root, left);
  2109. /* make room in the right data area */
  2110. data_end = leaf_data_end(root, right);
  2111. memmove_extent_buffer(right,
  2112. btrfs_leaf_data(right) + data_end - push_space,
  2113. btrfs_leaf_data(right) + data_end,
  2114. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2115. /* copy from the left data area */
  2116. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2117. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2118. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2119. push_space);
  2120. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2121. btrfs_item_nr_offset(0),
  2122. right_nritems * sizeof(struct btrfs_item));
  2123. /* copy the items from left to right */
  2124. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2125. btrfs_item_nr_offset(left_nritems - push_items),
  2126. push_items * sizeof(struct btrfs_item));
  2127. /* update the item pointers */
  2128. right_nritems += push_items;
  2129. btrfs_set_header_nritems(right, right_nritems);
  2130. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2131. for (i = 0; i < right_nritems; i++) {
  2132. item = btrfs_item_nr(right, i);
  2133. push_space -= btrfs_item_size(right, item);
  2134. btrfs_set_item_offset(right, item, push_space);
  2135. }
  2136. left_nritems -= push_items;
  2137. btrfs_set_header_nritems(left, left_nritems);
  2138. if (left_nritems)
  2139. btrfs_mark_buffer_dirty(left);
  2140. else
  2141. clean_tree_block(trans, root, left);
  2142. btrfs_mark_buffer_dirty(right);
  2143. btrfs_item_key(right, &disk_key, 0);
  2144. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2145. btrfs_mark_buffer_dirty(upper);
  2146. /* then fixup the leaf pointer in the path */
  2147. if (path->slots[0] >= left_nritems) {
  2148. path->slots[0] -= left_nritems;
  2149. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2150. clean_tree_block(trans, root, path->nodes[0]);
  2151. btrfs_tree_unlock(path->nodes[0]);
  2152. free_extent_buffer(path->nodes[0]);
  2153. path->nodes[0] = right;
  2154. path->slots[1] += 1;
  2155. } else {
  2156. btrfs_tree_unlock(right);
  2157. free_extent_buffer(right);
  2158. }
  2159. return 0;
  2160. out_unlock:
  2161. btrfs_tree_unlock(right);
  2162. free_extent_buffer(right);
  2163. return 1;
  2164. }
  2165. /*
  2166. * push some data in the path leaf to the right, trying to free up at
  2167. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2168. *
  2169. * returns 1 if the push failed because the other node didn't have enough
  2170. * room, 0 if everything worked out and < 0 if there were major errors.
  2171. *
  2172. * this will push starting from min_slot to the end of the leaf. It won't
  2173. * push any slot lower than min_slot
  2174. */
  2175. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2176. *root, struct btrfs_path *path,
  2177. int min_data_size, int data_size,
  2178. int empty, u32 min_slot)
  2179. {
  2180. struct extent_buffer *left = path->nodes[0];
  2181. struct extent_buffer *right;
  2182. struct extent_buffer *upper;
  2183. int slot;
  2184. int free_space;
  2185. u32 left_nritems;
  2186. int ret;
  2187. if (!path->nodes[1])
  2188. return 1;
  2189. slot = path->slots[1];
  2190. upper = path->nodes[1];
  2191. if (slot >= btrfs_header_nritems(upper) - 1)
  2192. return 1;
  2193. btrfs_assert_tree_locked(path->nodes[1]);
  2194. right = read_node_slot(root, upper, slot + 1);
  2195. if (right == NULL)
  2196. return 1;
  2197. btrfs_tree_lock(right);
  2198. btrfs_set_lock_blocking(right);
  2199. free_space = btrfs_leaf_free_space(root, right);
  2200. if (free_space < data_size)
  2201. goto out_unlock;
  2202. /* cow and double check */
  2203. ret = btrfs_cow_block(trans, root, right, upper,
  2204. slot + 1, &right);
  2205. if (ret)
  2206. goto out_unlock;
  2207. free_space = btrfs_leaf_free_space(root, right);
  2208. if (free_space < data_size)
  2209. goto out_unlock;
  2210. left_nritems = btrfs_header_nritems(left);
  2211. if (left_nritems == 0)
  2212. goto out_unlock;
  2213. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2214. right, free_space, left_nritems, min_slot);
  2215. out_unlock:
  2216. btrfs_tree_unlock(right);
  2217. free_extent_buffer(right);
  2218. return 1;
  2219. }
  2220. /*
  2221. * push some data in the path leaf to the left, trying to free up at
  2222. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2223. *
  2224. * max_slot can put a limit on how far into the leaf we'll push items. The
  2225. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2226. * items
  2227. */
  2228. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2229. struct btrfs_root *root,
  2230. struct btrfs_path *path, int data_size,
  2231. int empty, struct extent_buffer *left,
  2232. int free_space, u32 right_nritems,
  2233. u32 max_slot)
  2234. {
  2235. struct btrfs_disk_key disk_key;
  2236. struct extent_buffer *right = path->nodes[0];
  2237. int i;
  2238. int push_space = 0;
  2239. int push_items = 0;
  2240. struct btrfs_item *item;
  2241. u32 old_left_nritems;
  2242. u32 nr;
  2243. int ret = 0;
  2244. int wret;
  2245. u32 this_item_size;
  2246. u32 old_left_item_size;
  2247. if (empty)
  2248. nr = min(right_nritems, max_slot);
  2249. else
  2250. nr = min(right_nritems - 1, max_slot);
  2251. for (i = 0; i < nr; i++) {
  2252. item = btrfs_item_nr(right, i);
  2253. if (!empty && push_items > 0) {
  2254. if (path->slots[0] < i)
  2255. break;
  2256. if (path->slots[0] == i) {
  2257. int space = btrfs_leaf_free_space(root, right);
  2258. if (space + push_space * 2 > free_space)
  2259. break;
  2260. }
  2261. }
  2262. if (path->slots[0] == i)
  2263. push_space += data_size;
  2264. this_item_size = btrfs_item_size(right, item);
  2265. if (this_item_size + sizeof(*item) + push_space > free_space)
  2266. break;
  2267. push_items++;
  2268. push_space += this_item_size + sizeof(*item);
  2269. }
  2270. if (push_items == 0) {
  2271. ret = 1;
  2272. goto out;
  2273. }
  2274. if (!empty && push_items == btrfs_header_nritems(right))
  2275. WARN_ON(1);
  2276. /* push data from right to left */
  2277. copy_extent_buffer(left, right,
  2278. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2279. btrfs_item_nr_offset(0),
  2280. push_items * sizeof(struct btrfs_item));
  2281. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2282. btrfs_item_offset_nr(right, push_items - 1);
  2283. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2284. leaf_data_end(root, left) - push_space,
  2285. btrfs_leaf_data(right) +
  2286. btrfs_item_offset_nr(right, push_items - 1),
  2287. push_space);
  2288. old_left_nritems = btrfs_header_nritems(left);
  2289. BUG_ON(old_left_nritems <= 0);
  2290. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2291. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2292. u32 ioff;
  2293. item = btrfs_item_nr(left, i);
  2294. ioff = btrfs_item_offset(left, item);
  2295. btrfs_set_item_offset(left, item,
  2296. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2297. }
  2298. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2299. /* fixup right node */
  2300. if (push_items > right_nritems) {
  2301. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2302. right_nritems);
  2303. WARN_ON(1);
  2304. }
  2305. if (push_items < right_nritems) {
  2306. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2307. leaf_data_end(root, right);
  2308. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2309. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2310. btrfs_leaf_data(right) +
  2311. leaf_data_end(root, right), push_space);
  2312. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2313. btrfs_item_nr_offset(push_items),
  2314. (btrfs_header_nritems(right) - push_items) *
  2315. sizeof(struct btrfs_item));
  2316. }
  2317. right_nritems -= push_items;
  2318. btrfs_set_header_nritems(right, right_nritems);
  2319. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2320. for (i = 0; i < right_nritems; i++) {
  2321. item = btrfs_item_nr(right, i);
  2322. push_space = push_space - btrfs_item_size(right, item);
  2323. btrfs_set_item_offset(right, item, push_space);
  2324. }
  2325. btrfs_mark_buffer_dirty(left);
  2326. if (right_nritems)
  2327. btrfs_mark_buffer_dirty(right);
  2328. else
  2329. clean_tree_block(trans, root, right);
  2330. btrfs_item_key(right, &disk_key, 0);
  2331. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2332. if (wret)
  2333. ret = wret;
  2334. /* then fixup the leaf pointer in the path */
  2335. if (path->slots[0] < push_items) {
  2336. path->slots[0] += old_left_nritems;
  2337. btrfs_tree_unlock(path->nodes[0]);
  2338. free_extent_buffer(path->nodes[0]);
  2339. path->nodes[0] = left;
  2340. path->slots[1] -= 1;
  2341. } else {
  2342. btrfs_tree_unlock(left);
  2343. free_extent_buffer(left);
  2344. path->slots[0] -= push_items;
  2345. }
  2346. BUG_ON(path->slots[0] < 0);
  2347. return ret;
  2348. out:
  2349. btrfs_tree_unlock(left);
  2350. free_extent_buffer(left);
  2351. return ret;
  2352. }
  2353. /*
  2354. * push some data in the path leaf to the left, trying to free up at
  2355. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2356. *
  2357. * max_slot can put a limit on how far into the leaf we'll push items. The
  2358. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2359. * items
  2360. */
  2361. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2362. *root, struct btrfs_path *path, int min_data_size,
  2363. int data_size, int empty, u32 max_slot)
  2364. {
  2365. struct extent_buffer *right = path->nodes[0];
  2366. struct extent_buffer *left;
  2367. int slot;
  2368. int free_space;
  2369. u32 right_nritems;
  2370. int ret = 0;
  2371. slot = path->slots[1];
  2372. if (slot == 0)
  2373. return 1;
  2374. if (!path->nodes[1])
  2375. return 1;
  2376. right_nritems = btrfs_header_nritems(right);
  2377. if (right_nritems == 0)
  2378. return 1;
  2379. btrfs_assert_tree_locked(path->nodes[1]);
  2380. left = read_node_slot(root, path->nodes[1], slot - 1);
  2381. if (left == NULL)
  2382. return 1;
  2383. btrfs_tree_lock(left);
  2384. btrfs_set_lock_blocking(left);
  2385. free_space = btrfs_leaf_free_space(root, left);
  2386. if (free_space < data_size) {
  2387. ret = 1;
  2388. goto out;
  2389. }
  2390. /* cow and double check */
  2391. ret = btrfs_cow_block(trans, root, left,
  2392. path->nodes[1], slot - 1, &left);
  2393. if (ret) {
  2394. /* we hit -ENOSPC, but it isn't fatal here */
  2395. ret = 1;
  2396. goto out;
  2397. }
  2398. free_space = btrfs_leaf_free_space(root, left);
  2399. if (free_space < data_size) {
  2400. ret = 1;
  2401. goto out;
  2402. }
  2403. return __push_leaf_left(trans, root, path, min_data_size,
  2404. empty, left, free_space, right_nritems,
  2405. max_slot);
  2406. out:
  2407. btrfs_tree_unlock(left);
  2408. free_extent_buffer(left);
  2409. return ret;
  2410. }
  2411. /*
  2412. * split the path's leaf in two, making sure there is at least data_size
  2413. * available for the resulting leaf level of the path.
  2414. *
  2415. * returns 0 if all went well and < 0 on failure.
  2416. */
  2417. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2418. struct btrfs_root *root,
  2419. struct btrfs_path *path,
  2420. struct extent_buffer *l,
  2421. struct extent_buffer *right,
  2422. int slot, int mid, int nritems)
  2423. {
  2424. int data_copy_size;
  2425. int rt_data_off;
  2426. int i;
  2427. int ret = 0;
  2428. int wret;
  2429. struct btrfs_disk_key disk_key;
  2430. nritems = nritems - mid;
  2431. btrfs_set_header_nritems(right, nritems);
  2432. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2433. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2434. btrfs_item_nr_offset(mid),
  2435. nritems * sizeof(struct btrfs_item));
  2436. copy_extent_buffer(right, l,
  2437. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2438. data_copy_size, btrfs_leaf_data(l) +
  2439. leaf_data_end(root, l), data_copy_size);
  2440. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2441. btrfs_item_end_nr(l, mid);
  2442. for (i = 0; i < nritems; i++) {
  2443. struct btrfs_item *item = btrfs_item_nr(right, i);
  2444. u32 ioff;
  2445. ioff = btrfs_item_offset(right, item);
  2446. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2447. }
  2448. btrfs_set_header_nritems(l, mid);
  2449. ret = 0;
  2450. btrfs_item_key(right, &disk_key, 0);
  2451. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2452. path->slots[1] + 1, 1);
  2453. if (wret)
  2454. ret = wret;
  2455. btrfs_mark_buffer_dirty(right);
  2456. btrfs_mark_buffer_dirty(l);
  2457. BUG_ON(path->slots[0] != slot);
  2458. if (mid <= slot) {
  2459. btrfs_tree_unlock(path->nodes[0]);
  2460. free_extent_buffer(path->nodes[0]);
  2461. path->nodes[0] = right;
  2462. path->slots[0] -= mid;
  2463. path->slots[1] += 1;
  2464. } else {
  2465. btrfs_tree_unlock(right);
  2466. free_extent_buffer(right);
  2467. }
  2468. BUG_ON(path->slots[0] < 0);
  2469. return ret;
  2470. }
  2471. /*
  2472. * double splits happen when we need to insert a big item in the middle
  2473. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2474. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2475. * A B C
  2476. *
  2477. * We avoid this by trying to push the items on either side of our target
  2478. * into the adjacent leaves. If all goes well we can avoid the double split
  2479. * completely.
  2480. */
  2481. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2482. struct btrfs_root *root,
  2483. struct btrfs_path *path,
  2484. int data_size)
  2485. {
  2486. int ret;
  2487. int progress = 0;
  2488. int slot;
  2489. u32 nritems;
  2490. slot = path->slots[0];
  2491. /*
  2492. * try to push all the items after our slot into the
  2493. * right leaf
  2494. */
  2495. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2496. if (ret < 0)
  2497. return ret;
  2498. if (ret == 0)
  2499. progress++;
  2500. nritems = btrfs_header_nritems(path->nodes[0]);
  2501. /*
  2502. * our goal is to get our slot at the start or end of a leaf. If
  2503. * we've done so we're done
  2504. */
  2505. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2506. return 0;
  2507. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2508. return 0;
  2509. /* try to push all the items before our slot into the next leaf */
  2510. slot = path->slots[0];
  2511. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2512. if (ret < 0)
  2513. return ret;
  2514. if (ret == 0)
  2515. progress++;
  2516. if (progress)
  2517. return 0;
  2518. return 1;
  2519. }
  2520. /*
  2521. * split the path's leaf in two, making sure there is at least data_size
  2522. * available for the resulting leaf level of the path.
  2523. *
  2524. * returns 0 if all went well and < 0 on failure.
  2525. */
  2526. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2527. struct btrfs_root *root,
  2528. struct btrfs_key *ins_key,
  2529. struct btrfs_path *path, int data_size,
  2530. int extend)
  2531. {
  2532. struct btrfs_disk_key disk_key;
  2533. struct extent_buffer *l;
  2534. u32 nritems;
  2535. int mid;
  2536. int slot;
  2537. struct extent_buffer *right;
  2538. int ret = 0;
  2539. int wret;
  2540. int split;
  2541. int num_doubles = 0;
  2542. int tried_avoid_double = 0;
  2543. l = path->nodes[0];
  2544. slot = path->slots[0];
  2545. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2546. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2547. return -EOVERFLOW;
  2548. /* first try to make some room by pushing left and right */
  2549. if (data_size) {
  2550. wret = push_leaf_right(trans, root, path, data_size,
  2551. data_size, 0, 0);
  2552. if (wret < 0)
  2553. return wret;
  2554. if (wret) {
  2555. wret = push_leaf_left(trans, root, path, data_size,
  2556. data_size, 0, (u32)-1);
  2557. if (wret < 0)
  2558. return wret;
  2559. }
  2560. l = path->nodes[0];
  2561. /* did the pushes work? */
  2562. if (btrfs_leaf_free_space(root, l) >= data_size)
  2563. return 0;
  2564. }
  2565. if (!path->nodes[1]) {
  2566. ret = insert_new_root(trans, root, path, 1);
  2567. if (ret)
  2568. return ret;
  2569. }
  2570. again:
  2571. split = 1;
  2572. l = path->nodes[0];
  2573. slot = path->slots[0];
  2574. nritems = btrfs_header_nritems(l);
  2575. mid = (nritems + 1) / 2;
  2576. if (mid <= slot) {
  2577. if (nritems == 1 ||
  2578. leaf_space_used(l, mid, nritems - mid) + data_size >
  2579. BTRFS_LEAF_DATA_SIZE(root)) {
  2580. if (slot >= nritems) {
  2581. split = 0;
  2582. } else {
  2583. mid = slot;
  2584. if (mid != nritems &&
  2585. leaf_space_used(l, mid, nritems - mid) +
  2586. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2587. if (data_size && !tried_avoid_double)
  2588. goto push_for_double;
  2589. split = 2;
  2590. }
  2591. }
  2592. }
  2593. } else {
  2594. if (leaf_space_used(l, 0, mid) + data_size >
  2595. BTRFS_LEAF_DATA_SIZE(root)) {
  2596. if (!extend && data_size && slot == 0) {
  2597. split = 0;
  2598. } else if ((extend || !data_size) && slot == 0) {
  2599. mid = 1;
  2600. } else {
  2601. mid = slot;
  2602. if (mid != nritems &&
  2603. leaf_space_used(l, mid, nritems - mid) +
  2604. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2605. if (data_size && !tried_avoid_double)
  2606. goto push_for_double;
  2607. split = 2 ;
  2608. }
  2609. }
  2610. }
  2611. }
  2612. if (split == 0)
  2613. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2614. else
  2615. btrfs_item_key(l, &disk_key, mid);
  2616. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2617. root->root_key.objectid,
  2618. &disk_key, 0, l->start, 0);
  2619. if (IS_ERR(right))
  2620. return PTR_ERR(right);
  2621. root_add_used(root, root->leafsize);
  2622. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2623. btrfs_set_header_bytenr(right, right->start);
  2624. btrfs_set_header_generation(right, trans->transid);
  2625. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2626. btrfs_set_header_owner(right, root->root_key.objectid);
  2627. btrfs_set_header_level(right, 0);
  2628. write_extent_buffer(right, root->fs_info->fsid,
  2629. (unsigned long)btrfs_header_fsid(right),
  2630. BTRFS_FSID_SIZE);
  2631. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2632. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2633. BTRFS_UUID_SIZE);
  2634. if (split == 0) {
  2635. if (mid <= slot) {
  2636. btrfs_set_header_nritems(right, 0);
  2637. wret = insert_ptr(trans, root, path,
  2638. &disk_key, right->start,
  2639. path->slots[1] + 1, 1);
  2640. if (wret)
  2641. ret = wret;
  2642. btrfs_tree_unlock(path->nodes[0]);
  2643. free_extent_buffer(path->nodes[0]);
  2644. path->nodes[0] = right;
  2645. path->slots[0] = 0;
  2646. path->slots[1] += 1;
  2647. } else {
  2648. btrfs_set_header_nritems(right, 0);
  2649. wret = insert_ptr(trans, root, path,
  2650. &disk_key,
  2651. right->start,
  2652. path->slots[1], 1);
  2653. if (wret)
  2654. ret = wret;
  2655. btrfs_tree_unlock(path->nodes[0]);
  2656. free_extent_buffer(path->nodes[0]);
  2657. path->nodes[0] = right;
  2658. path->slots[0] = 0;
  2659. if (path->slots[1] == 0) {
  2660. wret = fixup_low_keys(trans, root,
  2661. path, &disk_key, 1);
  2662. if (wret)
  2663. ret = wret;
  2664. }
  2665. }
  2666. btrfs_mark_buffer_dirty(right);
  2667. return ret;
  2668. }
  2669. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2670. BUG_ON(ret);
  2671. if (split == 2) {
  2672. BUG_ON(num_doubles != 0);
  2673. num_doubles++;
  2674. goto again;
  2675. }
  2676. return ret;
  2677. push_for_double:
  2678. push_for_double_split(trans, root, path, data_size);
  2679. tried_avoid_double = 1;
  2680. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2681. return 0;
  2682. goto again;
  2683. }
  2684. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2685. struct btrfs_root *root,
  2686. struct btrfs_path *path, int ins_len)
  2687. {
  2688. struct btrfs_key key;
  2689. struct extent_buffer *leaf;
  2690. struct btrfs_file_extent_item *fi;
  2691. u64 extent_len = 0;
  2692. u32 item_size;
  2693. int ret;
  2694. leaf = path->nodes[0];
  2695. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2696. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2697. key.type != BTRFS_EXTENT_CSUM_KEY);
  2698. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2699. return 0;
  2700. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2701. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2702. fi = btrfs_item_ptr(leaf, path->slots[0],
  2703. struct btrfs_file_extent_item);
  2704. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2705. }
  2706. btrfs_release_path(path);
  2707. path->keep_locks = 1;
  2708. path->search_for_split = 1;
  2709. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2710. path->search_for_split = 0;
  2711. if (ret < 0)
  2712. goto err;
  2713. ret = -EAGAIN;
  2714. leaf = path->nodes[0];
  2715. /* if our item isn't there or got smaller, return now */
  2716. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2717. goto err;
  2718. /* the leaf has changed, it now has room. return now */
  2719. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2720. goto err;
  2721. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2722. fi = btrfs_item_ptr(leaf, path->slots[0],
  2723. struct btrfs_file_extent_item);
  2724. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2725. goto err;
  2726. }
  2727. btrfs_set_path_blocking(path);
  2728. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2729. if (ret)
  2730. goto err;
  2731. path->keep_locks = 0;
  2732. btrfs_unlock_up_safe(path, 1);
  2733. return 0;
  2734. err:
  2735. path->keep_locks = 0;
  2736. return ret;
  2737. }
  2738. static noinline int split_item(struct btrfs_trans_handle *trans,
  2739. struct btrfs_root *root,
  2740. struct btrfs_path *path,
  2741. struct btrfs_key *new_key,
  2742. unsigned long split_offset)
  2743. {
  2744. struct extent_buffer *leaf;
  2745. struct btrfs_item *item;
  2746. struct btrfs_item *new_item;
  2747. int slot;
  2748. char *buf;
  2749. u32 nritems;
  2750. u32 item_size;
  2751. u32 orig_offset;
  2752. struct btrfs_disk_key disk_key;
  2753. leaf = path->nodes[0];
  2754. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2755. btrfs_set_path_blocking(path);
  2756. item = btrfs_item_nr(leaf, path->slots[0]);
  2757. orig_offset = btrfs_item_offset(leaf, item);
  2758. item_size = btrfs_item_size(leaf, item);
  2759. buf = kmalloc(item_size, GFP_NOFS);
  2760. if (!buf)
  2761. return -ENOMEM;
  2762. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2763. path->slots[0]), item_size);
  2764. slot = path->slots[0] + 1;
  2765. nritems = btrfs_header_nritems(leaf);
  2766. if (slot != nritems) {
  2767. /* shift the items */
  2768. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2769. btrfs_item_nr_offset(slot),
  2770. (nritems - slot) * sizeof(struct btrfs_item));
  2771. }
  2772. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2773. btrfs_set_item_key(leaf, &disk_key, slot);
  2774. new_item = btrfs_item_nr(leaf, slot);
  2775. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2776. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2777. btrfs_set_item_offset(leaf, item,
  2778. orig_offset + item_size - split_offset);
  2779. btrfs_set_item_size(leaf, item, split_offset);
  2780. btrfs_set_header_nritems(leaf, nritems + 1);
  2781. /* write the data for the start of the original item */
  2782. write_extent_buffer(leaf, buf,
  2783. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2784. split_offset);
  2785. /* write the data for the new item */
  2786. write_extent_buffer(leaf, buf + split_offset,
  2787. btrfs_item_ptr_offset(leaf, slot),
  2788. item_size - split_offset);
  2789. btrfs_mark_buffer_dirty(leaf);
  2790. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2791. kfree(buf);
  2792. return 0;
  2793. }
  2794. /*
  2795. * This function splits a single item into two items,
  2796. * giving 'new_key' to the new item and splitting the
  2797. * old one at split_offset (from the start of the item).
  2798. *
  2799. * The path may be released by this operation. After
  2800. * the split, the path is pointing to the old item. The
  2801. * new item is going to be in the same node as the old one.
  2802. *
  2803. * Note, the item being split must be smaller enough to live alone on
  2804. * a tree block with room for one extra struct btrfs_item
  2805. *
  2806. * This allows us to split the item in place, keeping a lock on the
  2807. * leaf the entire time.
  2808. */
  2809. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2810. struct btrfs_root *root,
  2811. struct btrfs_path *path,
  2812. struct btrfs_key *new_key,
  2813. unsigned long split_offset)
  2814. {
  2815. int ret;
  2816. ret = setup_leaf_for_split(trans, root, path,
  2817. sizeof(struct btrfs_item));
  2818. if (ret)
  2819. return ret;
  2820. ret = split_item(trans, root, path, new_key, split_offset);
  2821. return ret;
  2822. }
  2823. /*
  2824. * This function duplicate a item, giving 'new_key' to the new item.
  2825. * It guarantees both items live in the same tree leaf and the new item
  2826. * is contiguous with the original item.
  2827. *
  2828. * This allows us to split file extent in place, keeping a lock on the
  2829. * leaf the entire time.
  2830. */
  2831. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2832. struct btrfs_root *root,
  2833. struct btrfs_path *path,
  2834. struct btrfs_key *new_key)
  2835. {
  2836. struct extent_buffer *leaf;
  2837. int ret;
  2838. u32 item_size;
  2839. leaf = path->nodes[0];
  2840. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2841. ret = setup_leaf_for_split(trans, root, path,
  2842. item_size + sizeof(struct btrfs_item));
  2843. if (ret)
  2844. return ret;
  2845. path->slots[0]++;
  2846. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2847. item_size, item_size +
  2848. sizeof(struct btrfs_item), 1);
  2849. BUG_ON(ret);
  2850. leaf = path->nodes[0];
  2851. memcpy_extent_buffer(leaf,
  2852. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2853. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2854. item_size);
  2855. return 0;
  2856. }
  2857. /*
  2858. * make the item pointed to by the path smaller. new_size indicates
  2859. * how small to make it, and from_end tells us if we just chop bytes
  2860. * off the end of the item or if we shift the item to chop bytes off
  2861. * the front.
  2862. */
  2863. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2864. struct btrfs_root *root,
  2865. struct btrfs_path *path,
  2866. u32 new_size, int from_end)
  2867. {
  2868. int slot;
  2869. struct extent_buffer *leaf;
  2870. struct btrfs_item *item;
  2871. u32 nritems;
  2872. unsigned int data_end;
  2873. unsigned int old_data_start;
  2874. unsigned int old_size;
  2875. unsigned int size_diff;
  2876. int i;
  2877. leaf = path->nodes[0];
  2878. slot = path->slots[0];
  2879. old_size = btrfs_item_size_nr(leaf, slot);
  2880. if (old_size == new_size)
  2881. return 0;
  2882. nritems = btrfs_header_nritems(leaf);
  2883. data_end = leaf_data_end(root, leaf);
  2884. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2885. size_diff = old_size - new_size;
  2886. BUG_ON(slot < 0);
  2887. BUG_ON(slot >= nritems);
  2888. /*
  2889. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2890. */
  2891. /* first correct the data pointers */
  2892. for (i = slot; i < nritems; i++) {
  2893. u32 ioff;
  2894. item = btrfs_item_nr(leaf, i);
  2895. ioff = btrfs_item_offset(leaf, item);
  2896. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2897. }
  2898. /* shift the data */
  2899. if (from_end) {
  2900. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2901. data_end + size_diff, btrfs_leaf_data(leaf) +
  2902. data_end, old_data_start + new_size - data_end);
  2903. } else {
  2904. struct btrfs_disk_key disk_key;
  2905. u64 offset;
  2906. btrfs_item_key(leaf, &disk_key, slot);
  2907. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2908. unsigned long ptr;
  2909. struct btrfs_file_extent_item *fi;
  2910. fi = btrfs_item_ptr(leaf, slot,
  2911. struct btrfs_file_extent_item);
  2912. fi = (struct btrfs_file_extent_item *)(
  2913. (unsigned long)fi - size_diff);
  2914. if (btrfs_file_extent_type(leaf, fi) ==
  2915. BTRFS_FILE_EXTENT_INLINE) {
  2916. ptr = btrfs_item_ptr_offset(leaf, slot);
  2917. memmove_extent_buffer(leaf, ptr,
  2918. (unsigned long)fi,
  2919. offsetof(struct btrfs_file_extent_item,
  2920. disk_bytenr));
  2921. }
  2922. }
  2923. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2924. data_end + size_diff, btrfs_leaf_data(leaf) +
  2925. data_end, old_data_start - data_end);
  2926. offset = btrfs_disk_key_offset(&disk_key);
  2927. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2928. btrfs_set_item_key(leaf, &disk_key, slot);
  2929. if (slot == 0)
  2930. fixup_low_keys(trans, root, path, &disk_key, 1);
  2931. }
  2932. item = btrfs_item_nr(leaf, slot);
  2933. btrfs_set_item_size(leaf, item, new_size);
  2934. btrfs_mark_buffer_dirty(leaf);
  2935. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2936. btrfs_print_leaf(root, leaf);
  2937. BUG();
  2938. }
  2939. return 0;
  2940. }
  2941. /*
  2942. * make the item pointed to by the path bigger, data_size is the new size.
  2943. */
  2944. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2945. struct btrfs_root *root, struct btrfs_path *path,
  2946. u32 data_size)
  2947. {
  2948. int slot;
  2949. struct extent_buffer *leaf;
  2950. struct btrfs_item *item;
  2951. u32 nritems;
  2952. unsigned int data_end;
  2953. unsigned int old_data;
  2954. unsigned int old_size;
  2955. int i;
  2956. leaf = path->nodes[0];
  2957. nritems = btrfs_header_nritems(leaf);
  2958. data_end = leaf_data_end(root, leaf);
  2959. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2960. btrfs_print_leaf(root, leaf);
  2961. BUG();
  2962. }
  2963. slot = path->slots[0];
  2964. old_data = btrfs_item_end_nr(leaf, slot);
  2965. BUG_ON(slot < 0);
  2966. if (slot >= nritems) {
  2967. btrfs_print_leaf(root, leaf);
  2968. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2969. slot, nritems);
  2970. BUG_ON(1);
  2971. }
  2972. /*
  2973. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2974. */
  2975. /* first correct the data pointers */
  2976. for (i = slot; i < nritems; i++) {
  2977. u32 ioff;
  2978. item = btrfs_item_nr(leaf, i);
  2979. ioff = btrfs_item_offset(leaf, item);
  2980. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2981. }
  2982. /* shift the data */
  2983. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2984. data_end - data_size, btrfs_leaf_data(leaf) +
  2985. data_end, old_data - data_end);
  2986. data_end = old_data;
  2987. old_size = btrfs_item_size_nr(leaf, slot);
  2988. item = btrfs_item_nr(leaf, slot);
  2989. btrfs_set_item_size(leaf, item, old_size + data_size);
  2990. btrfs_mark_buffer_dirty(leaf);
  2991. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2992. btrfs_print_leaf(root, leaf);
  2993. BUG();
  2994. }
  2995. return 0;
  2996. }
  2997. /*
  2998. * Given a key and some data, insert items into the tree.
  2999. * This does all the path init required, making room in the tree if needed.
  3000. * Returns the number of keys that were inserted.
  3001. */
  3002. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3003. struct btrfs_root *root,
  3004. struct btrfs_path *path,
  3005. struct btrfs_key *cpu_key, u32 *data_size,
  3006. int nr)
  3007. {
  3008. struct extent_buffer *leaf;
  3009. struct btrfs_item *item;
  3010. int ret = 0;
  3011. int slot;
  3012. int i;
  3013. u32 nritems;
  3014. u32 total_data = 0;
  3015. u32 total_size = 0;
  3016. unsigned int data_end;
  3017. struct btrfs_disk_key disk_key;
  3018. struct btrfs_key found_key;
  3019. for (i = 0; i < nr; i++) {
  3020. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3021. BTRFS_LEAF_DATA_SIZE(root)) {
  3022. break;
  3023. nr = i;
  3024. }
  3025. total_data += data_size[i];
  3026. total_size += data_size[i] + sizeof(struct btrfs_item);
  3027. }
  3028. BUG_ON(nr == 0);
  3029. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3030. if (ret == 0)
  3031. return -EEXIST;
  3032. if (ret < 0)
  3033. goto out;
  3034. leaf = path->nodes[0];
  3035. nritems = btrfs_header_nritems(leaf);
  3036. data_end = leaf_data_end(root, leaf);
  3037. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3038. for (i = nr; i >= 0; i--) {
  3039. total_data -= data_size[i];
  3040. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3041. if (total_size < btrfs_leaf_free_space(root, leaf))
  3042. break;
  3043. }
  3044. nr = i;
  3045. }
  3046. slot = path->slots[0];
  3047. BUG_ON(slot < 0);
  3048. if (slot != nritems) {
  3049. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3050. item = btrfs_item_nr(leaf, slot);
  3051. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3052. /* figure out how many keys we can insert in here */
  3053. total_data = data_size[0];
  3054. for (i = 1; i < nr; i++) {
  3055. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3056. break;
  3057. total_data += data_size[i];
  3058. }
  3059. nr = i;
  3060. if (old_data < data_end) {
  3061. btrfs_print_leaf(root, leaf);
  3062. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3063. slot, old_data, data_end);
  3064. BUG_ON(1);
  3065. }
  3066. /*
  3067. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3068. */
  3069. /* first correct the data pointers */
  3070. for (i = slot; i < nritems; i++) {
  3071. u32 ioff;
  3072. item = btrfs_item_nr(leaf, i);
  3073. ioff = btrfs_item_offset(leaf, item);
  3074. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3075. }
  3076. /* shift the items */
  3077. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3078. btrfs_item_nr_offset(slot),
  3079. (nritems - slot) * sizeof(struct btrfs_item));
  3080. /* shift the data */
  3081. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3082. data_end - total_data, btrfs_leaf_data(leaf) +
  3083. data_end, old_data - data_end);
  3084. data_end = old_data;
  3085. } else {
  3086. /*
  3087. * this sucks but it has to be done, if we are inserting at
  3088. * the end of the leaf only insert 1 of the items, since we
  3089. * have no way of knowing whats on the next leaf and we'd have
  3090. * to drop our current locks to figure it out
  3091. */
  3092. nr = 1;
  3093. }
  3094. /* setup the item for the new data */
  3095. for (i = 0; i < nr; i++) {
  3096. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3097. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3098. item = btrfs_item_nr(leaf, slot + i);
  3099. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3100. data_end -= data_size[i];
  3101. btrfs_set_item_size(leaf, item, data_size[i]);
  3102. }
  3103. btrfs_set_header_nritems(leaf, nritems + nr);
  3104. btrfs_mark_buffer_dirty(leaf);
  3105. ret = 0;
  3106. if (slot == 0) {
  3107. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3108. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3109. }
  3110. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3111. btrfs_print_leaf(root, leaf);
  3112. BUG();
  3113. }
  3114. out:
  3115. if (!ret)
  3116. ret = nr;
  3117. return ret;
  3118. }
  3119. /*
  3120. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3121. * to save stack depth by doing the bulk of the work in a function
  3122. * that doesn't call btrfs_search_slot
  3123. */
  3124. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3125. struct btrfs_root *root, struct btrfs_path *path,
  3126. struct btrfs_key *cpu_key, u32 *data_size,
  3127. u32 total_data, u32 total_size, int nr)
  3128. {
  3129. struct btrfs_item *item;
  3130. int i;
  3131. u32 nritems;
  3132. unsigned int data_end;
  3133. struct btrfs_disk_key disk_key;
  3134. int ret;
  3135. struct extent_buffer *leaf;
  3136. int slot;
  3137. leaf = path->nodes[0];
  3138. slot = path->slots[0];
  3139. nritems = btrfs_header_nritems(leaf);
  3140. data_end = leaf_data_end(root, leaf);
  3141. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3142. btrfs_print_leaf(root, leaf);
  3143. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3144. total_size, btrfs_leaf_free_space(root, leaf));
  3145. BUG();
  3146. }
  3147. if (slot != nritems) {
  3148. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3149. if (old_data < data_end) {
  3150. btrfs_print_leaf(root, leaf);
  3151. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3152. slot, old_data, data_end);
  3153. BUG_ON(1);
  3154. }
  3155. /*
  3156. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3157. */
  3158. /* first correct the data pointers */
  3159. for (i = slot; i < nritems; i++) {
  3160. u32 ioff;
  3161. item = btrfs_item_nr(leaf, i);
  3162. ioff = btrfs_item_offset(leaf, item);
  3163. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3164. }
  3165. /* shift the items */
  3166. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3167. btrfs_item_nr_offset(slot),
  3168. (nritems - slot) * sizeof(struct btrfs_item));
  3169. /* shift the data */
  3170. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3171. data_end - total_data, btrfs_leaf_data(leaf) +
  3172. data_end, old_data - data_end);
  3173. data_end = old_data;
  3174. }
  3175. /* setup the item for the new data */
  3176. for (i = 0; i < nr; i++) {
  3177. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3178. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3179. item = btrfs_item_nr(leaf, slot + i);
  3180. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3181. data_end -= data_size[i];
  3182. btrfs_set_item_size(leaf, item, data_size[i]);
  3183. }
  3184. btrfs_set_header_nritems(leaf, nritems + nr);
  3185. ret = 0;
  3186. if (slot == 0) {
  3187. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3188. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3189. }
  3190. btrfs_unlock_up_safe(path, 1);
  3191. btrfs_mark_buffer_dirty(leaf);
  3192. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3193. btrfs_print_leaf(root, leaf);
  3194. BUG();
  3195. }
  3196. return ret;
  3197. }
  3198. /*
  3199. * Given a key and some data, insert items into the tree.
  3200. * This does all the path init required, making room in the tree if needed.
  3201. */
  3202. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3203. struct btrfs_root *root,
  3204. struct btrfs_path *path,
  3205. struct btrfs_key *cpu_key, u32 *data_size,
  3206. int nr)
  3207. {
  3208. int ret = 0;
  3209. int slot;
  3210. int i;
  3211. u32 total_size = 0;
  3212. u32 total_data = 0;
  3213. for (i = 0; i < nr; i++)
  3214. total_data += data_size[i];
  3215. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3216. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3217. if (ret == 0)
  3218. return -EEXIST;
  3219. if (ret < 0)
  3220. goto out;
  3221. slot = path->slots[0];
  3222. BUG_ON(slot < 0);
  3223. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3224. total_data, total_size, nr);
  3225. out:
  3226. return ret;
  3227. }
  3228. /*
  3229. * Given a key and some data, insert an item into the tree.
  3230. * This does all the path init required, making room in the tree if needed.
  3231. */
  3232. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3233. *root, struct btrfs_key *cpu_key, void *data, u32
  3234. data_size)
  3235. {
  3236. int ret = 0;
  3237. struct btrfs_path *path;
  3238. struct extent_buffer *leaf;
  3239. unsigned long ptr;
  3240. path = btrfs_alloc_path();
  3241. if (!path)
  3242. return -ENOMEM;
  3243. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3244. if (!ret) {
  3245. leaf = path->nodes[0];
  3246. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3247. write_extent_buffer(leaf, data, ptr, data_size);
  3248. btrfs_mark_buffer_dirty(leaf);
  3249. }
  3250. btrfs_free_path(path);
  3251. return ret;
  3252. }
  3253. /*
  3254. * delete the pointer from a given node.
  3255. *
  3256. * the tree should have been previously balanced so the deletion does not
  3257. * empty a node.
  3258. */
  3259. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3260. struct btrfs_path *path, int level, int slot)
  3261. {
  3262. struct extent_buffer *parent = path->nodes[level];
  3263. u32 nritems;
  3264. int ret = 0;
  3265. int wret;
  3266. nritems = btrfs_header_nritems(parent);
  3267. if (slot != nritems - 1) {
  3268. memmove_extent_buffer(parent,
  3269. btrfs_node_key_ptr_offset(slot),
  3270. btrfs_node_key_ptr_offset(slot + 1),
  3271. sizeof(struct btrfs_key_ptr) *
  3272. (nritems - slot - 1));
  3273. }
  3274. nritems--;
  3275. btrfs_set_header_nritems(parent, nritems);
  3276. if (nritems == 0 && parent == root->node) {
  3277. BUG_ON(btrfs_header_level(root->node) != 1);
  3278. /* just turn the root into a leaf and break */
  3279. btrfs_set_header_level(root->node, 0);
  3280. } else if (slot == 0) {
  3281. struct btrfs_disk_key disk_key;
  3282. btrfs_node_key(parent, &disk_key, 0);
  3283. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3284. if (wret)
  3285. ret = wret;
  3286. }
  3287. btrfs_mark_buffer_dirty(parent);
  3288. return ret;
  3289. }
  3290. /*
  3291. * a helper function to delete the leaf pointed to by path->slots[1] and
  3292. * path->nodes[1].
  3293. *
  3294. * This deletes the pointer in path->nodes[1] and frees the leaf
  3295. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3296. *
  3297. * The path must have already been setup for deleting the leaf, including
  3298. * all the proper balancing. path->nodes[1] must be locked.
  3299. */
  3300. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3301. struct btrfs_root *root,
  3302. struct btrfs_path *path,
  3303. struct extent_buffer *leaf)
  3304. {
  3305. int ret;
  3306. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3307. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3308. if (ret)
  3309. return ret;
  3310. /*
  3311. * btrfs_free_extent is expensive, we want to make sure we
  3312. * aren't holding any locks when we call it
  3313. */
  3314. btrfs_unlock_up_safe(path, 0);
  3315. root_sub_used(root, leaf->len);
  3316. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  3317. return 0;
  3318. }
  3319. /*
  3320. * delete the item at the leaf level in path. If that empties
  3321. * the leaf, remove it from the tree
  3322. */
  3323. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3324. struct btrfs_path *path, int slot, int nr)
  3325. {
  3326. struct extent_buffer *leaf;
  3327. struct btrfs_item *item;
  3328. int last_off;
  3329. int dsize = 0;
  3330. int ret = 0;
  3331. int wret;
  3332. int i;
  3333. u32 nritems;
  3334. leaf = path->nodes[0];
  3335. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3336. for (i = 0; i < nr; i++)
  3337. dsize += btrfs_item_size_nr(leaf, slot + i);
  3338. nritems = btrfs_header_nritems(leaf);
  3339. if (slot + nr != nritems) {
  3340. int data_end = leaf_data_end(root, leaf);
  3341. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3342. data_end + dsize,
  3343. btrfs_leaf_data(leaf) + data_end,
  3344. last_off - data_end);
  3345. for (i = slot + nr; i < nritems; i++) {
  3346. u32 ioff;
  3347. item = btrfs_item_nr(leaf, i);
  3348. ioff = btrfs_item_offset(leaf, item);
  3349. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3350. }
  3351. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3352. btrfs_item_nr_offset(slot + nr),
  3353. sizeof(struct btrfs_item) *
  3354. (nritems - slot - nr));
  3355. }
  3356. btrfs_set_header_nritems(leaf, nritems - nr);
  3357. nritems -= nr;
  3358. /* delete the leaf if we've emptied it */
  3359. if (nritems == 0) {
  3360. if (leaf == root->node) {
  3361. btrfs_set_header_level(leaf, 0);
  3362. } else {
  3363. btrfs_set_path_blocking(path);
  3364. clean_tree_block(trans, root, leaf);
  3365. ret = btrfs_del_leaf(trans, root, path, leaf);
  3366. BUG_ON(ret);
  3367. }
  3368. } else {
  3369. int used = leaf_space_used(leaf, 0, nritems);
  3370. if (slot == 0) {
  3371. struct btrfs_disk_key disk_key;
  3372. btrfs_item_key(leaf, &disk_key, 0);
  3373. wret = fixup_low_keys(trans, root, path,
  3374. &disk_key, 1);
  3375. if (wret)
  3376. ret = wret;
  3377. }
  3378. /* delete the leaf if it is mostly empty */
  3379. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3380. /* push_leaf_left fixes the path.
  3381. * make sure the path still points to our leaf
  3382. * for possible call to del_ptr below
  3383. */
  3384. slot = path->slots[1];
  3385. extent_buffer_get(leaf);
  3386. btrfs_set_path_blocking(path);
  3387. wret = push_leaf_left(trans, root, path, 1, 1,
  3388. 1, (u32)-1);
  3389. if (wret < 0 && wret != -ENOSPC)
  3390. ret = wret;
  3391. if (path->nodes[0] == leaf &&
  3392. btrfs_header_nritems(leaf)) {
  3393. wret = push_leaf_right(trans, root, path, 1,
  3394. 1, 1, 0);
  3395. if (wret < 0 && wret != -ENOSPC)
  3396. ret = wret;
  3397. }
  3398. if (btrfs_header_nritems(leaf) == 0) {
  3399. path->slots[1] = slot;
  3400. ret = btrfs_del_leaf(trans, root, path, leaf);
  3401. BUG_ON(ret);
  3402. free_extent_buffer(leaf);
  3403. } else {
  3404. /* if we're still in the path, make sure
  3405. * we're dirty. Otherwise, one of the
  3406. * push_leaf functions must have already
  3407. * dirtied this buffer
  3408. */
  3409. if (path->nodes[0] == leaf)
  3410. btrfs_mark_buffer_dirty(leaf);
  3411. free_extent_buffer(leaf);
  3412. }
  3413. } else {
  3414. btrfs_mark_buffer_dirty(leaf);
  3415. }
  3416. }
  3417. return ret;
  3418. }
  3419. /*
  3420. * search the tree again to find a leaf with lesser keys
  3421. * returns 0 if it found something or 1 if there are no lesser leaves.
  3422. * returns < 0 on io errors.
  3423. *
  3424. * This may release the path, and so you may lose any locks held at the
  3425. * time you call it.
  3426. */
  3427. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3428. {
  3429. struct btrfs_key key;
  3430. struct btrfs_disk_key found_key;
  3431. int ret;
  3432. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3433. if (key.offset > 0)
  3434. key.offset--;
  3435. else if (key.type > 0)
  3436. key.type--;
  3437. else if (key.objectid > 0)
  3438. key.objectid--;
  3439. else
  3440. return 1;
  3441. btrfs_release_path(path);
  3442. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3443. if (ret < 0)
  3444. return ret;
  3445. btrfs_item_key(path->nodes[0], &found_key, 0);
  3446. ret = comp_keys(&found_key, &key);
  3447. if (ret < 0)
  3448. return 0;
  3449. return 1;
  3450. }
  3451. /*
  3452. * A helper function to walk down the tree starting at min_key, and looking
  3453. * for nodes or leaves that are either in cache or have a minimum
  3454. * transaction id. This is used by the btree defrag code, and tree logging
  3455. *
  3456. * This does not cow, but it does stuff the starting key it finds back
  3457. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3458. * key and get a writable path.
  3459. *
  3460. * This does lock as it descends, and path->keep_locks should be set
  3461. * to 1 by the caller.
  3462. *
  3463. * This honors path->lowest_level to prevent descent past a given level
  3464. * of the tree.
  3465. *
  3466. * min_trans indicates the oldest transaction that you are interested
  3467. * in walking through. Any nodes or leaves older than min_trans are
  3468. * skipped over (without reading them).
  3469. *
  3470. * returns zero if something useful was found, < 0 on error and 1 if there
  3471. * was nothing in the tree that matched the search criteria.
  3472. */
  3473. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3474. struct btrfs_key *max_key,
  3475. struct btrfs_path *path, int cache_only,
  3476. u64 min_trans)
  3477. {
  3478. struct extent_buffer *cur;
  3479. struct btrfs_key found_key;
  3480. int slot;
  3481. int sret;
  3482. u32 nritems;
  3483. int level;
  3484. int ret = 1;
  3485. WARN_ON(!path->keep_locks);
  3486. again:
  3487. cur = btrfs_read_lock_root_node(root);
  3488. level = btrfs_header_level(cur);
  3489. WARN_ON(path->nodes[level]);
  3490. path->nodes[level] = cur;
  3491. path->locks[level] = BTRFS_READ_LOCK;
  3492. if (btrfs_header_generation(cur) < min_trans) {
  3493. ret = 1;
  3494. goto out;
  3495. }
  3496. while (1) {
  3497. nritems = btrfs_header_nritems(cur);
  3498. level = btrfs_header_level(cur);
  3499. sret = bin_search(cur, min_key, level, &slot);
  3500. /* at the lowest level, we're done, setup the path and exit */
  3501. if (level == path->lowest_level) {
  3502. if (slot >= nritems)
  3503. goto find_next_key;
  3504. ret = 0;
  3505. path->slots[level] = slot;
  3506. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3507. goto out;
  3508. }
  3509. if (sret && slot > 0)
  3510. slot--;
  3511. /*
  3512. * check this node pointer against the cache_only and
  3513. * min_trans parameters. If it isn't in cache or is too
  3514. * old, skip to the next one.
  3515. */
  3516. while (slot < nritems) {
  3517. u64 blockptr;
  3518. u64 gen;
  3519. struct extent_buffer *tmp;
  3520. struct btrfs_disk_key disk_key;
  3521. blockptr = btrfs_node_blockptr(cur, slot);
  3522. gen = btrfs_node_ptr_generation(cur, slot);
  3523. if (gen < min_trans) {
  3524. slot++;
  3525. continue;
  3526. }
  3527. if (!cache_only)
  3528. break;
  3529. if (max_key) {
  3530. btrfs_node_key(cur, &disk_key, slot);
  3531. if (comp_keys(&disk_key, max_key) >= 0) {
  3532. ret = 1;
  3533. goto out;
  3534. }
  3535. }
  3536. tmp = btrfs_find_tree_block(root, blockptr,
  3537. btrfs_level_size(root, level - 1));
  3538. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3539. free_extent_buffer(tmp);
  3540. break;
  3541. }
  3542. if (tmp)
  3543. free_extent_buffer(tmp);
  3544. slot++;
  3545. }
  3546. find_next_key:
  3547. /*
  3548. * we didn't find a candidate key in this node, walk forward
  3549. * and find another one
  3550. */
  3551. if (slot >= nritems) {
  3552. path->slots[level] = slot;
  3553. btrfs_set_path_blocking(path);
  3554. sret = btrfs_find_next_key(root, path, min_key, level,
  3555. cache_only, min_trans);
  3556. if (sret == 0) {
  3557. btrfs_release_path(path);
  3558. goto again;
  3559. } else {
  3560. goto out;
  3561. }
  3562. }
  3563. /* save our key for returning back */
  3564. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3565. path->slots[level] = slot;
  3566. if (level == path->lowest_level) {
  3567. ret = 0;
  3568. unlock_up(path, level, 1);
  3569. goto out;
  3570. }
  3571. btrfs_set_path_blocking(path);
  3572. cur = read_node_slot(root, cur, slot);
  3573. BUG_ON(!cur);
  3574. btrfs_tree_read_lock(cur);
  3575. path->locks[level - 1] = BTRFS_READ_LOCK;
  3576. path->nodes[level - 1] = cur;
  3577. unlock_up(path, level, 1);
  3578. btrfs_clear_path_blocking(path, NULL, 0);
  3579. }
  3580. out:
  3581. if (ret == 0)
  3582. memcpy(min_key, &found_key, sizeof(found_key));
  3583. btrfs_set_path_blocking(path);
  3584. return ret;
  3585. }
  3586. /*
  3587. * this is similar to btrfs_next_leaf, but does not try to preserve
  3588. * and fixup the path. It looks for and returns the next key in the
  3589. * tree based on the current path and the cache_only and min_trans
  3590. * parameters.
  3591. *
  3592. * 0 is returned if another key is found, < 0 if there are any errors
  3593. * and 1 is returned if there are no higher keys in the tree
  3594. *
  3595. * path->keep_locks should be set to 1 on the search made before
  3596. * calling this function.
  3597. */
  3598. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3599. struct btrfs_key *key, int level,
  3600. int cache_only, u64 min_trans)
  3601. {
  3602. int slot;
  3603. struct extent_buffer *c;
  3604. WARN_ON(!path->keep_locks);
  3605. while (level < BTRFS_MAX_LEVEL) {
  3606. if (!path->nodes[level])
  3607. return 1;
  3608. slot = path->slots[level] + 1;
  3609. c = path->nodes[level];
  3610. next:
  3611. if (slot >= btrfs_header_nritems(c)) {
  3612. int ret;
  3613. int orig_lowest;
  3614. struct btrfs_key cur_key;
  3615. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3616. !path->nodes[level + 1])
  3617. return 1;
  3618. if (path->locks[level + 1]) {
  3619. level++;
  3620. continue;
  3621. }
  3622. slot = btrfs_header_nritems(c) - 1;
  3623. if (level == 0)
  3624. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3625. else
  3626. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3627. orig_lowest = path->lowest_level;
  3628. btrfs_release_path(path);
  3629. path->lowest_level = level;
  3630. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3631. 0, 0);
  3632. path->lowest_level = orig_lowest;
  3633. if (ret < 0)
  3634. return ret;
  3635. c = path->nodes[level];
  3636. slot = path->slots[level];
  3637. if (ret == 0)
  3638. slot++;
  3639. goto next;
  3640. }
  3641. if (level == 0)
  3642. btrfs_item_key_to_cpu(c, key, slot);
  3643. else {
  3644. u64 blockptr = btrfs_node_blockptr(c, slot);
  3645. u64 gen = btrfs_node_ptr_generation(c, slot);
  3646. if (cache_only) {
  3647. struct extent_buffer *cur;
  3648. cur = btrfs_find_tree_block(root, blockptr,
  3649. btrfs_level_size(root, level - 1));
  3650. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3651. slot++;
  3652. if (cur)
  3653. free_extent_buffer(cur);
  3654. goto next;
  3655. }
  3656. free_extent_buffer(cur);
  3657. }
  3658. if (gen < min_trans) {
  3659. slot++;
  3660. goto next;
  3661. }
  3662. btrfs_node_key_to_cpu(c, key, slot);
  3663. }
  3664. return 0;
  3665. }
  3666. return 1;
  3667. }
  3668. /*
  3669. * search the tree again to find a leaf with greater keys
  3670. * returns 0 if it found something or 1 if there are no greater leaves.
  3671. * returns < 0 on io errors.
  3672. */
  3673. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3674. {
  3675. int slot;
  3676. int level;
  3677. struct extent_buffer *c;
  3678. struct extent_buffer *next;
  3679. struct btrfs_key key;
  3680. u32 nritems;
  3681. int ret;
  3682. int old_spinning = path->leave_spinning;
  3683. int next_rw_lock = 0;
  3684. nritems = btrfs_header_nritems(path->nodes[0]);
  3685. if (nritems == 0)
  3686. return 1;
  3687. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3688. again:
  3689. level = 1;
  3690. next = NULL;
  3691. next_rw_lock = 0;
  3692. btrfs_release_path(path);
  3693. path->keep_locks = 1;
  3694. path->leave_spinning = 1;
  3695. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3696. path->keep_locks = 0;
  3697. if (ret < 0)
  3698. return ret;
  3699. nritems = btrfs_header_nritems(path->nodes[0]);
  3700. /*
  3701. * by releasing the path above we dropped all our locks. A balance
  3702. * could have added more items next to the key that used to be
  3703. * at the very end of the block. So, check again here and
  3704. * advance the path if there are now more items available.
  3705. */
  3706. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3707. if (ret == 0)
  3708. path->slots[0]++;
  3709. ret = 0;
  3710. goto done;
  3711. }
  3712. while (level < BTRFS_MAX_LEVEL) {
  3713. if (!path->nodes[level]) {
  3714. ret = 1;
  3715. goto done;
  3716. }
  3717. slot = path->slots[level] + 1;
  3718. c = path->nodes[level];
  3719. if (slot >= btrfs_header_nritems(c)) {
  3720. level++;
  3721. if (level == BTRFS_MAX_LEVEL) {
  3722. ret = 1;
  3723. goto done;
  3724. }
  3725. continue;
  3726. }
  3727. if (next) {
  3728. btrfs_tree_unlock_rw(next, next_rw_lock);
  3729. free_extent_buffer(next);
  3730. }
  3731. next = c;
  3732. next_rw_lock = path->locks[level];
  3733. ret = read_block_for_search(NULL, root, path, &next, level,
  3734. slot, &key);
  3735. if (ret == -EAGAIN)
  3736. goto again;
  3737. if (ret < 0) {
  3738. btrfs_release_path(path);
  3739. goto done;
  3740. }
  3741. if (!path->skip_locking) {
  3742. ret = btrfs_try_tree_read_lock(next);
  3743. if (!ret) {
  3744. btrfs_set_path_blocking(path);
  3745. btrfs_tree_read_lock(next);
  3746. btrfs_clear_path_blocking(path, next,
  3747. BTRFS_READ_LOCK);
  3748. }
  3749. next_rw_lock = BTRFS_READ_LOCK;
  3750. }
  3751. break;
  3752. }
  3753. path->slots[level] = slot;
  3754. while (1) {
  3755. level--;
  3756. c = path->nodes[level];
  3757. if (path->locks[level])
  3758. btrfs_tree_unlock_rw(c, path->locks[level]);
  3759. free_extent_buffer(c);
  3760. path->nodes[level] = next;
  3761. path->slots[level] = 0;
  3762. if (!path->skip_locking)
  3763. path->locks[level] = next_rw_lock;
  3764. if (!level)
  3765. break;
  3766. ret = read_block_for_search(NULL, root, path, &next, level,
  3767. 0, &key);
  3768. if (ret == -EAGAIN)
  3769. goto again;
  3770. if (ret < 0) {
  3771. btrfs_release_path(path);
  3772. goto done;
  3773. }
  3774. if (!path->skip_locking) {
  3775. ret = btrfs_try_tree_read_lock(next);
  3776. if (!ret) {
  3777. btrfs_set_path_blocking(path);
  3778. btrfs_tree_read_lock(next);
  3779. btrfs_clear_path_blocking(path, next,
  3780. BTRFS_READ_LOCK);
  3781. }
  3782. next_rw_lock = BTRFS_READ_LOCK;
  3783. }
  3784. }
  3785. ret = 0;
  3786. done:
  3787. unlock_up(path, 0, 1);
  3788. path->leave_spinning = old_spinning;
  3789. if (!old_spinning)
  3790. btrfs_set_path_blocking(path);
  3791. return ret;
  3792. }
  3793. /*
  3794. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3795. * searching until it gets past min_objectid or finds an item of 'type'
  3796. *
  3797. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3798. */
  3799. int btrfs_previous_item(struct btrfs_root *root,
  3800. struct btrfs_path *path, u64 min_objectid,
  3801. int type)
  3802. {
  3803. struct btrfs_key found_key;
  3804. struct extent_buffer *leaf;
  3805. u32 nritems;
  3806. int ret;
  3807. while (1) {
  3808. if (path->slots[0] == 0) {
  3809. btrfs_set_path_blocking(path);
  3810. ret = btrfs_prev_leaf(root, path);
  3811. if (ret != 0)
  3812. return ret;
  3813. } else {
  3814. path->slots[0]--;
  3815. }
  3816. leaf = path->nodes[0];
  3817. nritems = btrfs_header_nritems(leaf);
  3818. if (nritems == 0)
  3819. return 1;
  3820. if (path->slots[0] == nritems)
  3821. path->slots[0]--;
  3822. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3823. if (found_key.objectid < min_objectid)
  3824. break;
  3825. if (found_key.type == type)
  3826. return 0;
  3827. if (found_key.objectid == min_objectid &&
  3828. found_key.type < type)
  3829. break;
  3830. }
  3831. return 1;
  3832. }