pch_udc.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/errno.h>
  23. #include <linux/list.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/usb/ch9.h>
  26. #include <linux/usb/gadget.h>
  27. /* Address offset of Registers */
  28. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  29. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  30. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  31. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  32. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  33. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  34. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  35. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  36. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  37. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  38. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  39. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  40. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  41. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  42. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  43. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  44. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  45. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  46. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  47. /* Endpoint control register */
  48. /* Bit position */
  49. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  50. #define UDC_EPCTL_RRDY (1 << 9)
  51. #define UDC_EPCTL_CNAK (1 << 8)
  52. #define UDC_EPCTL_SNAK (1 << 7)
  53. #define UDC_EPCTL_NAK (1 << 6)
  54. #define UDC_EPCTL_P (1 << 3)
  55. #define UDC_EPCTL_F (1 << 1)
  56. #define UDC_EPCTL_S (1 << 0)
  57. #define UDC_EPCTL_ET_SHIFT 4
  58. /* Mask patern */
  59. #define UDC_EPCTL_ET_MASK 0x00000030
  60. /* Value for ET field */
  61. #define UDC_EPCTL_ET_CONTROL 0
  62. #define UDC_EPCTL_ET_ISO 1
  63. #define UDC_EPCTL_ET_BULK 2
  64. #define UDC_EPCTL_ET_INTERRUPT 3
  65. /* Endpoint status register */
  66. /* Bit position */
  67. #define UDC_EPSTS_XFERDONE (1 << 27)
  68. #define UDC_EPSTS_RSS (1 << 26)
  69. #define UDC_EPSTS_RCS (1 << 25)
  70. #define UDC_EPSTS_TXEMPTY (1 << 24)
  71. #define UDC_EPSTS_TDC (1 << 10)
  72. #define UDC_EPSTS_HE (1 << 9)
  73. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  74. #define UDC_EPSTS_BNA (1 << 7)
  75. #define UDC_EPSTS_IN (1 << 6)
  76. #define UDC_EPSTS_OUT_SHIFT 4
  77. /* Mask patern */
  78. #define UDC_EPSTS_OUT_MASK 0x00000030
  79. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  80. /* Value for OUT field */
  81. #define UDC_EPSTS_OUT_SETUP 2
  82. #define UDC_EPSTS_OUT_DATA 1
  83. /* Device configuration register */
  84. /* Bit position */
  85. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  86. #define UDC_DEVCFG_SP (1 << 3)
  87. /* SPD Valee */
  88. #define UDC_DEVCFG_SPD_HS 0x0
  89. #define UDC_DEVCFG_SPD_FS 0x1
  90. #define UDC_DEVCFG_SPD_LS 0x2
  91. /* Device control register */
  92. /* Bit position */
  93. #define UDC_DEVCTL_THLEN_SHIFT 24
  94. #define UDC_DEVCTL_BRLEN_SHIFT 16
  95. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  96. #define UDC_DEVCTL_SD (1 << 10)
  97. #define UDC_DEVCTL_MODE (1 << 9)
  98. #define UDC_DEVCTL_BREN (1 << 8)
  99. #define UDC_DEVCTL_THE (1 << 7)
  100. #define UDC_DEVCTL_DU (1 << 4)
  101. #define UDC_DEVCTL_TDE (1 << 3)
  102. #define UDC_DEVCTL_RDE (1 << 2)
  103. #define UDC_DEVCTL_RES (1 << 0)
  104. /* Device status register */
  105. /* Bit position */
  106. #define UDC_DEVSTS_TS_SHIFT 18
  107. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  108. #define UDC_DEVSTS_ALT_SHIFT 8
  109. #define UDC_DEVSTS_INTF_SHIFT 4
  110. #define UDC_DEVSTS_CFG_SHIFT 0
  111. /* Mask patern */
  112. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  113. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  114. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  115. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  116. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  117. /* value for maximum speed for SPEED field */
  118. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  119. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  120. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  121. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  122. /* Device irq register */
  123. /* Bit position */
  124. #define UDC_DEVINT_RWKP (1 << 7)
  125. #define UDC_DEVINT_ENUM (1 << 6)
  126. #define UDC_DEVINT_SOF (1 << 5)
  127. #define UDC_DEVINT_US (1 << 4)
  128. #define UDC_DEVINT_UR (1 << 3)
  129. #define UDC_DEVINT_ES (1 << 2)
  130. #define UDC_DEVINT_SI (1 << 1)
  131. #define UDC_DEVINT_SC (1 << 0)
  132. /* Mask patern */
  133. #define UDC_DEVINT_MSK 0x7f
  134. /* Endpoint irq register */
  135. /* Bit position */
  136. #define UDC_EPINT_IN_SHIFT 0
  137. #define UDC_EPINT_OUT_SHIFT 16
  138. #define UDC_EPINT_IN_EP0 (1 << 0)
  139. #define UDC_EPINT_OUT_EP0 (1 << 16)
  140. /* Mask patern */
  141. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  142. /* UDC_CSR_BUSY Status register */
  143. /* Bit position */
  144. #define UDC_CSR_BUSY (1 << 0)
  145. /* SOFT RESET register */
  146. /* Bit position */
  147. #define UDC_PSRST (1 << 1)
  148. #define UDC_SRST (1 << 0)
  149. /* USB_DEVICE endpoint register */
  150. /* Bit position */
  151. #define UDC_CSR_NE_NUM_SHIFT 0
  152. #define UDC_CSR_NE_DIR_SHIFT 4
  153. #define UDC_CSR_NE_TYPE_SHIFT 5
  154. #define UDC_CSR_NE_CFG_SHIFT 7
  155. #define UDC_CSR_NE_INTF_SHIFT 11
  156. #define UDC_CSR_NE_ALT_SHIFT 15
  157. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  158. /* Mask patern */
  159. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  160. #define UDC_CSR_NE_DIR_MASK 0x00000010
  161. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  162. #define UDC_CSR_NE_CFG_MASK 0x00000780
  163. #define UDC_CSR_NE_INTF_MASK 0x00007800
  164. #define UDC_CSR_NE_ALT_MASK 0x00078000
  165. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  166. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  167. #define PCH_UDC_EPINT(in, num)\
  168. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  169. /* Index of endpoint */
  170. #define UDC_EP0IN_IDX 0
  171. #define UDC_EP0OUT_IDX 1
  172. #define UDC_EPIN_IDX(ep) (ep * 2)
  173. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  174. #define PCH_UDC_EP0 0
  175. #define PCH_UDC_EP1 1
  176. #define PCH_UDC_EP2 2
  177. #define PCH_UDC_EP3 3
  178. /* Number of endpoint */
  179. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  180. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  181. /* Length Value */
  182. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  183. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  184. /* Value of EP Buffer Size */
  185. #define UDC_EP0IN_BUFF_SIZE 16
  186. #define UDC_EPIN_BUFF_SIZE 256
  187. #define UDC_EP0OUT_BUFF_SIZE 16
  188. #define UDC_EPOUT_BUFF_SIZE 256
  189. /* Value of EP maximum packet size */
  190. #define UDC_EP0IN_MAX_PKT_SIZE 64
  191. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  192. #define UDC_BULK_MAX_PKT_SIZE 512
  193. /* DMA */
  194. #define DMA_DIR_RX 1 /* DMA for data receive */
  195. #define DMA_DIR_TX 2 /* DMA for data transmit */
  196. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  197. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  198. /**
  199. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  200. * for data
  201. * @status: Status quadlet
  202. * @reserved: Reserved
  203. * @dataptr: Buffer descriptor
  204. * @next: Next descriptor
  205. */
  206. struct pch_udc_data_dma_desc {
  207. u32 status;
  208. u32 reserved;
  209. u32 dataptr;
  210. u32 next;
  211. };
  212. /**
  213. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  214. * for control data
  215. * @status: Status
  216. * @reserved: Reserved
  217. * @data12: First setup word
  218. * @data34: Second setup word
  219. */
  220. struct pch_udc_stp_dma_desc {
  221. u32 status;
  222. u32 reserved;
  223. struct usb_ctrlrequest request;
  224. } __attribute((packed));
  225. /* DMA status definitions */
  226. /* Buffer status */
  227. #define PCH_UDC_BUFF_STS 0xC0000000
  228. #define PCH_UDC_BS_HST_RDY 0x00000000
  229. #define PCH_UDC_BS_DMA_BSY 0x40000000
  230. #define PCH_UDC_BS_DMA_DONE 0x80000000
  231. #define PCH_UDC_BS_HST_BSY 0xC0000000
  232. /* Rx/Tx Status */
  233. #define PCH_UDC_RXTX_STS 0x30000000
  234. #define PCH_UDC_RTS_SUCC 0x00000000
  235. #define PCH_UDC_RTS_DESERR 0x10000000
  236. #define PCH_UDC_RTS_BUFERR 0x30000000
  237. /* Last Descriptor Indication */
  238. #define PCH_UDC_DMA_LAST 0x08000000
  239. /* Number of Rx/Tx Bytes Mask */
  240. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  241. /**
  242. * struct pch_udc_cfg_data - Structure to hold current configuration
  243. * and interface information
  244. * @cur_cfg: current configuration in use
  245. * @cur_intf: current interface in use
  246. * @cur_alt: current alt interface in use
  247. */
  248. struct pch_udc_cfg_data {
  249. u16 cur_cfg;
  250. u16 cur_intf;
  251. u16 cur_alt;
  252. };
  253. /**
  254. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  255. * @ep: embedded ep request
  256. * @td_stp_phys: for setup request
  257. * @td_data_phys: for data request
  258. * @td_stp: for setup request
  259. * @td_data: for data request
  260. * @dev: reference to device struct
  261. * @offset_addr: offset address of ep register
  262. * @desc: for this ep
  263. * @queue: queue for requests
  264. * @num: endpoint number
  265. * @in: endpoint is IN
  266. * @halted: endpoint halted?
  267. * @epsts: Endpoint status
  268. */
  269. struct pch_udc_ep {
  270. struct usb_ep ep;
  271. dma_addr_t td_stp_phys;
  272. dma_addr_t td_data_phys;
  273. struct pch_udc_stp_dma_desc *td_stp;
  274. struct pch_udc_data_dma_desc *td_data;
  275. struct pch_udc_dev *dev;
  276. unsigned long offset_addr;
  277. const struct usb_endpoint_descriptor *desc;
  278. struct list_head queue;
  279. unsigned num:5,
  280. in:1,
  281. halted:1;
  282. unsigned long epsts;
  283. };
  284. /**
  285. * struct pch_udc_dev - Structure holding complete information
  286. * of the PCH USB device
  287. * @gadget: gadget driver data
  288. * @driver: reference to gadget driver bound
  289. * @pdev: reference to the PCI device
  290. * @ep: array of endpoints
  291. * @lock: protects all state
  292. * @active: enabled the PCI device
  293. * @stall: stall requested
  294. * @prot_stall: protcol stall requested
  295. * @irq_registered: irq registered with system
  296. * @mem_region: device memory mapped
  297. * @registered: driver regsitered with system
  298. * @suspended: driver in suspended state
  299. * @connected: gadget driver associated
  300. * @set_cfg_not_acked: pending acknowledgement 4 setup
  301. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  302. * @data_requests: DMA pool for data requests
  303. * @stp_requests: DMA pool for setup requests
  304. * @dma_addr: DMA pool for received
  305. * @ep0out_buf: Buffer for DMA
  306. * @setup_data: Received setup data
  307. * @phys_addr: of device memory
  308. * @base_addr: for mapped device memory
  309. * @irq: IRQ line for the device
  310. * @cfg_data: current cfg, intf, and alt in use
  311. */
  312. struct pch_udc_dev {
  313. struct usb_gadget gadget;
  314. struct usb_gadget_driver *driver;
  315. struct pci_dev *pdev;
  316. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  317. spinlock_t lock; /* protects all state */
  318. unsigned active:1,
  319. stall:1,
  320. prot_stall:1,
  321. irq_registered:1,
  322. mem_region:1,
  323. registered:1,
  324. suspended:1,
  325. connected:1,
  326. set_cfg_not_acked:1,
  327. waiting_zlp_ack:1;
  328. struct pci_pool *data_requests;
  329. struct pci_pool *stp_requests;
  330. dma_addr_t dma_addr;
  331. void *ep0out_buf;
  332. struct usb_ctrlrequest setup_data;
  333. unsigned long phys_addr;
  334. void __iomem *base_addr;
  335. unsigned irq;
  336. struct pch_udc_cfg_data cfg_data;
  337. };
  338. #define PCH_UDC_PCI_BAR 1
  339. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  340. #define PCI_VENDOR_ID_ROHM 0x10DB
  341. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  342. static const char ep0_string[] = "ep0in";
  343. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  344. struct pch_udc_dev *pch_udc; /* pointer to device object */
  345. static int speed_fs;
  346. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  347. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  348. /**
  349. * struct pch_udc_request - Structure holding a PCH USB device request packet
  350. * @req: embedded ep request
  351. * @td_data_phys: phys. address
  352. * @td_data: first dma desc. of chain
  353. * @td_data_last: last dma desc. of chain
  354. * @queue: associated queue
  355. * @dma_going: DMA in progress for request
  356. * @dma_mapped: DMA memory mapped for request
  357. * @dma_done: DMA completed for request
  358. * @chain_len: chain length
  359. * @buf: Buffer memory for align adjustment
  360. * @dma: DMA memory for align adjustment
  361. */
  362. struct pch_udc_request {
  363. struct usb_request req;
  364. dma_addr_t td_data_phys;
  365. struct pch_udc_data_dma_desc *td_data;
  366. struct pch_udc_data_dma_desc *td_data_last;
  367. struct list_head queue;
  368. unsigned dma_going:1,
  369. dma_mapped:1,
  370. dma_done:1;
  371. unsigned chain_len;
  372. void *buf;
  373. dma_addr_t dma;
  374. };
  375. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  376. {
  377. return ioread32(dev->base_addr + reg);
  378. }
  379. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  380. unsigned long val, unsigned long reg)
  381. {
  382. iowrite32(val, dev->base_addr + reg);
  383. }
  384. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  385. unsigned long reg,
  386. unsigned long bitmask)
  387. {
  388. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  389. }
  390. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  391. unsigned long reg,
  392. unsigned long bitmask)
  393. {
  394. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  395. }
  396. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  397. {
  398. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  399. }
  400. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  401. unsigned long val, unsigned long reg)
  402. {
  403. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  404. }
  405. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  406. unsigned long reg,
  407. unsigned long bitmask)
  408. {
  409. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  410. }
  411. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  412. unsigned long reg,
  413. unsigned long bitmask)
  414. {
  415. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  416. }
  417. /**
  418. * pch_udc_csr_busy() - Wait till idle.
  419. * @dev: Reference to pch_udc_dev structure
  420. */
  421. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  422. {
  423. unsigned int count = 200;
  424. /* Wait till idle */
  425. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  426. && --count)
  427. cpu_relax();
  428. if (!count)
  429. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  430. }
  431. /**
  432. * pch_udc_write_csr() - Write the command and status registers.
  433. * @dev: Reference to pch_udc_dev structure
  434. * @val: value to be written to CSR register
  435. * @addr: address of CSR register
  436. */
  437. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  438. unsigned int ep)
  439. {
  440. unsigned long reg = PCH_UDC_CSR(ep);
  441. pch_udc_csr_busy(dev); /* Wait till idle */
  442. pch_udc_writel(dev, val, reg);
  443. pch_udc_csr_busy(dev); /* Wait till idle */
  444. }
  445. /**
  446. * pch_udc_read_csr() - Read the command and status registers.
  447. * @dev: Reference to pch_udc_dev structure
  448. * @addr: address of CSR register
  449. *
  450. * Return codes: content of CSR register
  451. */
  452. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  453. {
  454. unsigned long reg = PCH_UDC_CSR(ep);
  455. pch_udc_csr_busy(dev); /* Wait till idle */
  456. pch_udc_readl(dev, reg); /* Dummy read */
  457. pch_udc_csr_busy(dev); /* Wait till idle */
  458. return pch_udc_readl(dev, reg);
  459. }
  460. /**
  461. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  462. * @dev: Reference to pch_udc_dev structure
  463. */
  464. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  465. {
  466. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  467. mdelay(1);
  468. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  469. }
  470. /**
  471. * pch_udc_get_frame() - Get the current frame from device status register
  472. * @dev: Reference to pch_udc_dev structure
  473. * Retern current frame
  474. */
  475. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  476. {
  477. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  478. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  479. }
  480. /**
  481. * pch_udc_clear_selfpowered() - Clear the self power control
  482. * @dev: Reference to pch_udc_regs structure
  483. */
  484. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  485. {
  486. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  487. }
  488. /**
  489. * pch_udc_set_selfpowered() - Set the self power control
  490. * @dev: Reference to pch_udc_regs structure
  491. */
  492. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  493. {
  494. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  495. }
  496. /**
  497. * pch_udc_set_disconnect() - Set the disconnect status.
  498. * @dev: Reference to pch_udc_regs structure
  499. */
  500. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  501. {
  502. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  503. }
  504. /**
  505. * pch_udc_clear_disconnect() - Clear the disconnect status.
  506. * @dev: Reference to pch_udc_regs structure
  507. */
  508. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  509. {
  510. /* Clear the disconnect */
  511. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  512. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  513. mdelay(1);
  514. /* Resume USB signalling */
  515. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  516. }
  517. /**
  518. * pch_udc_vbus_session() - set or clearr the disconnect status.
  519. * @dev: Reference to pch_udc_regs structure
  520. * @is_active: Parameter specifying the action
  521. * 0: indicating VBUS power is ending
  522. * !0: indicating VBUS power is starting
  523. */
  524. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  525. int is_active)
  526. {
  527. if (is_active)
  528. pch_udc_clear_disconnect(dev);
  529. else
  530. pch_udc_set_disconnect(dev);
  531. }
  532. /**
  533. * pch_udc_ep_set_stall() - Set the stall of endpoint
  534. * @ep: Reference to structure of type pch_udc_ep_regs
  535. */
  536. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  537. {
  538. if (ep->in) {
  539. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  540. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  541. } else {
  542. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  543. }
  544. }
  545. /**
  546. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  547. * @ep: Reference to structure of type pch_udc_ep_regs
  548. */
  549. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  550. {
  551. /* Clear the stall */
  552. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  553. /* Clear NAK by writing CNAK */
  554. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  555. }
  556. /**
  557. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  558. * @ep: Reference to structure of type pch_udc_ep_regs
  559. * @type: Type of endpoint
  560. */
  561. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  562. u8 type)
  563. {
  564. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  565. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  566. }
  567. /**
  568. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  569. * @ep: Reference to structure of type pch_udc_ep_regs
  570. * @buf_size: The buffer word size
  571. */
  572. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  573. u32 buf_size, u32 ep_in)
  574. {
  575. u32 data;
  576. if (ep_in) {
  577. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  578. data = (data & 0xffff0000) | (buf_size & 0xffff);
  579. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  580. } else {
  581. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  582. data = (buf_size << 16) | (data & 0xffff);
  583. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  584. }
  585. }
  586. /**
  587. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  588. * @ep: Reference to structure of type pch_udc_ep_regs
  589. * @pkt_size: The packet byte size
  590. */
  591. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  592. {
  593. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  594. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  595. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  596. }
  597. /**
  598. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  599. * @ep: Reference to structure of type pch_udc_ep_regs
  600. * @addr: Address of the register
  601. */
  602. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  603. {
  604. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  605. }
  606. /**
  607. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  608. * @ep: Reference to structure of type pch_udc_ep_regs
  609. * @addr: Address of the register
  610. */
  611. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  612. {
  613. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  614. }
  615. /**
  616. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  617. * @ep: Reference to structure of type pch_udc_ep_regs
  618. */
  619. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  620. {
  621. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  622. }
  623. /**
  624. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  625. * @ep: Reference to structure of type pch_udc_ep_regs
  626. */
  627. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  628. {
  629. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  630. }
  631. /**
  632. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  633. * @ep: Reference to structure of type pch_udc_ep_regs
  634. */
  635. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  636. {
  637. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  638. }
  639. /**
  640. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  641. * register depending on the direction specified
  642. * @dev: Reference to structure of type pch_udc_regs
  643. * @dir: whether Tx or Rx
  644. * DMA_DIR_RX: Receive
  645. * DMA_DIR_TX: Transmit
  646. */
  647. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  648. {
  649. if (dir == DMA_DIR_RX)
  650. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  651. else if (dir == DMA_DIR_TX)
  652. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  653. }
  654. /**
  655. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  656. * register depending on the direction specified
  657. * @dev: Reference to structure of type pch_udc_regs
  658. * @dir: Whether Tx or Rx
  659. * DMA_DIR_RX: Receive
  660. * DMA_DIR_TX: Transmit
  661. */
  662. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  663. {
  664. if (dir == DMA_DIR_RX)
  665. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  666. else if (dir == DMA_DIR_TX)
  667. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  668. }
  669. /**
  670. * pch_udc_set_csr_done() - Set the device control register
  671. * CSR done field (bit 13)
  672. * @dev: reference to structure of type pch_udc_regs
  673. */
  674. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  675. {
  676. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  677. }
  678. /**
  679. * pch_udc_disable_interrupts() - Disables the specified interrupts
  680. * @dev: Reference to structure of type pch_udc_regs
  681. * @mask: Mask to disable interrupts
  682. */
  683. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  684. u32 mask)
  685. {
  686. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  687. }
  688. /**
  689. * pch_udc_enable_interrupts() - Enable the specified interrupts
  690. * @dev: Reference to structure of type pch_udc_regs
  691. * @mask: Mask to enable interrupts
  692. */
  693. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  694. u32 mask)
  695. {
  696. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  697. }
  698. /**
  699. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  700. * @dev: Reference to structure of type pch_udc_regs
  701. * @mask: Mask to disable interrupts
  702. */
  703. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  704. u32 mask)
  705. {
  706. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  707. }
  708. /**
  709. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  710. * @dev: Reference to structure of type pch_udc_regs
  711. * @mask: Mask to enable interrupts
  712. */
  713. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  714. u32 mask)
  715. {
  716. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  717. }
  718. /**
  719. * pch_udc_read_device_interrupts() - Read the device interrupts
  720. * @dev: Reference to structure of type pch_udc_regs
  721. * Retern The device interrupts
  722. */
  723. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  724. {
  725. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  726. }
  727. /**
  728. * pch_udc_write_device_interrupts() - Write device interrupts
  729. * @dev: Reference to structure of type pch_udc_regs
  730. * @val: The value to be written to interrupt register
  731. */
  732. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  733. u32 val)
  734. {
  735. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  736. }
  737. /**
  738. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  739. * @dev: Reference to structure of type pch_udc_regs
  740. * Retern The endpoint interrupt
  741. */
  742. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  743. {
  744. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  745. }
  746. /**
  747. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  748. * @dev: Reference to structure of type pch_udc_regs
  749. * @val: The value to be written to interrupt register
  750. */
  751. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  752. u32 val)
  753. {
  754. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  755. }
  756. /**
  757. * pch_udc_read_device_status() - Read the device status
  758. * @dev: Reference to structure of type pch_udc_regs
  759. * Retern The device status
  760. */
  761. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  762. {
  763. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  764. }
  765. /**
  766. * pch_udc_read_ep_control() - Read the endpoint control
  767. * @ep: Reference to structure of type pch_udc_ep_regs
  768. * Retern The endpoint control register value
  769. */
  770. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  771. {
  772. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  773. }
  774. /**
  775. * pch_udc_clear_ep_control() - Clear the endpoint control register
  776. * @ep: Reference to structure of type pch_udc_ep_regs
  777. * Retern The endpoint control register value
  778. */
  779. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  780. {
  781. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  782. }
  783. /**
  784. * pch_udc_read_ep_status() - Read the endpoint status
  785. * @ep: Reference to structure of type pch_udc_ep_regs
  786. * Retern The endpoint status
  787. */
  788. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  789. {
  790. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  791. }
  792. /**
  793. * pch_udc_clear_ep_status() - Clear the endpoint status
  794. * @ep: Reference to structure of type pch_udc_ep_regs
  795. * @stat: Endpoint status
  796. */
  797. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  798. u32 stat)
  799. {
  800. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  801. }
  802. /**
  803. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  804. * of the endpoint control register
  805. * @ep: Reference to structure of type pch_udc_ep_regs
  806. */
  807. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  808. {
  809. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  810. }
  811. /**
  812. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  813. * of the endpoint control register
  814. * @ep: reference to structure of type pch_udc_ep_regs
  815. */
  816. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  817. {
  818. unsigned int loopcnt = 0;
  819. struct pch_udc_dev *dev = ep->dev;
  820. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  821. return;
  822. if (!ep->in) {
  823. loopcnt = 10000;
  824. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  825. --loopcnt)
  826. udelay(5);
  827. if (!loopcnt)
  828. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  829. __func__);
  830. }
  831. loopcnt = 10000;
  832. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  833. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  834. udelay(5);
  835. }
  836. if (!loopcnt)
  837. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  838. __func__, ep->num, (ep->in ? "in" : "out"));
  839. }
  840. /**
  841. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  842. * @ep: reference to structure of type pch_udc_ep_regs
  843. * @dir: direction of endpoint
  844. * 0: endpoint is OUT
  845. * !0: endpoint is IN
  846. */
  847. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  848. {
  849. if (dir) { /* IN ep */
  850. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  851. return;
  852. }
  853. }
  854. /**
  855. * pch_udc_ep_enable() - This api enables endpoint
  856. * @regs: Reference to structure pch_udc_ep_regs
  857. * @desc: endpoint descriptor
  858. */
  859. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  860. struct pch_udc_cfg_data *cfg,
  861. const struct usb_endpoint_descriptor *desc)
  862. {
  863. u32 val = 0;
  864. u32 buff_size = 0;
  865. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  866. if (ep->in)
  867. buff_size = UDC_EPIN_BUFF_SIZE;
  868. else
  869. buff_size = UDC_EPOUT_BUFF_SIZE;
  870. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  871. pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
  872. pch_udc_ep_set_nak(ep);
  873. pch_udc_ep_fifo_flush(ep, ep->in);
  874. /* Configure the endpoint */
  875. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  876. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  877. UDC_CSR_NE_TYPE_SHIFT) |
  878. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  879. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  880. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  881. le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
  882. if (ep->in)
  883. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  884. else
  885. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  886. }
  887. /**
  888. * pch_udc_ep_disable() - This api disables endpoint
  889. * @regs: Reference to structure pch_udc_ep_regs
  890. */
  891. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  892. {
  893. if (ep->in) {
  894. /* flush the fifo */
  895. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  896. /* set NAK */
  897. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  898. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  899. } else {
  900. /* set NAK */
  901. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  902. }
  903. /* reset desc pointer */
  904. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  905. }
  906. /**
  907. * pch_udc_wait_ep_stall() - Wait EP stall.
  908. * @dev: Reference to pch_udc_dev structure
  909. */
  910. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  911. {
  912. unsigned int count = 10000;
  913. /* Wait till idle */
  914. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  915. udelay(5);
  916. if (!count)
  917. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  918. }
  919. /**
  920. * pch_udc_init() - This API initializes usb device controller
  921. * @dev: Rreference to pch_udc_regs structure
  922. */
  923. static void pch_udc_init(struct pch_udc_dev *dev)
  924. {
  925. if (NULL == dev) {
  926. pr_err("%s: Invalid address\n", __func__);
  927. return;
  928. }
  929. /* Soft Reset and Reset PHY */
  930. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  931. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  932. mdelay(1);
  933. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  934. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  935. mdelay(1);
  936. /* mask and clear all device interrupts */
  937. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  938. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  939. /* mask and clear all ep interrupts */
  940. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  941. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  942. /* enable dynamic CSR programmingi, self powered and device speed */
  943. if (speed_fs)
  944. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  945. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  946. else /* defaul high speed */
  947. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  948. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  949. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  950. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  951. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  952. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  953. UDC_DEVCTL_THE);
  954. }
  955. /**
  956. * pch_udc_exit() - This API exit usb device controller
  957. * @dev: Reference to pch_udc_regs structure
  958. */
  959. static void pch_udc_exit(struct pch_udc_dev *dev)
  960. {
  961. /* mask all device interrupts */
  962. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  963. /* mask all ep interrupts */
  964. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  965. /* put device in disconnected state */
  966. pch_udc_set_disconnect(dev);
  967. }
  968. /**
  969. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  970. * @gadget: Reference to the gadget driver
  971. *
  972. * Return codes:
  973. * 0: Success
  974. * -EINVAL: If the gadget passed is NULL
  975. */
  976. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  977. {
  978. struct pch_udc_dev *dev;
  979. if (!gadget)
  980. return -EINVAL;
  981. dev = container_of(gadget, struct pch_udc_dev, gadget);
  982. return pch_udc_get_frame(dev);
  983. }
  984. /**
  985. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  986. * @gadget: Reference to the gadget driver
  987. *
  988. * Return codes:
  989. * 0: Success
  990. * -EINVAL: If the gadget passed is NULL
  991. */
  992. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  993. {
  994. struct pch_udc_dev *dev;
  995. unsigned long flags;
  996. if (!gadget)
  997. return -EINVAL;
  998. dev = container_of(gadget, struct pch_udc_dev, gadget);
  999. spin_lock_irqsave(&dev->lock, flags);
  1000. pch_udc_rmt_wakeup(dev);
  1001. spin_unlock_irqrestore(&dev->lock, flags);
  1002. return 0;
  1003. }
  1004. /**
  1005. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1006. * is self powered or not
  1007. * @gadget: Reference to the gadget driver
  1008. * @value: Specifies self powered or not
  1009. *
  1010. * Return codes:
  1011. * 0: Success
  1012. * -EINVAL: If the gadget passed is NULL
  1013. */
  1014. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1015. {
  1016. struct pch_udc_dev *dev;
  1017. if (!gadget)
  1018. return -EINVAL;
  1019. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1020. if (value)
  1021. pch_udc_set_selfpowered(dev);
  1022. else
  1023. pch_udc_clear_selfpowered(dev);
  1024. return 0;
  1025. }
  1026. /**
  1027. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1028. * visible/invisible to the host
  1029. * @gadget: Reference to the gadget driver
  1030. * @is_on: Specifies whether the pull up is made active or inactive
  1031. *
  1032. * Return codes:
  1033. * 0: Success
  1034. * -EINVAL: If the gadget passed is NULL
  1035. */
  1036. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1037. {
  1038. struct pch_udc_dev *dev;
  1039. if (!gadget)
  1040. return -EINVAL;
  1041. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1042. pch_udc_vbus_session(dev, is_on);
  1043. return 0;
  1044. }
  1045. /**
  1046. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1047. * transceiver (or GPIO) that
  1048. * detects a VBUS power session starting/ending
  1049. * @gadget: Reference to the gadget driver
  1050. * @is_active: specifies whether the session is starting or ending
  1051. *
  1052. * Return codes:
  1053. * 0: Success
  1054. * -EINVAL: If the gadget passed is NULL
  1055. */
  1056. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1057. {
  1058. struct pch_udc_dev *dev;
  1059. if (!gadget)
  1060. return -EINVAL;
  1061. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1062. pch_udc_vbus_session(dev, is_active);
  1063. return 0;
  1064. }
  1065. /**
  1066. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1067. * SET_CONFIGURATION calls to
  1068. * specify how much power the device can consume
  1069. * @gadget: Reference to the gadget driver
  1070. * @mA: specifies the current limit in 2mA unit
  1071. *
  1072. * Return codes:
  1073. * -EINVAL: If the gadget passed is NULL
  1074. * -EOPNOTSUPP:
  1075. */
  1076. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1077. {
  1078. return -EOPNOTSUPP;
  1079. }
  1080. static int pch_udc_start(struct usb_gadget_driver *driver,
  1081. int (*bind)(struct usb_gadget *));
  1082. static int pch_udc_stop(struct usb_gadget_driver *driver);
  1083. static const struct usb_gadget_ops pch_udc_ops = {
  1084. .get_frame = pch_udc_pcd_get_frame,
  1085. .wakeup = pch_udc_pcd_wakeup,
  1086. .set_selfpowered = pch_udc_pcd_selfpowered,
  1087. .pullup = pch_udc_pcd_pullup,
  1088. .vbus_session = pch_udc_pcd_vbus_session,
  1089. .vbus_draw = pch_udc_pcd_vbus_draw,
  1090. .start = pch_udc_start,
  1091. .stop = pch_udc_stop,
  1092. };
  1093. /**
  1094. * complete_req() - This API is invoked from the driver when processing
  1095. * of a request is complete
  1096. * @ep: Reference to the endpoint structure
  1097. * @req: Reference to the request structure
  1098. * @status: Indicates the success/failure of completion
  1099. */
  1100. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1101. int status)
  1102. {
  1103. struct pch_udc_dev *dev;
  1104. unsigned halted = ep->halted;
  1105. list_del_init(&req->queue);
  1106. /* set new status if pending */
  1107. if (req->req.status == -EINPROGRESS)
  1108. req->req.status = status;
  1109. else
  1110. status = req->req.status;
  1111. dev = ep->dev;
  1112. if (req->dma_mapped) {
  1113. if (req->dma == DMA_ADDR_INVALID) {
  1114. if (ep->in)
  1115. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1116. req->req.length,
  1117. DMA_TO_DEVICE);
  1118. else
  1119. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1120. req->req.length,
  1121. DMA_FROM_DEVICE);
  1122. req->req.dma = DMA_ADDR_INVALID;
  1123. } else {
  1124. if (ep->in)
  1125. dma_unmap_single(&dev->pdev->dev, req->dma,
  1126. req->req.length,
  1127. DMA_TO_DEVICE);
  1128. else {
  1129. dma_unmap_single(&dev->pdev->dev, req->dma,
  1130. req->req.length,
  1131. DMA_FROM_DEVICE);
  1132. memcpy(req->req.buf, req->buf, req->req.length);
  1133. }
  1134. kfree(req->buf);
  1135. req->dma = DMA_ADDR_INVALID;
  1136. }
  1137. req->dma_mapped = 0;
  1138. }
  1139. ep->halted = 1;
  1140. spin_unlock(&dev->lock);
  1141. if (!ep->in)
  1142. pch_udc_ep_clear_rrdy(ep);
  1143. req->req.complete(&ep->ep, &req->req);
  1144. spin_lock(&dev->lock);
  1145. ep->halted = halted;
  1146. }
  1147. /**
  1148. * empty_req_queue() - This API empties the request queue of an endpoint
  1149. * @ep: Reference to the endpoint structure
  1150. */
  1151. static void empty_req_queue(struct pch_udc_ep *ep)
  1152. {
  1153. struct pch_udc_request *req;
  1154. ep->halted = 1;
  1155. while (!list_empty(&ep->queue)) {
  1156. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1157. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1158. }
  1159. }
  1160. /**
  1161. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1162. * for the request
  1163. * @dev Reference to the driver structure
  1164. * @req Reference to the request to be freed
  1165. *
  1166. * Return codes:
  1167. * 0: Success
  1168. */
  1169. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1170. struct pch_udc_request *req)
  1171. {
  1172. struct pch_udc_data_dma_desc *td = req->td_data;
  1173. unsigned i = req->chain_len;
  1174. dma_addr_t addr2;
  1175. dma_addr_t addr = (dma_addr_t)td->next;
  1176. td->next = 0x00;
  1177. for (; i > 1; --i) {
  1178. /* do not free first desc., will be done by free for request */
  1179. td = phys_to_virt(addr);
  1180. addr2 = (dma_addr_t)td->next;
  1181. pci_pool_free(dev->data_requests, td, addr);
  1182. td->next = 0x00;
  1183. addr = addr2;
  1184. }
  1185. req->chain_len = 1;
  1186. }
  1187. /**
  1188. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1189. * a DMA chain
  1190. * @ep: Reference to the endpoint structure
  1191. * @req: Reference to the request
  1192. * @buf_len: The buffer length
  1193. * @gfp_flags: Flags to be used while mapping the data buffer
  1194. *
  1195. * Return codes:
  1196. * 0: success,
  1197. * -ENOMEM: pci_pool_alloc invocation fails
  1198. */
  1199. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1200. struct pch_udc_request *req,
  1201. unsigned long buf_len,
  1202. gfp_t gfp_flags)
  1203. {
  1204. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1205. unsigned long bytes = req->req.length, i = 0;
  1206. dma_addr_t dma_addr;
  1207. unsigned len = 1;
  1208. if (req->chain_len > 1)
  1209. pch_udc_free_dma_chain(ep->dev, req);
  1210. if (req->dma == DMA_ADDR_INVALID)
  1211. td->dataptr = req->req.dma;
  1212. else
  1213. td->dataptr = req->dma;
  1214. td->status = PCH_UDC_BS_HST_BSY;
  1215. for (; ; bytes -= buf_len, ++len) {
  1216. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1217. if (bytes <= buf_len)
  1218. break;
  1219. last = td;
  1220. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1221. &dma_addr);
  1222. if (!td)
  1223. goto nomem;
  1224. i += buf_len;
  1225. td->dataptr = req->td_data->dataptr + i;
  1226. last->next = dma_addr;
  1227. }
  1228. req->td_data_last = td;
  1229. td->status |= PCH_UDC_DMA_LAST;
  1230. td->next = req->td_data_phys;
  1231. req->chain_len = len;
  1232. return 0;
  1233. nomem:
  1234. if (len > 1) {
  1235. req->chain_len = len;
  1236. pch_udc_free_dma_chain(ep->dev, req);
  1237. }
  1238. req->chain_len = 1;
  1239. return -ENOMEM;
  1240. }
  1241. /**
  1242. * prepare_dma() - This function creates and initializes the DMA chain
  1243. * for the request
  1244. * @ep: Reference to the endpoint structure
  1245. * @req: Reference to the request
  1246. * @gfp: Flag to be used while mapping the data buffer
  1247. *
  1248. * Return codes:
  1249. * 0: Success
  1250. * Other 0: linux error number on failure
  1251. */
  1252. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1253. gfp_t gfp)
  1254. {
  1255. int retval;
  1256. /* Allocate and create a DMA chain */
  1257. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1258. if (retval) {
  1259. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1260. return retval;
  1261. }
  1262. if (ep->in)
  1263. req->td_data->status = (req->td_data->status &
  1264. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1265. return 0;
  1266. }
  1267. /**
  1268. * process_zlp() - This function process zero length packets
  1269. * from the gadget driver
  1270. * @ep: Reference to the endpoint structure
  1271. * @req: Reference to the request
  1272. */
  1273. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1274. {
  1275. struct pch_udc_dev *dev = ep->dev;
  1276. /* IN zlp's are handled by hardware */
  1277. complete_req(ep, req, 0);
  1278. /* if set_config or set_intf is waiting for ack by zlp
  1279. * then set CSR_DONE
  1280. */
  1281. if (dev->set_cfg_not_acked) {
  1282. pch_udc_set_csr_done(dev);
  1283. dev->set_cfg_not_acked = 0;
  1284. }
  1285. /* setup command is ACK'ed now by zlp */
  1286. if (!dev->stall && dev->waiting_zlp_ack) {
  1287. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1288. dev->waiting_zlp_ack = 0;
  1289. }
  1290. }
  1291. /**
  1292. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1293. * @ep: Reference to the endpoint structure
  1294. * @req: Reference to the request structure
  1295. */
  1296. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1297. struct pch_udc_request *req)
  1298. {
  1299. struct pch_udc_data_dma_desc *td_data;
  1300. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1301. td_data = req->td_data;
  1302. /* Set the status bits for all descriptors */
  1303. while (1) {
  1304. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1305. PCH_UDC_BS_HST_RDY;
  1306. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1307. break;
  1308. td_data = phys_to_virt(td_data->next);
  1309. }
  1310. /* Write the descriptor pointer */
  1311. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1312. req->dma_going = 1;
  1313. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1314. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1315. pch_udc_ep_clear_nak(ep);
  1316. pch_udc_ep_set_rrdy(ep);
  1317. }
  1318. /**
  1319. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1320. * from gadget driver
  1321. * @usbep: Reference to the USB endpoint structure
  1322. * @desc: Reference to the USB endpoint descriptor structure
  1323. *
  1324. * Return codes:
  1325. * 0: Success
  1326. * -EINVAL:
  1327. * -ESHUTDOWN:
  1328. */
  1329. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1330. const struct usb_endpoint_descriptor *desc)
  1331. {
  1332. struct pch_udc_ep *ep;
  1333. struct pch_udc_dev *dev;
  1334. unsigned long iflags;
  1335. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1336. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1337. return -EINVAL;
  1338. ep = container_of(usbep, struct pch_udc_ep, ep);
  1339. dev = ep->dev;
  1340. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1341. return -ESHUTDOWN;
  1342. spin_lock_irqsave(&dev->lock, iflags);
  1343. ep->desc = desc;
  1344. ep->halted = 0;
  1345. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1346. ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  1347. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1348. spin_unlock_irqrestore(&dev->lock, iflags);
  1349. return 0;
  1350. }
  1351. /**
  1352. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1353. * from gadget driver
  1354. * @usbep Reference to the USB endpoint structure
  1355. *
  1356. * Return codes:
  1357. * 0: Success
  1358. * -EINVAL:
  1359. */
  1360. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1361. {
  1362. struct pch_udc_ep *ep;
  1363. struct pch_udc_dev *dev;
  1364. unsigned long iflags;
  1365. if (!usbep)
  1366. return -EINVAL;
  1367. ep = container_of(usbep, struct pch_udc_ep, ep);
  1368. dev = ep->dev;
  1369. if ((usbep->name == ep0_string) || !ep->desc)
  1370. return -EINVAL;
  1371. spin_lock_irqsave(&ep->dev->lock, iflags);
  1372. empty_req_queue(ep);
  1373. ep->halted = 1;
  1374. pch_udc_ep_disable(ep);
  1375. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1376. ep->desc = NULL;
  1377. INIT_LIST_HEAD(&ep->queue);
  1378. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1379. return 0;
  1380. }
  1381. /**
  1382. * pch_udc_alloc_request() - This function allocates request structure.
  1383. * It is called by gadget driver
  1384. * @usbep: Reference to the USB endpoint structure
  1385. * @gfp: Flag to be used while allocating memory
  1386. *
  1387. * Return codes:
  1388. * NULL: Failure
  1389. * Allocated address: Success
  1390. */
  1391. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1392. gfp_t gfp)
  1393. {
  1394. struct pch_udc_request *req;
  1395. struct pch_udc_ep *ep;
  1396. struct pch_udc_data_dma_desc *dma_desc;
  1397. struct pch_udc_dev *dev;
  1398. if (!usbep)
  1399. return NULL;
  1400. ep = container_of(usbep, struct pch_udc_ep, ep);
  1401. dev = ep->dev;
  1402. req = kzalloc(sizeof *req, gfp);
  1403. if (!req)
  1404. return NULL;
  1405. req->req.dma = DMA_ADDR_INVALID;
  1406. req->dma = DMA_ADDR_INVALID;
  1407. INIT_LIST_HEAD(&req->queue);
  1408. if (!ep->dev->dma_addr)
  1409. return &req->req;
  1410. /* ep0 in requests are allocated from data pool here */
  1411. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1412. &req->td_data_phys);
  1413. if (NULL == dma_desc) {
  1414. kfree(req);
  1415. return NULL;
  1416. }
  1417. /* prevent from using desc. - set HOST BUSY */
  1418. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1419. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1420. req->td_data = dma_desc;
  1421. req->td_data_last = dma_desc;
  1422. req->chain_len = 1;
  1423. return &req->req;
  1424. }
  1425. /**
  1426. * pch_udc_free_request() - This function frees request structure.
  1427. * It is called by gadget driver
  1428. * @usbep: Reference to the USB endpoint structure
  1429. * @usbreq: Reference to the USB request
  1430. */
  1431. static void pch_udc_free_request(struct usb_ep *usbep,
  1432. struct usb_request *usbreq)
  1433. {
  1434. struct pch_udc_ep *ep;
  1435. struct pch_udc_request *req;
  1436. struct pch_udc_dev *dev;
  1437. if (!usbep || !usbreq)
  1438. return;
  1439. ep = container_of(usbep, struct pch_udc_ep, ep);
  1440. req = container_of(usbreq, struct pch_udc_request, req);
  1441. dev = ep->dev;
  1442. if (!list_empty(&req->queue))
  1443. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1444. __func__, usbep->name, req);
  1445. if (req->td_data != NULL) {
  1446. if (req->chain_len > 1)
  1447. pch_udc_free_dma_chain(ep->dev, req);
  1448. pci_pool_free(ep->dev->data_requests, req->td_data,
  1449. req->td_data_phys);
  1450. }
  1451. kfree(req);
  1452. }
  1453. /**
  1454. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1455. * by gadget driver
  1456. * @usbep: Reference to the USB endpoint structure
  1457. * @usbreq: Reference to the USB request
  1458. * @gfp: Flag to be used while mapping the data buffer
  1459. *
  1460. * Return codes:
  1461. * 0: Success
  1462. * linux error number: Failure
  1463. */
  1464. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1465. gfp_t gfp)
  1466. {
  1467. int retval = 0;
  1468. struct pch_udc_ep *ep;
  1469. struct pch_udc_dev *dev;
  1470. struct pch_udc_request *req;
  1471. unsigned long iflags;
  1472. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1473. return -EINVAL;
  1474. ep = container_of(usbep, struct pch_udc_ep, ep);
  1475. dev = ep->dev;
  1476. if (!ep->desc && ep->num)
  1477. return -EINVAL;
  1478. req = container_of(usbreq, struct pch_udc_request, req);
  1479. if (!list_empty(&req->queue))
  1480. return -EINVAL;
  1481. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1482. return -ESHUTDOWN;
  1483. spin_lock_irqsave(&dev->lock, iflags);
  1484. /* map the buffer for dma */
  1485. if (usbreq->length &&
  1486. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1487. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1488. if (ep->in)
  1489. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1490. usbreq->buf,
  1491. usbreq->length,
  1492. DMA_TO_DEVICE);
  1493. else
  1494. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1495. usbreq->buf,
  1496. usbreq->length,
  1497. DMA_FROM_DEVICE);
  1498. } else {
  1499. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1500. if (!req->buf) {
  1501. retval = -ENOMEM;
  1502. goto probe_end;
  1503. }
  1504. if (ep->in) {
  1505. memcpy(req->buf, usbreq->buf, usbreq->length);
  1506. req->dma = dma_map_single(&dev->pdev->dev,
  1507. req->buf,
  1508. usbreq->length,
  1509. DMA_TO_DEVICE);
  1510. } else
  1511. req->dma = dma_map_single(&dev->pdev->dev,
  1512. req->buf,
  1513. usbreq->length,
  1514. DMA_FROM_DEVICE);
  1515. }
  1516. req->dma_mapped = 1;
  1517. }
  1518. if (usbreq->length > 0) {
  1519. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1520. if (retval)
  1521. goto probe_end;
  1522. }
  1523. usbreq->actual = 0;
  1524. usbreq->status = -EINPROGRESS;
  1525. req->dma_done = 0;
  1526. if (list_empty(&ep->queue) && !ep->halted) {
  1527. /* no pending transfer, so start this req */
  1528. if (!usbreq->length) {
  1529. process_zlp(ep, req);
  1530. retval = 0;
  1531. goto probe_end;
  1532. }
  1533. if (!ep->in) {
  1534. pch_udc_start_rxrequest(ep, req);
  1535. } else {
  1536. /*
  1537. * For IN trfr the descriptors will be programmed and
  1538. * P bit will be set when
  1539. * we get an IN token
  1540. */
  1541. pch_udc_wait_ep_stall(ep);
  1542. pch_udc_ep_clear_nak(ep);
  1543. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1544. }
  1545. }
  1546. /* Now add this request to the ep's pending requests */
  1547. if (req != NULL)
  1548. list_add_tail(&req->queue, &ep->queue);
  1549. probe_end:
  1550. spin_unlock_irqrestore(&dev->lock, iflags);
  1551. return retval;
  1552. }
  1553. /**
  1554. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1555. * It is called by gadget driver
  1556. * @usbep: Reference to the USB endpoint structure
  1557. * @usbreq: Reference to the USB request
  1558. *
  1559. * Return codes:
  1560. * 0: Success
  1561. * linux error number: Failure
  1562. */
  1563. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1564. struct usb_request *usbreq)
  1565. {
  1566. struct pch_udc_ep *ep;
  1567. struct pch_udc_request *req;
  1568. struct pch_udc_dev *dev;
  1569. unsigned long flags;
  1570. int ret = -EINVAL;
  1571. ep = container_of(usbep, struct pch_udc_ep, ep);
  1572. dev = ep->dev;
  1573. if (!usbep || !usbreq || (!ep->desc && ep->num))
  1574. return ret;
  1575. req = container_of(usbreq, struct pch_udc_request, req);
  1576. spin_lock_irqsave(&ep->dev->lock, flags);
  1577. /* make sure it's still queued on this endpoint */
  1578. list_for_each_entry(req, &ep->queue, queue) {
  1579. if (&req->req == usbreq) {
  1580. pch_udc_ep_set_nak(ep);
  1581. if (!list_empty(&req->queue))
  1582. complete_req(ep, req, -ECONNRESET);
  1583. ret = 0;
  1584. break;
  1585. }
  1586. }
  1587. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1588. return ret;
  1589. }
  1590. /**
  1591. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1592. * feature
  1593. * @usbep: Reference to the USB endpoint structure
  1594. * @halt: Specifies whether to set or clear the feature
  1595. *
  1596. * Return codes:
  1597. * 0: Success
  1598. * linux error number: Failure
  1599. */
  1600. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1601. {
  1602. struct pch_udc_ep *ep;
  1603. struct pch_udc_dev *dev;
  1604. unsigned long iflags;
  1605. int ret;
  1606. if (!usbep)
  1607. return -EINVAL;
  1608. ep = container_of(usbep, struct pch_udc_ep, ep);
  1609. dev = ep->dev;
  1610. if (!ep->desc && !ep->num)
  1611. return -EINVAL;
  1612. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1613. return -ESHUTDOWN;
  1614. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1615. if (list_empty(&ep->queue)) {
  1616. if (halt) {
  1617. if (ep->num == PCH_UDC_EP0)
  1618. ep->dev->stall = 1;
  1619. pch_udc_ep_set_stall(ep);
  1620. pch_udc_enable_ep_interrupts(ep->dev,
  1621. PCH_UDC_EPINT(ep->in,
  1622. ep->num));
  1623. } else {
  1624. pch_udc_ep_clear_stall(ep);
  1625. }
  1626. ret = 0;
  1627. } else {
  1628. ret = -EAGAIN;
  1629. }
  1630. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1631. return ret;
  1632. }
  1633. /**
  1634. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1635. * halt feature
  1636. * @usbep: Reference to the USB endpoint structure
  1637. * @halt: Specifies whether to set or clear the feature
  1638. *
  1639. * Return codes:
  1640. * 0: Success
  1641. * linux error number: Failure
  1642. */
  1643. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1644. {
  1645. struct pch_udc_ep *ep;
  1646. struct pch_udc_dev *dev;
  1647. unsigned long iflags;
  1648. int ret;
  1649. if (!usbep)
  1650. return -EINVAL;
  1651. ep = container_of(usbep, struct pch_udc_ep, ep);
  1652. dev = ep->dev;
  1653. if (!ep->desc && !ep->num)
  1654. return -EINVAL;
  1655. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1656. return -ESHUTDOWN;
  1657. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1658. if (!list_empty(&ep->queue)) {
  1659. ret = -EAGAIN;
  1660. } else {
  1661. if (ep->num == PCH_UDC_EP0)
  1662. ep->dev->stall = 1;
  1663. pch_udc_ep_set_stall(ep);
  1664. pch_udc_enable_ep_interrupts(ep->dev,
  1665. PCH_UDC_EPINT(ep->in, ep->num));
  1666. ep->dev->prot_stall = 1;
  1667. ret = 0;
  1668. }
  1669. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1670. return ret;
  1671. }
  1672. /**
  1673. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1674. * @usbep: Reference to the USB endpoint structure
  1675. */
  1676. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1677. {
  1678. struct pch_udc_ep *ep;
  1679. if (!usbep)
  1680. return;
  1681. ep = container_of(usbep, struct pch_udc_ep, ep);
  1682. if (ep->desc || !ep->num)
  1683. pch_udc_ep_fifo_flush(ep, ep->in);
  1684. }
  1685. static const struct usb_ep_ops pch_udc_ep_ops = {
  1686. .enable = pch_udc_pcd_ep_enable,
  1687. .disable = pch_udc_pcd_ep_disable,
  1688. .alloc_request = pch_udc_alloc_request,
  1689. .free_request = pch_udc_free_request,
  1690. .queue = pch_udc_pcd_queue,
  1691. .dequeue = pch_udc_pcd_dequeue,
  1692. .set_halt = pch_udc_pcd_set_halt,
  1693. .set_wedge = pch_udc_pcd_set_wedge,
  1694. .fifo_status = NULL,
  1695. .fifo_flush = pch_udc_pcd_fifo_flush,
  1696. };
  1697. /**
  1698. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1699. * @td_stp: Reference to the SETP buffer structure
  1700. */
  1701. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1702. {
  1703. static u32 pky_marker;
  1704. if (!td_stp)
  1705. return;
  1706. td_stp->reserved = ++pky_marker;
  1707. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1708. td_stp->status = PCH_UDC_BS_HST_RDY;
  1709. }
  1710. /**
  1711. * pch_udc_start_next_txrequest() - This function starts
  1712. * the next transmission requirement
  1713. * @ep: Reference to the endpoint structure
  1714. */
  1715. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1716. {
  1717. struct pch_udc_request *req;
  1718. struct pch_udc_data_dma_desc *td_data;
  1719. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1720. return;
  1721. if (list_empty(&ep->queue))
  1722. return;
  1723. /* next request */
  1724. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1725. if (req->dma_going)
  1726. return;
  1727. if (!req->td_data)
  1728. return;
  1729. pch_udc_wait_ep_stall(ep);
  1730. req->dma_going = 1;
  1731. pch_udc_ep_set_ddptr(ep, 0);
  1732. td_data = req->td_data;
  1733. while (1) {
  1734. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1735. PCH_UDC_BS_HST_RDY;
  1736. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1737. break;
  1738. td_data = phys_to_virt(td_data->next);
  1739. }
  1740. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1741. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1742. pch_udc_ep_set_pd(ep);
  1743. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1744. pch_udc_ep_clear_nak(ep);
  1745. }
  1746. /**
  1747. * pch_udc_complete_transfer() - This function completes a transfer
  1748. * @ep: Reference to the endpoint structure
  1749. */
  1750. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1751. {
  1752. struct pch_udc_request *req;
  1753. struct pch_udc_dev *dev = ep->dev;
  1754. if (list_empty(&ep->queue))
  1755. return;
  1756. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1757. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1758. PCH_UDC_BS_DMA_DONE)
  1759. return;
  1760. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1761. PCH_UDC_RTS_SUCC) {
  1762. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1763. "epstatus=0x%08x\n",
  1764. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1765. (int)(ep->epsts));
  1766. return;
  1767. }
  1768. req->req.actual = req->req.length;
  1769. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1770. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1771. complete_req(ep, req, 0);
  1772. req->dma_going = 0;
  1773. if (!list_empty(&ep->queue)) {
  1774. pch_udc_wait_ep_stall(ep);
  1775. pch_udc_ep_clear_nak(ep);
  1776. pch_udc_enable_ep_interrupts(ep->dev,
  1777. PCH_UDC_EPINT(ep->in, ep->num));
  1778. } else {
  1779. pch_udc_disable_ep_interrupts(ep->dev,
  1780. PCH_UDC_EPINT(ep->in, ep->num));
  1781. }
  1782. }
  1783. /**
  1784. * pch_udc_complete_receiver() - This function completes a receiver
  1785. * @ep: Reference to the endpoint structure
  1786. */
  1787. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1788. {
  1789. struct pch_udc_request *req;
  1790. struct pch_udc_dev *dev = ep->dev;
  1791. unsigned int count;
  1792. struct pch_udc_data_dma_desc *td;
  1793. dma_addr_t addr;
  1794. if (list_empty(&ep->queue))
  1795. return;
  1796. /* next request */
  1797. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1798. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1799. pch_udc_ep_set_ddptr(ep, 0);
  1800. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  1801. PCH_UDC_BS_DMA_DONE)
  1802. td = req->td_data_last;
  1803. else
  1804. td = req->td_data;
  1805. while (1) {
  1806. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  1807. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  1808. "epstatus=0x%08x\n",
  1809. (req->td_data->status & PCH_UDC_RXTX_STS),
  1810. (int)(ep->epsts));
  1811. return;
  1812. }
  1813. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  1814. if (td->status | PCH_UDC_DMA_LAST) {
  1815. count = td->status & PCH_UDC_RXTX_BYTES;
  1816. break;
  1817. }
  1818. if (td == req->td_data_last) {
  1819. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  1820. return;
  1821. }
  1822. addr = (dma_addr_t)td->next;
  1823. td = phys_to_virt(addr);
  1824. }
  1825. /* on 64k packets the RXBYTES field is zero */
  1826. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  1827. count = UDC_DMA_MAXPACKET;
  1828. req->td_data->status |= PCH_UDC_DMA_LAST;
  1829. td->status |= PCH_UDC_BS_HST_BSY;
  1830. req->dma_going = 0;
  1831. req->req.actual = count;
  1832. complete_req(ep, req, 0);
  1833. /* If there is a new/failed requests try that now */
  1834. if (!list_empty(&ep->queue)) {
  1835. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1836. pch_udc_start_rxrequest(ep, req);
  1837. }
  1838. }
  1839. /**
  1840. * pch_udc_svc_data_in() - This function process endpoint interrupts
  1841. * for IN endpoints
  1842. * @dev: Reference to the device structure
  1843. * @ep_num: Endpoint that generated the interrupt
  1844. */
  1845. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  1846. {
  1847. u32 epsts;
  1848. struct pch_udc_ep *ep;
  1849. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  1850. epsts = ep->epsts;
  1851. ep->epsts = 0;
  1852. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1853. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1854. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  1855. return;
  1856. if ((epsts & UDC_EPSTS_BNA))
  1857. return;
  1858. if (epsts & UDC_EPSTS_HE)
  1859. return;
  1860. if (epsts & UDC_EPSTS_RSS) {
  1861. pch_udc_ep_set_stall(ep);
  1862. pch_udc_enable_ep_interrupts(ep->dev,
  1863. PCH_UDC_EPINT(ep->in, ep->num));
  1864. }
  1865. if (epsts & UDC_EPSTS_RCS) {
  1866. if (!dev->prot_stall) {
  1867. pch_udc_ep_clear_stall(ep);
  1868. } else {
  1869. pch_udc_ep_set_stall(ep);
  1870. pch_udc_enable_ep_interrupts(ep->dev,
  1871. PCH_UDC_EPINT(ep->in, ep->num));
  1872. }
  1873. }
  1874. if (epsts & UDC_EPSTS_TDC)
  1875. pch_udc_complete_transfer(ep);
  1876. /* On IN interrupt, provide data if we have any */
  1877. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  1878. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  1879. pch_udc_start_next_txrequest(ep);
  1880. }
  1881. /**
  1882. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  1883. * @dev: Reference to the device structure
  1884. * @ep_num: Endpoint that generated the interrupt
  1885. */
  1886. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  1887. {
  1888. u32 epsts;
  1889. struct pch_udc_ep *ep;
  1890. struct pch_udc_request *req = NULL;
  1891. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  1892. epsts = ep->epsts;
  1893. ep->epsts = 0;
  1894. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  1895. /* next request */
  1896. req = list_entry(ep->queue.next, struct pch_udc_request,
  1897. queue);
  1898. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1899. PCH_UDC_BS_DMA_DONE) {
  1900. if (!req->dma_going)
  1901. pch_udc_start_rxrequest(ep, req);
  1902. return;
  1903. }
  1904. }
  1905. if (epsts & UDC_EPSTS_HE)
  1906. return;
  1907. if (epsts & UDC_EPSTS_RSS) {
  1908. pch_udc_ep_set_stall(ep);
  1909. pch_udc_enable_ep_interrupts(ep->dev,
  1910. PCH_UDC_EPINT(ep->in, ep->num));
  1911. }
  1912. if (epsts & UDC_EPSTS_RCS) {
  1913. if (!dev->prot_stall) {
  1914. pch_udc_ep_clear_stall(ep);
  1915. } else {
  1916. pch_udc_ep_set_stall(ep);
  1917. pch_udc_enable_ep_interrupts(ep->dev,
  1918. PCH_UDC_EPINT(ep->in, ep->num));
  1919. }
  1920. }
  1921. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1922. UDC_EPSTS_OUT_DATA) {
  1923. if (ep->dev->prot_stall == 1) {
  1924. pch_udc_ep_set_stall(ep);
  1925. pch_udc_enable_ep_interrupts(ep->dev,
  1926. PCH_UDC_EPINT(ep->in, ep->num));
  1927. } else {
  1928. pch_udc_complete_receiver(ep);
  1929. }
  1930. }
  1931. if (list_empty(&ep->queue))
  1932. pch_udc_set_dma(dev, DMA_DIR_RX);
  1933. }
  1934. /**
  1935. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  1936. * @dev: Reference to the device structure
  1937. */
  1938. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  1939. {
  1940. u32 epsts;
  1941. struct pch_udc_ep *ep;
  1942. struct pch_udc_ep *ep_out;
  1943. ep = &dev->ep[UDC_EP0IN_IDX];
  1944. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  1945. epsts = ep->epsts;
  1946. ep->epsts = 0;
  1947. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1948. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1949. UDC_EPSTS_XFERDONE)))
  1950. return;
  1951. if ((epsts & UDC_EPSTS_BNA))
  1952. return;
  1953. if (epsts & UDC_EPSTS_HE)
  1954. return;
  1955. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  1956. pch_udc_complete_transfer(ep);
  1957. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1958. ep_out->td_data->status = (ep_out->td_data->status &
  1959. ~PCH_UDC_BUFF_STS) |
  1960. PCH_UDC_BS_HST_RDY;
  1961. pch_udc_ep_clear_nak(ep_out);
  1962. pch_udc_set_dma(dev, DMA_DIR_RX);
  1963. pch_udc_ep_set_rrdy(ep_out);
  1964. }
  1965. /* On IN interrupt, provide data if we have any */
  1966. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  1967. !(epsts & UDC_EPSTS_TXEMPTY))
  1968. pch_udc_start_next_txrequest(ep);
  1969. }
  1970. /**
  1971. * pch_udc_svc_control_out() - Routine that handle Control
  1972. * OUT endpoint interrupts
  1973. * @dev: Reference to the device structure
  1974. */
  1975. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  1976. {
  1977. u32 stat;
  1978. int setup_supported;
  1979. struct pch_udc_ep *ep;
  1980. ep = &dev->ep[UDC_EP0OUT_IDX];
  1981. stat = ep->epsts;
  1982. ep->epsts = 0;
  1983. /* If setup data */
  1984. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1985. UDC_EPSTS_OUT_SETUP) {
  1986. dev->stall = 0;
  1987. dev->ep[UDC_EP0IN_IDX].halted = 0;
  1988. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  1989. dev->setup_data = ep->td_stp->request;
  1990. pch_udc_init_setup_buff(ep->td_stp);
  1991. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1992. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  1993. dev->ep[UDC_EP0IN_IDX].in);
  1994. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  1995. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  1996. else /* OUT */
  1997. dev->gadget.ep0 = &ep->ep;
  1998. spin_unlock(&dev->lock);
  1999. /* If Mass storage Reset */
  2000. if ((dev->setup_data.bRequestType == 0x21) &&
  2001. (dev->setup_data.bRequest == 0xFF))
  2002. dev->prot_stall = 0;
  2003. /* call gadget with setup data received */
  2004. setup_supported = dev->driver->setup(&dev->gadget,
  2005. &dev->setup_data);
  2006. spin_lock(&dev->lock);
  2007. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2008. ep->td_data->status = (ep->td_data->status &
  2009. ~PCH_UDC_BUFF_STS) |
  2010. PCH_UDC_BS_HST_RDY;
  2011. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2012. }
  2013. /* ep0 in returns data on IN phase */
  2014. if (setup_supported >= 0 && setup_supported <
  2015. UDC_EP0IN_MAX_PKT_SIZE) {
  2016. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2017. /* Gadget would have queued a request when
  2018. * we called the setup */
  2019. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2020. pch_udc_set_dma(dev, DMA_DIR_RX);
  2021. pch_udc_ep_clear_nak(ep);
  2022. }
  2023. } else if (setup_supported < 0) {
  2024. /* if unsupported request, then stall */
  2025. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2026. pch_udc_enable_ep_interrupts(ep->dev,
  2027. PCH_UDC_EPINT(ep->in, ep->num));
  2028. dev->stall = 0;
  2029. pch_udc_set_dma(dev, DMA_DIR_RX);
  2030. } else {
  2031. dev->waiting_zlp_ack = 1;
  2032. }
  2033. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2034. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2035. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2036. pch_udc_ep_set_ddptr(ep, 0);
  2037. if (!list_empty(&ep->queue)) {
  2038. ep->epsts = stat;
  2039. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2040. }
  2041. pch_udc_set_dma(dev, DMA_DIR_RX);
  2042. }
  2043. pch_udc_ep_set_rrdy(ep);
  2044. }
  2045. /**
  2046. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2047. * and clears NAK status
  2048. * @dev: Reference to the device structure
  2049. * @ep_num: End point number
  2050. */
  2051. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2052. {
  2053. struct pch_udc_ep *ep;
  2054. struct pch_udc_request *req;
  2055. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2056. if (!list_empty(&ep->queue)) {
  2057. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2058. pch_udc_enable_ep_interrupts(ep->dev,
  2059. PCH_UDC_EPINT(ep->in, ep->num));
  2060. pch_udc_ep_clear_nak(ep);
  2061. }
  2062. }
  2063. /**
  2064. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2065. * @dev: Reference to the device structure
  2066. * @ep_intr: Status of endpoint interrupt
  2067. */
  2068. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2069. {
  2070. int i;
  2071. struct pch_udc_ep *ep;
  2072. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2073. /* IN */
  2074. if (ep_intr & (0x1 << i)) {
  2075. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2076. ep->epsts = pch_udc_read_ep_status(ep);
  2077. pch_udc_clear_ep_status(ep, ep->epsts);
  2078. }
  2079. /* OUT */
  2080. if (ep_intr & (0x10000 << i)) {
  2081. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2082. ep->epsts = pch_udc_read_ep_status(ep);
  2083. pch_udc_clear_ep_status(ep, ep->epsts);
  2084. }
  2085. }
  2086. }
  2087. /**
  2088. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2089. * for traffic after a reset
  2090. * @dev: Reference to the device structure
  2091. */
  2092. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2093. {
  2094. struct pch_udc_ep *ep;
  2095. u32 val;
  2096. /* Setup the IN endpoint */
  2097. ep = &dev->ep[UDC_EP0IN_IDX];
  2098. pch_udc_clear_ep_control(ep);
  2099. pch_udc_ep_fifo_flush(ep, ep->in);
  2100. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2101. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2102. /* Initialize the IN EP Descriptor */
  2103. ep->td_data = NULL;
  2104. ep->td_stp = NULL;
  2105. ep->td_data_phys = 0;
  2106. ep->td_stp_phys = 0;
  2107. /* Setup the OUT endpoint */
  2108. ep = &dev->ep[UDC_EP0OUT_IDX];
  2109. pch_udc_clear_ep_control(ep);
  2110. pch_udc_ep_fifo_flush(ep, ep->in);
  2111. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2112. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2113. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2114. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2115. /* Initialize the SETUP buffer */
  2116. pch_udc_init_setup_buff(ep->td_stp);
  2117. /* Write the pointer address of dma descriptor */
  2118. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2119. /* Write the pointer address of Setup descriptor */
  2120. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2121. /* Initialize the dma descriptor */
  2122. ep->td_data->status = PCH_UDC_DMA_LAST;
  2123. ep->td_data->dataptr = dev->dma_addr;
  2124. ep->td_data->next = ep->td_data_phys;
  2125. pch_udc_ep_clear_nak(ep);
  2126. }
  2127. /**
  2128. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2129. * @dev: Reference to driver structure
  2130. */
  2131. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2132. {
  2133. struct pch_udc_ep *ep;
  2134. int i;
  2135. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2136. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2137. /* Mask all endpoint interrupts */
  2138. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2139. /* clear all endpoint interrupts */
  2140. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2141. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2142. ep = &dev->ep[i];
  2143. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2144. pch_udc_clear_ep_control(ep);
  2145. pch_udc_ep_set_ddptr(ep, 0);
  2146. pch_udc_write_csr(ep->dev, 0x00, i);
  2147. }
  2148. dev->stall = 0;
  2149. dev->prot_stall = 0;
  2150. dev->waiting_zlp_ack = 0;
  2151. dev->set_cfg_not_acked = 0;
  2152. /* disable ep to empty req queue. Skip the control EP's */
  2153. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2154. ep = &dev->ep[i];
  2155. pch_udc_ep_set_nak(ep);
  2156. pch_udc_ep_fifo_flush(ep, ep->in);
  2157. /* Complete request queue */
  2158. empty_req_queue(ep);
  2159. }
  2160. if (dev->driver && dev->driver->disconnect)
  2161. dev->driver->disconnect(&dev->gadget);
  2162. }
  2163. /**
  2164. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2165. * done interrupt
  2166. * @dev: Reference to driver structure
  2167. */
  2168. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2169. {
  2170. u32 dev_stat, dev_speed;
  2171. u32 speed = USB_SPEED_FULL;
  2172. dev_stat = pch_udc_read_device_status(dev);
  2173. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2174. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2175. switch (dev_speed) {
  2176. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2177. speed = USB_SPEED_HIGH;
  2178. break;
  2179. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2180. speed = USB_SPEED_FULL;
  2181. break;
  2182. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2183. speed = USB_SPEED_LOW;
  2184. break;
  2185. default:
  2186. BUG();
  2187. }
  2188. dev->gadget.speed = speed;
  2189. pch_udc_activate_control_ep(dev);
  2190. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2191. pch_udc_set_dma(dev, DMA_DIR_TX);
  2192. pch_udc_set_dma(dev, DMA_DIR_RX);
  2193. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2194. }
  2195. /**
  2196. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2197. * interrupt
  2198. * @dev: Reference to driver structure
  2199. */
  2200. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2201. {
  2202. u32 reg, dev_stat = 0;
  2203. int i, ret;
  2204. dev_stat = pch_udc_read_device_status(dev);
  2205. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2206. UDC_DEVSTS_INTF_SHIFT;
  2207. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2208. UDC_DEVSTS_ALT_SHIFT;
  2209. dev->set_cfg_not_acked = 1;
  2210. /* Construct the usb request for gadget driver and inform it */
  2211. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2212. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2213. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2214. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2215. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2216. /* programm the Endpoint Cfg registers */
  2217. /* Only one end point cfg register */
  2218. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2219. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2220. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2221. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2222. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2223. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2224. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2225. /* clear stall bits */
  2226. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2227. dev->ep[i].halted = 0;
  2228. }
  2229. dev->stall = 0;
  2230. spin_unlock(&dev->lock);
  2231. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2232. spin_lock(&dev->lock);
  2233. }
  2234. /**
  2235. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2236. * interrupt
  2237. * @dev: Reference to driver structure
  2238. */
  2239. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2240. {
  2241. int i, ret;
  2242. u32 reg, dev_stat = 0;
  2243. dev_stat = pch_udc_read_device_status(dev);
  2244. dev->set_cfg_not_acked = 1;
  2245. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2246. UDC_DEVSTS_CFG_SHIFT;
  2247. /* make usb request for gadget driver */
  2248. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2249. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2250. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2251. /* program the NE registers */
  2252. /* Only one end point cfg register */
  2253. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2254. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2255. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2256. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2257. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2258. /* clear stall bits */
  2259. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2260. dev->ep[i].halted = 0;
  2261. }
  2262. dev->stall = 0;
  2263. /* call gadget zero with setup data received */
  2264. spin_unlock(&dev->lock);
  2265. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2266. spin_lock(&dev->lock);
  2267. }
  2268. /**
  2269. * pch_udc_dev_isr() - This function services device interrupts
  2270. * by invoking appropriate routines.
  2271. * @dev: Reference to the device structure
  2272. * @dev_intr: The Device interrupt status.
  2273. */
  2274. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2275. {
  2276. /* USB Reset Interrupt */
  2277. if (dev_intr & UDC_DEVINT_UR)
  2278. pch_udc_svc_ur_interrupt(dev);
  2279. /* Enumeration Done Interrupt */
  2280. if (dev_intr & UDC_DEVINT_ENUM)
  2281. pch_udc_svc_enum_interrupt(dev);
  2282. /* Set Interface Interrupt */
  2283. if (dev_intr & UDC_DEVINT_SI)
  2284. pch_udc_svc_intf_interrupt(dev);
  2285. /* Set Config Interrupt */
  2286. if (dev_intr & UDC_DEVINT_SC)
  2287. pch_udc_svc_cfg_interrupt(dev);
  2288. /* USB Suspend interrupt */
  2289. if (dev_intr & UDC_DEVINT_US)
  2290. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2291. /* Clear the SOF interrupt, if enabled */
  2292. if (dev_intr & UDC_DEVINT_SOF)
  2293. dev_dbg(&dev->pdev->dev, "SOF\n");
  2294. /* ES interrupt, IDLE > 3ms on the USB */
  2295. if (dev_intr & UDC_DEVINT_ES)
  2296. dev_dbg(&dev->pdev->dev, "ES\n");
  2297. /* RWKP interrupt */
  2298. if (dev_intr & UDC_DEVINT_RWKP)
  2299. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2300. }
  2301. /**
  2302. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2303. * @irq: Interrupt request number
  2304. * @dev: Reference to the device structure
  2305. */
  2306. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2307. {
  2308. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2309. u32 dev_intr, ep_intr;
  2310. int i;
  2311. dev_intr = pch_udc_read_device_interrupts(dev);
  2312. ep_intr = pch_udc_read_ep_interrupts(dev);
  2313. if (dev_intr)
  2314. /* Clear device interrupts */
  2315. pch_udc_write_device_interrupts(dev, dev_intr);
  2316. if (ep_intr)
  2317. /* Clear ep interrupts */
  2318. pch_udc_write_ep_interrupts(dev, ep_intr);
  2319. if (!dev_intr && !ep_intr)
  2320. return IRQ_NONE;
  2321. spin_lock(&dev->lock);
  2322. if (dev_intr)
  2323. pch_udc_dev_isr(dev, dev_intr);
  2324. if (ep_intr) {
  2325. pch_udc_read_all_epstatus(dev, ep_intr);
  2326. /* Process Control In interrupts, if present */
  2327. if (ep_intr & UDC_EPINT_IN_EP0) {
  2328. pch_udc_svc_control_in(dev);
  2329. pch_udc_postsvc_epinters(dev, 0);
  2330. }
  2331. /* Process Control Out interrupts, if present */
  2332. if (ep_intr & UDC_EPINT_OUT_EP0)
  2333. pch_udc_svc_control_out(dev);
  2334. /* Process data in end point interrupts */
  2335. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2336. if (ep_intr & (1 << i)) {
  2337. pch_udc_svc_data_in(dev, i);
  2338. pch_udc_postsvc_epinters(dev, i);
  2339. }
  2340. }
  2341. /* Process data out end point interrupts */
  2342. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2343. PCH_UDC_USED_EP_NUM); i++)
  2344. if (ep_intr & (1 << i))
  2345. pch_udc_svc_data_out(dev, i -
  2346. UDC_EPINT_OUT_SHIFT);
  2347. }
  2348. spin_unlock(&dev->lock);
  2349. return IRQ_HANDLED;
  2350. }
  2351. /**
  2352. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2353. * @dev: Reference to the device structure
  2354. */
  2355. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2356. {
  2357. /* enable ep0 interrupts */
  2358. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2359. UDC_EPINT_OUT_EP0);
  2360. /* enable device interrupts */
  2361. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2362. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2363. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2364. }
  2365. /**
  2366. * gadget_release() - Free the gadget driver private data
  2367. * @pdev reference to struct pci_dev
  2368. */
  2369. static void gadget_release(struct device *pdev)
  2370. {
  2371. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2372. kfree(dev);
  2373. }
  2374. /**
  2375. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2376. * @dev: Reference to the driver structure
  2377. */
  2378. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2379. {
  2380. const char *const ep_string[] = {
  2381. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2382. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2383. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2384. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2385. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2386. "ep15in", "ep15out",
  2387. };
  2388. int i;
  2389. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2390. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2391. /* Initialize the endpoints structures */
  2392. memset(dev->ep, 0, sizeof dev->ep);
  2393. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2394. struct pch_udc_ep *ep = &dev->ep[i];
  2395. ep->dev = dev;
  2396. ep->halted = 1;
  2397. ep->num = i / 2;
  2398. ep->in = ~i & 1;
  2399. ep->ep.name = ep_string[i];
  2400. ep->ep.ops = &pch_udc_ep_ops;
  2401. if (ep->in)
  2402. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2403. else
  2404. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2405. UDC_EP_REG_SHIFT;
  2406. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2407. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2408. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2409. INIT_LIST_HEAD(&ep->queue);
  2410. }
  2411. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2412. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2413. /* remove ep0 in and out from the list. They have own pointer */
  2414. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2415. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2416. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2417. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2418. }
  2419. /**
  2420. * pch_udc_pcd_init() - This API initializes the driver structure
  2421. * @dev: Reference to the driver structure
  2422. *
  2423. * Return codes:
  2424. * 0: Success
  2425. */
  2426. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2427. {
  2428. pch_udc_init(dev);
  2429. pch_udc_pcd_reinit(dev);
  2430. return 0;
  2431. }
  2432. /**
  2433. * init_dma_pools() - create dma pools during initialization
  2434. * @pdev: reference to struct pci_dev
  2435. */
  2436. static int init_dma_pools(struct pch_udc_dev *dev)
  2437. {
  2438. struct pch_udc_stp_dma_desc *td_stp;
  2439. struct pch_udc_data_dma_desc *td_data;
  2440. /* DMA setup */
  2441. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2442. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2443. if (!dev->data_requests) {
  2444. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2445. __func__);
  2446. return -ENOMEM;
  2447. }
  2448. /* dma desc for setup data */
  2449. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2450. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2451. if (!dev->stp_requests) {
  2452. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2453. __func__);
  2454. return -ENOMEM;
  2455. }
  2456. /* setup */
  2457. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2458. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2459. if (!td_stp) {
  2460. dev_err(&dev->pdev->dev,
  2461. "%s: can't allocate setup dma descriptor\n", __func__);
  2462. return -ENOMEM;
  2463. }
  2464. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2465. /* data: 0 packets !? */
  2466. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2467. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2468. if (!td_data) {
  2469. dev_err(&dev->pdev->dev,
  2470. "%s: can't allocate data dma descriptor\n", __func__);
  2471. return -ENOMEM;
  2472. }
  2473. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2474. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2475. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2476. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2477. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2478. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2479. if (!dev->ep0out_buf)
  2480. return -ENOMEM;
  2481. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2482. UDC_EP0OUT_BUFF_SIZE * 4,
  2483. DMA_FROM_DEVICE);
  2484. return 0;
  2485. }
  2486. static int pch_udc_start(struct usb_gadget_driver *driver,
  2487. int (*bind)(struct usb_gadget *))
  2488. {
  2489. struct pch_udc_dev *dev = pch_udc;
  2490. int retval;
  2491. if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
  2492. !driver->setup || !driver->unbind || !driver->disconnect) {
  2493. dev_err(&dev->pdev->dev,
  2494. "%s: invalid driver parameter\n", __func__);
  2495. return -EINVAL;
  2496. }
  2497. if (!dev)
  2498. return -ENODEV;
  2499. if (dev->driver) {
  2500. dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
  2501. return -EBUSY;
  2502. }
  2503. driver->driver.bus = NULL;
  2504. dev->driver = driver;
  2505. dev->gadget.dev.driver = &driver->driver;
  2506. /* Invoke the bind routine of the gadget driver */
  2507. retval = bind(&dev->gadget);
  2508. if (retval) {
  2509. dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
  2510. __func__, driver->driver.name, retval);
  2511. dev->driver = NULL;
  2512. dev->gadget.dev.driver = NULL;
  2513. return retval;
  2514. }
  2515. /* get ready for ep0 traffic */
  2516. pch_udc_setup_ep0(dev);
  2517. /* clear SD */
  2518. pch_udc_clear_disconnect(dev);
  2519. dev->connected = 1;
  2520. return 0;
  2521. }
  2522. static int pch_udc_stop(struct usb_gadget_driver *driver)
  2523. {
  2524. struct pch_udc_dev *dev = pch_udc;
  2525. if (!dev)
  2526. return -ENODEV;
  2527. if (!driver || (driver != dev->driver)) {
  2528. dev_err(&dev->pdev->dev,
  2529. "%s: invalid driver parameter\n", __func__);
  2530. return -EINVAL;
  2531. }
  2532. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2533. /* Assures that there are no pending requests with this driver */
  2534. driver->disconnect(&dev->gadget);
  2535. driver->unbind(&dev->gadget);
  2536. dev->gadget.dev.driver = NULL;
  2537. dev->driver = NULL;
  2538. dev->connected = 0;
  2539. /* set SD */
  2540. pch_udc_set_disconnect(dev);
  2541. return 0;
  2542. }
  2543. static void pch_udc_shutdown(struct pci_dev *pdev)
  2544. {
  2545. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2546. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2547. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2548. /* disable the pullup so the host will think we're gone */
  2549. pch_udc_set_disconnect(dev);
  2550. }
  2551. static void pch_udc_remove(struct pci_dev *pdev)
  2552. {
  2553. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2554. usb_del_gadget_udc(&dev->gadget);
  2555. /* gadget driver must not be registered */
  2556. if (dev->driver)
  2557. dev_err(&pdev->dev,
  2558. "%s: gadget driver still bound!!!\n", __func__);
  2559. /* dma pool cleanup */
  2560. if (dev->data_requests)
  2561. pci_pool_destroy(dev->data_requests);
  2562. if (dev->stp_requests) {
  2563. /* cleanup DMA desc's for ep0in */
  2564. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2565. pci_pool_free(dev->stp_requests,
  2566. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2567. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2568. }
  2569. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2570. pci_pool_free(dev->stp_requests,
  2571. dev->ep[UDC_EP0OUT_IDX].td_data,
  2572. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2573. }
  2574. pci_pool_destroy(dev->stp_requests);
  2575. }
  2576. if (dev->dma_addr)
  2577. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2578. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2579. kfree(dev->ep0out_buf);
  2580. pch_udc_exit(dev);
  2581. if (dev->irq_registered)
  2582. free_irq(pdev->irq, dev);
  2583. if (dev->base_addr)
  2584. iounmap(dev->base_addr);
  2585. if (dev->mem_region)
  2586. release_mem_region(dev->phys_addr,
  2587. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2588. if (dev->active)
  2589. pci_disable_device(pdev);
  2590. if (dev->registered)
  2591. device_unregister(&dev->gadget.dev);
  2592. kfree(dev);
  2593. pci_set_drvdata(pdev, NULL);
  2594. }
  2595. #ifdef CONFIG_PM
  2596. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2597. {
  2598. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2599. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2600. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2601. pci_disable_device(pdev);
  2602. pci_enable_wake(pdev, PCI_D3hot, 0);
  2603. if (pci_save_state(pdev)) {
  2604. dev_err(&pdev->dev,
  2605. "%s: could not save PCI config state\n", __func__);
  2606. return -ENOMEM;
  2607. }
  2608. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2609. return 0;
  2610. }
  2611. static int pch_udc_resume(struct pci_dev *pdev)
  2612. {
  2613. int ret;
  2614. pci_set_power_state(pdev, PCI_D0);
  2615. pci_restore_state(pdev);
  2616. ret = pci_enable_device(pdev);
  2617. if (ret) {
  2618. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2619. return ret;
  2620. }
  2621. pci_enable_wake(pdev, PCI_D3hot, 0);
  2622. return 0;
  2623. }
  2624. #else
  2625. #define pch_udc_suspend NULL
  2626. #define pch_udc_resume NULL
  2627. #endif /* CONFIG_PM */
  2628. static int pch_udc_probe(struct pci_dev *pdev,
  2629. const struct pci_device_id *id)
  2630. {
  2631. unsigned long resource;
  2632. unsigned long len;
  2633. int retval;
  2634. struct pch_udc_dev *dev;
  2635. /* one udc only */
  2636. if (pch_udc) {
  2637. pr_err("%s: already probed\n", __func__);
  2638. return -EBUSY;
  2639. }
  2640. /* init */
  2641. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2642. if (!dev) {
  2643. pr_err("%s: no memory for device structure\n", __func__);
  2644. return -ENOMEM;
  2645. }
  2646. /* pci setup */
  2647. if (pci_enable_device(pdev) < 0) {
  2648. kfree(dev);
  2649. pr_err("%s: pci_enable_device failed\n", __func__);
  2650. return -ENODEV;
  2651. }
  2652. dev->active = 1;
  2653. pci_set_drvdata(pdev, dev);
  2654. /* PCI resource allocation */
  2655. resource = pci_resource_start(pdev, 1);
  2656. len = pci_resource_len(pdev, 1);
  2657. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2658. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2659. retval = -EBUSY;
  2660. goto finished;
  2661. }
  2662. dev->phys_addr = resource;
  2663. dev->mem_region = 1;
  2664. dev->base_addr = ioremap_nocache(resource, len);
  2665. if (!dev->base_addr) {
  2666. pr_err("%s: device memory cannot be mapped\n", __func__);
  2667. retval = -ENOMEM;
  2668. goto finished;
  2669. }
  2670. if (!pdev->irq) {
  2671. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2672. retval = -ENODEV;
  2673. goto finished;
  2674. }
  2675. pch_udc = dev;
  2676. /* initialize the hardware */
  2677. if (pch_udc_pcd_init(dev))
  2678. goto finished;
  2679. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2680. dev)) {
  2681. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2682. pdev->irq);
  2683. retval = -ENODEV;
  2684. goto finished;
  2685. }
  2686. dev->irq = pdev->irq;
  2687. dev->irq_registered = 1;
  2688. pci_set_master(pdev);
  2689. pci_try_set_mwi(pdev);
  2690. /* device struct setup */
  2691. spin_lock_init(&dev->lock);
  2692. dev->pdev = pdev;
  2693. dev->gadget.ops = &pch_udc_ops;
  2694. retval = init_dma_pools(dev);
  2695. if (retval)
  2696. goto finished;
  2697. dev_set_name(&dev->gadget.dev, "gadget");
  2698. dev->gadget.dev.parent = &pdev->dev;
  2699. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2700. dev->gadget.dev.release = gadget_release;
  2701. dev->gadget.name = KBUILD_MODNAME;
  2702. dev->gadget.is_dualspeed = 1;
  2703. retval = device_register(&dev->gadget.dev);
  2704. if (retval)
  2705. goto finished;
  2706. dev->registered = 1;
  2707. /* Put the device in disconnected state till a driver is bound */
  2708. pch_udc_set_disconnect(dev);
  2709. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2710. if (retval)
  2711. goto finished;
  2712. return 0;
  2713. finished:
  2714. pch_udc_remove(pdev);
  2715. return retval;
  2716. }
  2717. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2718. {
  2719. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2720. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2721. .class_mask = 0xffffffff,
  2722. },
  2723. {
  2724. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2725. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2726. .class_mask = 0xffffffff,
  2727. },
  2728. { 0 },
  2729. };
  2730. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2731. static struct pci_driver pch_udc_driver = {
  2732. .name = KBUILD_MODNAME,
  2733. .id_table = pch_udc_pcidev_id,
  2734. .probe = pch_udc_probe,
  2735. .remove = pch_udc_remove,
  2736. .suspend = pch_udc_suspend,
  2737. .resume = pch_udc_resume,
  2738. .shutdown = pch_udc_shutdown,
  2739. };
  2740. static int __init pch_udc_pci_init(void)
  2741. {
  2742. return pci_register_driver(&pch_udc_driver);
  2743. }
  2744. module_init(pch_udc_pci_init);
  2745. static void __exit pch_udc_pci_exit(void)
  2746. {
  2747. pci_unregister_driver(&pch_udc_driver);
  2748. }
  2749. module_exit(pch_udc_pci_exit);
  2750. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2751. MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
  2752. MODULE_LICENSE("GPL");