drxd_hard.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002
  1. /*
  2. * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
  3. *
  4. * Copyright (C) 2003-2007 Micronas
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * version 2 only, as published by the Free Software Foundation.
  9. *
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA
  21. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/firmware.h>
  29. #include <linux/i2c.h>
  30. #include <asm/div64.h>
  31. #include "dvb_frontend.h"
  32. #include "drxd.h"
  33. #include "drxd_firm.h"
  34. #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
  35. #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
  36. #define CHUNK_SIZE 48
  37. #define DRX_I2C_RMW 0x10
  38. #define DRX_I2C_BROADCAST 0x20
  39. #define DRX_I2C_CLEARCRC 0x80
  40. #define DRX_I2C_SINGLE_MASTER 0xC0
  41. #define DRX_I2C_MODEFLAGS 0xC0
  42. #define DRX_I2C_FLAGS 0xF0
  43. #ifndef SIZEOF_ARRAY
  44. #define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
  45. #endif
  46. #define DEFAULT_LOCK_TIMEOUT 1100
  47. #define DRX_CHANNEL_AUTO 0
  48. #define DRX_CHANNEL_HIGH 1
  49. #define DRX_CHANNEL_LOW 2
  50. #define DRX_LOCK_MPEG 1
  51. #define DRX_LOCK_FEC 2
  52. #define DRX_LOCK_DEMOD 4
  53. /****************************************************************************/
  54. enum CSCDState {
  55. CSCD_INIT = 0,
  56. CSCD_SET,
  57. CSCD_SAVED
  58. };
  59. enum CDrxdState {
  60. DRXD_UNINITIALIZED = 0,
  61. DRXD_STOPPED,
  62. DRXD_STARTED
  63. };
  64. enum AGC_CTRL_MODE {
  65. AGC_CTRL_AUTO = 0,
  66. AGC_CTRL_USER,
  67. AGC_CTRL_OFF
  68. };
  69. enum OperationMode {
  70. OM_Default,
  71. OM_DVBT_Diversity_Front,
  72. OM_DVBT_Diversity_End
  73. };
  74. struct SCfgAgc {
  75. enum AGC_CTRL_MODE ctrlMode;
  76. u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
  77. u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */
  78. u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
  79. u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
  80. u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */
  81. u16 R1;
  82. u16 R2;
  83. u16 R3;
  84. };
  85. struct SNoiseCal {
  86. int cpOpt;
  87. u16 cpNexpOfs;
  88. u16 tdCal2k;
  89. u16 tdCal8k;
  90. };
  91. enum app_env {
  92. APPENV_STATIC = 0,
  93. APPENV_PORTABLE = 1,
  94. APPENV_MOBILE = 2
  95. };
  96. enum EIFFilter {
  97. IFFILTER_SAW = 0,
  98. IFFILTER_DISCRETE = 1
  99. };
  100. struct drxd_state {
  101. struct dvb_frontend frontend;
  102. struct dvb_frontend_ops ops;
  103. struct dvb_frontend_parameters param;
  104. const struct firmware *fw;
  105. struct device *dev;
  106. struct i2c_adapter *i2c;
  107. void *priv;
  108. struct drxd_config config;
  109. int i2c_access;
  110. int init_done;
  111. struct mutex mutex;
  112. u8 chip_adr;
  113. u16 hi_cfg_timing_div;
  114. u16 hi_cfg_bridge_delay;
  115. u16 hi_cfg_wakeup_key;
  116. u16 hi_cfg_ctrl;
  117. u16 intermediate_freq;
  118. u16 osc_clock_freq;
  119. enum CSCDState cscd_state;
  120. enum CDrxdState drxd_state;
  121. u16 sys_clock_freq;
  122. s16 osc_clock_deviation;
  123. u16 expected_sys_clock_freq;
  124. u16 insert_rs_byte;
  125. u16 enable_parallel;
  126. int operation_mode;
  127. struct SCfgAgc if_agc_cfg;
  128. struct SCfgAgc rf_agc_cfg;
  129. struct SNoiseCal noise_cal;
  130. u32 fe_fs_add_incr;
  131. u32 org_fe_fs_add_incr;
  132. u16 current_fe_if_incr;
  133. u16 m_FeAgRegAgPwd;
  134. u16 m_FeAgRegAgAgcSio;
  135. u16 m_EcOcRegOcModeLop;
  136. u16 m_EcOcRegSncSncLvl;
  137. u8 *m_InitAtomicRead;
  138. u8 *m_HiI2cPatch;
  139. u8 *m_ResetCEFR;
  140. u8 *m_InitFE_1;
  141. u8 *m_InitFE_2;
  142. u8 *m_InitCP;
  143. u8 *m_InitCE;
  144. u8 *m_InitEQ;
  145. u8 *m_InitSC;
  146. u8 *m_InitEC;
  147. u8 *m_ResetECRAM;
  148. u8 *m_InitDiversityFront;
  149. u8 *m_InitDiversityEnd;
  150. u8 *m_DisableDiversity;
  151. u8 *m_StartDiversityFront;
  152. u8 *m_StartDiversityEnd;
  153. u8 *m_DiversityDelay8MHZ;
  154. u8 *m_DiversityDelay6MHZ;
  155. u8 *microcode;
  156. u32 microcode_length;
  157. int type_A;
  158. int PGA;
  159. int diversity;
  160. int tuner_mirrors;
  161. enum app_env app_env_default;
  162. enum app_env app_env_diversity;
  163. };
  164. /****************************************************************************/
  165. /* I2C **********************************************************************/
  166. /****************************************************************************/
  167. static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
  168. {
  169. struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
  170. if (i2c_transfer(adap, &msg, 1) != 1)
  171. return -1;
  172. return 0;
  173. }
  174. static int i2c_read(struct i2c_adapter *adap,
  175. u8 adr, u8 *msg, int len, u8 *answ, int alen)
  176. {
  177. struct i2c_msg msgs[2] = {
  178. {
  179. .addr = adr, .flags = 0,
  180. .buf = msg, .len = len
  181. }, {
  182. .addr = adr, .flags = I2C_M_RD,
  183. .buf = answ, .len = alen
  184. }
  185. };
  186. if (i2c_transfer(adap, msgs, 2) != 2)
  187. return -1;
  188. return 0;
  189. }
  190. static inline u32 MulDiv32(u32 a, u32 b, u32 c)
  191. {
  192. u64 tmp64;
  193. tmp64 = (u64)a * (u64)b;
  194. do_div(tmp64, c);
  195. return (u32) tmp64;
  196. }
  197. static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
  198. {
  199. u8 adr = state->config.demod_address;
  200. u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
  201. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
  202. };
  203. u8 mm2[2];
  204. if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
  205. return -1;
  206. if (data)
  207. *data = mm2[0] | (mm2[1] << 8);
  208. return mm2[0] | (mm2[1] << 8);
  209. }
  210. static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
  211. {
  212. u8 adr = state->config.demod_address;
  213. u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
  214. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
  215. };
  216. u8 mm2[4];
  217. if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
  218. return -1;
  219. if (data)
  220. *data =
  221. mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
  222. return 0;
  223. }
  224. static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
  225. {
  226. u8 adr = state->config.demod_address;
  227. u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
  228. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
  229. data & 0xff, (data >> 8) & 0xff
  230. };
  231. if (i2c_write(state->i2c, adr, mm, 6) < 0)
  232. return -1;
  233. return 0;
  234. }
  235. static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
  236. {
  237. u8 adr = state->config.demod_address;
  238. u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
  239. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
  240. data & 0xff, (data >> 8) & 0xff,
  241. (data >> 16) & 0xff, (data >> 24) & 0xff
  242. };
  243. if (i2c_write(state->i2c, adr, mm, 8) < 0)
  244. return -1;
  245. return 0;
  246. }
  247. static int write_chunk(struct drxd_state *state,
  248. u32 reg, u8 *data, u32 len, u8 flags)
  249. {
  250. u8 adr = state->config.demod_address;
  251. u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
  252. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
  253. };
  254. int i;
  255. for (i = 0; i < len; i++)
  256. mm[4 + i] = data[i];
  257. if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
  258. printk(KERN_ERR "error in write_chunk\n");
  259. return -1;
  260. }
  261. return 0;
  262. }
  263. static int WriteBlock(struct drxd_state *state,
  264. u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
  265. {
  266. while (BlockSize > 0) {
  267. u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
  268. if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
  269. return -1;
  270. pBlock += Chunk;
  271. Address += (Chunk >> 1);
  272. BlockSize -= Chunk;
  273. }
  274. return 0;
  275. }
  276. static int WriteTable(struct drxd_state *state, u8 * pTable)
  277. {
  278. int status = 0;
  279. if (pTable == NULL)
  280. return 0;
  281. while (!status) {
  282. u16 Length;
  283. u32 Address = pTable[0] | (pTable[1] << 8) |
  284. (pTable[2] << 16) | (pTable[3] << 24);
  285. if (Address == 0xFFFFFFFF)
  286. break;
  287. pTable += sizeof(u32);
  288. Length = pTable[0] | (pTable[1] << 8);
  289. pTable += sizeof(u16);
  290. if (!Length)
  291. break;
  292. status = WriteBlock(state, Address, Length * 2, pTable, 0);
  293. pTable += (Length * 2);
  294. }
  295. return status;
  296. }
  297. /****************************************************************************/
  298. /****************************************************************************/
  299. /****************************************************************************/
  300. static int ResetCEFR(struct drxd_state *state)
  301. {
  302. return WriteTable(state, state->m_ResetCEFR);
  303. }
  304. static int InitCP(struct drxd_state *state)
  305. {
  306. return WriteTable(state, state->m_InitCP);
  307. }
  308. static int InitCE(struct drxd_state *state)
  309. {
  310. int status;
  311. enum app_env AppEnv = state->app_env_default;
  312. do {
  313. status = WriteTable(state, state->m_InitCE);
  314. if (status < 0)
  315. break;
  316. if (state->operation_mode == OM_DVBT_Diversity_Front ||
  317. state->operation_mode == OM_DVBT_Diversity_End) {
  318. AppEnv = state->app_env_diversity;
  319. }
  320. if (AppEnv == APPENV_STATIC) {
  321. status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
  322. if (status < 0)
  323. break;
  324. } else if (AppEnv == APPENV_PORTABLE) {
  325. status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
  326. if (status < 0)
  327. break;
  328. } else if (AppEnv == APPENV_MOBILE && state->type_A) {
  329. status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
  330. if (status < 0)
  331. break;
  332. } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
  333. status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
  334. if (status < 0)
  335. break;
  336. }
  337. /* start ce */
  338. status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
  339. if (status < 0)
  340. break;
  341. } while (0);
  342. return status;
  343. }
  344. static int StopOC(struct drxd_state *state)
  345. {
  346. int status = 0;
  347. u16 ocSyncLvl = 0;
  348. u16 ocModeLop = state->m_EcOcRegOcModeLop;
  349. u16 dtoIncLop = 0;
  350. u16 dtoIncHip = 0;
  351. do {
  352. /* Store output configuration */
  353. status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
  354. if (status < 0)
  355. break;
  356. /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
  357. state->m_EcOcRegSncSncLvl = ocSyncLvl;
  358. /* m_EcOcRegOcModeLop = ocModeLop; */
  359. /* Flush FIFO (byte-boundary) at fixed rate */
  360. status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
  361. if (status < 0)
  362. break;
  363. status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
  364. if (status < 0)
  365. break;
  366. status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
  367. if (status < 0)
  368. break;
  369. status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
  370. if (status < 0)
  371. break;
  372. ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
  373. ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
  374. status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
  375. if (status < 0)
  376. break;
  377. status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
  378. if (status < 0)
  379. break;
  380. msleep(1);
  381. /* Output pins to '0' */
  382. status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
  383. if (status < 0)
  384. break;
  385. /* Force the OC out of sync */
  386. ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
  387. status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
  388. if (status < 0)
  389. break;
  390. ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
  391. ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
  392. ocModeLop |= 0x2; /* Magically-out-of-sync */
  393. status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
  394. if (status < 0)
  395. break;
  396. status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
  397. if (status < 0)
  398. break;
  399. status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
  400. if (status < 0)
  401. break;
  402. } while (0);
  403. return status;
  404. }
  405. static int StartOC(struct drxd_state *state)
  406. {
  407. int status = 0;
  408. do {
  409. /* Stop OC */
  410. status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
  411. if (status < 0)
  412. break;
  413. /* Restore output configuration */
  414. status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
  415. if (status < 0)
  416. break;
  417. status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
  418. if (status < 0)
  419. break;
  420. /* Output pins active again */
  421. status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
  422. if (status < 0)
  423. break;
  424. /* Start OC */
  425. status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
  426. if (status < 0)
  427. break;
  428. } while (0);
  429. return status;
  430. }
  431. static int InitEQ(struct drxd_state *state)
  432. {
  433. return WriteTable(state, state->m_InitEQ);
  434. }
  435. static int InitEC(struct drxd_state *state)
  436. {
  437. return WriteTable(state, state->m_InitEC);
  438. }
  439. static int InitSC(struct drxd_state *state)
  440. {
  441. return WriteTable(state, state->m_InitSC);
  442. }
  443. static int InitAtomicRead(struct drxd_state *state)
  444. {
  445. return WriteTable(state, state->m_InitAtomicRead);
  446. }
  447. static int CorrectSysClockDeviation(struct drxd_state *state);
  448. static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
  449. {
  450. u16 ScRaRamLock = 0;
  451. const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
  452. SC_RA_RAM_LOCK_FEC__M |
  453. SC_RA_RAM_LOCK_DEMOD__M);
  454. const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
  455. SC_RA_RAM_LOCK_DEMOD__M);
  456. const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
  457. int status;
  458. *pLockStatus = 0;
  459. status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
  460. if (status < 0) {
  461. printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
  462. return status;
  463. }
  464. if (state->drxd_state != DRXD_STARTED)
  465. return 0;
  466. if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
  467. *pLockStatus |= DRX_LOCK_MPEG;
  468. CorrectSysClockDeviation(state);
  469. }
  470. if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
  471. *pLockStatus |= DRX_LOCK_FEC;
  472. if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
  473. *pLockStatus |= DRX_LOCK_DEMOD;
  474. return 0;
  475. }
  476. /****************************************************************************/
  477. static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
  478. {
  479. int status;
  480. if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
  481. return -1;
  482. if (cfg->ctrlMode == AGC_CTRL_USER) {
  483. do {
  484. u16 FeAgRegPm1AgcWri;
  485. u16 FeAgRegAgModeLop;
  486. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
  487. if (status < 0)
  488. break;
  489. FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
  490. FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
  491. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
  492. if (status < 0)
  493. break;
  494. FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
  495. FE_AG_REG_PM1_AGC_WRI__M);
  496. status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
  497. if (status < 0)
  498. break;
  499. } while (0);
  500. } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
  501. if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
  502. ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
  503. ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
  504. ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
  505. )
  506. return -1;
  507. do {
  508. u16 FeAgRegAgModeLop;
  509. u16 FeAgRegEgcSetLvl;
  510. u16 slope, offset;
  511. /* == Mode == */
  512. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
  513. if (status < 0)
  514. break;
  515. FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
  516. FeAgRegAgModeLop |=
  517. FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
  518. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
  519. if (status < 0)
  520. break;
  521. /* == Settle level == */
  522. FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
  523. FE_AG_REG_EGC_SET_LVL__M);
  524. status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
  525. if (status < 0)
  526. break;
  527. /* == Min/Max == */
  528. slope = (u16) ((cfg->maxOutputLevel -
  529. cfg->minOutputLevel) / 2);
  530. offset = (u16) ((cfg->maxOutputLevel +
  531. cfg->minOutputLevel) / 2 - 511);
  532. status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
  533. if (status < 0)
  534. break;
  535. status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
  536. if (status < 0)
  537. break;
  538. /* == Speed == */
  539. {
  540. const u16 maxRur = 8;
  541. const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
  542. const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
  543. 17, 18, 18, 19,
  544. 20, 21, 22, 23,
  545. 24, 26, 27, 28,
  546. 29, 31
  547. };
  548. u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
  549. (maxRur + 1);
  550. u16 fineSpeed = (u16) (cfg->speed -
  551. ((cfg->speed /
  552. fineSteps) *
  553. fineSteps));
  554. u16 invRurCount = (u16) (cfg->speed /
  555. fineSteps);
  556. u16 rurCount;
  557. if (invRurCount > maxRur) {
  558. rurCount = 0;
  559. fineSpeed += fineSteps;
  560. } else {
  561. rurCount = maxRur - invRurCount;
  562. }
  563. /*
  564. fastInc = default *
  565. (2^(fineSpeed/fineSteps))
  566. => range[default...2*default>
  567. slowInc = default *
  568. (2^(fineSpeed/fineSteps))
  569. */
  570. {
  571. u16 fastIncrDec =
  572. fastIncrDecLUT[fineSpeed /
  573. ((fineSteps /
  574. (14 + 1)) + 1)];
  575. u16 slowIncrDec =
  576. slowIncrDecLUT[fineSpeed /
  577. (fineSteps /
  578. (3 + 1))];
  579. status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
  580. if (status < 0)
  581. break;
  582. status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
  583. if (status < 0)
  584. break;
  585. status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
  586. if (status < 0)
  587. break;
  588. status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
  589. if (status < 0)
  590. break;
  591. status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
  592. if (status < 0)
  593. break;
  594. }
  595. }
  596. } while (0);
  597. } else {
  598. /* No OFF mode for IF control */
  599. return -1;
  600. }
  601. return status;
  602. }
  603. static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
  604. {
  605. int status = 0;
  606. if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
  607. return -1;
  608. if (cfg->ctrlMode == AGC_CTRL_USER) {
  609. do {
  610. u16 AgModeLop = 0;
  611. u16 level = (cfg->outputLevel);
  612. if (level == DRXD_FE_CTRL_MAX)
  613. level++;
  614. status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
  615. if (status < 0)
  616. break;
  617. /*==== Mode ====*/
  618. /* Powerdown PD2, WRI source */
  619. state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
  620. state->m_FeAgRegAgPwd |=
  621. FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
  622. status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
  623. if (status < 0)
  624. break;
  625. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  626. if (status < 0)
  627. break;
  628. AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
  629. FE_AG_REG_AG_MODE_LOP_MODE_E__M));
  630. AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
  631. FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
  632. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  633. if (status < 0)
  634. break;
  635. /* enable AGC2 pin */
  636. {
  637. u16 FeAgRegAgAgcSio = 0;
  638. status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
  639. if (status < 0)
  640. break;
  641. FeAgRegAgAgcSio &=
  642. ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
  643. FeAgRegAgAgcSio |=
  644. FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
  645. status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
  646. if (status < 0)
  647. break;
  648. }
  649. } while (0);
  650. } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
  651. u16 AgModeLop = 0;
  652. do {
  653. u16 level;
  654. /* Automatic control */
  655. /* Powerup PD2, AGC2 as output, TGC source */
  656. (state->m_FeAgRegAgPwd) &=
  657. ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
  658. (state->m_FeAgRegAgPwd) |=
  659. FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
  660. status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
  661. if (status < 0)
  662. break;
  663. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  664. if (status < 0)
  665. break;
  666. AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
  667. FE_AG_REG_AG_MODE_LOP_MODE_E__M));
  668. AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
  669. FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
  670. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  671. if (status < 0)
  672. break;
  673. /* Settle level */
  674. level = (((cfg->settleLevel) >> 4) &
  675. FE_AG_REG_TGC_SET_LVL__M);
  676. status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
  677. if (status < 0)
  678. break;
  679. /* Min/max: don't care */
  680. /* Speed: TODO */
  681. /* enable AGC2 pin */
  682. {
  683. u16 FeAgRegAgAgcSio = 0;
  684. status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
  685. if (status < 0)
  686. break;
  687. FeAgRegAgAgcSio &=
  688. ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
  689. FeAgRegAgAgcSio |=
  690. FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
  691. status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
  692. if (status < 0)
  693. break;
  694. }
  695. } while (0);
  696. } else {
  697. u16 AgModeLop = 0;
  698. do {
  699. /* No RF AGC control */
  700. /* Powerdown PD2, AGC2 as output, WRI source */
  701. (state->m_FeAgRegAgPwd) &=
  702. ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
  703. (state->m_FeAgRegAgPwd) |=
  704. FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
  705. status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
  706. if (status < 0)
  707. break;
  708. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  709. if (status < 0)
  710. break;
  711. AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
  712. FE_AG_REG_AG_MODE_LOP_MODE_E__M));
  713. AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
  714. FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
  715. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  716. if (status < 0)
  717. break;
  718. /* set FeAgRegAgAgcSio AGC2 (RF) as input */
  719. {
  720. u16 FeAgRegAgAgcSio = 0;
  721. status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
  722. if (status < 0)
  723. break;
  724. FeAgRegAgAgcSio &=
  725. ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
  726. FeAgRegAgAgcSio |=
  727. FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
  728. status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
  729. if (status < 0)
  730. break;
  731. }
  732. } while (0);
  733. }
  734. return status;
  735. }
  736. static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
  737. {
  738. int status = 0;
  739. *pValue = 0;
  740. if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
  741. u16 Value;
  742. status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
  743. Value &= FE_AG_REG_GC1_AGC_DAT__M;
  744. if (status >= 0) {
  745. /* 3.3V
  746. |
  747. R1
  748. |
  749. Vin - R3 - * -- Vout
  750. |
  751. R2
  752. |
  753. GND
  754. */
  755. u32 R1 = state->if_agc_cfg.R1;
  756. u32 R2 = state->if_agc_cfg.R2;
  757. u32 R3 = state->if_agc_cfg.R3;
  758. u32 Vmax = (3300 * R2) / (R1 + R2);
  759. u32 Rpar = (R2 * R3) / (R3 + R2);
  760. u32 Vmin = (3300 * Rpar) / (R1 + Rpar);
  761. u32 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
  762. *pValue = Vout;
  763. }
  764. }
  765. return status;
  766. }
  767. static int load_firmware(struct drxd_state *state, const char *fw_name)
  768. {
  769. const struct firmware *fw;
  770. if (request_firmware(&fw, fw_name, state->dev) < 0) {
  771. printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
  772. return -EIO;
  773. }
  774. state->microcode = kmalloc(fw->size, GFP_KERNEL);
  775. if (state->microcode == NULL) {
  776. release_firmware(fw);
  777. printk(KERN_ERR "drxd: firmware load failure: no memory\n");
  778. return -ENOMEM;
  779. }
  780. memcpy(state->microcode, fw->data, fw->size);
  781. state->microcode_length = fw->size;
  782. release_firmware(fw);
  783. return 0;
  784. }
  785. static int DownloadMicrocode(struct drxd_state *state,
  786. const u8 *pMCImage, u32 Length)
  787. {
  788. u8 *pSrc;
  789. u16 Flags;
  790. u32 Address;
  791. u16 nBlocks;
  792. u16 BlockSize;
  793. u16 BlockCRC;
  794. u32 offset = 0;
  795. int i, status = 0;
  796. pSrc = (u8 *) pMCImage;
  797. Flags = (pSrc[0] << 8) | pSrc[1];
  798. pSrc += sizeof(u16);
  799. offset += sizeof(u16);
  800. nBlocks = (pSrc[0] << 8) | pSrc[1];
  801. pSrc += sizeof(u16);
  802. offset += sizeof(u16);
  803. for (i = 0; i < nBlocks; i++) {
  804. Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
  805. (pSrc[2] << 8) | pSrc[3];
  806. pSrc += sizeof(u32);
  807. offset += sizeof(u32);
  808. BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
  809. pSrc += sizeof(u16);
  810. offset += sizeof(u16);
  811. Flags = (pSrc[0] << 8) | pSrc[1];
  812. pSrc += sizeof(u16);
  813. offset += sizeof(u16);
  814. BlockCRC = (pSrc[0] << 8) | pSrc[1];
  815. pSrc += sizeof(u16);
  816. offset += sizeof(u16);
  817. status = WriteBlock(state, Address, BlockSize,
  818. pSrc, DRX_I2C_CLEARCRC);
  819. if (status < 0)
  820. break;
  821. pSrc += BlockSize;
  822. offset += BlockSize;
  823. }
  824. return status;
  825. }
  826. static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
  827. {
  828. u32 nrRetries = 0;
  829. u16 waitCmd;
  830. int status;
  831. status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
  832. if (status < 0)
  833. return status;
  834. do {
  835. nrRetries += 1;
  836. if (nrRetries > DRXD_MAX_RETRIES) {
  837. status = -1;
  838. break;
  839. };
  840. status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
  841. } while (waitCmd != 0);
  842. if (status >= 0)
  843. status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
  844. return status;
  845. }
  846. static int HI_CfgCommand(struct drxd_state *state)
  847. {
  848. int status = 0;
  849. mutex_lock(&state->mutex);
  850. Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
  851. Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
  852. Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
  853. Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
  854. Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
  855. Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
  856. if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
  857. HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
  858. status = Write16(state, HI_RA_RAM_SRV_CMD__A,
  859. HI_RA_RAM_SRV_CMD_CONFIG, 0);
  860. else
  861. status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, 0);
  862. mutex_unlock(&state->mutex);
  863. return status;
  864. }
  865. static int InitHI(struct drxd_state *state)
  866. {
  867. state->hi_cfg_wakeup_key = (state->chip_adr);
  868. /* port/bridge/power down ctrl */
  869. state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
  870. return HI_CfgCommand(state);
  871. }
  872. static int HI_ResetCommand(struct drxd_state *state)
  873. {
  874. int status;
  875. mutex_lock(&state->mutex);
  876. status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
  877. HI_RA_RAM_SRV_RST_KEY_ACT, 0);
  878. if (status == 0)
  879. status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, 0);
  880. mutex_unlock(&state->mutex);
  881. msleep(1);
  882. return status;
  883. }
  884. static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
  885. {
  886. state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
  887. if (bEnableBridge)
  888. state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
  889. else
  890. state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
  891. return HI_CfgCommand(state);
  892. }
  893. #define HI_TR_WRITE 0x9
  894. #define HI_TR_READ 0xA
  895. #define HI_TR_READ_WRITE 0xB
  896. #define HI_TR_BROADCAST 0x4
  897. #if 0
  898. static int AtomicReadBlock(struct drxd_state *state,
  899. u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
  900. {
  901. int status;
  902. int i = 0;
  903. /* Parameter check */
  904. if ((!pData) || ((DataSize & 1) != 0))
  905. return -1;
  906. mutex_lock(&state->mutex);
  907. do {
  908. /* Instruct HI to read n bytes */
  909. /* TODO use proper names forthese egisters */
  910. status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
  911. if (status < 0)
  912. break;
  913. status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
  914. if (status < 0)
  915. break;
  916. status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
  917. if (status < 0)
  918. break;
  919. status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
  920. if (status < 0)
  921. break;
  922. status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
  923. if (status < 0)
  924. break;
  925. status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
  926. if (status < 0)
  927. break;
  928. } while (0);
  929. if (status >= 0) {
  930. for (i = 0; i < (DataSize / 2); i += 1) {
  931. u16 word;
  932. status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
  933. &word, 0);
  934. if (status < 0)
  935. break;
  936. pData[2 * i] = (u8) (word & 0xFF);
  937. pData[(2 * i) + 1] = (u8) (word >> 8);
  938. }
  939. }
  940. mutex_unlock(&state->mutex);
  941. return status;
  942. }
  943. static int AtomicReadReg32(struct drxd_state *state,
  944. u32 Addr, u32 *pData, u8 Flags)
  945. {
  946. u8 buf[sizeof(u32)];
  947. int status;
  948. if (!pData)
  949. return -1;
  950. status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
  951. *pData = (((u32) buf[0]) << 0) +
  952. (((u32) buf[1]) << 8) +
  953. (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
  954. return status;
  955. }
  956. #endif
  957. static int StopAllProcessors(struct drxd_state *state)
  958. {
  959. return Write16(state, HI_COMM_EXEC__A,
  960. SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
  961. }
  962. static int EnableAndResetMB(struct drxd_state *state)
  963. {
  964. if (state->type_A) {
  965. /* disable? monitor bus observe @ EC_OC */
  966. Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
  967. }
  968. /* do inverse broadcast, followed by explicit write to HI */
  969. Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
  970. Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
  971. return 0;
  972. }
  973. static int InitCC(struct drxd_state *state)
  974. {
  975. if (state->osc_clock_freq == 0 ||
  976. state->osc_clock_freq > 20000 ||
  977. (state->osc_clock_freq % 4000) != 0) {
  978. printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
  979. return -1;
  980. }
  981. Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
  982. Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
  983. CC_REG_PLL_MODE_PUMP_CUR_12, 0);
  984. Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
  985. Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
  986. Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
  987. return 0;
  988. }
  989. static int ResetECOD(struct drxd_state *state)
  990. {
  991. int status = 0;
  992. if (state->type_A)
  993. status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
  994. else
  995. status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
  996. if (!(status < 0))
  997. status = WriteTable(state, state->m_ResetECRAM);
  998. if (!(status < 0))
  999. status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
  1000. return status;
  1001. }
  1002. /* Configure PGA switch */
  1003. static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
  1004. {
  1005. int status;
  1006. u16 AgModeLop = 0;
  1007. u16 AgModeHip = 0;
  1008. do {
  1009. if (pgaSwitch) {
  1010. /* PGA on */
  1011. /* fine gain */
  1012. status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  1013. if (status < 0)
  1014. break;
  1015. AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
  1016. AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
  1017. status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  1018. if (status < 0)
  1019. break;
  1020. /* coarse gain */
  1021. status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
  1022. if (status < 0)
  1023. break;
  1024. AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
  1025. AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
  1026. status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
  1027. if (status < 0)
  1028. break;
  1029. /* enable fine and coarse gain, enable AAF,
  1030. no ext resistor */
  1031. status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
  1032. if (status < 0)
  1033. break;
  1034. } else {
  1035. /* PGA off, bypass */
  1036. /* fine gain */
  1037. status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  1038. if (status < 0)
  1039. break;
  1040. AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
  1041. AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
  1042. status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  1043. if (status < 0)
  1044. break;
  1045. /* coarse gain */
  1046. status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
  1047. if (status < 0)
  1048. break;
  1049. AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
  1050. AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
  1051. status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
  1052. if (status < 0)
  1053. break;
  1054. /* disable fine and coarse gain, enable AAF,
  1055. no ext resistor */
  1056. status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
  1057. if (status < 0)
  1058. break;
  1059. }
  1060. } while (0);
  1061. return status;
  1062. }
  1063. static int InitFE(struct drxd_state *state)
  1064. {
  1065. int status;
  1066. do {
  1067. status = WriteTable(state, state->m_InitFE_1);
  1068. if (status < 0)
  1069. break;
  1070. if (state->type_A) {
  1071. status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
  1072. FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
  1073. 0);
  1074. } else {
  1075. if (state->PGA)
  1076. status = SetCfgPga(state, 0);
  1077. else
  1078. status =
  1079. Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
  1080. B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
  1081. 0);
  1082. }
  1083. if (status < 0)
  1084. break;
  1085. status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
  1086. if (status < 0)
  1087. break;
  1088. status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
  1089. if (status < 0)
  1090. break;
  1091. status = WriteTable(state, state->m_InitFE_2);
  1092. if (status < 0)
  1093. break;
  1094. } while (0);
  1095. return status;
  1096. }
  1097. static int InitFT(struct drxd_state *state)
  1098. {
  1099. /*
  1100. norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
  1101. SC stuff
  1102. */
  1103. return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
  1104. }
  1105. static int SC_WaitForReady(struct drxd_state *state)
  1106. {
  1107. u16 curCmd;
  1108. int i;
  1109. for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
  1110. int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
  1111. if (status == 0 || curCmd == 0)
  1112. return status;
  1113. }
  1114. return -1;
  1115. }
  1116. static int SC_SendCommand(struct drxd_state *state, u16 cmd)
  1117. {
  1118. int status = 0;
  1119. u16 errCode;
  1120. Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
  1121. SC_WaitForReady(state);
  1122. Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
  1123. if (errCode == 0xFFFF) {
  1124. printk(KERN_ERR "Command Error\n");
  1125. status = -1;
  1126. }
  1127. return status;
  1128. }
  1129. static int SC_ProcStartCommand(struct drxd_state *state,
  1130. u16 subCmd, u16 param0, u16 param1)
  1131. {
  1132. int status = 0;
  1133. u16 scExec;
  1134. mutex_lock(&state->mutex);
  1135. do {
  1136. Read16(state, SC_COMM_EXEC__A, &scExec, 0);
  1137. if (scExec != 1) {
  1138. status = -1;
  1139. break;
  1140. }
  1141. SC_WaitForReady(state);
  1142. Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
  1143. Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
  1144. Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
  1145. SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
  1146. } while (0);
  1147. mutex_unlock(&state->mutex);
  1148. return status;
  1149. }
  1150. static int SC_SetPrefParamCommand(struct drxd_state *state,
  1151. u16 subCmd, u16 param0, u16 param1)
  1152. {
  1153. int status;
  1154. mutex_lock(&state->mutex);
  1155. do {
  1156. status = SC_WaitForReady(state);
  1157. if (status < 0)
  1158. break;
  1159. status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
  1160. if (status < 0)
  1161. break;
  1162. status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
  1163. if (status < 0)
  1164. break;
  1165. status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
  1166. if (status < 0)
  1167. break;
  1168. status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
  1169. if (status < 0)
  1170. break;
  1171. } while (0);
  1172. mutex_unlock(&state->mutex);
  1173. return status;
  1174. }
  1175. #if 0
  1176. static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
  1177. {
  1178. int status = 0;
  1179. mutex_lock(&state->mutex);
  1180. do {
  1181. status = SC_WaitForReady(state);
  1182. if (status < 0)
  1183. break;
  1184. status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
  1185. if (status < 0)
  1186. break;
  1187. status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
  1188. if (status < 0)
  1189. break;
  1190. } while (0);
  1191. mutex_unlock(&state->mutex);
  1192. return status;
  1193. }
  1194. #endif
  1195. static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
  1196. {
  1197. int status;
  1198. do {
  1199. u16 EcOcRegIprInvMpg = 0;
  1200. u16 EcOcRegOcModeLop = 0;
  1201. u16 EcOcRegOcModeHip = 0;
  1202. u16 EcOcRegOcMpgSio = 0;
  1203. /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
  1204. if (state->operation_mode == OM_DVBT_Diversity_Front) {
  1205. if (bEnableOutput) {
  1206. EcOcRegOcModeHip |=
  1207. B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
  1208. } else
  1209. EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
  1210. EcOcRegOcModeLop |=
  1211. EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
  1212. } else {
  1213. EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
  1214. if (bEnableOutput)
  1215. EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
  1216. else
  1217. EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
  1218. /* Don't Insert RS Byte */
  1219. if (state->insert_rs_byte) {
  1220. EcOcRegOcModeLop &=
  1221. (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
  1222. EcOcRegOcModeHip &=
  1223. (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
  1224. EcOcRegOcModeHip |=
  1225. EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
  1226. } else {
  1227. EcOcRegOcModeLop |=
  1228. EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
  1229. EcOcRegOcModeHip &=
  1230. (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
  1231. EcOcRegOcModeHip |=
  1232. EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
  1233. }
  1234. /* Mode = Parallel */
  1235. if (state->enable_parallel)
  1236. EcOcRegOcModeLop &=
  1237. (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
  1238. else
  1239. EcOcRegOcModeLop |=
  1240. EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
  1241. }
  1242. /* Invert Data */
  1243. /* EcOcRegIprInvMpg |= 0x00FF; */
  1244. EcOcRegIprInvMpg &= (~(0x00FF));
  1245. /* Invert Error ( we don't use the pin ) */
  1246. /* EcOcRegIprInvMpg |= 0x0100; */
  1247. EcOcRegIprInvMpg &= (~(0x0100));
  1248. /* Invert Start ( we don't use the pin ) */
  1249. /* EcOcRegIprInvMpg |= 0x0200; */
  1250. EcOcRegIprInvMpg &= (~(0x0200));
  1251. /* Invert Valid ( we don't use the pin ) */
  1252. /* EcOcRegIprInvMpg |= 0x0400; */
  1253. EcOcRegIprInvMpg &= (~(0x0400));
  1254. /* Invert Clock */
  1255. /* EcOcRegIprInvMpg |= 0x0800; */
  1256. EcOcRegIprInvMpg &= (~(0x0800));
  1257. /* EcOcRegOcModeLop =0x05; */
  1258. status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
  1259. if (status < 0)
  1260. break;
  1261. status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
  1262. if (status < 0)
  1263. break;
  1264. status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
  1265. if (status < 0)
  1266. break;
  1267. status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
  1268. if (status < 0)
  1269. break;
  1270. } while (0);
  1271. return status;
  1272. }
  1273. static int SetDeviceTypeId(struct drxd_state *state)
  1274. {
  1275. int status = 0;
  1276. u16 deviceId = 0;
  1277. do {
  1278. status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
  1279. if (status < 0)
  1280. break;
  1281. /* TODO: why twice? */
  1282. status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
  1283. if (status < 0)
  1284. break;
  1285. printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
  1286. state->type_A = 0;
  1287. state->PGA = 0;
  1288. state->diversity = 0;
  1289. if (deviceId == 0) { /* on A2 only 3975 available */
  1290. state->type_A = 1;
  1291. printk(KERN_INFO "DRX3975D-A2\n");
  1292. } else {
  1293. deviceId >>= 12;
  1294. printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
  1295. switch (deviceId) {
  1296. case 4:
  1297. state->diversity = 1;
  1298. case 3:
  1299. case 7:
  1300. state->PGA = 1;
  1301. break;
  1302. case 6:
  1303. state->diversity = 1;
  1304. case 5:
  1305. case 8:
  1306. break;
  1307. default:
  1308. status = -1;
  1309. break;
  1310. }
  1311. }
  1312. } while (0);
  1313. if (status < 0)
  1314. return status;
  1315. /* Init Table selection */
  1316. state->m_InitAtomicRead = DRXD_InitAtomicRead;
  1317. state->m_InitSC = DRXD_InitSC;
  1318. state->m_ResetECRAM = DRXD_ResetECRAM;
  1319. if (state->type_A) {
  1320. state->m_ResetCEFR = DRXD_ResetCEFR;
  1321. state->m_InitFE_1 = DRXD_InitFEA2_1;
  1322. state->m_InitFE_2 = DRXD_InitFEA2_2;
  1323. state->m_InitCP = DRXD_InitCPA2;
  1324. state->m_InitCE = DRXD_InitCEA2;
  1325. state->m_InitEQ = DRXD_InitEQA2;
  1326. state->m_InitEC = DRXD_InitECA2;
  1327. if (load_firmware(state, DRX_FW_FILENAME_A2))
  1328. return -EIO;
  1329. } else {
  1330. state->m_ResetCEFR = NULL;
  1331. state->m_InitFE_1 = DRXD_InitFEB1_1;
  1332. state->m_InitFE_2 = DRXD_InitFEB1_2;
  1333. state->m_InitCP = DRXD_InitCPB1;
  1334. state->m_InitCE = DRXD_InitCEB1;
  1335. state->m_InitEQ = DRXD_InitEQB1;
  1336. state->m_InitEC = DRXD_InitECB1;
  1337. if (load_firmware(state, DRX_FW_FILENAME_B1))
  1338. return -EIO;
  1339. }
  1340. if (state->diversity) {
  1341. state->m_InitDiversityFront = DRXD_InitDiversityFront;
  1342. state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
  1343. state->m_DisableDiversity = DRXD_DisableDiversity;
  1344. state->m_StartDiversityFront = DRXD_StartDiversityFront;
  1345. state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
  1346. state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
  1347. state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
  1348. } else {
  1349. state->m_InitDiversityFront = NULL;
  1350. state->m_InitDiversityEnd = NULL;
  1351. state->m_DisableDiversity = NULL;
  1352. state->m_StartDiversityFront = NULL;
  1353. state->m_StartDiversityEnd = NULL;
  1354. state->m_DiversityDelay8MHZ = NULL;
  1355. state->m_DiversityDelay6MHZ = NULL;
  1356. }
  1357. return status;
  1358. }
  1359. static int CorrectSysClockDeviation(struct drxd_state *state)
  1360. {
  1361. int status;
  1362. s32 incr = 0;
  1363. s32 nomincr = 0;
  1364. u32 bandwidth = 0;
  1365. u32 sysClockInHz = 0;
  1366. u32 sysClockFreq = 0; /* in kHz */
  1367. s16 oscClockDeviation;
  1368. s16 Diff;
  1369. do {
  1370. /* Retrieve bandwidth and incr, sanity check */
  1371. /* These accesses should be AtomicReadReg32, but that
  1372. causes trouble (at least for diversity */
  1373. status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
  1374. if (status < 0)
  1375. break;
  1376. status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
  1377. if (status < 0)
  1378. break;
  1379. if (state->type_A) {
  1380. if ((nomincr - incr < -500) || (nomincr - incr > 500))
  1381. break;
  1382. } else {
  1383. if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
  1384. break;
  1385. }
  1386. switch (state->param.u.ofdm.bandwidth) {
  1387. case BANDWIDTH_8_MHZ:
  1388. bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
  1389. break;
  1390. case BANDWIDTH_7_MHZ:
  1391. bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
  1392. break;
  1393. case BANDWIDTH_6_MHZ:
  1394. bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
  1395. break;
  1396. default:
  1397. return -1;
  1398. break;
  1399. }
  1400. /* Compute new sysclock value
  1401. sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
  1402. incr += (1 << 23);
  1403. sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
  1404. sysClockFreq = (u32) (sysClockInHz / 1000);
  1405. /* rounding */
  1406. if ((sysClockInHz % 1000) > 500)
  1407. sysClockFreq++;
  1408. /* Compute clock deviation in ppm */
  1409. oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
  1410. (s32)
  1411. (state->expected_sys_clock_freq)) *
  1412. 1000000L) /
  1413. (s32)
  1414. (state->expected_sys_clock_freq));
  1415. Diff = oscClockDeviation - state->osc_clock_deviation;
  1416. /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
  1417. if (Diff >= -200 && Diff <= 200) {
  1418. state->sys_clock_freq = (u16) sysClockFreq;
  1419. if (oscClockDeviation != state->osc_clock_deviation) {
  1420. if (state->config.osc_deviation) {
  1421. state->config.osc_deviation(state->priv,
  1422. oscClockDeviation,
  1423. 1);
  1424. state->osc_clock_deviation =
  1425. oscClockDeviation;
  1426. }
  1427. }
  1428. /* switch OFF SRMM scan in SC */
  1429. status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
  1430. if (status < 0)
  1431. break;
  1432. /* overrule FE_IF internal value for
  1433. proper re-locking */
  1434. status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
  1435. if (status < 0)
  1436. break;
  1437. state->cscd_state = CSCD_SAVED;
  1438. }
  1439. } while (0);
  1440. return status;
  1441. }
  1442. static int DRX_Stop(struct drxd_state *state)
  1443. {
  1444. int status;
  1445. if (state->drxd_state != DRXD_STARTED)
  1446. return 0;
  1447. do {
  1448. if (state->cscd_state != CSCD_SAVED) {
  1449. u32 lock;
  1450. status = DRX_GetLockStatus(state, &lock);
  1451. if (status < 0)
  1452. break;
  1453. }
  1454. status = StopOC(state);
  1455. if (status < 0)
  1456. break;
  1457. state->drxd_state = DRXD_STOPPED;
  1458. status = ConfigureMPEGOutput(state, 0);
  1459. if (status < 0)
  1460. break;
  1461. if (state->type_A) {
  1462. /* Stop relevant processors off the device */
  1463. status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
  1464. if (status < 0)
  1465. break;
  1466. status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1467. if (status < 0)
  1468. break;
  1469. status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1470. if (status < 0)
  1471. break;
  1472. } else {
  1473. /* Stop all processors except HI & CC & FE */
  1474. status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1475. if (status < 0)
  1476. break;
  1477. status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1478. if (status < 0)
  1479. break;
  1480. status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1481. if (status < 0)
  1482. break;
  1483. status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1484. if (status < 0)
  1485. break;
  1486. status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1487. if (status < 0)
  1488. break;
  1489. status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1490. if (status < 0)
  1491. break;
  1492. status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
  1493. if (status < 0)
  1494. break;
  1495. }
  1496. } while (0);
  1497. return status;
  1498. }
  1499. int SetOperationMode(struct drxd_state *state, int oMode)
  1500. {
  1501. int status;
  1502. do {
  1503. if (state->drxd_state != DRXD_STOPPED) {
  1504. status = -1;
  1505. break;
  1506. }
  1507. if (oMode == state->operation_mode) {
  1508. status = 0;
  1509. break;
  1510. }
  1511. if (oMode != OM_Default && !state->diversity) {
  1512. status = -1;
  1513. break;
  1514. }
  1515. switch (oMode) {
  1516. case OM_DVBT_Diversity_Front:
  1517. status = WriteTable(state, state->m_InitDiversityFront);
  1518. break;
  1519. case OM_DVBT_Diversity_End:
  1520. status = WriteTable(state, state->m_InitDiversityEnd);
  1521. break;
  1522. case OM_Default:
  1523. /* We need to check how to
  1524. get DRXD out of diversity */
  1525. default:
  1526. status = WriteTable(state, state->m_DisableDiversity);
  1527. break;
  1528. }
  1529. } while (0);
  1530. if (!status)
  1531. state->operation_mode = oMode;
  1532. return status;
  1533. }
  1534. static int StartDiversity(struct drxd_state *state)
  1535. {
  1536. int status = 0;
  1537. u16 rcControl;
  1538. do {
  1539. if (state->operation_mode == OM_DVBT_Diversity_Front) {
  1540. status = WriteTable(state, state->m_StartDiversityFront);
  1541. if (status < 0)
  1542. break;
  1543. } else if (state->operation_mode == OM_DVBT_Diversity_End) {
  1544. status = WriteTable(state, state->m_StartDiversityEnd);
  1545. if (status < 0)
  1546. break;
  1547. if (state->param.u.ofdm.bandwidth == BANDWIDTH_8_MHZ) {
  1548. status = WriteTable(state, state->m_DiversityDelay8MHZ);
  1549. if (status < 0)
  1550. break;
  1551. } else {
  1552. status = WriteTable(state, state->m_DiversityDelay6MHZ);
  1553. if (status < 0)
  1554. break;
  1555. }
  1556. status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
  1557. if (status < 0)
  1558. break;
  1559. rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
  1560. rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
  1561. /* combining enabled */
  1562. B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
  1563. B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
  1564. B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
  1565. status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
  1566. if (status < 0)
  1567. break;
  1568. }
  1569. } while (0);
  1570. return status;
  1571. }
  1572. static int SetFrequencyShift(struct drxd_state *state,
  1573. u32 offsetFreq, int channelMirrored)
  1574. {
  1575. int negativeShift = (state->tuner_mirrors == channelMirrored);
  1576. /* Handle all mirroring
  1577. *
  1578. * Note: ADC mirroring (aliasing) is implictly handled by limiting
  1579. * feFsRegAddInc to 28 bits below
  1580. * (if the result before masking is more than 28 bits, this means
  1581. * that the ADC is mirroring.
  1582. * The masking is in fact the aliasing of the ADC)
  1583. *
  1584. */
  1585. /* Compute register value, unsigned computation */
  1586. state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
  1587. offsetFreq,
  1588. 1 << 28, state->sys_clock_freq);
  1589. /* Remove integer part */
  1590. state->fe_fs_add_incr &= 0x0FFFFFFFL;
  1591. if (negativeShift)
  1592. state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
  1593. /* Save the frequency shift without tunerOffset compensation
  1594. for CtrlGetChannel. */
  1595. state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
  1596. 1 << 28, state->sys_clock_freq);
  1597. /* Remove integer part */
  1598. state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
  1599. if (negativeShift)
  1600. state->org_fe_fs_add_incr = ((1L << 28) -
  1601. state->org_fe_fs_add_incr);
  1602. return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
  1603. state->fe_fs_add_incr, 0);
  1604. }
  1605. static int SetCfgNoiseCalibration(struct drxd_state *state,
  1606. struct SNoiseCal *noiseCal)
  1607. {
  1608. u16 beOptEna;
  1609. int status = 0;
  1610. do {
  1611. status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
  1612. if (status < 0)
  1613. break;
  1614. if (noiseCal->cpOpt) {
  1615. beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
  1616. } else {
  1617. beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
  1618. status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
  1619. if (status < 0)
  1620. break;
  1621. }
  1622. status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
  1623. if (status < 0)
  1624. break;
  1625. if (!state->type_A) {
  1626. status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
  1627. if (status < 0)
  1628. break;
  1629. status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
  1630. if (status < 0)
  1631. break;
  1632. }
  1633. } while (0);
  1634. return status;
  1635. }
  1636. static int DRX_Start(struct drxd_state *state, s32 off)
  1637. {
  1638. struct dvb_ofdm_parameters *p = &state->param.u.ofdm;
  1639. int status;
  1640. u16 transmissionParams = 0;
  1641. u16 operationMode = 0;
  1642. u16 qpskTdTpsPwr = 0;
  1643. u16 qam16TdTpsPwr = 0;
  1644. u16 qam64TdTpsPwr = 0;
  1645. u32 feIfIncr = 0;
  1646. u32 bandwidth = 0;
  1647. int mirrorFreqSpect;
  1648. u16 qpskSnCeGain = 0;
  1649. u16 qam16SnCeGain = 0;
  1650. u16 qam64SnCeGain = 0;
  1651. u16 qpskIsGainMan = 0;
  1652. u16 qam16IsGainMan = 0;
  1653. u16 qam64IsGainMan = 0;
  1654. u16 qpskIsGainExp = 0;
  1655. u16 qam16IsGainExp = 0;
  1656. u16 qam64IsGainExp = 0;
  1657. u16 bandwidthParam = 0;
  1658. if (off < 0)
  1659. off = (off - 500) / 1000;
  1660. else
  1661. off = (off + 500) / 1000;
  1662. do {
  1663. if (state->drxd_state != DRXD_STOPPED)
  1664. return -1;
  1665. status = ResetECOD(state);
  1666. if (status < 0)
  1667. break;
  1668. if (state->type_A) {
  1669. status = InitSC(state);
  1670. if (status < 0)
  1671. break;
  1672. } else {
  1673. status = InitFT(state);
  1674. if (status < 0)
  1675. break;
  1676. status = InitCP(state);
  1677. if (status < 0)
  1678. break;
  1679. status = InitCE(state);
  1680. if (status < 0)
  1681. break;
  1682. status = InitEQ(state);
  1683. if (status < 0)
  1684. break;
  1685. status = InitSC(state);
  1686. if (status < 0)
  1687. break;
  1688. }
  1689. /* Restore current IF & RF AGC settings */
  1690. status = SetCfgIfAgc(state, &state->if_agc_cfg);
  1691. if (status < 0)
  1692. break;
  1693. status = SetCfgRfAgc(state, &state->rf_agc_cfg);
  1694. if (status < 0)
  1695. break;
  1696. mirrorFreqSpect = (state->param.inversion == INVERSION_ON);
  1697. switch (p->transmission_mode) {
  1698. default: /* Not set, detect it automatically */
  1699. operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
  1700. /* fall through , try first guess DRX_FFTMODE_8K */
  1701. case TRANSMISSION_MODE_8K:
  1702. transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
  1703. if (state->type_A) {
  1704. status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
  1705. if (status < 0)
  1706. break;
  1707. qpskSnCeGain = 99;
  1708. qam16SnCeGain = 83;
  1709. qam64SnCeGain = 67;
  1710. }
  1711. break;
  1712. case TRANSMISSION_MODE_2K:
  1713. transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
  1714. if (state->type_A) {
  1715. status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
  1716. if (status < 0)
  1717. break;
  1718. qpskSnCeGain = 97;
  1719. qam16SnCeGain = 71;
  1720. qam64SnCeGain = 65;
  1721. }
  1722. break;
  1723. }
  1724. switch (p->guard_interval) {
  1725. case GUARD_INTERVAL_1_4:
  1726. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
  1727. break;
  1728. case GUARD_INTERVAL_1_8:
  1729. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
  1730. break;
  1731. case GUARD_INTERVAL_1_16:
  1732. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
  1733. break;
  1734. case GUARD_INTERVAL_1_32:
  1735. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
  1736. break;
  1737. default: /* Not set, detect it automatically */
  1738. operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
  1739. /* try first guess 1/4 */
  1740. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
  1741. break;
  1742. }
  1743. switch (p->hierarchy_information) {
  1744. case HIERARCHY_1:
  1745. transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
  1746. if (state->type_A) {
  1747. status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
  1748. if (status < 0)
  1749. break;
  1750. status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
  1751. if (status < 0)
  1752. break;
  1753. qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
  1754. qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
  1755. qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
  1756. qpskIsGainMan =
  1757. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
  1758. qam16IsGainMan =
  1759. SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
  1760. qam64IsGainMan =
  1761. SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
  1762. qpskIsGainExp =
  1763. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
  1764. qam16IsGainExp =
  1765. SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
  1766. qam64IsGainExp =
  1767. SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
  1768. }
  1769. break;
  1770. case HIERARCHY_2:
  1771. transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
  1772. if (state->type_A) {
  1773. status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
  1774. if (status < 0)
  1775. break;
  1776. status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
  1777. if (status < 0)
  1778. break;
  1779. qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
  1780. qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
  1781. qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
  1782. qpskIsGainMan =
  1783. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
  1784. qam16IsGainMan =
  1785. SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
  1786. qam64IsGainMan =
  1787. SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
  1788. qpskIsGainExp =
  1789. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
  1790. qam16IsGainExp =
  1791. SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
  1792. qam64IsGainExp =
  1793. SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
  1794. }
  1795. break;
  1796. case HIERARCHY_4:
  1797. transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
  1798. if (state->type_A) {
  1799. status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
  1800. if (status < 0)
  1801. break;
  1802. status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
  1803. if (status < 0)
  1804. break;
  1805. qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
  1806. qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
  1807. qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
  1808. qpskIsGainMan =
  1809. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
  1810. qam16IsGainMan =
  1811. SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
  1812. qam64IsGainMan =
  1813. SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
  1814. qpskIsGainExp =
  1815. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
  1816. qam16IsGainExp =
  1817. SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
  1818. qam64IsGainExp =
  1819. SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
  1820. }
  1821. break;
  1822. case HIERARCHY_AUTO:
  1823. default:
  1824. /* Not set, detect it automatically, start with none */
  1825. operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
  1826. transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
  1827. if (state->type_A) {
  1828. status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
  1829. if (status < 0)
  1830. break;
  1831. status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
  1832. if (status < 0)
  1833. break;
  1834. qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
  1835. qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
  1836. qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
  1837. qpskIsGainMan =
  1838. SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
  1839. qam16IsGainMan =
  1840. SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
  1841. qam64IsGainMan =
  1842. SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
  1843. qpskIsGainExp =
  1844. SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
  1845. qam16IsGainExp =
  1846. SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
  1847. qam64IsGainExp =
  1848. SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
  1849. }
  1850. break;
  1851. }
  1852. status = status;
  1853. if (status < 0)
  1854. break;
  1855. switch (p->constellation) {
  1856. default:
  1857. operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
  1858. /* fall through , try first guess
  1859. DRX_CONSTELLATION_QAM64 */
  1860. case QAM_64:
  1861. transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
  1862. if (state->type_A) {
  1863. status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
  1864. if (status < 0)
  1865. break;
  1866. status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
  1867. if (status < 0)
  1868. break;
  1869. status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
  1870. if (status < 0)
  1871. break;
  1872. status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
  1873. if (status < 0)
  1874. break;
  1875. status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
  1876. if (status < 0)
  1877. break;
  1878. status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
  1879. if (status < 0)
  1880. break;
  1881. status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
  1882. if (status < 0)
  1883. break;
  1884. status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
  1885. if (status < 0)
  1886. break;
  1887. status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
  1888. if (status < 0)
  1889. break;
  1890. }
  1891. break;
  1892. case QPSK:
  1893. transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
  1894. if (state->type_A) {
  1895. status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
  1896. if (status < 0)
  1897. break;
  1898. status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
  1899. if (status < 0)
  1900. break;
  1901. status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
  1902. if (status < 0)
  1903. break;
  1904. status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
  1905. if (status < 0)
  1906. break;
  1907. status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
  1908. if (status < 0)
  1909. break;
  1910. status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
  1911. if (status < 0)
  1912. break;
  1913. status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
  1914. if (status < 0)
  1915. break;
  1916. status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
  1917. if (status < 0)
  1918. break;
  1919. status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
  1920. if (status < 0)
  1921. break;
  1922. }
  1923. break;
  1924. case QAM_16:
  1925. transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
  1926. if (state->type_A) {
  1927. status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
  1928. if (status < 0)
  1929. break;
  1930. status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
  1931. if (status < 0)
  1932. break;
  1933. status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
  1934. if (status < 0)
  1935. break;
  1936. status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
  1937. if (status < 0)
  1938. break;
  1939. status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
  1940. if (status < 0)
  1941. break;
  1942. status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
  1943. if (status < 0)
  1944. break;
  1945. status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
  1946. if (status < 0)
  1947. break;
  1948. status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
  1949. if (status < 0)
  1950. break;
  1951. status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
  1952. if (status < 0)
  1953. break;
  1954. }
  1955. break;
  1956. }
  1957. status = status;
  1958. if (status < 0)
  1959. break;
  1960. switch (DRX_CHANNEL_HIGH) {
  1961. default:
  1962. case DRX_CHANNEL_AUTO:
  1963. case DRX_CHANNEL_LOW:
  1964. transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
  1965. status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
  1966. if (status < 0)
  1967. break;
  1968. break;
  1969. case DRX_CHANNEL_HIGH:
  1970. transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
  1971. status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
  1972. if (status < 0)
  1973. break;
  1974. break;
  1975. }
  1976. switch (p->code_rate_HP) {
  1977. case FEC_1_2:
  1978. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
  1979. if (state->type_A) {
  1980. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
  1981. if (status < 0)
  1982. break;
  1983. }
  1984. break;
  1985. default:
  1986. operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
  1987. case FEC_2_3:
  1988. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
  1989. if (state->type_A) {
  1990. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
  1991. if (status < 0)
  1992. break;
  1993. }
  1994. break;
  1995. case FEC_3_4:
  1996. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
  1997. if (state->type_A) {
  1998. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
  1999. if (status < 0)
  2000. break;
  2001. }
  2002. break;
  2003. case FEC_5_6:
  2004. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
  2005. if (state->type_A) {
  2006. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
  2007. if (status < 0)
  2008. break;
  2009. }
  2010. break;
  2011. case FEC_7_8:
  2012. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
  2013. if (state->type_A) {
  2014. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
  2015. if (status < 0)
  2016. break;
  2017. }
  2018. break;
  2019. }
  2020. status = status;
  2021. if (status < 0)
  2022. break;
  2023. /* First determine real bandwidth (Hz) */
  2024. /* Also set delay for impulse noise cruncher (only A2) */
  2025. /* Also set parameters for EC_OC fix, note
  2026. EC_OC_REG_TMD_HIL_MAR is changed
  2027. by SC for fix for some 8K,1/8 guard but is restored by
  2028. InitEC and ResetEC
  2029. functions */
  2030. switch (p->bandwidth) {
  2031. case BANDWIDTH_AUTO:
  2032. case BANDWIDTH_8_MHZ:
  2033. /* (64/7)*(8/8)*1000000 */
  2034. bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
  2035. bandwidthParam = 0;
  2036. status = Write16(state,
  2037. FE_AG_REG_IND_DEL__A, 50, 0x0000);
  2038. break;
  2039. case BANDWIDTH_7_MHZ:
  2040. /* (64/7)*(7/8)*1000000 */
  2041. bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
  2042. bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */
  2043. status = Write16(state,
  2044. FE_AG_REG_IND_DEL__A, 59, 0x0000);
  2045. break;
  2046. case BANDWIDTH_6_MHZ:
  2047. /* (64/7)*(6/8)*1000000 */
  2048. bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
  2049. bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */
  2050. status = Write16(state,
  2051. FE_AG_REG_IND_DEL__A, 71, 0x0000);
  2052. break;
  2053. default:
  2054. status = -EINVAL;
  2055. }
  2056. if (status < 0)
  2057. break;
  2058. status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
  2059. if (status < 0)
  2060. break;
  2061. {
  2062. u16 sc_config;
  2063. status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
  2064. if (status < 0)
  2065. break;
  2066. /* enable SLAVE mode in 2k 1/32 to
  2067. prevent timing change glitches */
  2068. if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
  2069. (p->guard_interval == GUARD_INTERVAL_1_32)) {
  2070. /* enable slave */
  2071. sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
  2072. } else {
  2073. /* disable slave */
  2074. sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
  2075. }
  2076. status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
  2077. if (status < 0)
  2078. break;
  2079. }
  2080. status = SetCfgNoiseCalibration(state, &state->noise_cal);
  2081. if (status < 0)
  2082. break;
  2083. if (state->cscd_state == CSCD_INIT) {
  2084. /* switch on SRMM scan in SC */
  2085. status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
  2086. if (status < 0)
  2087. break;
  2088. /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
  2089. state->cscd_state = CSCD_SET;
  2090. }
  2091. /* Now compute FE_IF_REG_INCR */
  2092. /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
  2093. ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
  2094. feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
  2095. (1ULL << 21), bandwidth) - (1 << 23);
  2096. status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
  2097. if (status < 0)
  2098. break;
  2099. status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
  2100. if (status < 0)
  2101. break;
  2102. /* Bandwidth setting done */
  2103. /* Mirror & frequency offset */
  2104. SetFrequencyShift(state, off, mirrorFreqSpect);
  2105. /* Start SC, write channel settings to SC */
  2106. /* Enable SC after setting all other parameters */
  2107. status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
  2108. if (status < 0)
  2109. break;
  2110. status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
  2111. if (status < 0)
  2112. break;
  2113. /* Write SC parameter registers, operation mode */
  2114. #if 1
  2115. operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
  2116. SC_RA_RAM_OP_AUTO_GUARD__M |
  2117. SC_RA_RAM_OP_AUTO_CONST__M |
  2118. SC_RA_RAM_OP_AUTO_HIER__M |
  2119. SC_RA_RAM_OP_AUTO_RATE__M);
  2120. #endif
  2121. status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
  2122. if (status < 0)
  2123. break;
  2124. /* Start correct processes to get in lock */
  2125. status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
  2126. if (status < 0)
  2127. break;
  2128. status = StartOC(state);
  2129. if (status < 0)
  2130. break;
  2131. if (state->operation_mode != OM_Default) {
  2132. status = StartDiversity(state);
  2133. if (status < 0)
  2134. break;
  2135. }
  2136. state->drxd_state = DRXD_STARTED;
  2137. } while (0);
  2138. return status;
  2139. }
  2140. static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
  2141. {
  2142. u32 ulRfAgcOutputLevel = 0xffffffff;
  2143. u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */
  2144. u32 ulRfAgcMinLevel = 0; /* Currently unused */
  2145. u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
  2146. u32 ulRfAgcSpeed = 0; /* Currently unused */
  2147. u32 ulRfAgcMode = 0; /*2; Off */
  2148. u32 ulRfAgcR1 = 820;
  2149. u32 ulRfAgcR2 = 2200;
  2150. u32 ulRfAgcR3 = 150;
  2151. u32 ulIfAgcMode = 0; /* Auto */
  2152. u32 ulIfAgcOutputLevel = 0xffffffff;
  2153. u32 ulIfAgcSettleLevel = 0xffffffff;
  2154. u32 ulIfAgcMinLevel = 0xffffffff;
  2155. u32 ulIfAgcMaxLevel = 0xffffffff;
  2156. u32 ulIfAgcSpeed = 0xffffffff;
  2157. u32 ulIfAgcR1 = 820;
  2158. u32 ulIfAgcR2 = 2200;
  2159. u32 ulIfAgcR3 = 150;
  2160. u32 ulClock = state->config.clock;
  2161. u32 ulSerialMode = 0;
  2162. u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */
  2163. u32 ulHiI2cDelay = HI_I2C_DELAY;
  2164. u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
  2165. u32 ulHiI2cPatch = 0;
  2166. u32 ulEnvironment = APPENV_PORTABLE;
  2167. u32 ulEnvironmentDiversity = APPENV_MOBILE;
  2168. u32 ulIFFilter = IFFILTER_SAW;
  2169. state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
  2170. state->if_agc_cfg.outputLevel = 0;
  2171. state->if_agc_cfg.settleLevel = 140;
  2172. state->if_agc_cfg.minOutputLevel = 0;
  2173. state->if_agc_cfg.maxOutputLevel = 1023;
  2174. state->if_agc_cfg.speed = 904;
  2175. if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
  2176. state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
  2177. state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
  2178. }
  2179. if (ulIfAgcMode == 0 &&
  2180. ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
  2181. ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
  2182. ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
  2183. ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
  2184. state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
  2185. state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
  2186. state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
  2187. state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
  2188. state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
  2189. }
  2190. state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
  2191. state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
  2192. state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
  2193. state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
  2194. state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
  2195. state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
  2196. state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
  2197. /* rest of the RFAgcCfg structure currently unused */
  2198. if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
  2199. state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
  2200. state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
  2201. }
  2202. if (ulRfAgcMode == 0 &&
  2203. ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
  2204. ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
  2205. ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
  2206. ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
  2207. state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
  2208. state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
  2209. state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
  2210. state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
  2211. state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
  2212. }
  2213. if (ulRfAgcMode == 2)
  2214. state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
  2215. if (ulEnvironment <= 2)
  2216. state->app_env_default = (enum app_env)
  2217. (ulEnvironment);
  2218. if (ulEnvironmentDiversity <= 2)
  2219. state->app_env_diversity = (enum app_env)
  2220. (ulEnvironmentDiversity);
  2221. if (ulIFFilter == IFFILTER_DISCRETE) {
  2222. /* discrete filter */
  2223. state->noise_cal.cpOpt = 0;
  2224. state->noise_cal.cpNexpOfs = 40;
  2225. state->noise_cal.tdCal2k = -40;
  2226. state->noise_cal.tdCal8k = -24;
  2227. } else {
  2228. /* SAW filter */
  2229. state->noise_cal.cpOpt = 1;
  2230. state->noise_cal.cpNexpOfs = 0;
  2231. state->noise_cal.tdCal2k = -21;
  2232. state->noise_cal.tdCal8k = -24;
  2233. }
  2234. state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
  2235. state->chip_adr = (state->config.demod_address << 1) | 1;
  2236. switch (ulHiI2cPatch) {
  2237. case 1:
  2238. state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
  2239. break;
  2240. case 3:
  2241. state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
  2242. break;
  2243. default:
  2244. state->m_HiI2cPatch = NULL;
  2245. }
  2246. /* modify tuner and clock attributes */
  2247. state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
  2248. /* expected system clock frequency in kHz */
  2249. state->expected_sys_clock_freq = 48000;
  2250. /* real system clock frequency in kHz */
  2251. state->sys_clock_freq = 48000;
  2252. state->osc_clock_freq = (u16) ulClock;
  2253. state->osc_clock_deviation = 0;
  2254. state->cscd_state = CSCD_INIT;
  2255. state->drxd_state = DRXD_UNINITIALIZED;
  2256. state->PGA = 0;
  2257. state->type_A = 0;
  2258. state->tuner_mirrors = 0;
  2259. /* modify MPEG output attributes */
  2260. state->insert_rs_byte = state->config.insert_rs_byte;
  2261. state->enable_parallel = (ulSerialMode != 1);
  2262. /* Timing div, 250ns/Psys */
  2263. /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
  2264. state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
  2265. ulHiI2cDelay) / 1000;
  2266. /* Bridge delay, uses oscilator clock */
  2267. /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
  2268. state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
  2269. ulHiI2cBridgeDelay) / 1000;
  2270. state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
  2271. /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
  2272. state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
  2273. return 0;
  2274. }
  2275. int DRXD_init(struct drxd_state *state, const u8 * fw, u32 fw_size)
  2276. {
  2277. int status = 0;
  2278. u32 driverVersion;
  2279. if (state->init_done)
  2280. return 0;
  2281. CDRXD(state, state->config.IF ? state->config.IF : 36000000);
  2282. do {
  2283. state->operation_mode = OM_Default;
  2284. status = SetDeviceTypeId(state);
  2285. if (status < 0)
  2286. break;
  2287. /* Apply I2c address patch to B1 */
  2288. if (!state->type_A && state->m_HiI2cPatch != NULL)
  2289. status = WriteTable(state, state->m_HiI2cPatch);
  2290. if (status < 0)
  2291. break;
  2292. if (state->type_A) {
  2293. /* HI firmware patch for UIO readout,
  2294. avoid clearing of result register */
  2295. status = Write16(state, 0x43012D, 0x047f, 0);
  2296. if (status < 0)
  2297. break;
  2298. }
  2299. status = HI_ResetCommand(state);
  2300. if (status < 0)
  2301. break;
  2302. status = StopAllProcessors(state);
  2303. if (status < 0)
  2304. break;
  2305. status = InitCC(state);
  2306. if (status < 0)
  2307. break;
  2308. state->osc_clock_deviation = 0;
  2309. if (state->config.osc_deviation)
  2310. state->osc_clock_deviation =
  2311. state->config.osc_deviation(state->priv, 0, 0);
  2312. {
  2313. /* Handle clock deviation */
  2314. s32 devB;
  2315. s32 devA = (s32) (state->osc_clock_deviation) *
  2316. (s32) (state->expected_sys_clock_freq);
  2317. /* deviation in kHz */
  2318. s32 deviation = (devA / (1000000L));
  2319. /* rounding, signed */
  2320. if (devA > 0)
  2321. devB = (2);
  2322. else
  2323. devB = (-2);
  2324. if ((devB * (devA % 1000000L) > 1000000L)) {
  2325. /* add +1 or -1 */
  2326. deviation += (devB / 2);
  2327. }
  2328. state->sys_clock_freq =
  2329. (u16) ((state->expected_sys_clock_freq) +
  2330. deviation);
  2331. }
  2332. status = InitHI(state);
  2333. if (status < 0)
  2334. break;
  2335. status = InitAtomicRead(state);
  2336. if (status < 0)
  2337. break;
  2338. status = EnableAndResetMB(state);
  2339. if (status < 0)
  2340. break;
  2341. if (state->type_A)
  2342. status = ResetCEFR(state);
  2343. if (status < 0)
  2344. break;
  2345. if (fw) {
  2346. status = DownloadMicrocode(state, fw, fw_size);
  2347. if (status < 0)
  2348. break;
  2349. } else {
  2350. status = DownloadMicrocode(state, state->microcode, state->microcode_length);
  2351. if (status < 0)
  2352. break;
  2353. }
  2354. if (state->PGA) {
  2355. state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
  2356. SetCfgPga(state, 0); /* PGA = 0 dB */
  2357. } else {
  2358. state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
  2359. }
  2360. state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
  2361. status = InitFE(state);
  2362. if (status < 0)
  2363. break;
  2364. status = InitFT(state);
  2365. if (status < 0)
  2366. break;
  2367. status = InitCP(state);
  2368. if (status < 0)
  2369. break;
  2370. status = InitCE(state);
  2371. if (status < 0)
  2372. break;
  2373. status = InitEQ(state);
  2374. if (status < 0)
  2375. break;
  2376. status = InitEC(state);
  2377. if (status < 0)
  2378. break;
  2379. status = InitSC(state);
  2380. if (status < 0)
  2381. break;
  2382. status = SetCfgIfAgc(state, &state->if_agc_cfg);
  2383. if (status < 0)
  2384. break;
  2385. status = SetCfgRfAgc(state, &state->rf_agc_cfg);
  2386. if (status < 0)
  2387. break;
  2388. state->cscd_state = CSCD_INIT;
  2389. status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  2390. if (status < 0)
  2391. break;
  2392. status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  2393. if (status < 0)
  2394. break;
  2395. driverVersion = (((VERSION_MAJOR / 10) << 4) +
  2396. (VERSION_MAJOR % 10)) << 24;
  2397. driverVersion += (((VERSION_MINOR / 10) << 4) +
  2398. (VERSION_MINOR % 10)) << 16;
  2399. driverVersion += ((VERSION_PATCH / 1000) << 12) +
  2400. ((VERSION_PATCH / 100) << 8) +
  2401. ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
  2402. status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
  2403. if (status < 0)
  2404. break;
  2405. status = StopOC(state);
  2406. if (status < 0)
  2407. break;
  2408. state->drxd_state = DRXD_STOPPED;
  2409. state->init_done = 1;
  2410. status = 0;
  2411. } while (0);
  2412. return status;
  2413. }
  2414. int DRXD_status(struct drxd_state *state, u32 * pLockStatus)
  2415. {
  2416. DRX_GetLockStatus(state, pLockStatus);
  2417. /*if (*pLockStatus&DRX_LOCK_MPEG) */
  2418. if (*pLockStatus & DRX_LOCK_FEC) {
  2419. ConfigureMPEGOutput(state, 1);
  2420. /* Get status again, in case we have MPEG lock now */
  2421. /*DRX_GetLockStatus(state, pLockStatus); */
  2422. }
  2423. return 0;
  2424. }
  2425. /****************************************************************************/
  2426. /****************************************************************************/
  2427. /****************************************************************************/
  2428. static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
  2429. {
  2430. struct drxd_state *state = fe->demodulator_priv;
  2431. u32 value;
  2432. int res;
  2433. res = ReadIFAgc(state, &value);
  2434. if (res < 0)
  2435. *strength = 0;
  2436. else
  2437. *strength = 0xffff - (value << 4);
  2438. return 0;
  2439. }
  2440. static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
  2441. {
  2442. struct drxd_state *state = fe->demodulator_priv;
  2443. u32 lock;
  2444. DRXD_status(state, &lock);
  2445. *status = 0;
  2446. /* No MPEG lock in V255 firmware, bug ? */
  2447. #if 1
  2448. if (lock & DRX_LOCK_MPEG)
  2449. *status |= FE_HAS_LOCK;
  2450. #else
  2451. if (lock & DRX_LOCK_FEC)
  2452. *status |= FE_HAS_LOCK;
  2453. #endif
  2454. if (lock & DRX_LOCK_FEC)
  2455. *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
  2456. if (lock & DRX_LOCK_DEMOD)
  2457. *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
  2458. return 0;
  2459. }
  2460. static int drxd_init(struct dvb_frontend *fe)
  2461. {
  2462. struct drxd_state *state = fe->demodulator_priv;
  2463. int err = 0;
  2464. /* if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
  2465. return DRXD_init(state, 0, 0);
  2466. err = DRXD_init(state, state->fw->data, state->fw->size);
  2467. release_firmware(state->fw);
  2468. return err;
  2469. }
  2470. int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
  2471. {
  2472. struct drxd_state *state = fe->demodulator_priv;
  2473. if (state->config.disable_i2c_gate_ctrl == 1)
  2474. return 0;
  2475. return DRX_ConfigureI2CBridge(state, onoff);
  2476. }
  2477. EXPORT_SYMBOL(drxd_config_i2c);
  2478. static int drxd_get_tune_settings(struct dvb_frontend *fe,
  2479. struct dvb_frontend_tune_settings *sets)
  2480. {
  2481. sets->min_delay_ms = 10000;
  2482. sets->max_drift = 0;
  2483. sets->step_size = 0;
  2484. return 0;
  2485. }
  2486. static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
  2487. {
  2488. *ber = 0;
  2489. return 0;
  2490. }
  2491. static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
  2492. {
  2493. *snr = 0;
  2494. return 0;
  2495. }
  2496. static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
  2497. {
  2498. *ucblocks = 0;
  2499. return 0;
  2500. }
  2501. static int drxd_sleep(struct dvb_frontend *fe)
  2502. {
  2503. struct drxd_state *state = fe->demodulator_priv;
  2504. ConfigureMPEGOutput(state, 0);
  2505. return 0;
  2506. }
  2507. static int drxd_get_frontend(struct dvb_frontend *fe,
  2508. struct dvb_frontend_parameters *param)
  2509. {
  2510. return 0;
  2511. }
  2512. static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  2513. {
  2514. return drxd_config_i2c(fe, enable);
  2515. }
  2516. static int drxd_set_frontend(struct dvb_frontend *fe,
  2517. struct dvb_frontend_parameters *param)
  2518. {
  2519. struct drxd_state *state = fe->demodulator_priv;
  2520. s32 off = 0;
  2521. state->param = *param;
  2522. DRX_Stop(state);
  2523. if (fe->ops.tuner_ops.set_params) {
  2524. fe->ops.tuner_ops.set_params(fe, param);
  2525. if (fe->ops.i2c_gate_ctrl)
  2526. fe->ops.i2c_gate_ctrl(fe, 0);
  2527. }
  2528. /* FIXME: move PLL drivers */
  2529. if (state->config.pll_set &&
  2530. state->config.pll_set(state->priv, param,
  2531. state->config.pll_address,
  2532. state->config.demoda_address, &off) < 0) {
  2533. printk(KERN_ERR "Error in pll_set\n");
  2534. return -1;
  2535. }
  2536. msleep(200);
  2537. return DRX_Start(state, off);
  2538. }
  2539. static void drxd_release(struct dvb_frontend *fe)
  2540. {
  2541. struct drxd_state *state = fe->demodulator_priv;
  2542. kfree(state);
  2543. }
  2544. static struct dvb_frontend_ops drxd_ops = {
  2545. .info = {
  2546. .name = "Micronas DRXD DVB-T",
  2547. .type = FE_OFDM,
  2548. .frequency_min = 47125000,
  2549. .frequency_max = 855250000,
  2550. .frequency_stepsize = 166667,
  2551. .frequency_tolerance = 0,
  2552. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
  2553. FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
  2554. FE_CAN_FEC_AUTO |
  2555. FE_CAN_QAM_16 | FE_CAN_QAM_64 |
  2556. FE_CAN_QAM_AUTO |
  2557. FE_CAN_TRANSMISSION_MODE_AUTO |
  2558. FE_CAN_GUARD_INTERVAL_AUTO |
  2559. FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
  2560. .release = drxd_release,
  2561. .init = drxd_init,
  2562. .sleep = drxd_sleep,
  2563. .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
  2564. .set_frontend = drxd_set_frontend,
  2565. .get_frontend = drxd_get_frontend,
  2566. .get_tune_settings = drxd_get_tune_settings,
  2567. .read_status = drxd_read_status,
  2568. .read_ber = drxd_read_ber,
  2569. .read_signal_strength = drxd_read_signal_strength,
  2570. .read_snr = drxd_read_snr,
  2571. .read_ucblocks = drxd_read_ucblocks,
  2572. };
  2573. struct dvb_frontend *drxd_attach(const struct drxd_config *config,
  2574. void *priv, struct i2c_adapter *i2c,
  2575. struct device *dev)
  2576. {
  2577. struct drxd_state *state = NULL;
  2578. state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
  2579. if (!state)
  2580. return NULL;
  2581. memset(state, 0, sizeof(*state));
  2582. memcpy(&state->ops, &drxd_ops, sizeof(struct dvb_frontend_ops));
  2583. state->dev = dev;
  2584. state->config = *config;
  2585. state->i2c = i2c;
  2586. state->priv = priv;
  2587. mutex_init(&state->mutex);
  2588. if (Read16(state, 0, 0, 0) < 0)
  2589. goto error;
  2590. memcpy(&state->frontend.ops, &drxd_ops,
  2591. sizeof(struct dvb_frontend_ops));
  2592. state->frontend.demodulator_priv = state;
  2593. ConfigureMPEGOutput(state, 0);
  2594. return &state->frontend;
  2595. error:
  2596. printk(KERN_ERR "drxd: not found\n");
  2597. kfree(state);
  2598. return NULL;
  2599. }
  2600. EXPORT_SYMBOL(drxd_attach);
  2601. MODULE_DESCRIPTION("DRXD driver");
  2602. MODULE_AUTHOR("Micronas");
  2603. MODULE_LICENSE("GPL");