pci.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. /* pci.c: UltraSparc PCI controller support.
  2. *
  3. * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
  4. * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
  6. *
  7. * OF tree based PCI bus probing taken from the PowerPC port
  8. * with minor modifications, see there for credits.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/string.h>
  13. #include <linux/sched.h>
  14. #include <linux/capability.h>
  15. #include <linux/errno.h>
  16. #include <linux/pci.h>
  17. #include <linux/msi.h>
  18. #include <linux/irq.h>
  19. #include <linux/init.h>
  20. #include <linux/of.h>
  21. #include <linux/of_device.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/irq.h>
  25. #include <asm/prom.h>
  26. #include <asm/apb.h>
  27. #include "pci_impl.h"
  28. /* List of all PCI controllers found in the system. */
  29. struct pci_pbm_info *pci_pbm_root = NULL;
  30. /* Each PBM found gets a unique index. */
  31. int pci_num_pbms = 0;
  32. volatile int pci_poke_in_progress;
  33. volatile int pci_poke_cpu = -1;
  34. volatile int pci_poke_faulted;
  35. static DEFINE_SPINLOCK(pci_poke_lock);
  36. void pci_config_read8(u8 *addr, u8 *ret)
  37. {
  38. unsigned long flags;
  39. u8 byte;
  40. spin_lock_irqsave(&pci_poke_lock, flags);
  41. pci_poke_cpu = smp_processor_id();
  42. pci_poke_in_progress = 1;
  43. pci_poke_faulted = 0;
  44. __asm__ __volatile__("membar #Sync\n\t"
  45. "lduba [%1] %2, %0\n\t"
  46. "membar #Sync"
  47. : "=r" (byte)
  48. : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
  49. : "memory");
  50. pci_poke_in_progress = 0;
  51. pci_poke_cpu = -1;
  52. if (!pci_poke_faulted)
  53. *ret = byte;
  54. spin_unlock_irqrestore(&pci_poke_lock, flags);
  55. }
  56. void pci_config_read16(u16 *addr, u16 *ret)
  57. {
  58. unsigned long flags;
  59. u16 word;
  60. spin_lock_irqsave(&pci_poke_lock, flags);
  61. pci_poke_cpu = smp_processor_id();
  62. pci_poke_in_progress = 1;
  63. pci_poke_faulted = 0;
  64. __asm__ __volatile__("membar #Sync\n\t"
  65. "lduha [%1] %2, %0\n\t"
  66. "membar #Sync"
  67. : "=r" (word)
  68. : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
  69. : "memory");
  70. pci_poke_in_progress = 0;
  71. pci_poke_cpu = -1;
  72. if (!pci_poke_faulted)
  73. *ret = word;
  74. spin_unlock_irqrestore(&pci_poke_lock, flags);
  75. }
  76. void pci_config_read32(u32 *addr, u32 *ret)
  77. {
  78. unsigned long flags;
  79. u32 dword;
  80. spin_lock_irqsave(&pci_poke_lock, flags);
  81. pci_poke_cpu = smp_processor_id();
  82. pci_poke_in_progress = 1;
  83. pci_poke_faulted = 0;
  84. __asm__ __volatile__("membar #Sync\n\t"
  85. "lduwa [%1] %2, %0\n\t"
  86. "membar #Sync"
  87. : "=r" (dword)
  88. : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
  89. : "memory");
  90. pci_poke_in_progress = 0;
  91. pci_poke_cpu = -1;
  92. if (!pci_poke_faulted)
  93. *ret = dword;
  94. spin_unlock_irqrestore(&pci_poke_lock, flags);
  95. }
  96. void pci_config_write8(u8 *addr, u8 val)
  97. {
  98. unsigned long flags;
  99. spin_lock_irqsave(&pci_poke_lock, flags);
  100. pci_poke_cpu = smp_processor_id();
  101. pci_poke_in_progress = 1;
  102. pci_poke_faulted = 0;
  103. __asm__ __volatile__("membar #Sync\n\t"
  104. "stba %0, [%1] %2\n\t"
  105. "membar #Sync"
  106. : /* no outputs */
  107. : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
  108. : "memory");
  109. pci_poke_in_progress = 0;
  110. pci_poke_cpu = -1;
  111. spin_unlock_irqrestore(&pci_poke_lock, flags);
  112. }
  113. void pci_config_write16(u16 *addr, u16 val)
  114. {
  115. unsigned long flags;
  116. spin_lock_irqsave(&pci_poke_lock, flags);
  117. pci_poke_cpu = smp_processor_id();
  118. pci_poke_in_progress = 1;
  119. pci_poke_faulted = 0;
  120. __asm__ __volatile__("membar #Sync\n\t"
  121. "stha %0, [%1] %2\n\t"
  122. "membar #Sync"
  123. : /* no outputs */
  124. : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
  125. : "memory");
  126. pci_poke_in_progress = 0;
  127. pci_poke_cpu = -1;
  128. spin_unlock_irqrestore(&pci_poke_lock, flags);
  129. }
  130. void pci_config_write32(u32 *addr, u32 val)
  131. {
  132. unsigned long flags;
  133. spin_lock_irqsave(&pci_poke_lock, flags);
  134. pci_poke_cpu = smp_processor_id();
  135. pci_poke_in_progress = 1;
  136. pci_poke_faulted = 0;
  137. __asm__ __volatile__("membar #Sync\n\t"
  138. "stwa %0, [%1] %2\n\t"
  139. "membar #Sync"
  140. : /* no outputs */
  141. : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
  142. : "memory");
  143. pci_poke_in_progress = 0;
  144. pci_poke_cpu = -1;
  145. spin_unlock_irqrestore(&pci_poke_lock, flags);
  146. }
  147. static int ofpci_verbose;
  148. static int __init ofpci_debug(char *str)
  149. {
  150. int val = 0;
  151. get_option(&str, &val);
  152. if (val)
  153. ofpci_verbose = 1;
  154. return 1;
  155. }
  156. __setup("ofpci_debug=", ofpci_debug);
  157. static unsigned long pci_parse_of_flags(u32 addr0)
  158. {
  159. unsigned long flags = 0;
  160. if (addr0 & 0x02000000) {
  161. flags = IORESOURCE_MEM | PCI_BASE_ADDRESS_SPACE_MEMORY;
  162. flags |= (addr0 >> 22) & PCI_BASE_ADDRESS_MEM_TYPE_64;
  163. flags |= (addr0 >> 28) & PCI_BASE_ADDRESS_MEM_TYPE_1M;
  164. if (addr0 & 0x40000000)
  165. flags |= IORESOURCE_PREFETCH
  166. | PCI_BASE_ADDRESS_MEM_PREFETCH;
  167. } else if (addr0 & 0x01000000)
  168. flags = IORESOURCE_IO | PCI_BASE_ADDRESS_SPACE_IO;
  169. return flags;
  170. }
  171. /* The of_device layer has translated all of the assigned-address properties
  172. * into physical address resources, we only have to figure out the register
  173. * mapping.
  174. */
  175. static void pci_parse_of_addrs(struct platform_device *op,
  176. struct device_node *node,
  177. struct pci_dev *dev)
  178. {
  179. struct resource *op_res;
  180. const u32 *addrs;
  181. int proplen;
  182. addrs = of_get_property(node, "assigned-addresses", &proplen);
  183. if (!addrs)
  184. return;
  185. if (ofpci_verbose)
  186. printk(" parse addresses (%d bytes) @ %p\n",
  187. proplen, addrs);
  188. op_res = &op->resource[0];
  189. for (; proplen >= 20; proplen -= 20, addrs += 5, op_res++) {
  190. struct resource *res;
  191. unsigned long flags;
  192. int i;
  193. flags = pci_parse_of_flags(addrs[0]);
  194. if (!flags)
  195. continue;
  196. i = addrs[0] & 0xff;
  197. if (ofpci_verbose)
  198. printk(" start: %llx, end: %llx, i: %x\n",
  199. op_res->start, op_res->end, i);
  200. if (PCI_BASE_ADDRESS_0 <= i && i <= PCI_BASE_ADDRESS_5) {
  201. res = &dev->resource[(i - PCI_BASE_ADDRESS_0) >> 2];
  202. } else if (i == dev->rom_base_reg) {
  203. res = &dev->resource[PCI_ROM_RESOURCE];
  204. flags |= IORESOURCE_READONLY | IORESOURCE_CACHEABLE;
  205. } else {
  206. printk(KERN_ERR "PCI: bad cfg reg num 0x%x\n", i);
  207. continue;
  208. }
  209. res->start = op_res->start;
  210. res->end = op_res->end;
  211. res->flags = flags;
  212. res->name = pci_name(dev);
  213. }
  214. }
  215. static struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
  216. struct device_node *node,
  217. struct pci_bus *bus, int devfn)
  218. {
  219. struct dev_archdata *sd;
  220. struct pci_slot *slot;
  221. struct platform_device *op;
  222. struct pci_dev *dev;
  223. const char *type;
  224. u32 class;
  225. dev = alloc_pci_dev();
  226. if (!dev)
  227. return NULL;
  228. sd = &dev->dev.archdata;
  229. sd->iommu = pbm->iommu;
  230. sd->stc = &pbm->stc;
  231. sd->host_controller = pbm;
  232. sd->op = op = of_find_device_by_node(node);
  233. sd->numa_node = pbm->numa_node;
  234. sd = &op->dev.archdata;
  235. sd->iommu = pbm->iommu;
  236. sd->stc = &pbm->stc;
  237. sd->numa_node = pbm->numa_node;
  238. if (!strcmp(node->name, "ebus"))
  239. of_propagate_archdata(op);
  240. type = of_get_property(node, "device_type", NULL);
  241. if (type == NULL)
  242. type = "";
  243. if (ofpci_verbose)
  244. printk(" create device, devfn: %x, type: %s\n",
  245. devfn, type);
  246. dev->bus = bus;
  247. dev->sysdata = node;
  248. dev->dev.parent = bus->bridge;
  249. dev->dev.bus = &pci_bus_type;
  250. dev->dev.of_node = of_node_get(node);
  251. dev->devfn = devfn;
  252. dev->multifunction = 0; /* maybe a lie? */
  253. set_pcie_port_type(dev);
  254. list_for_each_entry(slot, &dev->bus->slots, list)
  255. if (PCI_SLOT(dev->devfn) == slot->number)
  256. dev->slot = slot;
  257. dev->vendor = of_getintprop_default(node, "vendor-id", 0xffff);
  258. dev->device = of_getintprop_default(node, "device-id", 0xffff);
  259. dev->subsystem_vendor =
  260. of_getintprop_default(node, "subsystem-vendor-id", 0);
  261. dev->subsystem_device =
  262. of_getintprop_default(node, "subsystem-id", 0);
  263. dev->cfg_size = pci_cfg_space_size(dev);
  264. /* We can't actually use the firmware value, we have
  265. * to read what is in the register right now. One
  266. * reason is that in the case of IDE interfaces the
  267. * firmware can sample the value before the the IDE
  268. * interface is programmed into native mode.
  269. */
  270. pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
  271. dev->class = class >> 8;
  272. dev->revision = class & 0xff;
  273. dev_set_name(&dev->dev, "%04x:%02x:%02x.%d", pci_domain_nr(bus),
  274. dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
  275. if (ofpci_verbose)
  276. printk(" class: 0x%x device name: %s\n",
  277. dev->class, pci_name(dev));
  278. /* I have seen IDE devices which will not respond to
  279. * the bmdma simplex check reads if bus mastering is
  280. * disabled.
  281. */
  282. if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
  283. pci_set_master(dev);
  284. dev->current_state = 4; /* unknown power state */
  285. dev->error_state = pci_channel_io_normal;
  286. dev->dma_mask = 0xffffffff;
  287. if (!strcmp(node->name, "pci")) {
  288. /* a PCI-PCI bridge */
  289. dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
  290. dev->rom_base_reg = PCI_ROM_ADDRESS1;
  291. } else if (!strcmp(type, "cardbus")) {
  292. dev->hdr_type = PCI_HEADER_TYPE_CARDBUS;
  293. } else {
  294. dev->hdr_type = PCI_HEADER_TYPE_NORMAL;
  295. dev->rom_base_reg = PCI_ROM_ADDRESS;
  296. dev->irq = sd->op->archdata.irqs[0];
  297. if (dev->irq == 0xffffffff)
  298. dev->irq = PCI_IRQ_NONE;
  299. }
  300. pci_parse_of_addrs(sd->op, node, dev);
  301. if (ofpci_verbose)
  302. printk(" adding to system ...\n");
  303. pci_device_add(dev, bus);
  304. return dev;
  305. }
  306. static void __devinit apb_calc_first_last(u8 map, u32 *first_p, u32 *last_p)
  307. {
  308. u32 idx, first, last;
  309. first = 8;
  310. last = 0;
  311. for (idx = 0; idx < 8; idx++) {
  312. if ((map & (1 << idx)) != 0) {
  313. if (first > idx)
  314. first = idx;
  315. if (last < idx)
  316. last = idx;
  317. }
  318. }
  319. *first_p = first;
  320. *last_p = last;
  321. }
  322. static void pci_resource_adjust(struct resource *res,
  323. struct resource *root)
  324. {
  325. res->start += root->start;
  326. res->end += root->start;
  327. }
  328. /* For PCI bus devices which lack a 'ranges' property we interrogate
  329. * the config space values to set the resources, just like the generic
  330. * Linux PCI probing code does.
  331. */
  332. static void __devinit pci_cfg_fake_ranges(struct pci_dev *dev,
  333. struct pci_bus *bus,
  334. struct pci_pbm_info *pbm)
  335. {
  336. struct resource *res;
  337. u8 io_base_lo, io_limit_lo;
  338. u16 mem_base_lo, mem_limit_lo;
  339. unsigned long base, limit;
  340. pci_read_config_byte(dev, PCI_IO_BASE, &io_base_lo);
  341. pci_read_config_byte(dev, PCI_IO_LIMIT, &io_limit_lo);
  342. base = (io_base_lo & PCI_IO_RANGE_MASK) << 8;
  343. limit = (io_limit_lo & PCI_IO_RANGE_MASK) << 8;
  344. if ((io_base_lo & PCI_IO_RANGE_TYPE_MASK) == PCI_IO_RANGE_TYPE_32) {
  345. u16 io_base_hi, io_limit_hi;
  346. pci_read_config_word(dev, PCI_IO_BASE_UPPER16, &io_base_hi);
  347. pci_read_config_word(dev, PCI_IO_LIMIT_UPPER16, &io_limit_hi);
  348. base |= (io_base_hi << 16);
  349. limit |= (io_limit_hi << 16);
  350. }
  351. res = bus->resource[0];
  352. if (base <= limit) {
  353. res->flags = (io_base_lo & PCI_IO_RANGE_TYPE_MASK) | IORESOURCE_IO;
  354. if (!res->start)
  355. res->start = base;
  356. if (!res->end)
  357. res->end = limit + 0xfff;
  358. pci_resource_adjust(res, &pbm->io_space);
  359. }
  360. pci_read_config_word(dev, PCI_MEMORY_BASE, &mem_base_lo);
  361. pci_read_config_word(dev, PCI_MEMORY_LIMIT, &mem_limit_lo);
  362. base = (mem_base_lo & PCI_MEMORY_RANGE_MASK) << 16;
  363. limit = (mem_limit_lo & PCI_MEMORY_RANGE_MASK) << 16;
  364. res = bus->resource[1];
  365. if (base <= limit) {
  366. res->flags = ((mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) |
  367. IORESOURCE_MEM);
  368. res->start = base;
  369. res->end = limit + 0xfffff;
  370. pci_resource_adjust(res, &pbm->mem_space);
  371. }
  372. pci_read_config_word(dev, PCI_PREF_MEMORY_BASE, &mem_base_lo);
  373. pci_read_config_word(dev, PCI_PREF_MEMORY_LIMIT, &mem_limit_lo);
  374. base = (mem_base_lo & PCI_PREF_RANGE_MASK) << 16;
  375. limit = (mem_limit_lo & PCI_PREF_RANGE_MASK) << 16;
  376. if ((mem_base_lo & PCI_PREF_RANGE_TYPE_MASK) == PCI_PREF_RANGE_TYPE_64) {
  377. u32 mem_base_hi, mem_limit_hi;
  378. pci_read_config_dword(dev, PCI_PREF_BASE_UPPER32, &mem_base_hi);
  379. pci_read_config_dword(dev, PCI_PREF_LIMIT_UPPER32, &mem_limit_hi);
  380. /*
  381. * Some bridges set the base > limit by default, and some
  382. * (broken) BIOSes do not initialize them. If we find
  383. * this, just assume they are not being used.
  384. */
  385. if (mem_base_hi <= mem_limit_hi) {
  386. base |= ((long) mem_base_hi) << 32;
  387. limit |= ((long) mem_limit_hi) << 32;
  388. }
  389. }
  390. res = bus->resource[2];
  391. if (base <= limit) {
  392. res->flags = ((mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) |
  393. IORESOURCE_MEM | IORESOURCE_PREFETCH);
  394. res->start = base;
  395. res->end = limit + 0xfffff;
  396. pci_resource_adjust(res, &pbm->mem_space);
  397. }
  398. }
  399. /* Cook up fake bus resources for SUNW,simba PCI bridges which lack
  400. * a proper 'ranges' property.
  401. */
  402. static void __devinit apb_fake_ranges(struct pci_dev *dev,
  403. struct pci_bus *bus,
  404. struct pci_pbm_info *pbm)
  405. {
  406. struct resource *res;
  407. u32 first, last;
  408. u8 map;
  409. pci_read_config_byte(dev, APB_IO_ADDRESS_MAP, &map);
  410. apb_calc_first_last(map, &first, &last);
  411. res = bus->resource[0];
  412. res->start = (first << 21);
  413. res->end = (last << 21) + ((1 << 21) - 1);
  414. res->flags = IORESOURCE_IO;
  415. pci_resource_adjust(res, &pbm->io_space);
  416. pci_read_config_byte(dev, APB_MEM_ADDRESS_MAP, &map);
  417. apb_calc_first_last(map, &first, &last);
  418. res = bus->resource[1];
  419. res->start = (first << 21);
  420. res->end = (last << 21) + ((1 << 21) - 1);
  421. res->flags = IORESOURCE_MEM;
  422. pci_resource_adjust(res, &pbm->mem_space);
  423. }
  424. static void __devinit pci_of_scan_bus(struct pci_pbm_info *pbm,
  425. struct device_node *node,
  426. struct pci_bus *bus);
  427. #define GET_64BIT(prop, i) ((((u64) (prop)[(i)]) << 32) | (prop)[(i)+1])
  428. static void __devinit of_scan_pci_bridge(struct pci_pbm_info *pbm,
  429. struct device_node *node,
  430. struct pci_dev *dev)
  431. {
  432. struct pci_bus *bus;
  433. const u32 *busrange, *ranges;
  434. int len, i, simba;
  435. struct resource *res;
  436. unsigned int flags;
  437. u64 size;
  438. if (ofpci_verbose)
  439. printk("of_scan_pci_bridge(%s)\n", node->full_name);
  440. /* parse bus-range property */
  441. busrange = of_get_property(node, "bus-range", &len);
  442. if (busrange == NULL || len != 8) {
  443. printk(KERN_DEBUG "Can't get bus-range for PCI-PCI bridge %s\n",
  444. node->full_name);
  445. return;
  446. }
  447. ranges = of_get_property(node, "ranges", &len);
  448. simba = 0;
  449. if (ranges == NULL) {
  450. const char *model = of_get_property(node, "model", NULL);
  451. if (model && !strcmp(model, "SUNW,simba"))
  452. simba = 1;
  453. }
  454. bus = pci_add_new_bus(dev->bus, dev, busrange[0]);
  455. if (!bus) {
  456. printk(KERN_ERR "Failed to create pci bus for %s\n",
  457. node->full_name);
  458. return;
  459. }
  460. bus->primary = dev->bus->number;
  461. bus->subordinate = busrange[1];
  462. bus->bridge_ctl = 0;
  463. /* parse ranges property, or cook one up by hand for Simba */
  464. /* PCI #address-cells == 3 and #size-cells == 2 always */
  465. res = &dev->resource[PCI_BRIDGE_RESOURCES];
  466. for (i = 0; i < PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES; ++i) {
  467. res->flags = 0;
  468. bus->resource[i] = res;
  469. ++res;
  470. }
  471. if (simba) {
  472. apb_fake_ranges(dev, bus, pbm);
  473. goto after_ranges;
  474. } else if (ranges == NULL) {
  475. pci_cfg_fake_ranges(dev, bus, pbm);
  476. goto after_ranges;
  477. }
  478. i = 1;
  479. for (; len >= 32; len -= 32, ranges += 8) {
  480. struct resource *root;
  481. flags = pci_parse_of_flags(ranges[0]);
  482. size = GET_64BIT(ranges, 6);
  483. if (flags == 0 || size == 0)
  484. continue;
  485. if (flags & IORESOURCE_IO) {
  486. res = bus->resource[0];
  487. if (res->flags) {
  488. printk(KERN_ERR "PCI: ignoring extra I/O range"
  489. " for bridge %s\n", node->full_name);
  490. continue;
  491. }
  492. root = &pbm->io_space;
  493. } else {
  494. if (i >= PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES) {
  495. printk(KERN_ERR "PCI: too many memory ranges"
  496. " for bridge %s\n", node->full_name);
  497. continue;
  498. }
  499. res = bus->resource[i];
  500. ++i;
  501. root = &pbm->mem_space;
  502. }
  503. res->start = GET_64BIT(ranges, 1);
  504. res->end = res->start + size - 1;
  505. res->flags = flags;
  506. /* Another way to implement this would be to add an of_device
  507. * layer routine that can calculate a resource for a given
  508. * range property value in a PCI device.
  509. */
  510. pci_resource_adjust(res, root);
  511. }
  512. after_ranges:
  513. sprintf(bus->name, "PCI Bus %04x:%02x", pci_domain_nr(bus),
  514. bus->number);
  515. if (ofpci_verbose)
  516. printk(" bus name: %s\n", bus->name);
  517. pci_of_scan_bus(pbm, node, bus);
  518. }
  519. static void __devinit pci_of_scan_bus(struct pci_pbm_info *pbm,
  520. struct device_node *node,
  521. struct pci_bus *bus)
  522. {
  523. struct device_node *child;
  524. const u32 *reg;
  525. int reglen, devfn, prev_devfn;
  526. struct pci_dev *dev;
  527. if (ofpci_verbose)
  528. printk("PCI: scan_bus[%s] bus no %d\n",
  529. node->full_name, bus->number);
  530. child = NULL;
  531. prev_devfn = -1;
  532. while ((child = of_get_next_child(node, child)) != NULL) {
  533. if (ofpci_verbose)
  534. printk(" * %s\n", child->full_name);
  535. reg = of_get_property(child, "reg", &reglen);
  536. if (reg == NULL || reglen < 20)
  537. continue;
  538. devfn = (reg[0] >> 8) & 0xff;
  539. /* This is a workaround for some device trees
  540. * which list PCI devices twice. On the V100
  541. * for example, device number 3 is listed twice.
  542. * Once as "pm" and once again as "lomp".
  543. */
  544. if (devfn == prev_devfn)
  545. continue;
  546. prev_devfn = devfn;
  547. /* create a new pci_dev for this device */
  548. dev = of_create_pci_dev(pbm, child, bus, devfn);
  549. if (!dev)
  550. continue;
  551. if (ofpci_verbose)
  552. printk("PCI: dev header type: %x\n",
  553. dev->hdr_type);
  554. if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE ||
  555. dev->hdr_type == PCI_HEADER_TYPE_CARDBUS)
  556. of_scan_pci_bridge(pbm, child, dev);
  557. }
  558. }
  559. static ssize_t
  560. show_pciobppath_attr(struct device * dev, struct device_attribute * attr, char * buf)
  561. {
  562. struct pci_dev *pdev;
  563. struct device_node *dp;
  564. pdev = to_pci_dev(dev);
  565. dp = pdev->dev.of_node;
  566. return snprintf (buf, PAGE_SIZE, "%s\n", dp->full_name);
  567. }
  568. static DEVICE_ATTR(obppath, S_IRUSR | S_IRGRP | S_IROTH, show_pciobppath_attr, NULL);
  569. static void __devinit pci_bus_register_of_sysfs(struct pci_bus *bus)
  570. {
  571. struct pci_dev *dev;
  572. struct pci_bus *child_bus;
  573. int err;
  574. list_for_each_entry(dev, &bus->devices, bus_list) {
  575. /* we don't really care if we can create this file or
  576. * not, but we need to assign the result of the call
  577. * or the world will fall under alien invasion and
  578. * everybody will be frozen on a spaceship ready to be
  579. * eaten on alpha centauri by some green and jelly
  580. * humanoid.
  581. */
  582. err = sysfs_create_file(&dev->dev.kobj, &dev_attr_obppath.attr);
  583. (void) err;
  584. }
  585. list_for_each_entry(child_bus, &bus->children, node)
  586. pci_bus_register_of_sysfs(child_bus);
  587. }
  588. struct pci_bus * __devinit pci_scan_one_pbm(struct pci_pbm_info *pbm,
  589. struct device *parent)
  590. {
  591. struct device_node *node = pbm->op->dev.of_node;
  592. struct pci_bus *bus;
  593. printk("PCI: Scanning PBM %s\n", node->full_name);
  594. bus = pci_create_bus(parent, pbm->pci_first_busno, pbm->pci_ops, pbm);
  595. if (!bus) {
  596. printk(KERN_ERR "Failed to create bus for %s\n",
  597. node->full_name);
  598. return NULL;
  599. }
  600. bus->secondary = pbm->pci_first_busno;
  601. bus->subordinate = pbm->pci_last_busno;
  602. bus->resource[0] = &pbm->io_space;
  603. bus->resource[1] = &pbm->mem_space;
  604. pci_of_scan_bus(pbm, node, bus);
  605. pci_bus_add_devices(bus);
  606. pci_bus_register_of_sysfs(bus);
  607. return bus;
  608. }
  609. void __devinit pcibios_fixup_bus(struct pci_bus *pbus)
  610. {
  611. struct pci_pbm_info *pbm = pbus->sysdata;
  612. /* Generic PCI bus probing sets these to point at
  613. * &io{port,mem}_resouce which is wrong for us.
  614. */
  615. pbus->resource[0] = &pbm->io_space;
  616. pbus->resource[1] = &pbm->mem_space;
  617. }
  618. void pcibios_update_irq(struct pci_dev *pdev, int irq)
  619. {
  620. }
  621. resource_size_t pcibios_align_resource(void *data, const struct resource *res,
  622. resource_size_t size, resource_size_t align)
  623. {
  624. return res->start;
  625. }
  626. int pcibios_enable_device(struct pci_dev *dev, int mask)
  627. {
  628. u16 cmd, oldcmd;
  629. int i;
  630. pci_read_config_word(dev, PCI_COMMAND, &cmd);
  631. oldcmd = cmd;
  632. for (i = 0; i < PCI_NUM_RESOURCES; i++) {
  633. struct resource *res = &dev->resource[i];
  634. /* Only set up the requested stuff */
  635. if (!(mask & (1<<i)))
  636. continue;
  637. if (res->flags & IORESOURCE_IO)
  638. cmd |= PCI_COMMAND_IO;
  639. if (res->flags & IORESOURCE_MEM)
  640. cmd |= PCI_COMMAND_MEMORY;
  641. }
  642. if (cmd != oldcmd) {
  643. printk(KERN_DEBUG "PCI: Enabling device: (%s), cmd %x\n",
  644. pci_name(dev), cmd);
  645. /* Enable the appropriate bits in the PCI command register. */
  646. pci_write_config_word(dev, PCI_COMMAND, cmd);
  647. }
  648. return 0;
  649. }
  650. void pcibios_resource_to_bus(struct pci_dev *pdev, struct pci_bus_region *region,
  651. struct resource *res)
  652. {
  653. struct pci_pbm_info *pbm = pdev->bus->sysdata;
  654. struct resource zero_res, *root;
  655. zero_res.start = 0;
  656. zero_res.end = 0;
  657. zero_res.flags = res->flags;
  658. if (res->flags & IORESOURCE_IO)
  659. root = &pbm->io_space;
  660. else
  661. root = &pbm->mem_space;
  662. pci_resource_adjust(&zero_res, root);
  663. region->start = res->start - zero_res.start;
  664. region->end = res->end - zero_res.start;
  665. }
  666. EXPORT_SYMBOL(pcibios_resource_to_bus);
  667. void pcibios_bus_to_resource(struct pci_dev *pdev, struct resource *res,
  668. struct pci_bus_region *region)
  669. {
  670. struct pci_pbm_info *pbm = pdev->bus->sysdata;
  671. struct resource *root;
  672. res->start = region->start;
  673. res->end = region->end;
  674. if (res->flags & IORESOURCE_IO)
  675. root = &pbm->io_space;
  676. else
  677. root = &pbm->mem_space;
  678. pci_resource_adjust(res, root);
  679. }
  680. EXPORT_SYMBOL(pcibios_bus_to_resource);
  681. char * __devinit pcibios_setup(char *str)
  682. {
  683. return str;
  684. }
  685. /* Platform support for /proc/bus/pci/X/Y mmap()s. */
  686. /* If the user uses a host-bridge as the PCI device, he may use
  687. * this to perform a raw mmap() of the I/O or MEM space behind
  688. * that controller.
  689. *
  690. * This can be useful for execution of x86 PCI bios initialization code
  691. * on a PCI card, like the xfree86 int10 stuff does.
  692. */
  693. static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
  694. enum pci_mmap_state mmap_state)
  695. {
  696. struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
  697. unsigned long space_size, user_offset, user_size;
  698. if (mmap_state == pci_mmap_io) {
  699. space_size = resource_size(&pbm->io_space);
  700. } else {
  701. space_size = resource_size(&pbm->mem_space);
  702. }
  703. /* Make sure the request is in range. */
  704. user_offset = vma->vm_pgoff << PAGE_SHIFT;
  705. user_size = vma->vm_end - vma->vm_start;
  706. if (user_offset >= space_size ||
  707. (user_offset + user_size) > space_size)
  708. return -EINVAL;
  709. if (mmap_state == pci_mmap_io) {
  710. vma->vm_pgoff = (pbm->io_space.start +
  711. user_offset) >> PAGE_SHIFT;
  712. } else {
  713. vma->vm_pgoff = (pbm->mem_space.start +
  714. user_offset) >> PAGE_SHIFT;
  715. }
  716. return 0;
  717. }
  718. /* Adjust vm_pgoff of VMA such that it is the physical page offset
  719. * corresponding to the 32-bit pci bus offset for DEV requested by the user.
  720. *
  721. * Basically, the user finds the base address for his device which he wishes
  722. * to mmap. They read the 32-bit value from the config space base register,
  723. * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
  724. * offset parameter of mmap on /proc/bus/pci/XXX for that device.
  725. *
  726. * Returns negative error code on failure, zero on success.
  727. */
  728. static int __pci_mmap_make_offset(struct pci_dev *pdev,
  729. struct vm_area_struct *vma,
  730. enum pci_mmap_state mmap_state)
  731. {
  732. unsigned long user_paddr, user_size;
  733. int i, err;
  734. /* First compute the physical address in vma->vm_pgoff,
  735. * making sure the user offset is within range in the
  736. * appropriate PCI space.
  737. */
  738. err = __pci_mmap_make_offset_bus(pdev, vma, mmap_state);
  739. if (err)
  740. return err;
  741. /* If this is a mapping on a host bridge, any address
  742. * is OK.
  743. */
  744. if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
  745. return err;
  746. /* Otherwise make sure it's in the range for one of the
  747. * device's resources.
  748. */
  749. user_paddr = vma->vm_pgoff << PAGE_SHIFT;
  750. user_size = vma->vm_end - vma->vm_start;
  751. for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
  752. struct resource *rp = &pdev->resource[i];
  753. resource_size_t aligned_end;
  754. /* Active? */
  755. if (!rp->flags)
  756. continue;
  757. /* Same type? */
  758. if (i == PCI_ROM_RESOURCE) {
  759. if (mmap_state != pci_mmap_mem)
  760. continue;
  761. } else {
  762. if ((mmap_state == pci_mmap_io &&
  763. (rp->flags & IORESOURCE_IO) == 0) ||
  764. (mmap_state == pci_mmap_mem &&
  765. (rp->flags & IORESOURCE_MEM) == 0))
  766. continue;
  767. }
  768. /* Align the resource end to the next page address.
  769. * PAGE_SIZE intentionally added instead of (PAGE_SIZE - 1),
  770. * because actually we need the address of the next byte
  771. * after rp->end.
  772. */
  773. aligned_end = (rp->end + PAGE_SIZE) & PAGE_MASK;
  774. if ((rp->start <= user_paddr) &&
  775. (user_paddr + user_size) <= aligned_end)
  776. break;
  777. }
  778. if (i > PCI_ROM_RESOURCE)
  779. return -EINVAL;
  780. return 0;
  781. }
  782. /* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
  783. * mapping.
  784. */
  785. static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
  786. enum pci_mmap_state mmap_state)
  787. {
  788. vma->vm_flags |= (VM_IO | VM_RESERVED);
  789. }
  790. /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
  791. * device mapping.
  792. */
  793. static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
  794. enum pci_mmap_state mmap_state)
  795. {
  796. /* Our io_remap_pfn_range takes care of this, do nothing. */
  797. }
  798. /* Perform the actual remap of the pages for a PCI device mapping, as appropriate
  799. * for this architecture. The region in the process to map is described by vm_start
  800. * and vm_end members of VMA, the base physical address is found in vm_pgoff.
  801. * The pci device structure is provided so that architectures may make mapping
  802. * decisions on a per-device or per-bus basis.
  803. *
  804. * Returns a negative error code on failure, zero on success.
  805. */
  806. int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
  807. enum pci_mmap_state mmap_state,
  808. int write_combine)
  809. {
  810. int ret;
  811. ret = __pci_mmap_make_offset(dev, vma, mmap_state);
  812. if (ret < 0)
  813. return ret;
  814. __pci_mmap_set_flags(dev, vma, mmap_state);
  815. __pci_mmap_set_pgprot(dev, vma, mmap_state);
  816. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  817. ret = io_remap_pfn_range(vma, vma->vm_start,
  818. vma->vm_pgoff,
  819. vma->vm_end - vma->vm_start,
  820. vma->vm_page_prot);
  821. if (ret)
  822. return ret;
  823. return 0;
  824. }
  825. #ifdef CONFIG_NUMA
  826. int pcibus_to_node(struct pci_bus *pbus)
  827. {
  828. struct pci_pbm_info *pbm = pbus->sysdata;
  829. return pbm->numa_node;
  830. }
  831. EXPORT_SYMBOL(pcibus_to_node);
  832. #endif
  833. /* Return the domain number for this pci bus */
  834. int pci_domain_nr(struct pci_bus *pbus)
  835. {
  836. struct pci_pbm_info *pbm = pbus->sysdata;
  837. int ret;
  838. if (!pbm) {
  839. ret = -ENXIO;
  840. } else {
  841. ret = pbm->index;
  842. }
  843. return ret;
  844. }
  845. EXPORT_SYMBOL(pci_domain_nr);
  846. #ifdef CONFIG_PCI_MSI
  847. int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
  848. {
  849. struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
  850. unsigned int irq;
  851. if (!pbm->setup_msi_irq)
  852. return -EINVAL;
  853. return pbm->setup_msi_irq(&irq, pdev, desc);
  854. }
  855. void arch_teardown_msi_irq(unsigned int irq)
  856. {
  857. struct msi_desc *entry = irq_get_msi_desc(irq);
  858. struct pci_dev *pdev = entry->dev;
  859. struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
  860. if (pbm->teardown_msi_irq)
  861. pbm->teardown_msi_irq(irq, pdev);
  862. }
  863. #endif /* !(CONFIG_PCI_MSI) */
  864. static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit)
  865. {
  866. struct pci_dev *ali_isa_bridge;
  867. u8 val;
  868. /* ALI sound chips generate 31-bits of DMA, a special register
  869. * determines what bit 31 is emitted as.
  870. */
  871. ali_isa_bridge = pci_get_device(PCI_VENDOR_ID_AL,
  872. PCI_DEVICE_ID_AL_M1533,
  873. NULL);
  874. pci_read_config_byte(ali_isa_bridge, 0x7e, &val);
  875. if (set_bit)
  876. val |= 0x01;
  877. else
  878. val &= ~0x01;
  879. pci_write_config_byte(ali_isa_bridge, 0x7e, val);
  880. pci_dev_put(ali_isa_bridge);
  881. }
  882. int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask)
  883. {
  884. u64 dma_addr_mask;
  885. if (pdev == NULL) {
  886. dma_addr_mask = 0xffffffff;
  887. } else {
  888. struct iommu *iommu = pdev->dev.archdata.iommu;
  889. dma_addr_mask = iommu->dma_addr_mask;
  890. if (pdev->vendor == PCI_VENDOR_ID_AL &&
  891. pdev->device == PCI_DEVICE_ID_AL_M5451 &&
  892. device_mask == 0x7fffffff) {
  893. ali_sound_dma_hack(pdev,
  894. (dma_addr_mask & 0x80000000) != 0);
  895. return 1;
  896. }
  897. }
  898. if (device_mask >= (1UL << 32UL))
  899. return 0;
  900. return (device_mask & dma_addr_mask) == dma_addr_mask;
  901. }
  902. void pci_resource_to_user(const struct pci_dev *pdev, int bar,
  903. const struct resource *rp, resource_size_t *start,
  904. resource_size_t *end)
  905. {
  906. struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
  907. unsigned long offset;
  908. if (rp->flags & IORESOURCE_IO)
  909. offset = pbm->io_space.start;
  910. else
  911. offset = pbm->mem_space.start;
  912. *start = rp->start - offset;
  913. *end = rp->end - offset;
  914. }
  915. static int __init pcibios_init(void)
  916. {
  917. pci_dfl_cache_line_size = 64 >> 2;
  918. return 0;
  919. }
  920. subsys_initcall(pcibios_init);
  921. #ifdef CONFIG_SYSFS
  922. static void __devinit pci_bus_slot_names(struct device_node *node,
  923. struct pci_bus *bus)
  924. {
  925. const struct pci_slot_names {
  926. u32 slot_mask;
  927. char names[0];
  928. } *prop;
  929. const char *sp;
  930. int len, i;
  931. u32 mask;
  932. prop = of_get_property(node, "slot-names", &len);
  933. if (!prop)
  934. return;
  935. mask = prop->slot_mask;
  936. sp = prop->names;
  937. if (ofpci_verbose)
  938. printk("PCI: Making slots for [%s] mask[0x%02x]\n",
  939. node->full_name, mask);
  940. i = 0;
  941. while (mask) {
  942. struct pci_slot *pci_slot;
  943. u32 this_bit = 1 << i;
  944. if (!(mask & this_bit)) {
  945. i++;
  946. continue;
  947. }
  948. if (ofpci_verbose)
  949. printk("PCI: Making slot [%s]\n", sp);
  950. pci_slot = pci_create_slot(bus, i, sp, NULL);
  951. if (IS_ERR(pci_slot))
  952. printk(KERN_ERR "PCI: pci_create_slot returned %ld\n",
  953. PTR_ERR(pci_slot));
  954. sp += strlen(sp) + 1;
  955. mask &= ~this_bit;
  956. i++;
  957. }
  958. }
  959. static int __init of_pci_slot_init(void)
  960. {
  961. struct pci_bus *pbus = NULL;
  962. while ((pbus = pci_find_next_bus(pbus)) != NULL) {
  963. struct device_node *node;
  964. if (pbus->self) {
  965. /* PCI->PCI bridge */
  966. node = pbus->self->dev.of_node;
  967. } else {
  968. struct pci_pbm_info *pbm = pbus->sysdata;
  969. /* Host PCI controller */
  970. node = pbm->op->dev.of_node;
  971. }
  972. pci_bus_slot_names(node, pbus);
  973. }
  974. return 0;
  975. }
  976. module_init(of_pci_slot_init);
  977. #endif