smp.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121
  1. /*
  2. * arch/s390/kernel/smp.c
  3. *
  4. * Copyright IBM Corp. 1999, 2009
  5. * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. * Heiko Carstens (heiko.carstens@de.ibm.com)
  8. *
  9. * based on other smp stuff by
  10. * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
  11. * (c) 1998 Ingo Molnar
  12. *
  13. * We work with logical cpu numbering everywhere we can. The only
  14. * functions using the real cpu address (got from STAP) are the sigp
  15. * functions. For all other functions we use the identity mapping.
  16. * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
  17. * used e.g. to find the idle task belonging to a logical cpu. Every array
  18. * in the kernel is sorted by the logical cpu number and not by the physical
  19. * one which is causing all the confusion with __cpu_logical_map and
  20. * cpu_number_map in other architectures.
  21. */
  22. #define KMSG_COMPONENT "cpu"
  23. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  24. #include <linux/workqueue.h>
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/mm.h>
  28. #include <linux/err.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/kernel_stat.h>
  31. #include <linux/delay.h>
  32. #include <linux/cache.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/irqflags.h>
  35. #include <linux/cpu.h>
  36. #include <linux/timex.h>
  37. #include <linux/bootmem.h>
  38. #include <linux/slab.h>
  39. #include <asm/asm-offsets.h>
  40. #include <asm/ipl.h>
  41. #include <asm/setup.h>
  42. #include <asm/sigp.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/irq.h>
  45. #include <asm/cpcmd.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/timer.h>
  48. #include <asm/lowcore.h>
  49. #include <asm/sclp.h>
  50. #include <asm/cputime.h>
  51. #include <asm/vdso.h>
  52. #include <asm/cpu.h>
  53. #include "entry.h"
  54. /* logical cpu to cpu address */
  55. unsigned short __cpu_logical_map[NR_CPUS];
  56. static struct task_struct *current_set[NR_CPUS];
  57. static u8 smp_cpu_type;
  58. static int smp_use_sigp_detection;
  59. enum s390_cpu_state {
  60. CPU_STATE_STANDBY,
  61. CPU_STATE_CONFIGURED,
  62. };
  63. DEFINE_MUTEX(smp_cpu_state_mutex);
  64. int smp_cpu_polarization[NR_CPUS];
  65. static int smp_cpu_state[NR_CPUS];
  66. static int cpu_management;
  67. static DEFINE_PER_CPU(struct cpu, cpu_devices);
  68. static void smp_ext_bitcall(int, int);
  69. static int raw_cpu_stopped(int cpu)
  70. {
  71. u32 status;
  72. switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
  73. case sigp_status_stored:
  74. /* Check for stopped and check stop state */
  75. if (status & 0x50)
  76. return 1;
  77. break;
  78. default:
  79. break;
  80. }
  81. return 0;
  82. }
  83. static inline int cpu_stopped(int cpu)
  84. {
  85. return raw_cpu_stopped(cpu_logical_map(cpu));
  86. }
  87. void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
  88. {
  89. struct _lowcore *lc, *current_lc;
  90. struct stack_frame *sf;
  91. struct pt_regs *regs;
  92. unsigned long sp;
  93. if (smp_processor_id() == 0)
  94. func(data);
  95. __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
  96. /* Disable lowcore protection */
  97. __ctl_clear_bit(0, 28);
  98. current_lc = lowcore_ptr[smp_processor_id()];
  99. lc = lowcore_ptr[0];
  100. if (!lc)
  101. lc = current_lc;
  102. lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
  103. lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
  104. if (!cpu_online(0))
  105. smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
  106. while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
  107. cpu_relax();
  108. sp = lc->panic_stack;
  109. sp -= sizeof(struct pt_regs);
  110. regs = (struct pt_regs *) sp;
  111. memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
  112. regs->psw = lc->psw_save_area;
  113. sp -= STACK_FRAME_OVERHEAD;
  114. sf = (struct stack_frame *) sp;
  115. sf->back_chain = regs->gprs[15];
  116. smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
  117. }
  118. void smp_send_stop(void)
  119. {
  120. int cpu, rc;
  121. /* Disable all interrupts/machine checks */
  122. __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
  123. trace_hardirqs_off();
  124. /* stop all processors */
  125. for_each_online_cpu(cpu) {
  126. if (cpu == smp_processor_id())
  127. continue;
  128. do {
  129. rc = sigp(cpu, sigp_stop);
  130. } while (rc == sigp_busy);
  131. while (!cpu_stopped(cpu))
  132. cpu_relax();
  133. }
  134. }
  135. /*
  136. * This is the main routine where commands issued by other
  137. * cpus are handled.
  138. */
  139. static void do_ext_call_interrupt(unsigned int ext_int_code,
  140. unsigned int param32, unsigned long param64)
  141. {
  142. unsigned long bits;
  143. kstat_cpu(smp_processor_id()).irqs[EXTINT_IPI]++;
  144. /*
  145. * handle bit signal external calls
  146. */
  147. bits = xchg(&S390_lowcore.ext_call_fast, 0);
  148. if (test_bit(ec_schedule, &bits))
  149. scheduler_ipi();
  150. if (test_bit(ec_call_function, &bits))
  151. generic_smp_call_function_interrupt();
  152. if (test_bit(ec_call_function_single, &bits))
  153. generic_smp_call_function_single_interrupt();
  154. }
  155. /*
  156. * Send an external call sigp to another cpu and return without waiting
  157. * for its completion.
  158. */
  159. static void smp_ext_bitcall(int cpu, int sig)
  160. {
  161. /*
  162. * Set signaling bit in lowcore of target cpu and kick it
  163. */
  164. set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
  165. while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
  166. udelay(10);
  167. }
  168. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  169. {
  170. int cpu;
  171. for_each_cpu(cpu, mask)
  172. smp_ext_bitcall(cpu, ec_call_function);
  173. }
  174. void arch_send_call_function_single_ipi(int cpu)
  175. {
  176. smp_ext_bitcall(cpu, ec_call_function_single);
  177. }
  178. #ifndef CONFIG_64BIT
  179. /*
  180. * this function sends a 'purge tlb' signal to another CPU.
  181. */
  182. static void smp_ptlb_callback(void *info)
  183. {
  184. __tlb_flush_local();
  185. }
  186. void smp_ptlb_all(void)
  187. {
  188. on_each_cpu(smp_ptlb_callback, NULL, 1);
  189. }
  190. EXPORT_SYMBOL(smp_ptlb_all);
  191. #endif /* ! CONFIG_64BIT */
  192. /*
  193. * this function sends a 'reschedule' IPI to another CPU.
  194. * it goes straight through and wastes no time serializing
  195. * anything. Worst case is that we lose a reschedule ...
  196. */
  197. void smp_send_reschedule(int cpu)
  198. {
  199. smp_ext_bitcall(cpu, ec_schedule);
  200. }
  201. /*
  202. * parameter area for the set/clear control bit callbacks
  203. */
  204. struct ec_creg_mask_parms {
  205. unsigned long orvals[16];
  206. unsigned long andvals[16];
  207. };
  208. /*
  209. * callback for setting/clearing control bits
  210. */
  211. static void smp_ctl_bit_callback(void *info)
  212. {
  213. struct ec_creg_mask_parms *pp = info;
  214. unsigned long cregs[16];
  215. int i;
  216. __ctl_store(cregs, 0, 15);
  217. for (i = 0; i <= 15; i++)
  218. cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
  219. __ctl_load(cregs, 0, 15);
  220. }
  221. /*
  222. * Set a bit in a control register of all cpus
  223. */
  224. void smp_ctl_set_bit(int cr, int bit)
  225. {
  226. struct ec_creg_mask_parms parms;
  227. memset(&parms.orvals, 0, sizeof(parms.orvals));
  228. memset(&parms.andvals, 0xff, sizeof(parms.andvals));
  229. parms.orvals[cr] = 1UL << bit;
  230. on_each_cpu(smp_ctl_bit_callback, &parms, 1);
  231. }
  232. EXPORT_SYMBOL(smp_ctl_set_bit);
  233. /*
  234. * Clear a bit in a control register of all cpus
  235. */
  236. void smp_ctl_clear_bit(int cr, int bit)
  237. {
  238. struct ec_creg_mask_parms parms;
  239. memset(&parms.orvals, 0, sizeof(parms.orvals));
  240. memset(&parms.andvals, 0xff, sizeof(parms.andvals));
  241. parms.andvals[cr] = ~(1UL << bit);
  242. on_each_cpu(smp_ctl_bit_callback, &parms, 1);
  243. }
  244. EXPORT_SYMBOL(smp_ctl_clear_bit);
  245. #ifdef CONFIG_ZFCPDUMP
  246. static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
  247. {
  248. if (ipl_info.type != IPL_TYPE_FCP_DUMP)
  249. return;
  250. if (cpu >= NR_CPUS) {
  251. pr_warning("CPU %i exceeds the maximum %i and is excluded from "
  252. "the dump\n", cpu, NR_CPUS - 1);
  253. return;
  254. }
  255. zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
  256. while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
  257. cpu_relax();
  258. memcpy_real(zfcpdump_save_areas[cpu],
  259. (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
  260. sizeof(struct save_area));
  261. }
  262. struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
  263. EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
  264. #else
  265. static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
  266. #endif /* CONFIG_ZFCPDUMP */
  267. static int cpu_known(int cpu_id)
  268. {
  269. int cpu;
  270. for_each_present_cpu(cpu) {
  271. if (__cpu_logical_map[cpu] == cpu_id)
  272. return 1;
  273. }
  274. return 0;
  275. }
  276. static int smp_rescan_cpus_sigp(cpumask_t avail)
  277. {
  278. int cpu_id, logical_cpu;
  279. logical_cpu = cpumask_first(&avail);
  280. if (logical_cpu >= nr_cpu_ids)
  281. return 0;
  282. for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
  283. if (cpu_known(cpu_id))
  284. continue;
  285. __cpu_logical_map[logical_cpu] = cpu_id;
  286. smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
  287. if (!cpu_stopped(logical_cpu))
  288. continue;
  289. set_cpu_present(logical_cpu, true);
  290. smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
  291. logical_cpu = cpumask_next(logical_cpu, &avail);
  292. if (logical_cpu >= nr_cpu_ids)
  293. break;
  294. }
  295. return 0;
  296. }
  297. static int smp_rescan_cpus_sclp(cpumask_t avail)
  298. {
  299. struct sclp_cpu_info *info;
  300. int cpu_id, logical_cpu, cpu;
  301. int rc;
  302. logical_cpu = cpumask_first(&avail);
  303. if (logical_cpu >= nr_cpu_ids)
  304. return 0;
  305. info = kmalloc(sizeof(*info), GFP_KERNEL);
  306. if (!info)
  307. return -ENOMEM;
  308. rc = sclp_get_cpu_info(info);
  309. if (rc)
  310. goto out;
  311. for (cpu = 0; cpu < info->combined; cpu++) {
  312. if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
  313. continue;
  314. cpu_id = info->cpu[cpu].address;
  315. if (cpu_known(cpu_id))
  316. continue;
  317. __cpu_logical_map[logical_cpu] = cpu_id;
  318. smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
  319. set_cpu_present(logical_cpu, true);
  320. if (cpu >= info->configured)
  321. smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
  322. else
  323. smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
  324. logical_cpu = cpumask_next(logical_cpu, &avail);
  325. if (logical_cpu >= nr_cpu_ids)
  326. break;
  327. }
  328. out:
  329. kfree(info);
  330. return rc;
  331. }
  332. static int __smp_rescan_cpus(void)
  333. {
  334. cpumask_t avail;
  335. cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
  336. if (smp_use_sigp_detection)
  337. return smp_rescan_cpus_sigp(avail);
  338. else
  339. return smp_rescan_cpus_sclp(avail);
  340. }
  341. static void __init smp_detect_cpus(void)
  342. {
  343. unsigned int cpu, c_cpus, s_cpus;
  344. struct sclp_cpu_info *info;
  345. u16 boot_cpu_addr, cpu_addr;
  346. c_cpus = 1;
  347. s_cpus = 0;
  348. boot_cpu_addr = __cpu_logical_map[0];
  349. info = kmalloc(sizeof(*info), GFP_KERNEL);
  350. if (!info)
  351. panic("smp_detect_cpus failed to allocate memory\n");
  352. /* Use sigp detection algorithm if sclp doesn't work. */
  353. if (sclp_get_cpu_info(info)) {
  354. smp_use_sigp_detection = 1;
  355. for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
  356. if (cpu == boot_cpu_addr)
  357. continue;
  358. if (!raw_cpu_stopped(cpu))
  359. continue;
  360. smp_get_save_area(c_cpus, cpu);
  361. c_cpus++;
  362. }
  363. goto out;
  364. }
  365. if (info->has_cpu_type) {
  366. for (cpu = 0; cpu < info->combined; cpu++) {
  367. if (info->cpu[cpu].address == boot_cpu_addr) {
  368. smp_cpu_type = info->cpu[cpu].type;
  369. break;
  370. }
  371. }
  372. }
  373. for (cpu = 0; cpu < info->combined; cpu++) {
  374. if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
  375. continue;
  376. cpu_addr = info->cpu[cpu].address;
  377. if (cpu_addr == boot_cpu_addr)
  378. continue;
  379. if (!raw_cpu_stopped(cpu_addr)) {
  380. s_cpus++;
  381. continue;
  382. }
  383. smp_get_save_area(c_cpus, cpu_addr);
  384. c_cpus++;
  385. }
  386. out:
  387. kfree(info);
  388. pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
  389. get_online_cpus();
  390. __smp_rescan_cpus();
  391. put_online_cpus();
  392. }
  393. /*
  394. * Activate a secondary processor.
  395. */
  396. int __cpuinit start_secondary(void *cpuvoid)
  397. {
  398. cpu_init();
  399. preempt_disable();
  400. init_cpu_timer();
  401. init_cpu_vtimer();
  402. pfault_init();
  403. notify_cpu_starting(smp_processor_id());
  404. ipi_call_lock();
  405. set_cpu_online(smp_processor_id(), true);
  406. ipi_call_unlock();
  407. __ctl_clear_bit(0, 28); /* Disable lowcore protection */
  408. S390_lowcore.restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
  409. S390_lowcore.restart_psw.addr =
  410. PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
  411. __ctl_set_bit(0, 28); /* Enable lowcore protection */
  412. /*
  413. * Wait until the cpu which brought this one up marked it
  414. * active before enabling interrupts.
  415. */
  416. while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
  417. cpu_relax();
  418. local_irq_enable();
  419. /* cpu_idle will call schedule for us */
  420. cpu_idle();
  421. return 0;
  422. }
  423. struct create_idle {
  424. struct work_struct work;
  425. struct task_struct *idle;
  426. struct completion done;
  427. int cpu;
  428. };
  429. static void __cpuinit smp_fork_idle(struct work_struct *work)
  430. {
  431. struct create_idle *c_idle;
  432. c_idle = container_of(work, struct create_idle, work);
  433. c_idle->idle = fork_idle(c_idle->cpu);
  434. complete(&c_idle->done);
  435. }
  436. static int __cpuinit smp_alloc_lowcore(int cpu)
  437. {
  438. unsigned long async_stack, panic_stack;
  439. struct _lowcore *lowcore;
  440. lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
  441. if (!lowcore)
  442. return -ENOMEM;
  443. async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
  444. panic_stack = __get_free_page(GFP_KERNEL);
  445. if (!panic_stack || !async_stack)
  446. goto out;
  447. memcpy(lowcore, &S390_lowcore, 512);
  448. memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
  449. lowcore->async_stack = async_stack + ASYNC_SIZE;
  450. lowcore->panic_stack = panic_stack + PAGE_SIZE;
  451. lowcore->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
  452. lowcore->restart_psw.addr =
  453. PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
  454. if (user_mode != HOME_SPACE_MODE)
  455. lowcore->restart_psw.mask |= PSW_ASC_HOME;
  456. #ifndef CONFIG_64BIT
  457. if (MACHINE_HAS_IEEE) {
  458. unsigned long save_area;
  459. save_area = get_zeroed_page(GFP_KERNEL);
  460. if (!save_area)
  461. goto out;
  462. lowcore->extended_save_area_addr = (u32) save_area;
  463. }
  464. #else
  465. if (vdso_alloc_per_cpu(cpu, lowcore))
  466. goto out;
  467. #endif
  468. lowcore_ptr[cpu] = lowcore;
  469. return 0;
  470. out:
  471. free_page(panic_stack);
  472. free_pages(async_stack, ASYNC_ORDER);
  473. free_pages((unsigned long) lowcore, LC_ORDER);
  474. return -ENOMEM;
  475. }
  476. static void smp_free_lowcore(int cpu)
  477. {
  478. struct _lowcore *lowcore;
  479. lowcore = lowcore_ptr[cpu];
  480. #ifndef CONFIG_64BIT
  481. if (MACHINE_HAS_IEEE)
  482. free_page((unsigned long) lowcore->extended_save_area_addr);
  483. #else
  484. vdso_free_per_cpu(cpu, lowcore);
  485. #endif
  486. free_page(lowcore->panic_stack - PAGE_SIZE);
  487. free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
  488. free_pages((unsigned long) lowcore, LC_ORDER);
  489. lowcore_ptr[cpu] = NULL;
  490. }
  491. /* Upping and downing of CPUs */
  492. int __cpuinit __cpu_up(unsigned int cpu)
  493. {
  494. struct _lowcore *cpu_lowcore;
  495. struct create_idle c_idle;
  496. struct task_struct *idle;
  497. struct stack_frame *sf;
  498. u32 lowcore;
  499. int ccode;
  500. if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
  501. return -EIO;
  502. idle = current_set[cpu];
  503. if (!idle) {
  504. c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
  505. INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
  506. c_idle.cpu = cpu;
  507. schedule_work(&c_idle.work);
  508. wait_for_completion(&c_idle.done);
  509. if (IS_ERR(c_idle.idle))
  510. return PTR_ERR(c_idle.idle);
  511. idle = c_idle.idle;
  512. current_set[cpu] = c_idle.idle;
  513. }
  514. init_idle(idle, cpu);
  515. if (smp_alloc_lowcore(cpu))
  516. return -ENOMEM;
  517. do {
  518. ccode = sigp(cpu, sigp_initial_cpu_reset);
  519. if (ccode == sigp_busy)
  520. udelay(10);
  521. if (ccode == sigp_not_operational)
  522. goto err_out;
  523. } while (ccode == sigp_busy);
  524. lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
  525. while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
  526. udelay(10);
  527. cpu_lowcore = lowcore_ptr[cpu];
  528. cpu_lowcore->kernel_stack = (unsigned long)
  529. task_stack_page(idle) + THREAD_SIZE;
  530. cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
  531. sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
  532. - sizeof(struct pt_regs)
  533. - sizeof(struct stack_frame));
  534. memset(sf, 0, sizeof(struct stack_frame));
  535. sf->gprs[9] = (unsigned long) sf;
  536. cpu_lowcore->save_area[15] = (unsigned long) sf;
  537. __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
  538. atomic_inc(&init_mm.context.attach_count);
  539. asm volatile(
  540. " stam 0,15,0(%0)"
  541. : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
  542. cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
  543. cpu_lowcore->current_task = (unsigned long) idle;
  544. cpu_lowcore->cpu_nr = cpu;
  545. cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
  546. cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
  547. cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
  548. memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
  549. MAX_FACILITY_BIT/8);
  550. eieio();
  551. while (sigp(cpu, sigp_restart) == sigp_busy)
  552. udelay(10);
  553. while (!cpu_online(cpu))
  554. cpu_relax();
  555. return 0;
  556. err_out:
  557. smp_free_lowcore(cpu);
  558. return -EIO;
  559. }
  560. static int __init setup_possible_cpus(char *s)
  561. {
  562. int pcpus, cpu;
  563. pcpus = simple_strtoul(s, NULL, 0);
  564. init_cpu_possible(cpumask_of(0));
  565. for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
  566. set_cpu_possible(cpu, true);
  567. return 0;
  568. }
  569. early_param("possible_cpus", setup_possible_cpus);
  570. #ifdef CONFIG_HOTPLUG_CPU
  571. int __cpu_disable(void)
  572. {
  573. struct ec_creg_mask_parms cr_parms;
  574. int cpu = smp_processor_id();
  575. set_cpu_online(cpu, false);
  576. /* Disable pfault pseudo page faults on this cpu. */
  577. pfault_fini();
  578. memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
  579. memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
  580. /* disable all external interrupts */
  581. cr_parms.orvals[0] = 0;
  582. cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 11 |
  583. 1 << 10 | 1 << 9 | 1 << 6 | 1 << 5 |
  584. 1 << 4);
  585. /* disable all I/O interrupts */
  586. cr_parms.orvals[6] = 0;
  587. cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
  588. 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
  589. /* disable most machine checks */
  590. cr_parms.orvals[14] = 0;
  591. cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
  592. 1 << 25 | 1 << 24);
  593. smp_ctl_bit_callback(&cr_parms);
  594. return 0;
  595. }
  596. void __cpu_die(unsigned int cpu)
  597. {
  598. /* Wait until target cpu is down */
  599. while (!cpu_stopped(cpu))
  600. cpu_relax();
  601. while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
  602. udelay(10);
  603. smp_free_lowcore(cpu);
  604. atomic_dec(&init_mm.context.attach_count);
  605. }
  606. void __noreturn cpu_die(void)
  607. {
  608. idle_task_exit();
  609. while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
  610. cpu_relax();
  611. for (;;);
  612. }
  613. #endif /* CONFIG_HOTPLUG_CPU */
  614. void __init smp_prepare_cpus(unsigned int max_cpus)
  615. {
  616. #ifndef CONFIG_64BIT
  617. unsigned long save_area = 0;
  618. #endif
  619. unsigned long async_stack, panic_stack;
  620. struct _lowcore *lowcore;
  621. smp_detect_cpus();
  622. /* request the 0x1201 emergency signal external interrupt */
  623. if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
  624. panic("Couldn't request external interrupt 0x1201");
  625. /* Reallocate current lowcore, but keep its contents. */
  626. lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
  627. panic_stack = __get_free_page(GFP_KERNEL);
  628. async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
  629. BUG_ON(!lowcore || !panic_stack || !async_stack);
  630. #ifndef CONFIG_64BIT
  631. if (MACHINE_HAS_IEEE)
  632. save_area = get_zeroed_page(GFP_KERNEL);
  633. #endif
  634. local_irq_disable();
  635. local_mcck_disable();
  636. lowcore_ptr[smp_processor_id()] = lowcore;
  637. *lowcore = S390_lowcore;
  638. lowcore->panic_stack = panic_stack + PAGE_SIZE;
  639. lowcore->async_stack = async_stack + ASYNC_SIZE;
  640. #ifndef CONFIG_64BIT
  641. if (MACHINE_HAS_IEEE)
  642. lowcore->extended_save_area_addr = (u32) save_area;
  643. #endif
  644. set_prefix((u32)(unsigned long) lowcore);
  645. local_mcck_enable();
  646. local_irq_enable();
  647. #ifdef CONFIG_64BIT
  648. if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
  649. BUG();
  650. #endif
  651. }
  652. void __init smp_prepare_boot_cpu(void)
  653. {
  654. BUG_ON(smp_processor_id() != 0);
  655. current_thread_info()->cpu = 0;
  656. set_cpu_present(0, true);
  657. set_cpu_online(0, true);
  658. S390_lowcore.percpu_offset = __per_cpu_offset[0];
  659. current_set[0] = current;
  660. smp_cpu_state[0] = CPU_STATE_CONFIGURED;
  661. smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
  662. }
  663. void __init smp_cpus_done(unsigned int max_cpus)
  664. {
  665. }
  666. void __init smp_setup_processor_id(void)
  667. {
  668. S390_lowcore.cpu_nr = 0;
  669. __cpu_logical_map[0] = stap();
  670. }
  671. /*
  672. * the frequency of the profiling timer can be changed
  673. * by writing a multiplier value into /proc/profile.
  674. *
  675. * usually you want to run this on all CPUs ;)
  676. */
  677. int setup_profiling_timer(unsigned int multiplier)
  678. {
  679. return 0;
  680. }
  681. #ifdef CONFIG_HOTPLUG_CPU
  682. static ssize_t cpu_configure_show(struct sys_device *dev,
  683. struct sysdev_attribute *attr, char *buf)
  684. {
  685. ssize_t count;
  686. mutex_lock(&smp_cpu_state_mutex);
  687. count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
  688. mutex_unlock(&smp_cpu_state_mutex);
  689. return count;
  690. }
  691. static ssize_t cpu_configure_store(struct sys_device *dev,
  692. struct sysdev_attribute *attr,
  693. const char *buf, size_t count)
  694. {
  695. int cpu = dev->id;
  696. int val, rc;
  697. char delim;
  698. if (sscanf(buf, "%d %c", &val, &delim) != 1)
  699. return -EINVAL;
  700. if (val != 0 && val != 1)
  701. return -EINVAL;
  702. get_online_cpus();
  703. mutex_lock(&smp_cpu_state_mutex);
  704. rc = -EBUSY;
  705. /* disallow configuration changes of online cpus and cpu 0 */
  706. if (cpu_online(cpu) || cpu == 0)
  707. goto out;
  708. rc = 0;
  709. switch (val) {
  710. case 0:
  711. if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
  712. rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
  713. if (!rc) {
  714. smp_cpu_state[cpu] = CPU_STATE_STANDBY;
  715. smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
  716. }
  717. }
  718. break;
  719. case 1:
  720. if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
  721. rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
  722. if (!rc) {
  723. smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
  724. smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
  725. }
  726. }
  727. break;
  728. default:
  729. break;
  730. }
  731. out:
  732. mutex_unlock(&smp_cpu_state_mutex);
  733. put_online_cpus();
  734. return rc ? rc : count;
  735. }
  736. static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
  737. #endif /* CONFIG_HOTPLUG_CPU */
  738. static ssize_t cpu_polarization_show(struct sys_device *dev,
  739. struct sysdev_attribute *attr, char *buf)
  740. {
  741. int cpu = dev->id;
  742. ssize_t count;
  743. mutex_lock(&smp_cpu_state_mutex);
  744. switch (smp_cpu_polarization[cpu]) {
  745. case POLARIZATION_HRZ:
  746. count = sprintf(buf, "horizontal\n");
  747. break;
  748. case POLARIZATION_VL:
  749. count = sprintf(buf, "vertical:low\n");
  750. break;
  751. case POLARIZATION_VM:
  752. count = sprintf(buf, "vertical:medium\n");
  753. break;
  754. case POLARIZATION_VH:
  755. count = sprintf(buf, "vertical:high\n");
  756. break;
  757. default:
  758. count = sprintf(buf, "unknown\n");
  759. break;
  760. }
  761. mutex_unlock(&smp_cpu_state_mutex);
  762. return count;
  763. }
  764. static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
  765. static ssize_t show_cpu_address(struct sys_device *dev,
  766. struct sysdev_attribute *attr, char *buf)
  767. {
  768. return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
  769. }
  770. static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
  771. static struct attribute *cpu_common_attrs[] = {
  772. #ifdef CONFIG_HOTPLUG_CPU
  773. &attr_configure.attr,
  774. #endif
  775. &attr_address.attr,
  776. &attr_polarization.attr,
  777. NULL,
  778. };
  779. static struct attribute_group cpu_common_attr_group = {
  780. .attrs = cpu_common_attrs,
  781. };
  782. static ssize_t show_capability(struct sys_device *dev,
  783. struct sysdev_attribute *attr, char *buf)
  784. {
  785. unsigned int capability;
  786. int rc;
  787. rc = get_cpu_capability(&capability);
  788. if (rc)
  789. return rc;
  790. return sprintf(buf, "%u\n", capability);
  791. }
  792. static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
  793. static ssize_t show_idle_count(struct sys_device *dev,
  794. struct sysdev_attribute *attr, char *buf)
  795. {
  796. struct s390_idle_data *idle;
  797. unsigned long long idle_count;
  798. unsigned int sequence;
  799. idle = &per_cpu(s390_idle, dev->id);
  800. repeat:
  801. sequence = idle->sequence;
  802. smp_rmb();
  803. if (sequence & 1)
  804. goto repeat;
  805. idle_count = idle->idle_count;
  806. if (idle->idle_enter)
  807. idle_count++;
  808. smp_rmb();
  809. if (idle->sequence != sequence)
  810. goto repeat;
  811. return sprintf(buf, "%llu\n", idle_count);
  812. }
  813. static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
  814. static ssize_t show_idle_time(struct sys_device *dev,
  815. struct sysdev_attribute *attr, char *buf)
  816. {
  817. struct s390_idle_data *idle;
  818. unsigned long long now, idle_time, idle_enter;
  819. unsigned int sequence;
  820. idle = &per_cpu(s390_idle, dev->id);
  821. now = get_clock();
  822. repeat:
  823. sequence = idle->sequence;
  824. smp_rmb();
  825. if (sequence & 1)
  826. goto repeat;
  827. idle_time = idle->idle_time;
  828. idle_enter = idle->idle_enter;
  829. if (idle_enter != 0ULL && idle_enter < now)
  830. idle_time += now - idle_enter;
  831. smp_rmb();
  832. if (idle->sequence != sequence)
  833. goto repeat;
  834. return sprintf(buf, "%llu\n", idle_time >> 12);
  835. }
  836. static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
  837. static struct attribute *cpu_online_attrs[] = {
  838. &attr_capability.attr,
  839. &attr_idle_count.attr,
  840. &attr_idle_time_us.attr,
  841. NULL,
  842. };
  843. static struct attribute_group cpu_online_attr_group = {
  844. .attrs = cpu_online_attrs,
  845. };
  846. static int __cpuinit smp_cpu_notify(struct notifier_block *self,
  847. unsigned long action, void *hcpu)
  848. {
  849. unsigned int cpu = (unsigned int)(long)hcpu;
  850. struct cpu *c = &per_cpu(cpu_devices, cpu);
  851. struct sys_device *s = &c->sysdev;
  852. struct s390_idle_data *idle;
  853. int err = 0;
  854. switch (action) {
  855. case CPU_ONLINE:
  856. case CPU_ONLINE_FROZEN:
  857. idle = &per_cpu(s390_idle, cpu);
  858. memset(idle, 0, sizeof(struct s390_idle_data));
  859. err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
  860. break;
  861. case CPU_DEAD:
  862. case CPU_DEAD_FROZEN:
  863. sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
  864. break;
  865. }
  866. return notifier_from_errno(err);
  867. }
  868. static struct notifier_block __cpuinitdata smp_cpu_nb = {
  869. .notifier_call = smp_cpu_notify,
  870. };
  871. static int __devinit smp_add_present_cpu(int cpu)
  872. {
  873. struct cpu *c = &per_cpu(cpu_devices, cpu);
  874. struct sys_device *s = &c->sysdev;
  875. int rc;
  876. c->hotpluggable = 1;
  877. rc = register_cpu(c, cpu);
  878. if (rc)
  879. goto out;
  880. rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
  881. if (rc)
  882. goto out_cpu;
  883. if (!cpu_online(cpu))
  884. goto out;
  885. rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
  886. if (!rc)
  887. return 0;
  888. sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
  889. out_cpu:
  890. #ifdef CONFIG_HOTPLUG_CPU
  891. unregister_cpu(c);
  892. #endif
  893. out:
  894. return rc;
  895. }
  896. #ifdef CONFIG_HOTPLUG_CPU
  897. int __ref smp_rescan_cpus(void)
  898. {
  899. cpumask_t newcpus;
  900. int cpu;
  901. int rc;
  902. get_online_cpus();
  903. mutex_lock(&smp_cpu_state_mutex);
  904. cpumask_copy(&newcpus, cpu_present_mask);
  905. rc = __smp_rescan_cpus();
  906. if (rc)
  907. goto out;
  908. cpumask_andnot(&newcpus, cpu_present_mask, &newcpus);
  909. for_each_cpu(cpu, &newcpus) {
  910. rc = smp_add_present_cpu(cpu);
  911. if (rc)
  912. set_cpu_present(cpu, false);
  913. }
  914. rc = 0;
  915. out:
  916. mutex_unlock(&smp_cpu_state_mutex);
  917. put_online_cpus();
  918. if (!cpumask_empty(&newcpus))
  919. topology_schedule_update();
  920. return rc;
  921. }
  922. static ssize_t __ref rescan_store(struct sysdev_class *class,
  923. struct sysdev_class_attribute *attr,
  924. const char *buf,
  925. size_t count)
  926. {
  927. int rc;
  928. rc = smp_rescan_cpus();
  929. return rc ? rc : count;
  930. }
  931. static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
  932. #endif /* CONFIG_HOTPLUG_CPU */
  933. static ssize_t dispatching_show(struct sysdev_class *class,
  934. struct sysdev_class_attribute *attr,
  935. char *buf)
  936. {
  937. ssize_t count;
  938. mutex_lock(&smp_cpu_state_mutex);
  939. count = sprintf(buf, "%d\n", cpu_management);
  940. mutex_unlock(&smp_cpu_state_mutex);
  941. return count;
  942. }
  943. static ssize_t dispatching_store(struct sysdev_class *dev,
  944. struct sysdev_class_attribute *attr,
  945. const char *buf,
  946. size_t count)
  947. {
  948. int val, rc;
  949. char delim;
  950. if (sscanf(buf, "%d %c", &val, &delim) != 1)
  951. return -EINVAL;
  952. if (val != 0 && val != 1)
  953. return -EINVAL;
  954. rc = 0;
  955. get_online_cpus();
  956. mutex_lock(&smp_cpu_state_mutex);
  957. if (cpu_management == val)
  958. goto out;
  959. rc = topology_set_cpu_management(val);
  960. if (!rc)
  961. cpu_management = val;
  962. out:
  963. mutex_unlock(&smp_cpu_state_mutex);
  964. put_online_cpus();
  965. return rc ? rc : count;
  966. }
  967. static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
  968. dispatching_store);
  969. static int __init topology_init(void)
  970. {
  971. int cpu;
  972. int rc;
  973. register_cpu_notifier(&smp_cpu_nb);
  974. #ifdef CONFIG_HOTPLUG_CPU
  975. rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
  976. if (rc)
  977. return rc;
  978. #endif
  979. rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
  980. if (rc)
  981. return rc;
  982. for_each_present_cpu(cpu) {
  983. rc = smp_add_present_cpu(cpu);
  984. if (rc)
  985. return rc;
  986. }
  987. return 0;
  988. }
  989. subsys_initcall(topology_init);