process.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. /*
  2. * This file handles the architecture dependent parts of process handling.
  3. *
  4. * Copyright IBM Corp. 1999,2009
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6. * Hartmut Penner <hp@de.ibm.com>,
  7. * Denis Joseph Barrow,
  8. */
  9. #include <linux/compiler.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <linux/kernel.h>
  13. #include <linux/mm.h>
  14. #include <linux/smp.h>
  15. #include <linux/slab.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/tick.h>
  18. #include <linux/personality.h>
  19. #include <linux/syscalls.h>
  20. #include <linux/compat.h>
  21. #include <linux/kprobes.h>
  22. #include <linux/random.h>
  23. #include <linux/module.h>
  24. #include <asm/system.h>
  25. #include <asm/io.h>
  26. #include <asm/processor.h>
  27. #include <asm/irq.h>
  28. #include <asm/timer.h>
  29. #include <asm/nmi.h>
  30. #include <asm/compat.h>
  31. #include <asm/smp.h>
  32. #include "entry.h"
  33. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  34. /*
  35. * Return saved PC of a blocked thread. used in kernel/sched.
  36. * resume in entry.S does not create a new stack frame, it
  37. * just stores the registers %r6-%r15 to the frame given by
  38. * schedule. We want to return the address of the caller of
  39. * schedule, so we have to walk the backchain one time to
  40. * find the frame schedule() store its return address.
  41. */
  42. unsigned long thread_saved_pc(struct task_struct *tsk)
  43. {
  44. struct stack_frame *sf, *low, *high;
  45. if (!tsk || !task_stack_page(tsk))
  46. return 0;
  47. low = task_stack_page(tsk);
  48. high = (struct stack_frame *) task_pt_regs(tsk);
  49. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  50. if (sf <= low || sf > high)
  51. return 0;
  52. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  53. if (sf <= low || sf > high)
  54. return 0;
  55. return sf->gprs[8];
  56. }
  57. /*
  58. * The idle loop on a S390...
  59. */
  60. static void default_idle(void)
  61. {
  62. if (cpu_is_offline(smp_processor_id()))
  63. cpu_die();
  64. local_irq_disable();
  65. if (need_resched()) {
  66. local_irq_enable();
  67. return;
  68. }
  69. local_mcck_disable();
  70. if (test_thread_flag(TIF_MCCK_PENDING)) {
  71. local_mcck_enable();
  72. local_irq_enable();
  73. s390_handle_mcck();
  74. return;
  75. }
  76. trace_hardirqs_on();
  77. /* Don't trace preempt off for idle. */
  78. stop_critical_timings();
  79. /* Stop virtual timer and halt the cpu. */
  80. vtime_stop_cpu();
  81. /* Reenable preemption tracer. */
  82. start_critical_timings();
  83. }
  84. void cpu_idle(void)
  85. {
  86. for (;;) {
  87. tick_nohz_stop_sched_tick(1);
  88. while (!need_resched())
  89. default_idle();
  90. tick_nohz_restart_sched_tick();
  91. preempt_enable_no_resched();
  92. schedule();
  93. preempt_disable();
  94. }
  95. }
  96. extern void __kprobes kernel_thread_starter(void);
  97. asm(
  98. ".section .kprobes.text, \"ax\"\n"
  99. ".global kernel_thread_starter\n"
  100. "kernel_thread_starter:\n"
  101. " la 2,0(10)\n"
  102. " basr 14,9\n"
  103. " la 2,0\n"
  104. " br 11\n"
  105. ".previous\n");
  106. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  107. {
  108. struct pt_regs regs;
  109. memset(&regs, 0, sizeof(regs));
  110. regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
  111. regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
  112. regs.gprs[9] = (unsigned long) fn;
  113. regs.gprs[10] = (unsigned long) arg;
  114. regs.gprs[11] = (unsigned long) do_exit;
  115. regs.orig_gpr2 = -1;
  116. /* Ok, create the new process.. */
  117. return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
  118. 0, &regs, 0, NULL, NULL);
  119. }
  120. EXPORT_SYMBOL(kernel_thread);
  121. /*
  122. * Free current thread data structures etc..
  123. */
  124. void exit_thread(void)
  125. {
  126. }
  127. void flush_thread(void)
  128. {
  129. }
  130. void release_thread(struct task_struct *dead_task)
  131. {
  132. }
  133. int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
  134. unsigned long unused,
  135. struct task_struct *p, struct pt_regs *regs)
  136. {
  137. struct thread_info *ti;
  138. struct fake_frame
  139. {
  140. struct stack_frame sf;
  141. struct pt_regs childregs;
  142. } *frame;
  143. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  144. p->thread.ksp = (unsigned long) frame;
  145. /* Store access registers to kernel stack of new process. */
  146. frame->childregs = *regs;
  147. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  148. frame->childregs.gprs[15] = new_stackp;
  149. frame->sf.back_chain = 0;
  150. /* new return point is ret_from_fork */
  151. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  152. /* fake return stack for resume(), don't go back to schedule */
  153. frame->sf.gprs[9] = (unsigned long) frame;
  154. /* Save access registers to new thread structure. */
  155. save_access_regs(&p->thread.acrs[0]);
  156. #ifndef CONFIG_64BIT
  157. /*
  158. * save fprs to current->thread.fp_regs to merge them with
  159. * the emulated registers and then copy the result to the child.
  160. */
  161. save_fp_regs(&current->thread.fp_regs);
  162. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  163. sizeof(s390_fp_regs));
  164. /* Set a new TLS ? */
  165. if (clone_flags & CLONE_SETTLS)
  166. p->thread.acrs[0] = regs->gprs[6];
  167. #else /* CONFIG_64BIT */
  168. /* Save the fpu registers to new thread structure. */
  169. save_fp_regs(&p->thread.fp_regs);
  170. /* Set a new TLS ? */
  171. if (clone_flags & CLONE_SETTLS) {
  172. if (is_compat_task()) {
  173. p->thread.acrs[0] = (unsigned int) regs->gprs[6];
  174. } else {
  175. p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
  176. p->thread.acrs[1] = (unsigned int) regs->gprs[6];
  177. }
  178. }
  179. #endif /* CONFIG_64BIT */
  180. /* start new process with ar4 pointing to the correct address space */
  181. p->thread.mm_segment = get_fs();
  182. /* Don't copy debug registers */
  183. memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
  184. memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
  185. clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
  186. clear_tsk_thread_flag(p, TIF_PER_TRAP);
  187. /* Initialize per thread user and system timer values */
  188. ti = task_thread_info(p);
  189. ti->user_timer = 0;
  190. ti->system_timer = 0;
  191. return 0;
  192. }
  193. SYSCALL_DEFINE0(fork)
  194. {
  195. struct pt_regs *regs = task_pt_regs(current);
  196. return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
  197. }
  198. SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
  199. int __user *, parent_tidptr, int __user *, child_tidptr)
  200. {
  201. struct pt_regs *regs = task_pt_regs(current);
  202. if (!newsp)
  203. newsp = regs->gprs[15];
  204. return do_fork(clone_flags, newsp, regs, 0,
  205. parent_tidptr, child_tidptr);
  206. }
  207. /*
  208. * This is trivial, and on the face of it looks like it
  209. * could equally well be done in user mode.
  210. *
  211. * Not so, for quite unobvious reasons - register pressure.
  212. * In user mode vfork() cannot have a stack frame, and if
  213. * done by calling the "clone()" system call directly, you
  214. * do not have enough call-clobbered registers to hold all
  215. * the information you need.
  216. */
  217. SYSCALL_DEFINE0(vfork)
  218. {
  219. struct pt_regs *regs = task_pt_regs(current);
  220. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
  221. regs->gprs[15], regs, 0, NULL, NULL);
  222. }
  223. asmlinkage void execve_tail(void)
  224. {
  225. current->thread.fp_regs.fpc = 0;
  226. if (MACHINE_HAS_IEEE)
  227. asm volatile("sfpc %0,%0" : : "d" (0));
  228. }
  229. /*
  230. * sys_execve() executes a new program.
  231. */
  232. SYSCALL_DEFINE3(execve, const char __user *, name,
  233. const char __user *const __user *, argv,
  234. const char __user *const __user *, envp)
  235. {
  236. struct pt_regs *regs = task_pt_regs(current);
  237. char *filename;
  238. long rc;
  239. filename = getname(name);
  240. rc = PTR_ERR(filename);
  241. if (IS_ERR(filename))
  242. return rc;
  243. rc = do_execve(filename, argv, envp, regs);
  244. if (rc)
  245. goto out;
  246. execve_tail();
  247. rc = regs->gprs[2];
  248. out:
  249. putname(filename);
  250. return rc;
  251. }
  252. /*
  253. * fill in the FPU structure for a core dump.
  254. */
  255. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  256. {
  257. #ifndef CONFIG_64BIT
  258. /*
  259. * save fprs to current->thread.fp_regs to merge them with
  260. * the emulated registers and then copy the result to the dump.
  261. */
  262. save_fp_regs(&current->thread.fp_regs);
  263. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  264. #else /* CONFIG_64BIT */
  265. save_fp_regs(fpregs);
  266. #endif /* CONFIG_64BIT */
  267. return 1;
  268. }
  269. EXPORT_SYMBOL(dump_fpu);
  270. unsigned long get_wchan(struct task_struct *p)
  271. {
  272. struct stack_frame *sf, *low, *high;
  273. unsigned long return_address;
  274. int count;
  275. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  276. return 0;
  277. low = task_stack_page(p);
  278. high = (struct stack_frame *) task_pt_regs(p);
  279. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  280. if (sf <= low || sf > high)
  281. return 0;
  282. for (count = 0; count < 16; count++) {
  283. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  284. if (sf <= low || sf > high)
  285. return 0;
  286. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  287. if (!in_sched_functions(return_address))
  288. return return_address;
  289. }
  290. return 0;
  291. }
  292. unsigned long arch_align_stack(unsigned long sp)
  293. {
  294. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  295. sp -= get_random_int() & ~PAGE_MASK;
  296. return sp & ~0xf;
  297. }
  298. static inline unsigned long brk_rnd(void)
  299. {
  300. /* 8MB for 32bit, 1GB for 64bit */
  301. if (is_32bit_task())
  302. return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
  303. else
  304. return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
  305. }
  306. unsigned long arch_randomize_brk(struct mm_struct *mm)
  307. {
  308. unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
  309. if (ret < mm->brk)
  310. return mm->brk;
  311. return ret;
  312. }
  313. unsigned long randomize_et_dyn(unsigned long base)
  314. {
  315. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  316. if (!(current->flags & PF_RANDOMIZE))
  317. return base;
  318. if (ret < base)
  319. return base;
  320. return ret;
  321. }