time.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .shift = 22,
  85. .mult = 0, /* To be filled in */
  86. .read = rtc_read,
  87. };
  88. static cycle_t timebase_read(struct clocksource *);
  89. static struct clocksource clocksource_timebase = {
  90. .name = "timebase",
  91. .rating = 400,
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. .mask = CLOCKSOURCE_MASK(64),
  94. .shift = 22,
  95. .mult = 0, /* To be filled in */
  96. .read = timebase_read,
  97. };
  98. #define DECREMENTER_MAX 0x7fffffff
  99. static int decrementer_set_next_event(unsigned long evt,
  100. struct clock_event_device *dev);
  101. static void decrementer_set_mode(enum clock_event_mode mode,
  102. struct clock_event_device *dev);
  103. static struct clock_event_device decrementer_clockevent = {
  104. .name = "decrementer",
  105. .rating = 200,
  106. .shift = 0, /* To be filled in */
  107. .mult = 0, /* To be filled in */
  108. .irq = 0,
  109. .set_next_event = decrementer_set_next_event,
  110. .set_mode = decrementer_set_mode,
  111. .features = CLOCK_EVT_FEAT_ONESHOT,
  112. };
  113. struct decrementer_clock {
  114. struct clock_event_device event;
  115. u64 next_tb;
  116. };
  117. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  118. #ifdef CONFIG_PPC_ISERIES
  119. static unsigned long __initdata iSeries_recal_titan;
  120. static signed long __initdata iSeries_recal_tb;
  121. /* Forward declaration is only needed for iSereis compiles */
  122. static void __init clocksource_init(void);
  123. #endif
  124. #define XSEC_PER_SEC (1024*1024)
  125. #ifdef CONFIG_PPC64
  126. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  127. #else
  128. /* compute ((xsec << 12) * max) >> 32 */
  129. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  130. #endif
  131. unsigned long tb_ticks_per_jiffy;
  132. unsigned long tb_ticks_per_usec = 100; /* sane default */
  133. EXPORT_SYMBOL(tb_ticks_per_usec);
  134. unsigned long tb_ticks_per_sec;
  135. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  136. DEFINE_SPINLOCK(rtc_lock);
  137. EXPORT_SYMBOL_GPL(rtc_lock);
  138. static u64 tb_to_ns_scale __read_mostly;
  139. static unsigned tb_to_ns_shift __read_mostly;
  140. static u64 boot_tb __read_mostly;
  141. extern struct timezone sys_tz;
  142. static long timezone_offset;
  143. unsigned long ppc_proc_freq;
  144. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  145. unsigned long ppc_tb_freq;
  146. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  147. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  148. /*
  149. * Factors for converting from cputime_t (timebase ticks) to
  150. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  151. * These are all stored as 0.64 fixed-point binary fractions.
  152. */
  153. u64 __cputime_jiffies_factor;
  154. EXPORT_SYMBOL(__cputime_jiffies_factor);
  155. u64 __cputime_msec_factor;
  156. EXPORT_SYMBOL(__cputime_msec_factor);
  157. u64 __cputime_sec_factor;
  158. EXPORT_SYMBOL(__cputime_sec_factor);
  159. u64 __cputime_clockt_factor;
  160. EXPORT_SYMBOL(__cputime_clockt_factor);
  161. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  162. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  163. cputime_t cputime_one_jiffy;
  164. void (*dtl_consumer)(struct dtl_entry *, u64);
  165. static void calc_cputime_factors(void)
  166. {
  167. struct div_result res;
  168. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  169. __cputime_jiffies_factor = res.result_low;
  170. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  171. __cputime_msec_factor = res.result_low;
  172. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  173. __cputime_sec_factor = res.result_low;
  174. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  175. __cputime_clockt_factor = res.result_low;
  176. }
  177. /*
  178. * Read the SPURR on systems that have it, otherwise the PURR,
  179. * or if that doesn't exist return the timebase value passed in.
  180. */
  181. static u64 read_spurr(u64 tb)
  182. {
  183. if (cpu_has_feature(CPU_FTR_SPURR))
  184. return mfspr(SPRN_SPURR);
  185. if (cpu_has_feature(CPU_FTR_PURR))
  186. return mfspr(SPRN_PURR);
  187. return tb;
  188. }
  189. #ifdef CONFIG_PPC_SPLPAR
  190. /*
  191. * Scan the dispatch trace log and count up the stolen time.
  192. * Should be called with interrupts disabled.
  193. */
  194. static u64 scan_dispatch_log(u64 stop_tb)
  195. {
  196. u64 i = local_paca->dtl_ridx;
  197. struct dtl_entry *dtl = local_paca->dtl_curr;
  198. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  199. struct lppaca *vpa = local_paca->lppaca_ptr;
  200. u64 tb_delta;
  201. u64 stolen = 0;
  202. u64 dtb;
  203. if (!dtl)
  204. return 0;
  205. if (i == vpa->dtl_idx)
  206. return 0;
  207. while (i < vpa->dtl_idx) {
  208. if (dtl_consumer)
  209. dtl_consumer(dtl, i);
  210. dtb = dtl->timebase;
  211. tb_delta = dtl->enqueue_to_dispatch_time +
  212. dtl->ready_to_enqueue_time;
  213. barrier();
  214. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  215. /* buffer has overflowed */
  216. i = vpa->dtl_idx - N_DISPATCH_LOG;
  217. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  218. continue;
  219. }
  220. if (dtb > stop_tb)
  221. break;
  222. stolen += tb_delta;
  223. ++i;
  224. ++dtl;
  225. if (dtl == dtl_end)
  226. dtl = local_paca->dispatch_log;
  227. }
  228. local_paca->dtl_ridx = i;
  229. local_paca->dtl_curr = dtl;
  230. return stolen;
  231. }
  232. /*
  233. * Accumulate stolen time by scanning the dispatch trace log.
  234. * Called on entry from user mode.
  235. */
  236. void accumulate_stolen_time(void)
  237. {
  238. u64 sst, ust;
  239. u8 save_soft_enabled = local_paca->soft_enabled;
  240. u8 save_hard_enabled = local_paca->hard_enabled;
  241. /* We are called early in the exception entry, before
  242. * soft/hard_enabled are sync'ed to the expected state
  243. * for the exception. We are hard disabled but the PACA
  244. * needs to reflect that so various debug stuff doesn't
  245. * complain
  246. */
  247. local_paca->soft_enabled = 0;
  248. local_paca->hard_enabled = 0;
  249. sst = scan_dispatch_log(local_paca->starttime_user);
  250. ust = scan_dispatch_log(local_paca->starttime);
  251. local_paca->system_time -= sst;
  252. local_paca->user_time -= ust;
  253. local_paca->stolen_time += ust + sst;
  254. local_paca->soft_enabled = save_soft_enabled;
  255. local_paca->hard_enabled = save_hard_enabled;
  256. }
  257. static inline u64 calculate_stolen_time(u64 stop_tb)
  258. {
  259. u64 stolen = 0;
  260. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  261. stolen = scan_dispatch_log(stop_tb);
  262. get_paca()->system_time -= stolen;
  263. }
  264. stolen += get_paca()->stolen_time;
  265. get_paca()->stolen_time = 0;
  266. return stolen;
  267. }
  268. #else /* CONFIG_PPC_SPLPAR */
  269. static inline u64 calculate_stolen_time(u64 stop_tb)
  270. {
  271. return 0;
  272. }
  273. #endif /* CONFIG_PPC_SPLPAR */
  274. /*
  275. * Account time for a transition between system, hard irq
  276. * or soft irq state.
  277. */
  278. void account_system_vtime(struct task_struct *tsk)
  279. {
  280. u64 now, nowscaled, delta, deltascaled;
  281. unsigned long flags;
  282. u64 stolen, udelta, sys_scaled, user_scaled;
  283. local_irq_save(flags);
  284. now = mftb();
  285. nowscaled = read_spurr(now);
  286. get_paca()->system_time += now - get_paca()->starttime;
  287. get_paca()->starttime = now;
  288. deltascaled = nowscaled - get_paca()->startspurr;
  289. get_paca()->startspurr = nowscaled;
  290. stolen = calculate_stolen_time(now);
  291. delta = get_paca()->system_time;
  292. get_paca()->system_time = 0;
  293. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  294. get_paca()->utime_sspurr = get_paca()->user_time;
  295. /*
  296. * Because we don't read the SPURR on every kernel entry/exit,
  297. * deltascaled includes both user and system SPURR ticks.
  298. * Apportion these ticks to system SPURR ticks and user
  299. * SPURR ticks in the same ratio as the system time (delta)
  300. * and user time (udelta) values obtained from the timebase
  301. * over the same interval. The system ticks get accounted here;
  302. * the user ticks get saved up in paca->user_time_scaled to be
  303. * used by account_process_tick.
  304. */
  305. sys_scaled = delta;
  306. user_scaled = udelta;
  307. if (deltascaled != delta + udelta) {
  308. if (udelta) {
  309. sys_scaled = deltascaled * delta / (delta + udelta);
  310. user_scaled = deltascaled - sys_scaled;
  311. } else {
  312. sys_scaled = deltascaled;
  313. }
  314. }
  315. get_paca()->user_time_scaled += user_scaled;
  316. if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
  317. account_system_time(tsk, 0, delta, sys_scaled);
  318. if (stolen)
  319. account_steal_time(stolen);
  320. } else {
  321. account_idle_time(delta + stolen);
  322. }
  323. local_irq_restore(flags);
  324. }
  325. EXPORT_SYMBOL_GPL(account_system_vtime);
  326. /*
  327. * Transfer the user and system times accumulated in the paca
  328. * by the exception entry and exit code to the generic process
  329. * user and system time records.
  330. * Must be called with interrupts disabled.
  331. * Assumes that account_system_vtime() has been called recently
  332. * (i.e. since the last entry from usermode) so that
  333. * get_paca()->user_time_scaled is up to date.
  334. */
  335. void account_process_tick(struct task_struct *tsk, int user_tick)
  336. {
  337. cputime_t utime, utimescaled;
  338. utime = get_paca()->user_time;
  339. utimescaled = get_paca()->user_time_scaled;
  340. get_paca()->user_time = 0;
  341. get_paca()->user_time_scaled = 0;
  342. get_paca()->utime_sspurr = 0;
  343. account_user_time(tsk, utime, utimescaled);
  344. }
  345. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  346. #define calc_cputime_factors()
  347. #endif
  348. void __delay(unsigned long loops)
  349. {
  350. unsigned long start;
  351. int diff;
  352. if (__USE_RTC()) {
  353. start = get_rtcl();
  354. do {
  355. /* the RTCL register wraps at 1000000000 */
  356. diff = get_rtcl() - start;
  357. if (diff < 0)
  358. diff += 1000000000;
  359. } while (diff < loops);
  360. } else {
  361. start = get_tbl();
  362. while (get_tbl() - start < loops)
  363. HMT_low();
  364. HMT_medium();
  365. }
  366. }
  367. EXPORT_SYMBOL(__delay);
  368. void udelay(unsigned long usecs)
  369. {
  370. __delay(tb_ticks_per_usec * usecs);
  371. }
  372. EXPORT_SYMBOL(udelay);
  373. #ifdef CONFIG_SMP
  374. unsigned long profile_pc(struct pt_regs *regs)
  375. {
  376. unsigned long pc = instruction_pointer(regs);
  377. if (in_lock_functions(pc))
  378. return regs->link;
  379. return pc;
  380. }
  381. EXPORT_SYMBOL(profile_pc);
  382. #endif
  383. #ifdef CONFIG_PPC_ISERIES
  384. /*
  385. * This function recalibrates the timebase based on the 49-bit time-of-day
  386. * value in the Titan chip. The Titan is much more accurate than the value
  387. * returned by the service processor for the timebase frequency.
  388. */
  389. static int __init iSeries_tb_recal(void)
  390. {
  391. unsigned long titan, tb;
  392. /* Make sure we only run on iSeries */
  393. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  394. return -ENODEV;
  395. tb = get_tb();
  396. titan = HvCallXm_loadTod();
  397. if ( iSeries_recal_titan ) {
  398. unsigned long tb_ticks = tb - iSeries_recal_tb;
  399. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  400. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  401. unsigned long new_tb_ticks_per_jiffy =
  402. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  403. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  404. char sign = '+';
  405. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  406. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  407. if ( tick_diff < 0 ) {
  408. tick_diff = -tick_diff;
  409. sign = '-';
  410. }
  411. if ( tick_diff ) {
  412. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  413. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  414. new_tb_ticks_per_jiffy, sign, tick_diff );
  415. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  416. tb_ticks_per_sec = new_tb_ticks_per_sec;
  417. calc_cputime_factors();
  418. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  419. setup_cputime_one_jiffy();
  420. }
  421. else {
  422. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  423. " new tb_ticks_per_jiffy = %lu\n"
  424. " old tb_ticks_per_jiffy = %lu\n",
  425. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  426. }
  427. }
  428. }
  429. iSeries_recal_titan = titan;
  430. iSeries_recal_tb = tb;
  431. /* Called here as now we know accurate values for the timebase */
  432. clocksource_init();
  433. return 0;
  434. }
  435. late_initcall(iSeries_tb_recal);
  436. /* Called from platform early init */
  437. void __init iSeries_time_init_early(void)
  438. {
  439. iSeries_recal_tb = get_tb();
  440. iSeries_recal_titan = HvCallXm_loadTod();
  441. }
  442. #endif /* CONFIG_PPC_ISERIES */
  443. #ifdef CONFIG_IRQ_WORK
  444. /*
  445. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  446. */
  447. #ifdef CONFIG_PPC64
  448. static inline unsigned long test_irq_work_pending(void)
  449. {
  450. unsigned long x;
  451. asm volatile("lbz %0,%1(13)"
  452. : "=r" (x)
  453. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  454. return x;
  455. }
  456. static inline void set_irq_work_pending_flag(void)
  457. {
  458. asm volatile("stb %0,%1(13)" : :
  459. "r" (1),
  460. "i" (offsetof(struct paca_struct, irq_work_pending)));
  461. }
  462. static inline void clear_irq_work_pending(void)
  463. {
  464. asm volatile("stb %0,%1(13)" : :
  465. "r" (0),
  466. "i" (offsetof(struct paca_struct, irq_work_pending)));
  467. }
  468. #else /* 32-bit */
  469. DEFINE_PER_CPU(u8, irq_work_pending);
  470. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  471. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  472. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  473. #endif /* 32 vs 64 bit */
  474. void arch_irq_work_raise(void)
  475. {
  476. preempt_disable();
  477. set_irq_work_pending_flag();
  478. set_dec(1);
  479. preempt_enable();
  480. }
  481. #else /* CONFIG_IRQ_WORK */
  482. #define test_irq_work_pending() 0
  483. #define clear_irq_work_pending()
  484. #endif /* CONFIG_IRQ_WORK */
  485. /*
  486. * For iSeries shared processors, we have to let the hypervisor
  487. * set the hardware decrementer. We set a virtual decrementer
  488. * in the lppaca and call the hypervisor if the virtual
  489. * decrementer is less than the current value in the hardware
  490. * decrementer. (almost always the new decrementer value will
  491. * be greater than the current hardware decementer so the hypervisor
  492. * call will not be needed)
  493. */
  494. /*
  495. * timer_interrupt - gets called when the decrementer overflows,
  496. * with interrupts disabled.
  497. */
  498. void timer_interrupt(struct pt_regs * regs)
  499. {
  500. struct pt_regs *old_regs;
  501. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  502. struct clock_event_device *evt = &decrementer->event;
  503. u64 now;
  504. /* Ensure a positive value is written to the decrementer, or else
  505. * some CPUs will continue to take decrementer exceptions.
  506. */
  507. set_dec(DECREMENTER_MAX);
  508. /* Some implementations of hotplug will get timer interrupts while
  509. * offline, just ignore these
  510. */
  511. if (!cpu_online(smp_processor_id()))
  512. return;
  513. trace_timer_interrupt_entry(regs);
  514. __get_cpu_var(irq_stat).timer_irqs++;
  515. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  516. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  517. do_IRQ(regs);
  518. #endif
  519. old_regs = set_irq_regs(regs);
  520. irq_enter();
  521. if (test_irq_work_pending()) {
  522. clear_irq_work_pending();
  523. irq_work_run();
  524. }
  525. #ifdef CONFIG_PPC_ISERIES
  526. if (firmware_has_feature(FW_FEATURE_ISERIES))
  527. get_lppaca()->int_dword.fields.decr_int = 0;
  528. #endif
  529. now = get_tb_or_rtc();
  530. if (now >= decrementer->next_tb) {
  531. decrementer->next_tb = ~(u64)0;
  532. if (evt->event_handler)
  533. evt->event_handler(evt);
  534. } else {
  535. now = decrementer->next_tb - now;
  536. if (now <= DECREMENTER_MAX)
  537. set_dec((int)now);
  538. }
  539. #ifdef CONFIG_PPC_ISERIES
  540. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  541. process_hvlpevents();
  542. #endif
  543. #ifdef CONFIG_PPC64
  544. /* collect purr register values often, for accurate calculations */
  545. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  546. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  547. cu->current_tb = mfspr(SPRN_PURR);
  548. }
  549. #endif
  550. irq_exit();
  551. set_irq_regs(old_regs);
  552. trace_timer_interrupt_exit(regs);
  553. }
  554. #ifdef CONFIG_SUSPEND
  555. static void generic_suspend_disable_irqs(void)
  556. {
  557. /* Disable the decrementer, so that it doesn't interfere
  558. * with suspending.
  559. */
  560. set_dec(0x7fffffff);
  561. local_irq_disable();
  562. set_dec(0x7fffffff);
  563. }
  564. static void generic_suspend_enable_irqs(void)
  565. {
  566. local_irq_enable();
  567. }
  568. /* Overrides the weak version in kernel/power/main.c */
  569. void arch_suspend_disable_irqs(void)
  570. {
  571. if (ppc_md.suspend_disable_irqs)
  572. ppc_md.suspend_disable_irqs();
  573. generic_suspend_disable_irqs();
  574. }
  575. /* Overrides the weak version in kernel/power/main.c */
  576. void arch_suspend_enable_irqs(void)
  577. {
  578. generic_suspend_enable_irqs();
  579. if (ppc_md.suspend_enable_irqs)
  580. ppc_md.suspend_enable_irqs();
  581. }
  582. #endif
  583. /*
  584. * Scheduler clock - returns current time in nanosec units.
  585. *
  586. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  587. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  588. * are 64-bit unsigned numbers.
  589. */
  590. unsigned long long sched_clock(void)
  591. {
  592. if (__USE_RTC())
  593. return get_rtc();
  594. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  595. }
  596. static int __init get_freq(char *name, int cells, unsigned long *val)
  597. {
  598. struct device_node *cpu;
  599. const unsigned int *fp;
  600. int found = 0;
  601. /* The cpu node should have timebase and clock frequency properties */
  602. cpu = of_find_node_by_type(NULL, "cpu");
  603. if (cpu) {
  604. fp = of_get_property(cpu, name, NULL);
  605. if (fp) {
  606. found = 1;
  607. *val = of_read_ulong(fp, cells);
  608. }
  609. of_node_put(cpu);
  610. }
  611. return found;
  612. }
  613. /* should become __cpuinit when secondary_cpu_time_init also is */
  614. void start_cpu_decrementer(void)
  615. {
  616. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  617. /* Clear any pending timer interrupts */
  618. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  619. /* Enable decrementer interrupt */
  620. mtspr(SPRN_TCR, TCR_DIE);
  621. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  622. }
  623. void __init generic_calibrate_decr(void)
  624. {
  625. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  626. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  627. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  628. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  629. "(not found)\n");
  630. }
  631. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  632. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  633. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  634. printk(KERN_ERR "WARNING: Estimating processor frequency "
  635. "(not found)\n");
  636. }
  637. }
  638. int update_persistent_clock(struct timespec now)
  639. {
  640. struct rtc_time tm;
  641. if (!ppc_md.set_rtc_time)
  642. return 0;
  643. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  644. tm.tm_year -= 1900;
  645. tm.tm_mon -= 1;
  646. return ppc_md.set_rtc_time(&tm);
  647. }
  648. static void __read_persistent_clock(struct timespec *ts)
  649. {
  650. struct rtc_time tm;
  651. static int first = 1;
  652. ts->tv_nsec = 0;
  653. /* XXX this is a litle fragile but will work okay in the short term */
  654. if (first) {
  655. first = 0;
  656. if (ppc_md.time_init)
  657. timezone_offset = ppc_md.time_init();
  658. /* get_boot_time() isn't guaranteed to be safe to call late */
  659. if (ppc_md.get_boot_time) {
  660. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  661. return;
  662. }
  663. }
  664. if (!ppc_md.get_rtc_time) {
  665. ts->tv_sec = 0;
  666. return;
  667. }
  668. ppc_md.get_rtc_time(&tm);
  669. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  670. tm.tm_hour, tm.tm_min, tm.tm_sec);
  671. }
  672. void read_persistent_clock(struct timespec *ts)
  673. {
  674. __read_persistent_clock(ts);
  675. /* Sanitize it in case real time clock is set below EPOCH */
  676. if (ts->tv_sec < 0) {
  677. ts->tv_sec = 0;
  678. ts->tv_nsec = 0;
  679. }
  680. }
  681. /* clocksource code */
  682. static cycle_t rtc_read(struct clocksource *cs)
  683. {
  684. return (cycle_t)get_rtc();
  685. }
  686. static cycle_t timebase_read(struct clocksource *cs)
  687. {
  688. return (cycle_t)get_tb();
  689. }
  690. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  691. struct clocksource *clock, u32 mult)
  692. {
  693. u64 new_tb_to_xs, new_stamp_xsec;
  694. u32 frac_sec;
  695. if (clock != &clocksource_timebase)
  696. return;
  697. /* Make userspace gettimeofday spin until we're done. */
  698. ++vdso_data->tb_update_count;
  699. smp_mb();
  700. /* XXX this assumes clock->shift == 22 */
  701. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  702. new_tb_to_xs = (u64) mult * 4611686018ULL;
  703. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  704. do_div(new_stamp_xsec, 1000000000);
  705. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  706. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  707. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  708. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  709. /*
  710. * tb_update_count is used to allow the userspace gettimeofday code
  711. * to assure itself that it sees a consistent view of the tb_to_xs and
  712. * stamp_xsec variables. It reads the tb_update_count, then reads
  713. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  714. * the two values of tb_update_count match and are even then the
  715. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  716. * loops back and reads them again until this criteria is met.
  717. * We expect the caller to have done the first increment of
  718. * vdso_data->tb_update_count already.
  719. */
  720. vdso_data->tb_orig_stamp = clock->cycle_last;
  721. vdso_data->stamp_xsec = new_stamp_xsec;
  722. vdso_data->tb_to_xs = new_tb_to_xs;
  723. vdso_data->wtom_clock_sec = wtm->tv_sec;
  724. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  725. vdso_data->stamp_xtime = *wall_time;
  726. vdso_data->stamp_sec_fraction = frac_sec;
  727. smp_wmb();
  728. ++(vdso_data->tb_update_count);
  729. }
  730. void update_vsyscall_tz(void)
  731. {
  732. /* Make userspace gettimeofday spin until we're done. */
  733. ++vdso_data->tb_update_count;
  734. smp_mb();
  735. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  736. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  737. smp_mb();
  738. ++vdso_data->tb_update_count;
  739. }
  740. static void __init clocksource_init(void)
  741. {
  742. struct clocksource *clock;
  743. if (__USE_RTC())
  744. clock = &clocksource_rtc;
  745. else
  746. clock = &clocksource_timebase;
  747. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  748. if (clocksource_register(clock)) {
  749. printk(KERN_ERR "clocksource: %s is already registered\n",
  750. clock->name);
  751. return;
  752. }
  753. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  754. clock->name, clock->mult, clock->shift);
  755. }
  756. static int decrementer_set_next_event(unsigned long evt,
  757. struct clock_event_device *dev)
  758. {
  759. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  760. set_dec(evt);
  761. return 0;
  762. }
  763. static void decrementer_set_mode(enum clock_event_mode mode,
  764. struct clock_event_device *dev)
  765. {
  766. if (mode != CLOCK_EVT_MODE_ONESHOT)
  767. decrementer_set_next_event(DECREMENTER_MAX, dev);
  768. }
  769. static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
  770. int shift)
  771. {
  772. uint64_t tmp = ((uint64_t)ticks) << shift;
  773. do_div(tmp, nsec);
  774. return tmp;
  775. }
  776. static void __init setup_clockevent_multiplier(unsigned long hz)
  777. {
  778. u64 mult, shift = 32;
  779. while (1) {
  780. mult = div_sc64(hz, NSEC_PER_SEC, shift);
  781. if (mult && (mult >> 32UL) == 0UL)
  782. break;
  783. shift--;
  784. }
  785. decrementer_clockevent.shift = shift;
  786. decrementer_clockevent.mult = mult;
  787. }
  788. static void register_decrementer_clockevent(int cpu)
  789. {
  790. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  791. *dec = decrementer_clockevent;
  792. dec->cpumask = cpumask_of(cpu);
  793. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  794. dec->name, dec->mult, dec->shift, cpu);
  795. clockevents_register_device(dec);
  796. }
  797. static void __init init_decrementer_clockevent(void)
  798. {
  799. int cpu = smp_processor_id();
  800. setup_clockevent_multiplier(ppc_tb_freq);
  801. decrementer_clockevent.max_delta_ns =
  802. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  803. decrementer_clockevent.min_delta_ns =
  804. clockevent_delta2ns(2, &decrementer_clockevent);
  805. register_decrementer_clockevent(cpu);
  806. }
  807. void secondary_cpu_time_init(void)
  808. {
  809. /* Start the decrementer on CPUs that have manual control
  810. * such as BookE
  811. */
  812. start_cpu_decrementer();
  813. /* FIME: Should make unrelatred change to move snapshot_timebase
  814. * call here ! */
  815. register_decrementer_clockevent(smp_processor_id());
  816. }
  817. /* This function is only called on the boot processor */
  818. void __init time_init(void)
  819. {
  820. struct div_result res;
  821. u64 scale;
  822. unsigned shift;
  823. if (__USE_RTC()) {
  824. /* 601 processor: dec counts down by 128 every 128ns */
  825. ppc_tb_freq = 1000000000;
  826. } else {
  827. /* Normal PowerPC with timebase register */
  828. ppc_md.calibrate_decr();
  829. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  830. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  831. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  832. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  833. }
  834. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  835. tb_ticks_per_sec = ppc_tb_freq;
  836. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  837. calc_cputime_factors();
  838. setup_cputime_one_jiffy();
  839. /*
  840. * Compute scale factor for sched_clock.
  841. * The calibrate_decr() function has set tb_ticks_per_sec,
  842. * which is the timebase frequency.
  843. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  844. * the 128-bit result as a 64.64 fixed-point number.
  845. * We then shift that number right until it is less than 1.0,
  846. * giving us the scale factor and shift count to use in
  847. * sched_clock().
  848. */
  849. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  850. scale = res.result_low;
  851. for (shift = 0; res.result_high != 0; ++shift) {
  852. scale = (scale >> 1) | (res.result_high << 63);
  853. res.result_high >>= 1;
  854. }
  855. tb_to_ns_scale = scale;
  856. tb_to_ns_shift = shift;
  857. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  858. boot_tb = get_tb_or_rtc();
  859. /* If platform provided a timezone (pmac), we correct the time */
  860. if (timezone_offset) {
  861. sys_tz.tz_minuteswest = -timezone_offset / 60;
  862. sys_tz.tz_dsttime = 0;
  863. }
  864. vdso_data->tb_update_count = 0;
  865. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  866. /* Start the decrementer on CPUs that have manual control
  867. * such as BookE
  868. */
  869. start_cpu_decrementer();
  870. /* Register the clocksource, if we're not running on iSeries */
  871. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  872. clocksource_init();
  873. init_decrementer_clockevent();
  874. }
  875. #define FEBRUARY 2
  876. #define STARTOFTIME 1970
  877. #define SECDAY 86400L
  878. #define SECYR (SECDAY * 365)
  879. #define leapyear(year) ((year) % 4 == 0 && \
  880. ((year) % 100 != 0 || (year) % 400 == 0))
  881. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  882. #define days_in_month(a) (month_days[(a) - 1])
  883. static int month_days[12] = {
  884. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  885. };
  886. /*
  887. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  888. */
  889. void GregorianDay(struct rtc_time * tm)
  890. {
  891. int leapsToDate;
  892. int lastYear;
  893. int day;
  894. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  895. lastYear = tm->tm_year - 1;
  896. /*
  897. * Number of leap corrections to apply up to end of last year
  898. */
  899. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  900. /*
  901. * This year is a leap year if it is divisible by 4 except when it is
  902. * divisible by 100 unless it is divisible by 400
  903. *
  904. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  905. */
  906. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  907. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  908. tm->tm_mday;
  909. tm->tm_wday = day % 7;
  910. }
  911. void to_tm(int tim, struct rtc_time * tm)
  912. {
  913. register int i;
  914. register long hms, day;
  915. day = tim / SECDAY;
  916. hms = tim % SECDAY;
  917. /* Hours, minutes, seconds are easy */
  918. tm->tm_hour = hms / 3600;
  919. tm->tm_min = (hms % 3600) / 60;
  920. tm->tm_sec = (hms % 3600) % 60;
  921. /* Number of years in days */
  922. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  923. day -= days_in_year(i);
  924. tm->tm_year = i;
  925. /* Number of months in days left */
  926. if (leapyear(tm->tm_year))
  927. days_in_month(FEBRUARY) = 29;
  928. for (i = 1; day >= days_in_month(i); i++)
  929. day -= days_in_month(i);
  930. days_in_month(FEBRUARY) = 28;
  931. tm->tm_mon = i;
  932. /* Days are what is left over (+1) from all that. */
  933. tm->tm_mday = day + 1;
  934. /*
  935. * Determine the day of week
  936. */
  937. GregorianDay(tm);
  938. }
  939. /*
  940. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  941. * result.
  942. */
  943. void div128_by_32(u64 dividend_high, u64 dividend_low,
  944. unsigned divisor, struct div_result *dr)
  945. {
  946. unsigned long a, b, c, d;
  947. unsigned long w, x, y, z;
  948. u64 ra, rb, rc;
  949. a = dividend_high >> 32;
  950. b = dividend_high & 0xffffffff;
  951. c = dividend_low >> 32;
  952. d = dividend_low & 0xffffffff;
  953. w = a / divisor;
  954. ra = ((u64)(a - (w * divisor)) << 32) + b;
  955. rb = ((u64) do_div(ra, divisor) << 32) + c;
  956. x = ra;
  957. rc = ((u64) do_div(rb, divisor) << 32) + d;
  958. y = rb;
  959. do_div(rc, divisor);
  960. z = rc;
  961. dr->result_high = ((u64)w << 32) + x;
  962. dr->result_low = ((u64)y << 32) + z;
  963. }
  964. /* We don't need to calibrate delay, we use the CPU timebase for that */
  965. void calibrate_delay(void)
  966. {
  967. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  968. * as the number of __delay(1) in a jiffy, so make it so
  969. */
  970. loops_per_jiffy = tb_ticks_per_jiffy;
  971. }
  972. static int __init rtc_init(void)
  973. {
  974. struct platform_device *pdev;
  975. if (!ppc_md.get_rtc_time)
  976. return -ENODEV;
  977. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  978. if (IS_ERR(pdev))
  979. return PTR_ERR(pdev);
  980. return 0;
  981. }
  982. module_init(rtc_init);