perf_callchain.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478
  1. /*
  2. * Performance counter callchain support - powerpc architecture code
  3. *
  4. * Copyright © 2009 Paul Mackerras, IBM Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/sched.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/percpu.h>
  15. #include <linux/uaccess.h>
  16. #include <linux/mm.h>
  17. #include <asm/ptrace.h>
  18. #include <asm/pgtable.h>
  19. #include <asm/sigcontext.h>
  20. #include <asm/ucontext.h>
  21. #include <asm/vdso.h>
  22. #ifdef CONFIG_PPC64
  23. #include "ppc32.h"
  24. #endif
  25. /*
  26. * Is sp valid as the address of the next kernel stack frame after prev_sp?
  27. * The next frame may be in a different stack area but should not go
  28. * back down in the same stack area.
  29. */
  30. static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
  31. {
  32. if (sp & 0xf)
  33. return 0; /* must be 16-byte aligned */
  34. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  35. return 0;
  36. if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
  37. return 1;
  38. /*
  39. * sp could decrease when we jump off an interrupt stack
  40. * back to the regular process stack.
  41. */
  42. if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
  43. return 1;
  44. return 0;
  45. }
  46. void
  47. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  48. {
  49. unsigned long sp, next_sp;
  50. unsigned long next_ip;
  51. unsigned long lr;
  52. long level = 0;
  53. unsigned long *fp;
  54. lr = regs->link;
  55. sp = regs->gpr[1];
  56. perf_callchain_store(entry, regs->nip);
  57. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  58. return;
  59. for (;;) {
  60. fp = (unsigned long *) sp;
  61. next_sp = fp[0];
  62. if (next_sp == sp + STACK_INT_FRAME_SIZE &&
  63. fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  64. /*
  65. * This looks like an interrupt frame for an
  66. * interrupt that occurred in the kernel
  67. */
  68. regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
  69. next_ip = regs->nip;
  70. lr = regs->link;
  71. level = 0;
  72. perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
  73. } else {
  74. if (level == 0)
  75. next_ip = lr;
  76. else
  77. next_ip = fp[STACK_FRAME_LR_SAVE];
  78. /*
  79. * We can't tell which of the first two addresses
  80. * we get are valid, but we can filter out the
  81. * obviously bogus ones here. We replace them
  82. * with 0 rather than removing them entirely so
  83. * that userspace can tell which is which.
  84. */
  85. if ((level == 1 && next_ip == lr) ||
  86. (level <= 1 && !kernel_text_address(next_ip)))
  87. next_ip = 0;
  88. ++level;
  89. }
  90. perf_callchain_store(entry, next_ip);
  91. if (!valid_next_sp(next_sp, sp))
  92. return;
  93. sp = next_sp;
  94. }
  95. }
  96. #ifdef CONFIG_PPC64
  97. /*
  98. * On 64-bit we don't want to invoke hash_page on user addresses from
  99. * interrupt context, so if the access faults, we read the page tables
  100. * to find which page (if any) is mapped and access it directly.
  101. */
  102. static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
  103. {
  104. pgd_t *pgdir;
  105. pte_t *ptep, pte;
  106. unsigned shift;
  107. unsigned long addr = (unsigned long) ptr;
  108. unsigned long offset;
  109. unsigned long pfn;
  110. void *kaddr;
  111. pgdir = current->mm->pgd;
  112. if (!pgdir)
  113. return -EFAULT;
  114. ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
  115. if (!shift)
  116. shift = PAGE_SHIFT;
  117. /* align address to page boundary */
  118. offset = addr & ((1UL << shift) - 1);
  119. addr -= offset;
  120. if (ptep == NULL)
  121. return -EFAULT;
  122. pte = *ptep;
  123. if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
  124. return -EFAULT;
  125. pfn = pte_pfn(pte);
  126. if (!page_is_ram(pfn))
  127. return -EFAULT;
  128. /* no highmem to worry about here */
  129. kaddr = pfn_to_kaddr(pfn);
  130. memcpy(ret, kaddr + offset, nb);
  131. return 0;
  132. }
  133. static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
  134. {
  135. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
  136. ((unsigned long)ptr & 7))
  137. return -EFAULT;
  138. if (!__get_user_inatomic(*ret, ptr))
  139. return 0;
  140. return read_user_stack_slow(ptr, ret, 8);
  141. }
  142. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  143. {
  144. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  145. ((unsigned long)ptr & 3))
  146. return -EFAULT;
  147. if (!__get_user_inatomic(*ret, ptr))
  148. return 0;
  149. return read_user_stack_slow(ptr, ret, 4);
  150. }
  151. static inline int valid_user_sp(unsigned long sp, int is_64)
  152. {
  153. if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
  154. return 0;
  155. return 1;
  156. }
  157. /*
  158. * 64-bit user processes use the same stack frame for RT and non-RT signals.
  159. */
  160. struct signal_frame_64 {
  161. char dummy[__SIGNAL_FRAMESIZE];
  162. struct ucontext uc;
  163. unsigned long unused[2];
  164. unsigned int tramp[6];
  165. struct siginfo *pinfo;
  166. void *puc;
  167. struct siginfo info;
  168. char abigap[288];
  169. };
  170. static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
  171. {
  172. if (nip == fp + offsetof(struct signal_frame_64, tramp))
  173. return 1;
  174. if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
  175. nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
  176. return 1;
  177. return 0;
  178. }
  179. /*
  180. * Do some sanity checking on the signal frame pointed to by sp.
  181. * We check the pinfo and puc pointers in the frame.
  182. */
  183. static int sane_signal_64_frame(unsigned long sp)
  184. {
  185. struct signal_frame_64 __user *sf;
  186. unsigned long pinfo, puc;
  187. sf = (struct signal_frame_64 __user *) sp;
  188. if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
  189. read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
  190. return 0;
  191. return pinfo == (unsigned long) &sf->info &&
  192. puc == (unsigned long) &sf->uc;
  193. }
  194. static void perf_callchain_user_64(struct perf_callchain_entry *entry,
  195. struct pt_regs *regs)
  196. {
  197. unsigned long sp, next_sp;
  198. unsigned long next_ip;
  199. unsigned long lr;
  200. long level = 0;
  201. struct signal_frame_64 __user *sigframe;
  202. unsigned long __user *fp, *uregs;
  203. next_ip = regs->nip;
  204. lr = regs->link;
  205. sp = regs->gpr[1];
  206. perf_callchain_store(entry, next_ip);
  207. for (;;) {
  208. fp = (unsigned long __user *) sp;
  209. if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
  210. return;
  211. if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
  212. return;
  213. /*
  214. * Note: the next_sp - sp >= signal frame size check
  215. * is true when next_sp < sp, which can happen when
  216. * transitioning from an alternate signal stack to the
  217. * normal stack.
  218. */
  219. if (next_sp - sp >= sizeof(struct signal_frame_64) &&
  220. (is_sigreturn_64_address(next_ip, sp) ||
  221. (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
  222. sane_signal_64_frame(sp)) {
  223. /*
  224. * This looks like an signal frame
  225. */
  226. sigframe = (struct signal_frame_64 __user *) sp;
  227. uregs = sigframe->uc.uc_mcontext.gp_regs;
  228. if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
  229. read_user_stack_64(&uregs[PT_LNK], &lr) ||
  230. read_user_stack_64(&uregs[PT_R1], &sp))
  231. return;
  232. level = 0;
  233. perf_callchain_store(entry, PERF_CONTEXT_USER);
  234. perf_callchain_store(entry, next_ip);
  235. continue;
  236. }
  237. if (level == 0)
  238. next_ip = lr;
  239. perf_callchain_store(entry, next_ip);
  240. ++level;
  241. sp = next_sp;
  242. }
  243. }
  244. static inline int current_is_64bit(void)
  245. {
  246. /*
  247. * We can't use test_thread_flag() here because we may be on an
  248. * interrupt stack, and the thread flags don't get copied over
  249. * from the thread_info on the main stack to the interrupt stack.
  250. */
  251. return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
  252. }
  253. #else /* CONFIG_PPC64 */
  254. /*
  255. * On 32-bit we just access the address and let hash_page create a
  256. * HPTE if necessary, so there is no need to fall back to reading
  257. * the page tables. Since this is called at interrupt level,
  258. * do_page_fault() won't treat a DSI as a page fault.
  259. */
  260. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  261. {
  262. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  263. ((unsigned long)ptr & 3))
  264. return -EFAULT;
  265. return __get_user_inatomic(*ret, ptr);
  266. }
  267. static inline void perf_callchain_user_64(struct perf_callchain_entry *entry,
  268. struct pt_regs *regs)
  269. {
  270. }
  271. static inline int current_is_64bit(void)
  272. {
  273. return 0;
  274. }
  275. static inline int valid_user_sp(unsigned long sp, int is_64)
  276. {
  277. if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
  278. return 0;
  279. return 1;
  280. }
  281. #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
  282. #define sigcontext32 sigcontext
  283. #define mcontext32 mcontext
  284. #define ucontext32 ucontext
  285. #define compat_siginfo_t struct siginfo
  286. #endif /* CONFIG_PPC64 */
  287. /*
  288. * Layout for non-RT signal frames
  289. */
  290. struct signal_frame_32 {
  291. char dummy[__SIGNAL_FRAMESIZE32];
  292. struct sigcontext32 sctx;
  293. struct mcontext32 mctx;
  294. int abigap[56];
  295. };
  296. /*
  297. * Layout for RT signal frames
  298. */
  299. struct rt_signal_frame_32 {
  300. char dummy[__SIGNAL_FRAMESIZE32 + 16];
  301. compat_siginfo_t info;
  302. struct ucontext32 uc;
  303. int abigap[56];
  304. };
  305. static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
  306. {
  307. if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
  308. return 1;
  309. if (vdso32_sigtramp && current->mm->context.vdso_base &&
  310. nip == current->mm->context.vdso_base + vdso32_sigtramp)
  311. return 1;
  312. return 0;
  313. }
  314. static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
  315. {
  316. if (nip == fp + offsetof(struct rt_signal_frame_32,
  317. uc.uc_mcontext.mc_pad))
  318. return 1;
  319. if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
  320. nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
  321. return 1;
  322. return 0;
  323. }
  324. static int sane_signal_32_frame(unsigned int sp)
  325. {
  326. struct signal_frame_32 __user *sf;
  327. unsigned int regs;
  328. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  329. if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
  330. return 0;
  331. return regs == (unsigned long) &sf->mctx;
  332. }
  333. static int sane_rt_signal_32_frame(unsigned int sp)
  334. {
  335. struct rt_signal_frame_32 __user *sf;
  336. unsigned int regs;
  337. sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  338. if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
  339. return 0;
  340. return regs == (unsigned long) &sf->uc.uc_mcontext;
  341. }
  342. static unsigned int __user *signal_frame_32_regs(unsigned int sp,
  343. unsigned int next_sp, unsigned int next_ip)
  344. {
  345. struct mcontext32 __user *mctx = NULL;
  346. struct signal_frame_32 __user *sf;
  347. struct rt_signal_frame_32 __user *rt_sf;
  348. /*
  349. * Note: the next_sp - sp >= signal frame size check
  350. * is true when next_sp < sp, for example, when
  351. * transitioning from an alternate signal stack to the
  352. * normal stack.
  353. */
  354. if (next_sp - sp >= sizeof(struct signal_frame_32) &&
  355. is_sigreturn_32_address(next_ip, sp) &&
  356. sane_signal_32_frame(sp)) {
  357. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  358. mctx = &sf->mctx;
  359. }
  360. if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
  361. is_rt_sigreturn_32_address(next_ip, sp) &&
  362. sane_rt_signal_32_frame(sp)) {
  363. rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  364. mctx = &rt_sf->uc.uc_mcontext;
  365. }
  366. if (!mctx)
  367. return NULL;
  368. return mctx->mc_gregs;
  369. }
  370. static void perf_callchain_user_32(struct perf_callchain_entry *entry,
  371. struct pt_regs *regs)
  372. {
  373. unsigned int sp, next_sp;
  374. unsigned int next_ip;
  375. unsigned int lr;
  376. long level = 0;
  377. unsigned int __user *fp, *uregs;
  378. next_ip = regs->nip;
  379. lr = regs->link;
  380. sp = regs->gpr[1];
  381. perf_callchain_store(entry, next_ip);
  382. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  383. fp = (unsigned int __user *) (unsigned long) sp;
  384. if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
  385. return;
  386. if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
  387. return;
  388. uregs = signal_frame_32_regs(sp, next_sp, next_ip);
  389. if (!uregs && level <= 1)
  390. uregs = signal_frame_32_regs(sp, next_sp, lr);
  391. if (uregs) {
  392. /*
  393. * This looks like an signal frame, so restart
  394. * the stack trace with the values in it.
  395. */
  396. if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
  397. read_user_stack_32(&uregs[PT_LNK], &lr) ||
  398. read_user_stack_32(&uregs[PT_R1], &sp))
  399. return;
  400. level = 0;
  401. perf_callchain_store(entry, PERF_CONTEXT_USER);
  402. perf_callchain_store(entry, next_ip);
  403. continue;
  404. }
  405. if (level == 0)
  406. next_ip = lr;
  407. perf_callchain_store(entry, next_ip);
  408. ++level;
  409. sp = next_sp;
  410. }
  411. }
  412. void
  413. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  414. {
  415. if (current_is_64bit())
  416. perf_callchain_user_64(entry, regs);
  417. else
  418. perf_callchain_user_32(entry, regs);
  419. }