dma-default.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
  7. * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
  8. * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9. */
  10. #include <linux/types.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/mm.h>
  13. #include <linux/module.h>
  14. #include <linux/scatterlist.h>
  15. #include <linux/string.h>
  16. #include <linux/gfp.h>
  17. #include <linux/highmem.h>
  18. #include <asm/cache.h>
  19. #include <asm/io.h>
  20. #include <dma-coherence.h>
  21. static inline struct page *dma_addr_to_page(struct device *dev,
  22. dma_addr_t dma_addr)
  23. {
  24. return pfn_to_page(
  25. plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
  26. }
  27. /*
  28. * Warning on the terminology - Linux calls an uncached area coherent;
  29. * MIPS terminology calls memory areas with hardware maintained coherency
  30. * coherent.
  31. */
  32. static inline int cpu_is_noncoherent_r10000(struct device *dev)
  33. {
  34. return !plat_device_is_coherent(dev) &&
  35. (current_cpu_type() == CPU_R10000 ||
  36. current_cpu_type() == CPU_R12000);
  37. }
  38. static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
  39. {
  40. gfp_t dma_flag;
  41. /* ignore region specifiers */
  42. gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
  43. #ifdef CONFIG_ISA
  44. if (dev == NULL)
  45. dma_flag = __GFP_DMA;
  46. else
  47. #endif
  48. #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
  49. if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
  50. dma_flag = __GFP_DMA;
  51. else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  52. dma_flag = __GFP_DMA32;
  53. else
  54. #endif
  55. #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
  56. if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  57. dma_flag = __GFP_DMA32;
  58. else
  59. #endif
  60. #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
  61. if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  62. dma_flag = __GFP_DMA;
  63. else
  64. #endif
  65. dma_flag = 0;
  66. /* Don't invoke OOM killer */
  67. gfp |= __GFP_NORETRY;
  68. return gfp | dma_flag;
  69. }
  70. void *dma_alloc_noncoherent(struct device *dev, size_t size,
  71. dma_addr_t * dma_handle, gfp_t gfp)
  72. {
  73. void *ret;
  74. gfp = massage_gfp_flags(dev, gfp);
  75. ret = (void *) __get_free_pages(gfp, get_order(size));
  76. if (ret != NULL) {
  77. memset(ret, 0, size);
  78. *dma_handle = plat_map_dma_mem(dev, ret, size);
  79. }
  80. return ret;
  81. }
  82. EXPORT_SYMBOL(dma_alloc_noncoherent);
  83. static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
  84. dma_addr_t * dma_handle, gfp_t gfp)
  85. {
  86. void *ret;
  87. if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
  88. return ret;
  89. gfp = massage_gfp_flags(dev, gfp);
  90. ret = (void *) __get_free_pages(gfp, get_order(size));
  91. if (ret) {
  92. memset(ret, 0, size);
  93. *dma_handle = plat_map_dma_mem(dev, ret, size);
  94. if (!plat_device_is_coherent(dev)) {
  95. dma_cache_wback_inv((unsigned long) ret, size);
  96. ret = UNCAC_ADDR(ret);
  97. }
  98. }
  99. return ret;
  100. }
  101. void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
  102. dma_addr_t dma_handle)
  103. {
  104. plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
  105. free_pages((unsigned long) vaddr, get_order(size));
  106. }
  107. EXPORT_SYMBOL(dma_free_noncoherent);
  108. static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
  109. dma_addr_t dma_handle)
  110. {
  111. unsigned long addr = (unsigned long) vaddr;
  112. int order = get_order(size);
  113. if (dma_release_from_coherent(dev, order, vaddr))
  114. return;
  115. plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
  116. if (!plat_device_is_coherent(dev))
  117. addr = CAC_ADDR(addr);
  118. free_pages(addr, get_order(size));
  119. }
  120. static inline void __dma_sync_virtual(void *addr, size_t size,
  121. enum dma_data_direction direction)
  122. {
  123. switch (direction) {
  124. case DMA_TO_DEVICE:
  125. dma_cache_wback((unsigned long)addr, size);
  126. break;
  127. case DMA_FROM_DEVICE:
  128. dma_cache_inv((unsigned long)addr, size);
  129. break;
  130. case DMA_BIDIRECTIONAL:
  131. dma_cache_wback_inv((unsigned long)addr, size);
  132. break;
  133. default:
  134. BUG();
  135. }
  136. }
  137. /*
  138. * A single sg entry may refer to multiple physically contiguous
  139. * pages. But we still need to process highmem pages individually.
  140. * If highmem is not configured then the bulk of this loop gets
  141. * optimized out.
  142. */
  143. static inline void __dma_sync(struct page *page,
  144. unsigned long offset, size_t size, enum dma_data_direction direction)
  145. {
  146. size_t left = size;
  147. do {
  148. size_t len = left;
  149. if (PageHighMem(page)) {
  150. void *addr;
  151. if (offset + len > PAGE_SIZE) {
  152. if (offset >= PAGE_SIZE) {
  153. page += offset >> PAGE_SHIFT;
  154. offset &= ~PAGE_MASK;
  155. }
  156. len = PAGE_SIZE - offset;
  157. }
  158. addr = kmap_atomic(page);
  159. __dma_sync_virtual(addr + offset, len, direction);
  160. kunmap_atomic(addr);
  161. } else
  162. __dma_sync_virtual(page_address(page) + offset,
  163. size, direction);
  164. offset = 0;
  165. page++;
  166. left -= len;
  167. } while (left);
  168. }
  169. static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
  170. size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
  171. {
  172. if (cpu_is_noncoherent_r10000(dev))
  173. __dma_sync(dma_addr_to_page(dev, dma_addr),
  174. dma_addr & ~PAGE_MASK, size, direction);
  175. plat_unmap_dma_mem(dev, dma_addr, size, direction);
  176. }
  177. static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
  178. int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
  179. {
  180. int i;
  181. for (i = 0; i < nents; i++, sg++) {
  182. if (!plat_device_is_coherent(dev))
  183. __dma_sync(sg_page(sg), sg->offset, sg->length,
  184. direction);
  185. sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
  186. sg->offset;
  187. }
  188. return nents;
  189. }
  190. static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
  191. unsigned long offset, size_t size, enum dma_data_direction direction,
  192. struct dma_attrs *attrs)
  193. {
  194. if (!plat_device_is_coherent(dev))
  195. __dma_sync(page, offset, size, direction);
  196. return plat_map_dma_mem_page(dev, page) + offset;
  197. }
  198. static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  199. int nhwentries, enum dma_data_direction direction,
  200. struct dma_attrs *attrs)
  201. {
  202. int i;
  203. for (i = 0; i < nhwentries; i++, sg++) {
  204. if (!plat_device_is_coherent(dev) &&
  205. direction != DMA_TO_DEVICE)
  206. __dma_sync(sg_page(sg), sg->offset, sg->length,
  207. direction);
  208. plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
  209. }
  210. }
  211. static void mips_dma_sync_single_for_cpu(struct device *dev,
  212. dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  213. {
  214. if (cpu_is_noncoherent_r10000(dev))
  215. __dma_sync(dma_addr_to_page(dev, dma_handle),
  216. dma_handle & ~PAGE_MASK, size, direction);
  217. }
  218. static void mips_dma_sync_single_for_device(struct device *dev,
  219. dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  220. {
  221. plat_extra_sync_for_device(dev);
  222. if (!plat_device_is_coherent(dev))
  223. __dma_sync(dma_addr_to_page(dev, dma_handle),
  224. dma_handle & ~PAGE_MASK, size, direction);
  225. }
  226. static void mips_dma_sync_sg_for_cpu(struct device *dev,
  227. struct scatterlist *sg, int nelems, enum dma_data_direction direction)
  228. {
  229. int i;
  230. /* Make sure that gcc doesn't leave the empty loop body. */
  231. for (i = 0; i < nelems; i++, sg++) {
  232. if (cpu_is_noncoherent_r10000(dev))
  233. __dma_sync(sg_page(sg), sg->offset, sg->length,
  234. direction);
  235. }
  236. }
  237. static void mips_dma_sync_sg_for_device(struct device *dev,
  238. struct scatterlist *sg, int nelems, enum dma_data_direction direction)
  239. {
  240. int i;
  241. /* Make sure that gcc doesn't leave the empty loop body. */
  242. for (i = 0; i < nelems; i++, sg++) {
  243. if (!plat_device_is_coherent(dev))
  244. __dma_sync(sg_page(sg), sg->offset, sg->length,
  245. direction);
  246. }
  247. }
  248. int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  249. {
  250. return plat_dma_mapping_error(dev, dma_addr);
  251. }
  252. int mips_dma_supported(struct device *dev, u64 mask)
  253. {
  254. return plat_dma_supported(dev, mask);
  255. }
  256. void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  257. enum dma_data_direction direction)
  258. {
  259. BUG_ON(direction == DMA_NONE);
  260. plat_extra_sync_for_device(dev);
  261. if (!plat_device_is_coherent(dev))
  262. __dma_sync_virtual(vaddr, size, direction);
  263. }
  264. EXPORT_SYMBOL(dma_cache_sync);
  265. static struct dma_map_ops mips_default_dma_map_ops = {
  266. .alloc_coherent = mips_dma_alloc_coherent,
  267. .free_coherent = mips_dma_free_coherent,
  268. .map_page = mips_dma_map_page,
  269. .unmap_page = mips_dma_unmap_page,
  270. .map_sg = mips_dma_map_sg,
  271. .unmap_sg = mips_dma_unmap_sg,
  272. .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
  273. .sync_single_for_device = mips_dma_sync_single_for_device,
  274. .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
  275. .sync_sg_for_device = mips_dma_sync_sg_for_device,
  276. .mapping_error = mips_dma_mapping_error,
  277. .dma_supported = mips_dma_supported
  278. };
  279. struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
  280. EXPORT_SYMBOL(mips_dma_map_ops);
  281. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  282. static int __init mips_dma_init(void)
  283. {
  284. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  285. return 0;
  286. }
  287. fs_initcall(mips_dma_init);