init.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. /*
  2. * Copyright (C) 2007-2008 Michal Simek <monstr@monstr.eu>
  3. * Copyright (C) 2006 Atmark Techno, Inc.
  4. *
  5. * This file is subject to the terms and conditions of the GNU General Public
  6. * License. See the file "COPYING" in the main directory of this archive
  7. * for more details.
  8. */
  9. #include <linux/bootmem.h>
  10. #include <linux/init.h>
  11. #include <linux/kernel.h>
  12. #include <linux/memblock.h>
  13. #include <linux/mm.h> /* mem_init */
  14. #include <linux/initrd.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/pfn.h>
  17. #include <linux/slab.h>
  18. #include <linux/swap.h>
  19. #include <asm/page.h>
  20. #include <asm/mmu_context.h>
  21. #include <asm/pgalloc.h>
  22. #include <asm/sections.h>
  23. #include <asm/tlb.h>
  24. /* Use for MMU and noMMU because of PCI generic code */
  25. int mem_init_done;
  26. #ifndef CONFIG_MMU
  27. unsigned int __page_offset;
  28. EXPORT_SYMBOL(__page_offset);
  29. #else
  30. static int init_bootmem_done;
  31. #endif /* CONFIG_MMU */
  32. char *klimit = _end;
  33. /*
  34. * Initialize the bootmem system and give it all the memory we
  35. * have available.
  36. */
  37. unsigned long memory_start;
  38. EXPORT_SYMBOL(memory_start);
  39. unsigned long memory_end; /* due to mm/nommu.c */
  40. unsigned long memory_size;
  41. EXPORT_SYMBOL(memory_size);
  42. /*
  43. * paging_init() sets up the page tables - in fact we've already done this.
  44. */
  45. static void __init paging_init(void)
  46. {
  47. unsigned long zones_size[MAX_NR_ZONES];
  48. /* Clean every zones */
  49. memset(zones_size, 0, sizeof(zones_size));
  50. /*
  51. * old: we can DMA to/from any address.put all page into ZONE_DMA
  52. * We use only ZONE_NORMAL
  53. */
  54. zones_size[ZONE_NORMAL] = max_mapnr;
  55. free_area_init(zones_size);
  56. }
  57. void __init setup_memory(void)
  58. {
  59. unsigned long map_size;
  60. struct memblock_region *reg;
  61. #ifndef CONFIG_MMU
  62. u32 kernel_align_start, kernel_align_size;
  63. /* Find main memory where is the kernel */
  64. for_each_memblock(memory, reg) {
  65. memory_start = (u32)reg->base;
  66. memory_end = (u32) reg->base + reg->size;
  67. if ((memory_start <= (u32)_text) &&
  68. ((u32)_text <= memory_end)) {
  69. memory_size = memory_end - memory_start;
  70. PAGE_OFFSET = memory_start;
  71. printk(KERN_INFO "%s: Main mem: 0x%x-0x%x, "
  72. "size 0x%08x\n", __func__, (u32) memory_start,
  73. (u32) memory_end, (u32) memory_size);
  74. break;
  75. }
  76. }
  77. if (!memory_start || !memory_end) {
  78. panic("%s: Missing memory setting 0x%08x-0x%08x\n",
  79. __func__, (u32) memory_start, (u32) memory_end);
  80. }
  81. /* reservation of region where is the kernel */
  82. kernel_align_start = PAGE_DOWN((u32)_text);
  83. /* ALIGN can be remove because _end in vmlinux.lds.S is align */
  84. kernel_align_size = PAGE_UP((u32)klimit) - kernel_align_start;
  85. memblock_reserve(kernel_align_start, kernel_align_size);
  86. printk(KERN_INFO "%s: kernel addr=0x%08x-0x%08x size=0x%08x\n",
  87. __func__, kernel_align_start, kernel_align_start
  88. + kernel_align_size, kernel_align_size);
  89. #endif
  90. /*
  91. * Kernel:
  92. * start: base phys address of kernel - page align
  93. * end: base phys address of kernel - page align
  94. *
  95. * min_low_pfn - the first page (mm/bootmem.c - node_boot_start)
  96. * max_low_pfn
  97. * max_mapnr - the first unused page (mm/bootmem.c - node_low_pfn)
  98. * num_physpages - number of all pages
  99. */
  100. /* memory start is from the kernel end (aligned) to higher addr */
  101. min_low_pfn = memory_start >> PAGE_SHIFT; /* minimum for allocation */
  102. /* RAM is assumed contiguous */
  103. num_physpages = max_mapnr = memory_size >> PAGE_SHIFT;
  104. max_pfn = max_low_pfn = memory_end >> PAGE_SHIFT;
  105. printk(KERN_INFO "%s: max_mapnr: %#lx\n", __func__, max_mapnr);
  106. printk(KERN_INFO "%s: min_low_pfn: %#lx\n", __func__, min_low_pfn);
  107. printk(KERN_INFO "%s: max_low_pfn: %#lx\n", __func__, max_low_pfn);
  108. /*
  109. * Find an area to use for the bootmem bitmap.
  110. * We look for the first area which is at least
  111. * 128kB in length (128kB is enough for a bitmap
  112. * for 4GB of memory, using 4kB pages), plus 1 page
  113. * (in case the address isn't page-aligned).
  114. */
  115. map_size = init_bootmem_node(NODE_DATA(0),
  116. PFN_UP(TOPHYS((u32)klimit)), min_low_pfn, max_low_pfn);
  117. memblock_reserve(PFN_UP(TOPHYS((u32)klimit)) << PAGE_SHIFT, map_size);
  118. /* free bootmem is whole main memory */
  119. free_bootmem(memory_start, memory_size);
  120. /* reserve allocate blocks */
  121. for_each_memblock(reserved, reg) {
  122. pr_debug("reserved - 0x%08x-0x%08x\n",
  123. (u32) reg->base, (u32) reg->size);
  124. reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
  125. }
  126. #ifdef CONFIG_MMU
  127. init_bootmem_done = 1;
  128. #endif
  129. paging_init();
  130. }
  131. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  132. {
  133. unsigned long addr;
  134. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  135. ClearPageReserved(virt_to_page(addr));
  136. init_page_count(virt_to_page(addr));
  137. free_page(addr);
  138. totalram_pages++;
  139. }
  140. printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
  141. }
  142. #ifdef CONFIG_BLK_DEV_INITRD
  143. void free_initrd_mem(unsigned long start, unsigned long end)
  144. {
  145. int pages = 0;
  146. for (; start < end; start += PAGE_SIZE) {
  147. ClearPageReserved(virt_to_page(start));
  148. init_page_count(virt_to_page(start));
  149. free_page(start);
  150. totalram_pages++;
  151. pages++;
  152. }
  153. printk(KERN_NOTICE "Freeing initrd memory: %dk freed\n",
  154. (int)(pages * (PAGE_SIZE / 1024)));
  155. }
  156. #endif
  157. void free_initmem(void)
  158. {
  159. free_init_pages("unused kernel memory",
  160. (unsigned long)(&__init_begin),
  161. (unsigned long)(&__init_end));
  162. }
  163. void __init mem_init(void)
  164. {
  165. high_memory = (void *)__va(memory_end);
  166. /* this will put all memory onto the freelists */
  167. totalram_pages += free_all_bootmem();
  168. printk(KERN_INFO "Memory: %luk/%luk available\n",
  169. nr_free_pages() << (PAGE_SHIFT-10),
  170. num_physpages << (PAGE_SHIFT-10));
  171. mem_init_done = 1;
  172. }
  173. #ifndef CONFIG_MMU
  174. int page_is_ram(unsigned long pfn)
  175. {
  176. return __range_ok(pfn, 0);
  177. }
  178. #else
  179. int page_is_ram(unsigned long pfn)
  180. {
  181. return pfn < max_low_pfn;
  182. }
  183. /*
  184. * Check for command-line options that affect what MMU_init will do.
  185. */
  186. static void mm_cmdline_setup(void)
  187. {
  188. unsigned long maxmem = 0;
  189. char *p = cmd_line;
  190. /* Look for mem= option on command line */
  191. p = strstr(cmd_line, "mem=");
  192. if (p) {
  193. p += 4;
  194. maxmem = memparse(p, &p);
  195. if (maxmem && memory_size > maxmem) {
  196. memory_size = maxmem;
  197. memory_end = memory_start + memory_size;
  198. memblock.memory.regions[0].size = memory_size;
  199. }
  200. }
  201. }
  202. /*
  203. * MMU_init_hw does the chip-specific initialization of the MMU hardware.
  204. */
  205. static void __init mmu_init_hw(void)
  206. {
  207. /*
  208. * The Zone Protection Register (ZPR) defines how protection will
  209. * be applied to every page which is a member of a given zone. At
  210. * present, we utilize only two of the zones.
  211. * The zone index bits (of ZSEL) in the PTE are used for software
  212. * indicators, except the LSB. For user access, zone 1 is used,
  213. * for kernel access, zone 0 is used. We set all but zone 1
  214. * to zero, allowing only kernel access as indicated in the PTE.
  215. * For zone 1, we set a 01 binary (a value of 10 will not work)
  216. * to allow user access as indicated in the PTE. This also allows
  217. * kernel access as indicated in the PTE.
  218. */
  219. __asm__ __volatile__ ("ori r11, r0, 0x10000000;" \
  220. "mts rzpr, r11;"
  221. : : : "r11");
  222. }
  223. /*
  224. * MMU_init sets up the basic memory mappings for the kernel,
  225. * including both RAM and possibly some I/O regions,
  226. * and sets up the page tables and the MMU hardware ready to go.
  227. */
  228. /* called from head.S */
  229. asmlinkage void __init mmu_init(void)
  230. {
  231. unsigned int kstart, ksize;
  232. if (!memblock.reserved.cnt) {
  233. printk(KERN_EMERG "Error memory count\n");
  234. machine_restart(NULL);
  235. }
  236. if ((u32) memblock.memory.regions[0].size < 0x1000000) {
  237. printk(KERN_EMERG "Memory must be greater than 16MB\n");
  238. machine_restart(NULL);
  239. }
  240. /* Find main memory where the kernel is */
  241. memory_start = (u32) memblock.memory.regions[0].base;
  242. memory_end = (u32) memblock.memory.regions[0].base +
  243. (u32) memblock.memory.regions[0].size;
  244. memory_size = memory_end - memory_start;
  245. mm_cmdline_setup(); /* FIXME parse args from command line - not used */
  246. /*
  247. * Map out the kernel text/data/bss from the available physical
  248. * memory.
  249. */
  250. kstart = __pa(CONFIG_KERNEL_START); /* kernel start */
  251. /* kernel size */
  252. ksize = PAGE_ALIGN(((u32)_end - (u32)CONFIG_KERNEL_START));
  253. memblock_reserve(kstart, ksize);
  254. #if defined(CONFIG_BLK_DEV_INITRD)
  255. /* Remove the init RAM disk from the available memory. */
  256. /* if (initrd_start) {
  257. mem_pieces_remove(&phys_avail, __pa(initrd_start),
  258. initrd_end - initrd_start, 1);
  259. }*/
  260. #endif /* CONFIG_BLK_DEV_INITRD */
  261. /* Initialize the MMU hardware */
  262. mmu_init_hw();
  263. /* Map in all of RAM starting at CONFIG_KERNEL_START */
  264. mapin_ram();
  265. #ifdef HIGHMEM_START_BOOL
  266. ioremap_base = HIGHMEM_START;
  267. #else
  268. ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */
  269. #endif /* CONFIG_HIGHMEM */
  270. ioremap_bot = ioremap_base;
  271. /* Initialize the context management stuff */
  272. mmu_context_init();
  273. }
  274. /* This is only called until mem_init is done. */
  275. void __init *early_get_page(void)
  276. {
  277. void *p;
  278. if (init_bootmem_done) {
  279. p = alloc_bootmem_pages(PAGE_SIZE);
  280. } else {
  281. /*
  282. * Mem start + 32MB -> here is limit
  283. * because of mem mapping from head.S
  284. */
  285. p = __va(memblock_alloc_base(PAGE_SIZE, PAGE_SIZE,
  286. memory_start + 0x2000000));
  287. }
  288. return p;
  289. }
  290. #endif /* CONFIG_MMU */
  291. void * __init_refok alloc_maybe_bootmem(size_t size, gfp_t mask)
  292. {
  293. if (mem_init_done)
  294. return kmalloc(size, mask);
  295. else
  296. return alloc_bootmem(size);
  297. }
  298. void * __init_refok zalloc_maybe_bootmem(size_t size, gfp_t mask)
  299. {
  300. void *p;
  301. if (mem_init_done)
  302. p = kzalloc(size, mask);
  303. else {
  304. p = alloc_bootmem(size);
  305. if (p)
  306. memset(p, 0, size);
  307. }
  308. return p;
  309. }