flush.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. /*
  2. * linux/arch/arm/mm/flush.c
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/mm.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/highmem.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/cachetype.h>
  16. #include <asm/highmem.h>
  17. #include <asm/smp_plat.h>
  18. #include <asm/system.h>
  19. #include <asm/tlbflush.h>
  20. #include "mm.h"
  21. #ifdef CONFIG_CPU_CACHE_VIPT
  22. #define ALIAS_FLUSH_START 0xffff4000
  23. static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
  24. {
  25. unsigned long to = ALIAS_FLUSH_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
  26. const int zero = 0;
  27. set_pte_ext(TOP_PTE(to), pfn_pte(pfn, PAGE_KERNEL), 0);
  28. flush_tlb_kernel_page(to);
  29. asm( "mcrr p15, 0, %1, %0, c14\n"
  30. " mcr p15, 0, %2, c7, c10, 4"
  31. :
  32. : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
  33. : "cc");
  34. }
  35. static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
  36. {
  37. unsigned long colour = CACHE_COLOUR(vaddr);
  38. unsigned long offset = vaddr & (PAGE_SIZE - 1);
  39. unsigned long to;
  40. set_pte_ext(TOP_PTE(ALIAS_FLUSH_START) + colour, pfn_pte(pfn, PAGE_KERNEL), 0);
  41. to = ALIAS_FLUSH_START + (colour << PAGE_SHIFT) + offset;
  42. flush_tlb_kernel_page(to);
  43. flush_icache_range(to, to + len);
  44. }
  45. void flush_cache_mm(struct mm_struct *mm)
  46. {
  47. if (cache_is_vivt()) {
  48. vivt_flush_cache_mm(mm);
  49. return;
  50. }
  51. if (cache_is_vipt_aliasing()) {
  52. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  53. " mcr p15, 0, %0, c7, c10, 4"
  54. :
  55. : "r" (0)
  56. : "cc");
  57. }
  58. }
  59. void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  60. {
  61. if (cache_is_vivt()) {
  62. vivt_flush_cache_range(vma, start, end);
  63. return;
  64. }
  65. if (cache_is_vipt_aliasing()) {
  66. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  67. " mcr p15, 0, %0, c7, c10, 4"
  68. :
  69. : "r" (0)
  70. : "cc");
  71. }
  72. if (vma->vm_flags & VM_EXEC)
  73. __flush_icache_all();
  74. }
  75. void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
  76. {
  77. if (cache_is_vivt()) {
  78. vivt_flush_cache_page(vma, user_addr, pfn);
  79. return;
  80. }
  81. if (cache_is_vipt_aliasing()) {
  82. flush_pfn_alias(pfn, user_addr);
  83. __flush_icache_all();
  84. }
  85. if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
  86. __flush_icache_all();
  87. }
  88. #else
  89. #define flush_pfn_alias(pfn,vaddr) do { } while (0)
  90. #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
  91. #endif
  92. static void flush_ptrace_access_other(void *args)
  93. {
  94. __flush_icache_all();
  95. }
  96. static
  97. void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
  98. unsigned long uaddr, void *kaddr, unsigned long len)
  99. {
  100. if (cache_is_vivt()) {
  101. if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
  102. unsigned long addr = (unsigned long)kaddr;
  103. __cpuc_coherent_kern_range(addr, addr + len);
  104. }
  105. return;
  106. }
  107. if (cache_is_vipt_aliasing()) {
  108. flush_pfn_alias(page_to_pfn(page), uaddr);
  109. __flush_icache_all();
  110. return;
  111. }
  112. /* VIPT non-aliasing D-cache */
  113. if (vma->vm_flags & VM_EXEC) {
  114. unsigned long addr = (unsigned long)kaddr;
  115. if (icache_is_vipt_aliasing())
  116. flush_icache_alias(page_to_pfn(page), uaddr, len);
  117. else
  118. __cpuc_coherent_kern_range(addr, addr + len);
  119. if (cache_ops_need_broadcast())
  120. smp_call_function(flush_ptrace_access_other,
  121. NULL, 1);
  122. }
  123. }
  124. /*
  125. * Copy user data from/to a page which is mapped into a different
  126. * processes address space. Really, we want to allow our "user
  127. * space" model to handle this.
  128. *
  129. * Note that this code needs to run on the current CPU.
  130. */
  131. void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
  132. unsigned long uaddr, void *dst, const void *src,
  133. unsigned long len)
  134. {
  135. #ifdef CONFIG_SMP
  136. preempt_disable();
  137. #endif
  138. memcpy(dst, src, len);
  139. flush_ptrace_access(vma, page, uaddr, dst, len);
  140. #ifdef CONFIG_SMP
  141. preempt_enable();
  142. #endif
  143. }
  144. void __flush_dcache_page(struct address_space *mapping, struct page *page)
  145. {
  146. /*
  147. * Writeback any data associated with the kernel mapping of this
  148. * page. This ensures that data in the physical page is mutually
  149. * coherent with the kernels mapping.
  150. */
  151. if (!PageHighMem(page)) {
  152. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  153. } else {
  154. void *addr = kmap_high_get(page);
  155. if (addr) {
  156. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  157. kunmap_high(page);
  158. } else if (cache_is_vipt()) {
  159. /* unmapped pages might still be cached */
  160. addr = kmap_atomic(page);
  161. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  162. kunmap_atomic(addr);
  163. }
  164. }
  165. /*
  166. * If this is a page cache page, and we have an aliasing VIPT cache,
  167. * we only need to do one flush - which would be at the relevant
  168. * userspace colour, which is congruent with page->index.
  169. */
  170. if (mapping && cache_is_vipt_aliasing())
  171. flush_pfn_alias(page_to_pfn(page),
  172. page->index << PAGE_CACHE_SHIFT);
  173. }
  174. static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
  175. {
  176. struct mm_struct *mm = current->active_mm;
  177. struct vm_area_struct *mpnt;
  178. struct prio_tree_iter iter;
  179. pgoff_t pgoff;
  180. /*
  181. * There are possible user space mappings of this page:
  182. * - VIVT cache: we need to also write back and invalidate all user
  183. * data in the current VM view associated with this page.
  184. * - aliasing VIPT: we only need to find one mapping of this page.
  185. */
  186. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  187. flush_dcache_mmap_lock(mapping);
  188. vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
  189. unsigned long offset;
  190. /*
  191. * If this VMA is not in our MM, we can ignore it.
  192. */
  193. if (mpnt->vm_mm != mm)
  194. continue;
  195. if (!(mpnt->vm_flags & VM_MAYSHARE))
  196. continue;
  197. offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
  198. flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
  199. }
  200. flush_dcache_mmap_unlock(mapping);
  201. }
  202. #if __LINUX_ARM_ARCH__ >= 6
  203. void __sync_icache_dcache(pte_t pteval)
  204. {
  205. unsigned long pfn;
  206. struct page *page;
  207. struct address_space *mapping;
  208. if (!pte_present_user(pteval))
  209. return;
  210. if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
  211. /* only flush non-aliasing VIPT caches for exec mappings */
  212. return;
  213. pfn = pte_pfn(pteval);
  214. if (!pfn_valid(pfn))
  215. return;
  216. page = pfn_to_page(pfn);
  217. if (cache_is_vipt_aliasing())
  218. mapping = page_mapping(page);
  219. else
  220. mapping = NULL;
  221. if (!test_and_set_bit(PG_dcache_clean, &page->flags))
  222. __flush_dcache_page(mapping, page);
  223. if (pte_exec(pteval))
  224. __flush_icache_all();
  225. }
  226. #endif
  227. /*
  228. * Ensure cache coherency between kernel mapping and userspace mapping
  229. * of this page.
  230. *
  231. * We have three cases to consider:
  232. * - VIPT non-aliasing cache: fully coherent so nothing required.
  233. * - VIVT: fully aliasing, so we need to handle every alias in our
  234. * current VM view.
  235. * - VIPT aliasing: need to handle one alias in our current VM view.
  236. *
  237. * If we need to handle aliasing:
  238. * If the page only exists in the page cache and there are no user
  239. * space mappings, we can be lazy and remember that we may have dirty
  240. * kernel cache lines for later. Otherwise, we assume we have
  241. * aliasing mappings.
  242. *
  243. * Note that we disable the lazy flush for SMP configurations where
  244. * the cache maintenance operations are not automatically broadcasted.
  245. */
  246. void flush_dcache_page(struct page *page)
  247. {
  248. struct address_space *mapping;
  249. /*
  250. * The zero page is never written to, so never has any dirty
  251. * cache lines, and therefore never needs to be flushed.
  252. */
  253. if (page == ZERO_PAGE(0))
  254. return;
  255. mapping = page_mapping(page);
  256. if (!cache_ops_need_broadcast() &&
  257. mapping && !mapping_mapped(mapping))
  258. clear_bit(PG_dcache_clean, &page->flags);
  259. else {
  260. __flush_dcache_page(mapping, page);
  261. if (mapping && cache_is_vivt())
  262. __flush_dcache_aliases(mapping, page);
  263. else if (mapping)
  264. __flush_icache_all();
  265. set_bit(PG_dcache_clean, &page->flags);
  266. }
  267. }
  268. EXPORT_SYMBOL(flush_dcache_page);
  269. /*
  270. * Flush an anonymous page so that users of get_user_pages()
  271. * can safely access the data. The expected sequence is:
  272. *
  273. * get_user_pages()
  274. * -> flush_anon_page
  275. * memcpy() to/from page
  276. * if written to page, flush_dcache_page()
  277. */
  278. void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
  279. {
  280. unsigned long pfn;
  281. /* VIPT non-aliasing caches need do nothing */
  282. if (cache_is_vipt_nonaliasing())
  283. return;
  284. /*
  285. * Write back and invalidate userspace mapping.
  286. */
  287. pfn = page_to_pfn(page);
  288. if (cache_is_vivt()) {
  289. flush_cache_page(vma, vmaddr, pfn);
  290. } else {
  291. /*
  292. * For aliasing VIPT, we can flush an alias of the
  293. * userspace address only.
  294. */
  295. flush_pfn_alias(pfn, vmaddr);
  296. __flush_icache_all();
  297. }
  298. /*
  299. * Invalidate kernel mapping. No data should be contained
  300. * in this mapping of the page. FIXME: this is overkill
  301. * since we actually ask for a write-back and invalidate.
  302. */
  303. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  304. }