timer.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. /* linux/arch/arm/mach-msm/timer.c
  2. *
  3. * Copyright (C) 2007 Google, Inc.
  4. *
  5. * This software is licensed under the terms of the GNU General Public
  6. * License version 2, as published by the Free Software Foundation, and
  7. * may be copied, distributed, and modified under those terms.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. */
  15. #include <linux/init.h>
  16. #include <linux/time.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/irq.h>
  19. #include <linux/clk.h>
  20. #include <linux/clockchips.h>
  21. #include <linux/delay.h>
  22. #include <linux/io.h>
  23. #include <asm/mach/time.h>
  24. #include <asm/hardware/gic.h>
  25. #include <mach/msm_iomap.h>
  26. #include <mach/cpu.h>
  27. #define TIMER_MATCH_VAL 0x0000
  28. #define TIMER_COUNT_VAL 0x0004
  29. #define TIMER_ENABLE 0x0008
  30. #define TIMER_ENABLE_CLR_ON_MATCH_EN 2
  31. #define TIMER_ENABLE_EN 1
  32. #define TIMER_CLEAR 0x000C
  33. #define DGT_CLK_CTL 0x0034
  34. enum {
  35. DGT_CLK_CTL_DIV_1 = 0,
  36. DGT_CLK_CTL_DIV_2 = 1,
  37. DGT_CLK_CTL_DIV_3 = 2,
  38. DGT_CLK_CTL_DIV_4 = 3,
  39. };
  40. #define CSR_PROTECTION 0x0020
  41. #define CSR_PROTECTION_EN 1
  42. #define GPT_HZ 32768
  43. enum timer_location {
  44. LOCAL_TIMER = 0,
  45. GLOBAL_TIMER = 1,
  46. };
  47. #define MSM_GLOBAL_TIMER MSM_CLOCK_DGT
  48. /* TODO: Remove these ifdefs */
  49. #if defined(CONFIG_ARCH_QSD8X50)
  50. #define DGT_HZ (19200000 / 4) /* 19.2 MHz / 4 by default */
  51. #define MSM_DGT_SHIFT (0)
  52. #elif defined(CONFIG_ARCH_MSM7X30)
  53. #define DGT_HZ (24576000 / 4) /* 24.576 MHz (LPXO) / 4 by default */
  54. #define MSM_DGT_SHIFT (0)
  55. #elif defined(CONFIG_ARCH_MSM8X60) || defined(CONFIG_ARCH_MSM8960)
  56. #define DGT_HZ (27000000 / 4) /* 27 MHz (PXO) / 4 by default */
  57. #define MSM_DGT_SHIFT (0)
  58. #else
  59. #define DGT_HZ 19200000 /* 19.2 MHz or 600 KHz after shift */
  60. #define MSM_DGT_SHIFT (5)
  61. #endif
  62. struct msm_clock {
  63. struct clock_event_device clockevent;
  64. struct clocksource clocksource;
  65. struct irqaction irq;
  66. void __iomem *regbase;
  67. uint32_t freq;
  68. uint32_t shift;
  69. void __iomem *global_counter;
  70. void __iomem *local_counter;
  71. };
  72. enum {
  73. MSM_CLOCK_GPT,
  74. MSM_CLOCK_DGT,
  75. NR_TIMERS,
  76. };
  77. static struct msm_clock msm_clocks[];
  78. static struct clock_event_device *local_clock_event;
  79. static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
  80. {
  81. struct clock_event_device *evt = dev_id;
  82. if (smp_processor_id() != 0)
  83. evt = local_clock_event;
  84. if (evt->event_handler == NULL)
  85. return IRQ_HANDLED;
  86. evt->event_handler(evt);
  87. return IRQ_HANDLED;
  88. }
  89. static cycle_t msm_read_timer_count(struct clocksource *cs)
  90. {
  91. struct msm_clock *clk = container_of(cs, struct msm_clock, clocksource);
  92. /*
  93. * Shift timer count down by a constant due to unreliable lower bits
  94. * on some targets.
  95. */
  96. return readl(clk->global_counter) >> clk->shift;
  97. }
  98. static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt)
  99. {
  100. #ifdef CONFIG_SMP
  101. int i;
  102. for (i = 0; i < NR_TIMERS; i++)
  103. if (evt == &(msm_clocks[i].clockevent))
  104. return &msm_clocks[i];
  105. return &msm_clocks[MSM_GLOBAL_TIMER];
  106. #else
  107. return container_of(evt, struct msm_clock, clockevent);
  108. #endif
  109. }
  110. static int msm_timer_set_next_event(unsigned long cycles,
  111. struct clock_event_device *evt)
  112. {
  113. struct msm_clock *clock = clockevent_to_clock(evt);
  114. uint32_t now = readl(clock->local_counter);
  115. uint32_t alarm = now + (cycles << clock->shift);
  116. writel(alarm, clock->regbase + TIMER_MATCH_VAL);
  117. return 0;
  118. }
  119. static void msm_timer_set_mode(enum clock_event_mode mode,
  120. struct clock_event_device *evt)
  121. {
  122. struct msm_clock *clock = clockevent_to_clock(evt);
  123. switch (mode) {
  124. case CLOCK_EVT_MODE_RESUME:
  125. case CLOCK_EVT_MODE_PERIODIC:
  126. break;
  127. case CLOCK_EVT_MODE_ONESHOT:
  128. writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
  129. break;
  130. case CLOCK_EVT_MODE_UNUSED:
  131. case CLOCK_EVT_MODE_SHUTDOWN:
  132. writel(0, clock->regbase + TIMER_ENABLE);
  133. break;
  134. }
  135. }
  136. static struct msm_clock msm_clocks[] = {
  137. [MSM_CLOCK_GPT] = {
  138. .clockevent = {
  139. .name = "gp_timer",
  140. .features = CLOCK_EVT_FEAT_ONESHOT,
  141. .shift = 32,
  142. .rating = 200,
  143. .set_next_event = msm_timer_set_next_event,
  144. .set_mode = msm_timer_set_mode,
  145. },
  146. .clocksource = {
  147. .name = "gp_timer",
  148. .rating = 200,
  149. .read = msm_read_timer_count,
  150. .mask = CLOCKSOURCE_MASK(32),
  151. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  152. },
  153. .irq = {
  154. .name = "gp_timer",
  155. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_RISING,
  156. .handler = msm_timer_interrupt,
  157. .dev_id = &msm_clocks[0].clockevent,
  158. .irq = INT_GP_TIMER_EXP
  159. },
  160. .freq = GPT_HZ,
  161. },
  162. [MSM_CLOCK_DGT] = {
  163. .clockevent = {
  164. .name = "dg_timer",
  165. .features = CLOCK_EVT_FEAT_ONESHOT,
  166. .shift = 32 + MSM_DGT_SHIFT,
  167. .rating = 300,
  168. .set_next_event = msm_timer_set_next_event,
  169. .set_mode = msm_timer_set_mode,
  170. },
  171. .clocksource = {
  172. .name = "dg_timer",
  173. .rating = 300,
  174. .read = msm_read_timer_count,
  175. .mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT)),
  176. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  177. },
  178. .irq = {
  179. .name = "dg_timer",
  180. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_RISING,
  181. .handler = msm_timer_interrupt,
  182. .dev_id = &msm_clocks[1].clockevent,
  183. .irq = INT_DEBUG_TIMER_EXP
  184. },
  185. .freq = DGT_HZ >> MSM_DGT_SHIFT,
  186. .shift = MSM_DGT_SHIFT,
  187. }
  188. };
  189. static void __init msm_timer_init(void)
  190. {
  191. int i;
  192. int res;
  193. int global_offset = 0;
  194. if (cpu_is_msm7x01()) {
  195. msm_clocks[MSM_CLOCK_GPT].regbase = MSM_CSR_BASE;
  196. msm_clocks[MSM_CLOCK_DGT].regbase = MSM_CSR_BASE + 0x10;
  197. } else if (cpu_is_msm7x30()) {
  198. msm_clocks[MSM_CLOCK_GPT].regbase = MSM_CSR_BASE + 0x04;
  199. msm_clocks[MSM_CLOCK_DGT].regbase = MSM_CSR_BASE + 0x24;
  200. } else if (cpu_is_qsd8x50()) {
  201. msm_clocks[MSM_CLOCK_GPT].regbase = MSM_CSR_BASE;
  202. msm_clocks[MSM_CLOCK_DGT].regbase = MSM_CSR_BASE + 0x10;
  203. } else if (cpu_is_msm8x60() || cpu_is_msm8960()) {
  204. msm_clocks[MSM_CLOCK_GPT].regbase = MSM_TMR_BASE + 0x04;
  205. msm_clocks[MSM_CLOCK_DGT].regbase = MSM_TMR_BASE + 0x24;
  206. /* Use CPU0's timer as the global timer. */
  207. global_offset = MSM_TMR0_BASE - MSM_TMR_BASE;
  208. } else
  209. BUG();
  210. #ifdef CONFIG_ARCH_MSM_SCORPIONMP
  211. writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
  212. #endif
  213. for (i = 0; i < ARRAY_SIZE(msm_clocks); i++) {
  214. struct msm_clock *clock = &msm_clocks[i];
  215. struct clock_event_device *ce = &clock->clockevent;
  216. struct clocksource *cs = &clock->clocksource;
  217. clock->local_counter = clock->regbase + TIMER_COUNT_VAL;
  218. clock->global_counter = clock->local_counter + global_offset;
  219. writel(0, clock->regbase + TIMER_ENABLE);
  220. writel(0, clock->regbase + TIMER_CLEAR);
  221. writel(~0, clock->regbase + TIMER_MATCH_VAL);
  222. ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift);
  223. /* allow at least 10 seconds to notice that the timer wrapped */
  224. ce->max_delta_ns =
  225. clockevent_delta2ns(0xf0000000 >> clock->shift, ce);
  226. /* 4 gets rounded down to 3 */
  227. ce->min_delta_ns = clockevent_delta2ns(4, ce);
  228. ce->cpumask = cpumask_of(0);
  229. res = clocksource_register_hz(cs, clock->freq);
  230. if (res)
  231. printk(KERN_ERR "msm_timer_init: clocksource_register "
  232. "failed for %s\n", cs->name);
  233. res = setup_irq(clock->irq.irq, &clock->irq);
  234. if (res)
  235. printk(KERN_ERR "msm_timer_init: setup_irq "
  236. "failed for %s\n", cs->name);
  237. clockevents_register_device(ce);
  238. }
  239. }
  240. #ifdef CONFIG_SMP
  241. int __cpuinit local_timer_setup(struct clock_event_device *evt)
  242. {
  243. struct msm_clock *clock = &msm_clocks[MSM_GLOBAL_TIMER];
  244. /* Use existing clock_event for cpu 0 */
  245. if (!smp_processor_id())
  246. return 0;
  247. writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
  248. if (!local_clock_event) {
  249. writel(0, clock->regbase + TIMER_ENABLE);
  250. writel(0, clock->regbase + TIMER_CLEAR);
  251. writel(~0, clock->regbase + TIMER_MATCH_VAL);
  252. }
  253. evt->irq = clock->irq.irq;
  254. evt->name = "local_timer";
  255. evt->features = CLOCK_EVT_FEAT_ONESHOT;
  256. evt->rating = clock->clockevent.rating;
  257. evt->set_mode = msm_timer_set_mode;
  258. evt->set_next_event = msm_timer_set_next_event;
  259. evt->shift = clock->clockevent.shift;
  260. evt->mult = div_sc(clock->freq, NSEC_PER_SEC, evt->shift);
  261. evt->max_delta_ns =
  262. clockevent_delta2ns(0xf0000000 >> clock->shift, evt);
  263. evt->min_delta_ns = clockevent_delta2ns(4, evt);
  264. local_clock_event = evt;
  265. gic_enable_ppi(clock->irq.irq);
  266. clockevents_register_device(evt);
  267. return 0;
  268. }
  269. inline int local_timer_ack(void)
  270. {
  271. return 1;
  272. }
  273. #endif
  274. struct sys_timer msm_timer = {
  275. .init = msm_timer_init
  276. };